
LOTS: A Software DSM Supporting Large Object Space* 
 
 

Benny Wang-Leung Cheung, Cho-Li Wang, and Francis Chi-Moon Lau 
Department of Computer Science, The University of Hong Kong 

{wlcheung, clwang, fcmlau}@cs.hku.hk 
 
 

Abstract 
 

Software DSM provides good programmability for 
cluster computing, but its performance and limited 
shared memory space for large applications hinder its 
popularity. This paper introduces LOTS,* a C++ 
runtime library supporting a large shared object 
space. With its dynamic memory mapping mechanism, 
LOTS can map more objects, lazily from the local disk 
to the virtual memory during access, leaving only a 
trace of control information for each object in the local 
process space. To our knowledge, LOTS is the first 
pure runtime software DSM supporting a shared object 
space larger than the local process space. Our testing 
shows that LOTS can utilize all the free hard disk 
space available to support hundreds of gigabytes of 
shared objects with a small overhead. The scope 
consistency memory model and a new mixed coherence 
protocol allow LOTS to achieve better scalability with 
respect to problem size and cluster size. 
 
Keywords: distributed shared memory, large object 
space, dynamic memory mapping mechanism. 
 
 
1. Introduction 
 

Cluster computing has emerged as a more popular 
platform for high performance computing. By con-
necting commodity PCs or workstations together with a 
communication network, the cluster is able to provide 
computing power comparable to supercomputers at a 
fraction of the cost. This increase in computing capabi-
lity also allows more complex problems to be solved. 

Over the years, two major cluster programming pa-
radigms have been developed, namely message passing 
and distributed shared memory (DSM). The latter 
provides the virtual view of globally shared memory 

                                                           
* This research is supported by Hong Kong RGC Grant HKU-
7030/01E and HKU Large Equipment Grant 01021001. 

among machines in the cluster (Figure 1), and hides the 
fact that each machine can only access its own physical 
memory. When a machine wants to access an object (a 
variable) not stored in its own memory, the DSM 
system automatically brings in the object through the 
network. Application programmers need not insert 
explicit send and receive commands in the programs, as 
they would in message-passing systems. It is widely 
agreed that programs written following the DSM 
paradigm have better resemblance to sequential ones. 

 
 

 
 
 
Figure 1. The virtual shared address space 

provided by DSM (object-based view) 
 

However, over the years, distributed shared memory 
has not been gaining as wide an acceptance as it should 
be. One reason is performance. Most of the early-day 
DSM systems were not efficient, as their machines tend 
to send too much redundant data to each other. The 
situation has been improved since the invention of 
certain relaxed consistency models [1, 2, 3, 4] and 
coherence protocols [5, 6, 7]. We believe that it is not 
completely fair to compare the performance of DSM 
systems with their message passing counterparts 
directly, since it is unlikely that the DSM systems will 
ever be able to send the exact amount of data needed 
by a machine during execution, while the application 
programmer has every control over message passing. 
Thus some of this DSM overhead should be regarded 
as part of a tradeoff to gain programmer-friendliness. 

Another problem of equal significance, if not more, 
which exists in virtually every DSM system to date, is 
the limited shared object (memory) space provided by 
the system. Most of the existing systems try to map all 
the shared objects to the virtual address space of every 
process, regardless the process is going to access them 
or not. Moreover, the same object must be mapped to 

Proc 0 

Proc 1 

Process 
space 

Shared 
Objects Shared Object 

Space 

Proc 2 

Proc 3 



the same virtual addresses in every process, and two 
shared objects cannot map to the same addresses. For 
example, in JIAJIA [8], a variable mapped to address 
0x4000abcd in one process must also be mapped to 
address 0x4000abcd in other processes running the 
DSM application. The maximum amount of shared 
memory that can be created is thus bounded by the size 
of the process space. For 32-bit machines, at most 4GB 
of shared memory can be claimed. The actual size is 
often much smaller, since the upper 1GB of the process 
space is reserved for the kernel, and the heap and stack 
areas also occupy some space. Worst of all, this limit is 
fixed, regardless of how many machines we are using. 
This violates one original objective of DSM: To 
provide more memory for each machine by combining 
the memory available in each machine together. 

Such limitation in shared object space hinders the 
usage and popularity of DSM in two ways: Either the 
application is too large to fit in the system, or the 
programmer needs to use less memory-consuming data 
structures and slower algorithms, so that the application 
can execute using DSM. Intuitively, one can solve the 
address space limitation by increasing the number of 
addressable bits. Some 64-bit machines are available in 
the market nowadays. However, we firmly believe this 
should not be the preferred solution due to two main 
reasons: First, 32-bit machines are still the mainstream 
in the current commodity market, and they should not 
be abandoned as they are far more cost-effective than 
64-bit counterparts. Second, we believe that scientific 
problems in real life are becoming more complex, with 
ever-growing memory consumptions that may not even 
be able to fit into the 264-byte address space. Consider 
some NP-complete problems: If we want a full analysis 
of all possible moves in a Weiqi (Go) game (about 3361 
configurations), or an optimal solution to the Rush 
Hour problem [9], the address space needed to hold the 
data is enormous. Thus we need an alternative solution 
that can increase the size of the shared object space 
beyond the limit posed by the process space. 

This paper introduces LOTS (Large ObjecT Space), 
a DSM system whose main objective is to provide a 
large shared object space, with the use of the local disk 
of each machine as backing store. LOTS can provide 
more than 4GB of shared object space, with an upper 
bound being the space available in the local hard disk. 
To let the virtual address space store more objects, only 
a trace of control information for each object is needed 
to be resident in the virtual address space, while the 
actual object data are dynamically but lazily mapped 
into the virtual memory when being accessed.  

For all applications we have tested, the large shared 
object space support only incurs a small but acceptable 
overhead of about 5-15% of the total execution time. 

Such overhead can be cancelled out by using a more 
efficient memory consistency model and coherence 
protocol. We shall also demonstrate the large shared 
object space support. In our test, LOTS can allocate a 
shared object space of 117.77 GB, fully utilizing the 
free local hard disk space available. 

For the rest of the paper, Section 2 overviews the 
previous related work. Section 3 discusses the design 
and implementation of LOTS. Section 4 describes the 
system testing procedures and the results analysis. The 
conclusion and future work form Section 5. 
 

2. Related work 
 

The first software DSM system, IVY [10], emerged 
in 1989. However, its performance was poor due to the 
use of a strict Sequential Consistency model [1]. Later 
systems tried to improve the efficiency by introducing 
numerous relaxed models, so as to reduce the amount 
of redundant data sent through the network. The most 
successful one is TreadMarks [11], which adopts the 
Lazy Release Consistency model [2]. Another one is 
JIAJIA [8], using Scope Consistency [3] as proposed 
by Princeton University. JIAJIA’s open-source-ness 
provides the base for further DSM research, such as 
our previous work, JUMP [12], using the migrating-
home protocol [6] instead of a home-based one [7]. 
The migrating-home protocol allows the home, that is, 
the master copy of a shared page or object to transfer 
from one process to another. It differs from the home-
based protocol, where the home is fixed, or the home-
less protocol [11], where there is no notion of home. 

One of the latest DSM systems worth mentioning is 
DOSA [13]. Developed by the same group that intro-
duced TreadMarks, DOSA aims at improving DSM 
efficiency for both fine-grained and coarse-grained 
applications. It uses a handle-based implementation. 
Shared object accesses are redirected through an object 
table to actual objects. By limiting the application 
programming language to be type-safe (that is, no 
pointer arithmetic is allowed on the shared objects), 
together with certain compiler optimizations, DOSA is 
able to outperform TreadMarks. 

All the DSM systems mentioned above do not 
address the critical issue of the need of a large shared 
object space. The maximum size of shared memory that 
can be obtained by using these systems is thus very 
limited. For example, the maximum amount of shared 
memory obtainable in TreadMarks is just equal to the 
minimum RAM size among all machines, while JIAJIA 
only allows a maximum of 128MB of shared memory. 
For JIAJIA, the limit can be relaxed, but it will still not 
be able to store more than 4GB of shared data. 



The need for a large shared object space has not 
been well addressed in the DSM or parallel computing 
area, but effort has been made by database systems 
people to implement a persistent store to accommodate 
very large objects. One of their most well-known 
techniques is pointer swizzling [14], in which artificial, 
invalid addresses or pointers are translated or swizzled 
to machine-addressable form during access. Assume we 
are using 32-bit machines, one most popular way to 
achieve such translation is to convert source addresses 
of larger than 32 bits to 32-bit target addresses at page 
fault time. The generation of the source addresses 
needs compiler support. When page fault occurs, the 
runtime system will trigger the page-fault handler to 
convert source addresses to machine-valid target ones, 
to allocate memory and to map the actual data to that 
segment. Objects swizzled into the memory but are 
unused for a long period of time will be removed 
(unswizzled), and the contents will be sent back to the 
local disk or remote server. Systems such as Quick-
Store [15], ObjectStore [16] and Thor [17] use pointer 
swizzling or its variant to support a distributed data-
base with size larger than the logical address space. 

Although the authors of [14] state that their 
approach can benefit DSM systems, we have not found 
a system making use of such strategy to increase the 
shared object space. As a large shared object space is 
vital to the usability of the DSM system, we try to 
implement LOTS by using a strategy similar to pointer 
swizzling for supporting large object space. We adopt a 
pure runtime strategy, which can enhance the system’s 
portability as well as reduce software dependency. 

We should point out the difference between our 
large object space support and the Physical Address 
Extension (PAE) feature [18] of Intel chips supported 
by many operating systems. PAE allows machines with 
4GB to 64GB of RAM to be addressable by multiple 
processes, but most operating systems supporting PAE 
only allow each process to address 4GB of RAM due 
to the 32-bit process space limit. The only exception is 
Solaris 7, which maps the RAM to the process space 
dynamically during runtime, so that a process can ad-
dress more than 4GB of RAM. Our large object space 
support allows more than 4GB of objects to be mapped 
in the process space, and we need not concern how 
much RAM is available; the OS virtual memory system 
takes care of this issue. Theoretically, our large object 
space support can work whether PAE is enabled or not. 
 
3. Design and implementation of LOTS 
 

This section looks into the design of LOTS, ad-
dressing the major features and how they are achieved. 

3.1. An overview of LOTS 
 

As mentioned in Section 1, the main objective of 
LOTS is to provide a large shared object space for 
cluster applications. Figure 2 shows the simplified 
scheme describing how this can be done. LOTS is 
implemented as a C++ language runtime library in 
Linux. The cluster application making use of LOTS 
will be compiled with this library using ordinary g++. 
Each machine runs a copy of the application binary. 
When the process in one of the machines wants to 
access the shared object, LOTS will check the status of 
the object by examining the object control information 
resident in the virtual memory. If the local copy of the 
object is not clean, a valid copy of the object will be 
brought in from a remote machine. On the other hand, 
if the object data is not mapped to the local virtual 
memory, it will be brought in from the local disk. The 
address of the object to be accessed will be returned to 
the application. We call this dynamic virtual memory 
mapping, the key to allow the total size of all shared 
objects to exceed the size of the process space. 
 
 
 
 
 
 
 
 

Figure 2. Illustrating the dynamic virtual 
memory mapping mechanism in LOTS 

 
In this paper, we shall mainly focus on the various 

memory-related features in LOTS that contribute to the 
large shared object space support and performance im-
provement. Other components, such as synchronization 
facilities provided and the communication method used 
by LOTS, are more straightforward, and we shall only 
briefly describe them in Section 3.6. 
 
3.2. The memory allocator 
 

A LOTS application first declares shared objects 
through the LOTS memory allocator, which is a C++ 
class called Pointer with type template. For example, 
to declare a shared integer pointer or array, we use the 
code Pointer <int> i_ptr. By declaring a shared 
object, a unique, known-to-all-machines object ID will 
be generated internally. This object ID will be the key 
to access all internal data structures for the object. Note 
that physical memory is not allocated at this moment. 
Shared memory is allocated to the objects when the 

Local 
Disk 

a[5] = 7; 

Program 
code 

Network 

A (1) Access invokes 
dynamic mapping 

mechanism

(3) Object  
pointed to 
by internal 
structure 

(2) Bring in object from disk or network 

A 

Process 
Space 



application calls the alloc() member function in the 
Pointer class, which is analogous to the malloc() in 
C or new in C++. The statement i_ptr.alloc(50), 
for example, allocates memory for 50 integers in each 
machine, which is pointed to by the variable i_ptr. 

In LOTS, 1-dimension array is treated as a single 
object. For pointer of pointers or 2-dimension arrays, 
LOTS treats each pointer or row as a separate object. 
Hence the allocation of shared memory follows that in 
traditional malloc() in C or new in C++. 

The alloc() function allocates shared memory by 
mapping a piece of memory in each machine to any 
virtual address. The Doug Lea memory allocator [19] 
which is originally used in the C++ new function does 
not exactly match the requirement of LOTS. Thus the 
LOTS allocator uses the Linux mmap() system call to 
bypass the Doug Lea allocator. The alloc() function 
also assigns a unique shared memory ID to the claimed 
piece of memory, and the control information of the 
shared object is set to point to the start of this allocated 
address. The mapping state of the memory area is set to 
“mapped” , and the shared state is set to “ initial” . 
 
 
 
 
 
 
 

Figure 3. Process space utilization by LOTS 
 

As mentioned, the LOTS allocator uses a different 
memory allocation strategy from that of the Doug Lea 
allocator. Figure 3 shows that LOTS partitions the 
process space into several regions for efficient memory 
management. The heap, stack and kernel-reserved areas 
are unchanged. The middle part of the process space 
from address 0x50000000 to 0xAFFFFFFF is used for 
storing shared objects. This area is further subdivided 
into three equal segments: The dynamic memory 
mapping (DMM) area, for mapping shared object data 
dynamically during access; the twin area, storing a 
copy of the mapped object before synchronization, so 
that the actual updates can be calculated at the next 
synchronization point; and the control area, for storing 
the timestamp and lock information associated with the 
objects. To simplify the implementation, an object 
occupying an address A in the DMM area will also 
occupy the corresponding address (A+0x20000000) in 
the twin area and the control area (A+0x40000000).  

LOTS is designed to allocate memory in a space-
efficient manner, and potentially takes advantage of 
possible spatial locality. Small objects are assigned to 
the upper half of the DMM area, while medium-sized 

objects are assigned in decreasing addresses of the 
lower half, and large-sized objects are allocated in in-
creasing addresses of the lower half. For small objects 
of the same size, LOTS tries its best to allocate them in 
the same page. This will reduce the number of page 
faults invoked by the virtual memory subsystem of the 
operating system if these objects are accessed one after 
the other. Such access patterns can occur frequently, 
for example, when an application is traversing a linked 
list, in which every element is of the same size. 
 
 
 
 
 
 
 
 
 
 
Figure 4. Used and free virtual memory blocks 
inside DMM area are organized in linked lists, 
with the head pointed to by various queues 

 
LOTS makes use of an approximation of the best-fit 

algorithm to map the shared objects to the DMM area. 
To implement this algorithm, 1024 queues are used, 
each of them storing either unused or allocated blocks 
of size within a specified range (Figure 4). If the size of 
an object is larger than the current contiguous space 
available in the DMM area, LOTS will trigger the 
swapping routine to swap out some of the mapped 
objects. These objects will be sent to the local disk. We 
shall discuss swapping in more detail in Section 3.3. 
 
3.3. The dynamic memory mapper 
 

After the shared object is declared and memory is 
allocated, the application is able to access the objects 
in the same way as a sequential program. It is clear that 
during each access, LOTS should check the status of 
the object, so that if the object is currently not mapped 
in the DMM area, it should be brought in from the 
local disk. To maintain shared memory consistency, the 
clean copy should also be brought from the remote 
machine. As LOTS uses a pure runtime approach, it 
does not need to add status checking code before each 
shared object access during compile time. We do not 
ask application programmers to explicitly insert such 
code either, since it is error-prone and user-unfriendly. 
The solution is to make use of the C++ operator 
overloading facility to invoke this status checking.  

LOTS provides a large collection of operator over-
loading functions, which are to be invoked before the 

0x00000000 

0x50000000 
0x70000000 
0x90000000 
0xB0000000 

0xFFFFFFFF 

Heap 

DMM 
Twin 

Control 

Kernel Reserved Stack 

1M 2M 4M … … ½G … … 8 16 24 32 40 

1M 2M 4M … … ½G … … 8 16 24 32 40 

H
eap 

T
w

in 
A

rea 

Used 

Free 

Free Queue 

Used Queue 



actual object data is accessed. For example, when a 
program statement a[5]=1 is executed, where a is a 
shared array, the [ ] operator will be overloaded. The 
overloading function then checks if the object a is map-
ped in the DMM area, and whether the local copy is 
clean. Consequently, a clean copy will be brought in to 
the DMM area, and the correct virtual address is re-
turned to the application. The status checking routine is 
made very light-weight. In most cases, when the object 
is mapped to the DMM area and the copy is clean, the 
checking routine is just a table lookup, converting the 
object ID to the address pointer to be returned. 

If the shared object is not mapped, and the DMM 
area does not have a large enough contiguous space to 
dynamically map the shared object, swapping has to be 
performed, as described in Section 3.2. However, there 
may also be other shared objects going to be accessed. 
If they are swapped out, incorrect results may be 
obtained. Consider a program statement a[5]=b[5]+ 
c[5]. If a, b, c are all shared objects, most g++ 
compilers will overload the [ ] operator associated 
with object a first, followed by that associated with 
objects b and c. After all the addresses are resolved, 
the values of b[5] and c[5] will be read, and the 
result is stored in the address pointed to by a[5]. If 
object a is swapped out of the DMM area (e.g., to 
allow object c to be swapped in) before it is written, 
a[5] will get the wrong result. LOTS requires all 
objects referenced in a single statement be resident in 
the DMM area until the statement is completed. Thus, 
we introduce the pinning mechanism, which is actually 
a timestamp on each object recording its latest access. 
Objects with a more recent timestamp are less likely to 
be swapped out of the DMM area. Hence the swapping 
mechanism is a combination of the least-recently-used 
(LRU) and the best-fit strategy. 

The data structure used for table lookup in LOTS is 
in fact very similar to the handle-based implementation 
in DOSA, and the table lookup works in a fashion very 
similar to pointer swizzling. The main difference is that 
pointer swizzling directly copies the mapped address to 
the control field of the object. LOTS does not do that, 
because we want to keep the size of the Pointer class 
to be the same as that of a pointer, which is four bytes. 
The Pointer class contains only the object ID, which 
fits the size of a pointer. This makes pointer arithmetic 
possible. Users can perform pointer arithmetic on the 
shared objects, as if they are normal C++ pointers. In 
fact, the language supported by LOTS is not only type-
safe; LOTS supports a limited set of pointer operations. 
For example, with a shared array a, pointer dereference 
statements such as *(a+4)=1 are valid in LOTS. This 
adds user-friendliness to programming as the language 
syntax of LOTS is very close to the original C++. 

3.4. Memory consistency issue 
 

Any DSM system must guarantee that the different 
copies of objects in different machines are consistent. 
The rules (consistency model) and the implementation 
mechanisms (coherence protocol) both affect very 
much the efficiency and user-friendliness of the DSM 
system. LOTS takes much care in these two aspects. It 
uses Scope Consistency as the memory model. Scope 
Consistency states that “When a process Q acquires a 
lock L previously occupied by another processor P, all 
the updates made inside the critical section guarded by 
lock L is made known to processor Q” . This is a very 
relaxed memory model, since all updates outside the 
critical section guarded by lock L do not need to 
propagate to processor P, and processes other than P 
and Q, such as R in Figure 5, are not involved. This 
would not affect the programming, since the program 
behavior will be correct as long as the same lock is 
used to guard the access of the same object. An 
example of Scope Consistency is shown in Figure 5.  
 
 
 
 
 

 
 
 
 
 

Figure 5. Illustrating the behavior of Scope 
Consistency (ScC) 

 
A coherence protocol that works well with the 

memory consistency model is also critical in enhancing 
the efficiency of the DSM system. LOTS combines two 
well-known coherence protocols to adapt to most of the 
shared memory access patterns: A homeless, write-
update protocol for propagating object updates during 
lock synchronization, and a migrating-home, write-
invalidate protocol for propagating object updates at a 
barrier operation. An example of this mixed protocol is 
shown in Figure 6. The following is the rationale for 
such a combination: Locks are usually used for objects 
following a migratory or producer-consumer access 
pattern. Using write-update will reduce the number of 
object update requests by the processes accessing the 
objects, and a homeless approach has proven to be 
efficient in the case of TreadMarks [11]. For barriers, 
however, write-update is obviously unfavorable, since 
this will lead to very heavy all-to-all traffic during 
barrier synchronization. Thus write-invalidate is more 
preferred. Moreover, a migrating-home approach will 

Rel (L) 

P R 

x = 3 

Acq (L) 
y = 5 

Q 

Acq (L) 

a = x 
b = y 

Scope y 

In Scope Consistency, P sends 
update of y to Q only, since only 
y is updated in the same scope 
as it is read by Q. 

Result using ScC: b = 5, a != 3 



benefit during global synchronization in three ways: 
First, if there is only a single process writing an object 
before the barrier, there is no need to propagate the 
updates. The home is simply migrated to the writer, and 
this information can be piggybacked on the barrier exit 
message. Second, the presence of a home avoids the 
updates of an object to be scattered by two or more 
processes. This means after the barrier, a process 
requesting an object only needs to send the message to 
the home process. Third, after barrier synchronization, 
all updates are propagated to the home process. Other 
processes, like P0, P2 and P3 in Figure 6, are then able 
to invalidate their own copies of the non-home objects, 
and free the memory storing the updates. This allows 
simpler and more efficient bookkeeping. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Illustrating the mixed coherence 
protocol used in LOTS 

 
3.5. Solution to the diff accumulation problem 
 

As discussed, LOTS follows TreadMarks’  homeless 
protocol to propagate object updates synchronized by 
locks. LOTS also follows TreadMarks’  approach in 
sending diffs (runtime encoding of updates) instead of 
the whole object. If the object update is sparse, sending 
diffs is more favorable than sending whole objects as 
diffs will be much shorter. However, different copies of 
diffs, representing updates at different times, have to be 
sent to the object requester in order to obtain the clean 
copy of the object. In such case, timestamps need to be 
implemented. Moreover, since diffs with the same 
timestamp must be sent as a whole, some redundant 
information may be sent as well, as depicted in Figure 
7a. If the object is updated frequently, such as when the 
object has a migratory update pattern, the redundant 
traffic will slow down the DSM. This is a phenomenon 
known as diff accumulation [20]. 

LOTS  solves  this  problem  by  associating  the  lock 
and timestamp information to each field of the shared 
object in the control area. As shown in Figure 7b, the 
actual diff is calculated on demand by comparing the 
timestamp and lock ID information with that provided 

by the requester, hence eliminating outdated data being 
sent. This way of calculating diffs may not be favorable 
a decade ago when TreadMarks was developed. But 
since the CPU speed has increased at a faster rate than 
the network speed during these years, as CPU speed for 
commodity PCs increases from 75MHz to over 2GHz 
in ten years, while 100-based Ethernet is still the most 
popular network facility now, we believe that shifting 
the burden from the network to the CPU is justified. 
 

 
 
 
 
 
 
 
 
Figure 7. (a) Traditional way of handling diffs, 
as adopted by TreadMarks, (b) eliminating the 
diff accumulation problem by storing the last 

updated time for each field of the object 
 
3.6. Other components in LOTS 
 

Apart from the memory-related features just discuss-
ed, LOTS provides users with barriers and locks as 
synchronization facilities. Their associated memory 
consistency behaviors are described in Section 3.4. In 
addition, LOTS provides an alternative type of barrier, 
nm_barrier(), which performs event synchronization 
only, without any memory synchronization effect. The 
nm_barrier() will be a good option if the application 
program uses the same lock to guard all accesses of the 
same shared object before and after the barrier. 

Machines executing LOTS communicate with each 
other through dedicated point-to-point socket channels, 
following the UDP/IP protocol. LOTS also adopts a 
simple flow control algorithm, which is slightly more 
efficient than that of the TCP protocol. SIGIO handlers 
are implemented to handle incoming messages. 
 
4. Testing and results 
 

As the main objective of LOTS is to provide a large 
shared object space for cluster computing with reason-
able performance, the testing should aim at both the 
efficiency of the system and the capability of providing 
a large shared object space. Hence we performed two 
different tests. First, we compared the execution time 
of four applications under LOTS with that under 
JIAJIA V1.1, a page-based DSM using a home-based 
protocol. JIAJIA was chosen since it is open-source, 
allowing us to trace how the memory consistency 

P1 

Time 

x1=1 
y1=5 

P0 

Rel (L1) 

Acq (L1) 
x1 = 1 
y1 = 5 

Barrier 

Inv 
X, Y 

New 
Home 

Rel (L1) 

Acq (L1) 
x1 = 1 
y1 = 5 

P2 

Rel (L2) 

Acq (L2) 
x2 = 3 

P3 

Rel (L2) 

Acq (L2) 
x2++ 

Inv 
X, Y 

Inv 
X, Y 

T=1 

= obsolete updates 
(value overwritten) 

(a) 

(b) 

X1 X2 X3 X6 X7 X8 

X1 X3 X5 X8 

X2 X5 X7 X8 

X3 X5 T=2 

T=3 

T=4 

 X1 X2 X3 X4 X5 X6 X7 X8 

X1 X2 X3 X4 X5 X6 X7 X8 

2 3 4 0 4 1 4 3 

Value 

Time 

Clean 
copy of X 



model, coherence protocol and network communication 
work, so that we can analyze the testing results in 
detail. Second, we ran an application that needed more 
virtual memory than is locally available, to see if the 
application worked correctly. 
 
4.1. Performance testing and results analysis 
 

For the first test, since both LOTS and JIAJIA use 
UDP/IP protocol with similar flow control mechanisms 
as discussed in Section 3.6, any difference in execution 
time can be attributed to one or more of the following 
three factors: (1) The coherence protocol efficiency, (2) 
the overhead due to the difference in object-based and 
page-based DSM. Such overhead is larger in object-
based DSM since the system must check the state of an 
object at every access, and (3) the overhead for sup-
porting a large object space in LOTS. The size of (3) 
can be easily determined by disabling the large object 
space support as well as the pinning mechanism in 
LOTS. The size of (2) can also be found by measuring 
the amortized time used in calling the access checking 
routine. The remaining difference in time, if any, can 
be classified as the difference in protocol efficiency. 

The first test was performed on a cluster of 16 
Pentium IV 2GHz machines, connected by a 100-based 
Ethernet using a 24-port Fast-Ethernet switch. Each 
machine had 128 MB of RAM and ran a copy of Linux 
Fedora. We used four common scientific applications: 
ME (merge sort), LU (LU factorization), SOR (suc-
cessive red-black iterations) with 256 iterations, and 
RX (radix sort). Small problem sizes were chosen so 
that the programs could work on both JIAJIA and 
LOTS to compare the performance. We also ran the 
programs under LOTS-x, LOTS without the large ob-
ject space support, to determine how large factor (3) is. 

The testing results for Test 1 are shown in Figure 8. 
The graph shows that LOTS runs faster than JIAJIA on 
most data points, except RX, where LOTS becomes 
slightly slower than JIAJIA as more processes are used. 
We shall look at the reasons why in more detail. 

LOTS runs ME faster than JIAJIA in general. The 
reason is that objects in ME share a migratory access 
pattern. When two sorted sub-arrays are merged 
together in one of the merging phases, one of the 
processes handles the merging. Thus at any time, half 
of the total data is migrated. With the home-based 
protocol in JIAJIA, only 1/p of all the data will be 
accessed locally in the home node, since JIAJIA uses a 
round-robin home allocation on pages. In LOTS, how-
ever, using the migrating-home protocol (ME only uses 
barriers to synchronize), half of all the data are 
accessed in the migrated home node. So LOTS can take 
advantage of that to access more home objects, thus 

reducing data traffic and improving the performance. 
Note that ME does not show a speedup for increasing 
number of processes, because only the merging time is 
counted while the local sorting time is excluded. Thus 
more processes mean more stages, hence longer time. 

The LU program demonstrates the adverse effect of 
false sharing on page-based DSM. In LU, one process 
always updates a row in the source matrix to do the 
factorization, while all others will read the result of that 
row to update the rows they are responsible to update. 
If the row size does not fit an integral multiple of 
pages, both read-write and write-write false sharing, 
i.e., two or more processes accessing different part of 
the same page, can occur. Even if false sharing does 
not occur, the home-based protocol still suffers from 
the heavy network traffic due to excessive page 
requests by all processes (readers). In LOTS, each row 
is a unique object. False sharing will not happen, since 
only one process will write to a particular row at any 
time. By eliminating false sharing, LOTS improves the 
overall performance drastically by up to about 80%. 

LOTS also outperforms JIAJIA on SOR, a program 
used to approximate engineering problems that involve 
integrations. In SOR, the two matrices (red and black) 
are divided into p horizontal “slices” , and each process 
is responsible to update its own “slice”  in each of the 
two matrices, according to the values of the adjacent 
positions in the other matrix. Thus it is clear that each 
object (row) is updated by a single process throughout 
the whole program, and only the rows at the edge of the 
“slides”  are read-shared by two processes. This access 
pattern certainly favors the migrating-home protocol in 
LOTS, and testing results support the claim. 

RX performs better on LOTS when two or four 
processes are used, but it runs slightly slower than 
JIAJIA in the p=8 case. This can also be explained by 
the object access patterns. In our implementation of 
RX, 256 shared buckets (objects) are initialized to store 
the numbers during sorting. Each bucket, of size an 
integral multiple of a page, is accessed by a processor 
at a time (concurrent access is prohibited by barriers). 
However, during the execution, 1/p of the total number 
of buckets are always accessed by a single process, 
while others are accessed alternatively by two process-
es. The former access pattern favors LOTS’ migrating-
home protocol since the accessing process will be 
home after the first barrier. But for the alternate access 
pattern, migrating the home to the latest writer during 
the barrier gives little benefits, since the bucket will be 
requested next by the process that originally owns it. 
As the number of processes p increases, the portion of 
buckets (hence shared objects) having this ping-pong 
access pattern also increases. The performance of 
LOTS thus degrades and lags behind JIAJIA. 



 

0
5

10
15
20
25
30
35

10
24

20
48

40
96

81
92

10
24

20
48

40
96

81
92

10
24

20
48

40
96

81
92

 

0

50

100

150

200

250

25
6

51
2

76
8

10
24 25

6

51
2

76
8

10
24 25

6

51
2

76
8

10
24 25

6

51
2

76
8

10
24

 

0

50
100

150

200

250
300

350

25
6

51
2

76
8

10
24

15
36

25
6

51
2

76
8

10
24

15
36

25
6

51
2

76
8

10
24

15
36

 

0
10
20
30
40
50
60
70
80
90

10
24

20
48

40
96

81
92

10
24

20
48

40
96

81
92

10
24

20
48

40
96

81
92

 
Figure 8. Execution performance of LOTS (with and without large object space support) compared 

with JIAJIA V1.1. The x-axis is problem size, while the y-axis is time in seconds 
 
4.2. Overhead for large object support 
 

We have also obtained the performance of LOTS-x 
by disabling the large object support in LOTS. The 
difference between LOTS and LOTS-x corresponds to 
the overhead of LOTS supporting large objects. Results 
show that this overhead depends on the number of 
shared object accesses occurred in the program, since 
every time an object is accessed, LOTS has to perform 
access checking and pinning. For applications with fre-
quent shared object accesses, such as RX, the overhead 
is around 10-15% of the total execution time. For other 
applications, the overhead seldom exceeds 5%. 

Note that the above figure does not include the 
access checking overhead, since being an object-based 
system, LOTS needs to check the shared object state so 
that the clean copy of the object can be obtained before 
it is actually accessed. We inserted timing functions in 
the applications to record the access checking over-
head. Results show that each access check needs an 
average of 20 to 25 nanoseconds in a 2GHz Pentium 
IV machine. Although this value is small, it is critical 
since an application may perform access checks for 
millions or even billions of times. For example, in our 
implementation of SOR with problem size of 1024, 
when four processors are used, the number of object 
access checks per process throughout the execution is 
about 1.5*109 times. This means around 30-37 seconds 
out of 55 seconds of execution time is spent on access 

checking. If the checking overhead is reduced, we 
expect a good improvement on the efficiency of LOTS. 
 
4.3. Testing large object space support 
 

The second test, for testing the large object space 
support, was performed on a cluster of four machines. 
In the test, the machines try to allocate a shared large 2-
dimension integer array of X rows, with a total size 
exceeding 4GB. This means that X shared objects are 
created. Then DSM read/write statements are inserted 
to access the shared objects. Large object space support 
is thus invoked. The program is made simple (just 
adding some numbers held by each process) since we 
only want to demonstrate the invocation of the large 
object space support, but there is still a lot of data 
movement performed when the objects are swapped in 
and out of the disk. In this program, every object is 
swapped out once, thus more than 4GB data is written 
to the disk. It is expected the execution time is to be 
dominated by the disk access time. We used different 
machine configurations with different CPU speeds, 
including a 4-node Pentium III PC cluster, a 4-node 
Pentium IV PC cluster, and a 4-node 4-way Xeon 
Pentium III SMP cluster. Different operating system 
versions, RAM sizes and values of X are selected to 
test the impact of each of the configurations to the 
execution time, as well as how large the shared object 
space can be. The results are shown in Table 1. The 

(a) Merge Sort (ME) (b) LU Factorization (LU) 

(c) Successive Red-Black (SOR) (d) Radix Sort (RX) 

       p = 2                  p = 4                  p = 8 

       p = 2                  p = 4                  p = 8        p = 2                  p = 4                  p = 8 

       p = 2           p = 4           p = 8         p = 16 

LOTS 
LOTS-x 
JIAJIA 

LOTS 
LOTS-x 
JIAJIA 

LOTS 
LOTS-x 
JIAJIA 

LOTS 
LOTS-x 
JIAJIA 



data shows that using Pentium III 733MHz machines, 
in RedHat 6.2, the execution time is 1114 seconds, 
while RedHat 9.0 needs 976 seconds. This suggests 
that RedHat 9.0 has a better I/O support than RedHat 
6.2, but frequent disk I/O to and from the disk still 
takes up hundreds of seconds. To be more specific, the 
disk read/write time due to the large object space 
support in LOTS already takes 1004 seconds in RedHat 
6.2, and 666 seconds in RedHat 9.0. This has not 
included the I/O time caused by the virtual memory 
swapping invoked by the operating system. By using 
faster machines with more advanced I/O systems, the 
execution time will be much reduced. When we 
performed the same test on four Pentium IV 2GHz 
machines with Fedora 9.0, the time needed is just 142 
seconds. The efficiency of the large object space 
support thus counts on a fast I/O facility. 
 

Table 1. Testing the large object space 
support of LOTS on various platforms and 

various shared object size 

Machine/ 
CPU 

Speed 
OS 

RAM 
Size 
(MB) 

No. of 
Shared 

Objs 
(X) # 

Per 
Object 
Size 
(MB) 

Total 
Shared 
Object 
Size 

(GB) # 

Exec 
Time 
(sec) 

Redhat 
6.2 384 33 128 4.125 1114 

P3-
733MHz Redhat 

9.0 128 33 128 4.125 976 

512 33 128 4.125 142 
P4-2GHz Fedora 

512 132 128 16.50 373 
1024 132 128 16.50 507 
1024 132 511 65.87 2112 
1024 201 511 100.30 3227 

Dell 
P6300* Fedora 

1024 236 511 117.77 3839 
*  The Dell Poweredge 6300 machines, with 4-way SMP, 

each CPU is of Xeon Pentium III 500MHz type 
# The number of disk writes in each run = the number of 

shared objects, and the total amount of data written to disk 
= the total shared object size 

 

 We also performed the experiment on four Dell 
Poweredge 6300 machines, with 4-way SMP. Though 
they are not new models, the 4-way SMP configuration 
allows them to act as file servers for the cluster, as they 
are equipped with two 72GB SCSI hard disks. In our 
experiment, we are able to exhaust all the free space 
available in the hard disks for storing shared objects, 
obtaining a shared object space of 117.77GB. Thus 
LOTS is able to support a large shared object space 
greater than the 4GB process space. This size is only 
limited by the local hard disk free space, and the single 
object size is only limited by the size of the DMM area, 
which is 512MB in our current implementation. 

5. Conclusion and future work 
 

We firmly believe that a large object space is 
essential for the wide acceptance of DSM, as it allows 
a wider range of scientific and real-life applications to 
be run, and exploits the cost-efficiency of clusters with-
out sacrificing user-friendliness. This paper demon-
strates LOTS, a software DSM capable of enlarging the 
shared object space beyond the size of the process 
space through the dynamic object mapping mechanism. 
All the mapping is done automatically through table 
lookup at runtime, without any compiler preprocessing, 
thanks to the C++ operator overloading facility. To the 
best of our knowledge, this is the first pure runtime 
DSM system to support a large shared object space. It 
offers reasonable performance and retains good 
programmability, as the programming interface is very 
similar to C++. Only a minimal set of functions, such 
as memory allocation function, locks and barriers are 
exported to users for using the DSM system. 

From the testing results, we find the performance of 
LOTS to be quite acceptable. This is attributed to its 
mixed coherence protocol, which works efficiently on 
many access patterns (migratory and single-writer-
multiple-readers), its object-based nature (eliminating 
some false sharing in page-based systems) and also the 
mechanism to eliminate diff accumulation. As a result, 
LOTS is more scalable than its counterparts, both in 
terms of problem size and cluster size. Currently, 
LOTS is designed to support up to 256 processes. 

We have performed the testing using the first 
completed version of LOTS. There is room for further 
improvement. For example, the code can be further 
optimized for better performance. In particular, the 
access checking of LOTS can be made more light-
weight. A small improvement can lead to huge perfor-
mance gain since access checking is called very fre-
quently. The encoding and decoding of messages can 
also be improved as well. Because sockets are used, the 
maximum message size cannot exceed 64KB. Hence 
for large messages, such as carrying a large object, we 
need to split the message into multiple parts before 
sending. Currently, although we can send out partial 
messages during encoding, the receiver side must 
receive all the message fragments in order to rebuild 
the original message before decoding. This leads to a 
performance bottleneck, and is also memory con-
suming. We should find a way so that the receiver can 
work on partial messages as soon as they are received. 

The pinning mechanism discussed in Section 3.3, 
although avoids swapping away the accessing objects 
in some sense, is not a perfect solution. The system can 
do nothing if all the objects currently mapped in the 



DMM area are accessed in the same program statement 
(this is rare, but can occur if objects are very large). A 
possible solution is to swap out unused partial objects. 
Furthermore, the swapping can also be done not only to 
and from local hard disks, but remote ones as well. 
Such feasibilities will be further investigated.  

Finally, the mixed coherence protocol in LOTS can 
be refined to further enhance performance. Developing 
an adaptive coherence protocol is one feasibility. Some 
possible adaptations include that between using write-
invalidate against write-update, as well as sending the 
whole object verses partial diffs according to the object 
size and access patterns. With a good adaptation, the 
network traffic and hence application execution time 
can be reduced. 
 

References 
 
[1] L. Lamport. How to make a Multiprocessor Computer 

that Correctly Executes Multiprocess Programs. IEEE 
Transactions on Computers, C-28(9):690-691, 
September 1979. 

[2] P. Keleher, A. L. Cox, W. Zwaenepoel. Lazy Release 
Consistency for Software Distributed Shared Memory. 
In Proc. of the 19th Annual International Symposium 
on Computer Architecture (ISCA'92), pages 13-21, May 
1992. 

[3] L. Iftode, J. P. Singh and K. Li. Scope Consistency: A 
Bridge between Release Consistency and Entry 
Consistency. In Proc. of the 8th ACM Annual 
Symposium on Parallel Algorithms and Architectures 
(SPAA'96), pages 277-287, June 1996. 

[4] B. N. Bershad and M. J. Zekauskas. Midway: Shared 
Memory Parallel Programming with Entry Consistency 
for Distributed Memory Multiprocessors. CMU-CS-91-
170. 

[5] W. Hu, W. Shi and Z. Tang. A Lock-based Cache 
Coherence Protocol for Scope Consistency. Journal of 
Computer Science and Technology, 13(2):97-109, 
March 1998. 

[6] B. Cheung, C. L. Wang and K. Hwang, A Migrating-
Home Protocol for Implementing Scope Consistency 
Model on a Cluster of Workstations. In the 1999 
International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA’99), 
Las Vegas, Nevada, USA. 

[7] Y. Zhou, L. Iftode and K. Li. Performance Evaluation 
of Two Home-Based Lazy Release Consistency 
Protocols for Shared Memory Virtual Memory Systems. 
In Proc. of the 2nd Symposium on Operating Systems 
Design and Implementation (OSDI'96), pages 75-88, 
October 1996. 

[8] W. Hu, W. Shi and Z. Tang. JIAJIA: An SVM System 
Based on A New Cache Coherence Protocol. In Proc. 
Of the High-Performance Computing and Networking 
Europe 1999 (HPCN’99), pages 463-472, April 1999. 

[9] H. Fernau, T. Hagerup, N. Nishimura, P. Ragde and K. 
Reinhardt. On the parameterized complexity of a 
generalized Rush Hour puzzle. In Proc. of the 15th 
Canadian Conference on Computational Geometry 
(CCCG 2003), Halifax, Nova Scotia, August 2003. 

[10] Kai Li. Shared Virtual Memory on Loosely Coupled 
Multiprocessors. PhD thesis, Yale University, 
September 1986. 

[11] P. Keleher, S. Dwarkadas, A. L. Cox and W. 
Zwaenepoel. TreadMarks: Distributed Shared Memory 
on Standard Workstations and Operating Systems. In 
Proc. of the Winter 1994 USENIX Conference, pages 
115-131, January 1994. 

[12] B. W. L. Cheung, C. L. Wang, and F. C. M. Lau. 
Building a Global Object Space for Supporting Single 
System Image on a Cluster, Annual Review of Scalable 
Computing, Chapter 6, Volume 4, Year 2002. 

[13] Y. Hu, W. Yu, A. Cox, D. Wallach and W. Zwaenepoel. 
Run-time support for distributed sharing in safe 
languages. In ACM Transactions on Computer Systems 
(TOCS), Vol. 1, Issue 21, pages 1-35, February 2003. 

[14] P. R. Wilson. Pointer Swizzling at Page Fault Time: 
Efficiently and Compatibly Supporting Huge Address 
Spaces on Standard Hardware. In Proc. of the Intl. 
Workshop on Object Orientation in Operating Systems, 
pages 364–377, Paris, France, Sept. 1992. 

[15] S. J. White and D. J. DeWitt. QuickStore: A High 
Performance Mapped Object Store (1994). In ACM 
SIGMOD Int. Conf. On Management of Data, pages 
395-406, Minneapolis, MN, May 1994. 

[16] C. Lamb, G. Landis, J. Orenstein, D. Weinreb, "The 
ObjectStore Database System", Communications of the 
ACM, Vol. 34, No. 10, October 1991. 

[17] M. Castro, A. Adya, B. Liskov and A. C. Myers. HAC: 
Hybrid Adaptive Caching for Distributed Storage 
Systems. In Proc. Of the ACM Symposium on 
Operating System Principles (SOSP’97), Saint-Malo, 
France, October 1997. 

[18] The Intel Extended Server Memory Architecture. Intel 
Corporation, 1998. 

[19] A Memory Allocator by Doug Lea. 
http://gee.cs.oswego.edu/dl/html/malloc.html 

[20] A. L. Cox, E. de Lara, C. Hu and W. Zwaenepoel. A 
Performance Comparison of Home-less and Home-
based Lazy Release Consistency Protocols in Software 
Shared Memory. In Proc. of the 5th High Performance 
Computer Architecture Conference, January 1999. 

[21] R. Buyya, K. Branson, J. Giddy and D. Abramson. The 
Virtual Laboratory: a toolset to enable distributed 
molecular modeling for drug designing on the World-
Wide Grid. In Concurrency and Computation Pracice 
and Experience 2003, 15:1-25. 

[22] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugo-
pal and D. Abramson, Neuroscience Instrumentation 
and Distributed Analysis of Brain Activity Data: A 
Case for eScience on Global Grids, Journal of Con-
currency and Computation: Practice and Experience, 
Wiley Press, USA (accepted in Jan. 2004 and in print).

 


