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he computing trend is moving from clustering high-
end mainframes to clustering desktop computers.
This trend is triggered by the widespread use of

PCs, workstations, Gigabit networks, and middleware
support for clustering. This paper presents new approaches
to achieving fault tolerance and single system image (SSI)1

in a workstation cluster. A multicomputer cluster is a
collection of node computers, which are physically
connected by local area networks or high-bandwidth switch
networks using optical fibres. The workstations in the
cluster can work collectively as an integrated computing
resource, that is a SSI, or they can operate as individual
computers, separately.

As shown in Fig.1, present clusters are mostly small
in size and provide only limited SSI services. Future
clusters are bound to move toward the upper right corner of

T

   Cluster Computing

        Adopting a new
distributed checkpointing
RAID architecture, the
authors develop a single
I/O address space for
building highly available
clusters of workstations.
They propose a systematic
approach to achieving
single system image by
integrating existing
middleware support with
the newly developed
features through cluster
hardware and software
experimentation.
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the design space. The common goal is to build clusters with higher size-scalability and better
support for SSI and availability.  The implication is that future clusters have the potential to
replace the MPP, SMP, or CC-NUMA multiprocessors as compared in the sidebar under the title
“Cluster as A Computer Architecture”.

         We focus our study on clusters with high availability through checkpointing, distributed
RAID with parity checks, and SSI support. In particular, we developed a single I/O address
space among all disks and peripheral devices attached in the cluster. This will enable remote disk
accesses directly, a necessary step to implement reliable cluster of workstations or to build PC
clusters with robustness.

            Figure 1.   Design space of competing computer architectures

SSI and Availability Design Goals
           In a cluster, it is desired to have SSI and availability supported by middleware between
the node OS and user application environment (Fig.2). The middleware consists of essentially
two layers of software, which glues all node OSs together to establish the SSI and enhanced
availability. The availability infrastructure enables the cluster services of checkpointing,
automatic failover, recovery from failure, and fault-tolerant operation among all cluster nodes.

          The SSI layer supports collective cluster applications, which demand operational
transparency and scalable performance. The clusters offer SSI at a wide range of abstraction
levels. At one extreme, a cluster can function as a tightly coupled NUMA or MPP system. At the
other extreme, it can behave like distributed computer systems with multiple system images. The
research goals are commonly focused on complete transparency in resources management,
scalable performance and system availability in supporting user applications2.
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    Figure 2.  A workstation cluster with hardware, software, and middleware
                     support for single system image and enhanced availability.

_____________(Beginning of Sidebar A)___________

Cluster as A Computer Architecture

          The term clusters have been called by different research groups as clusters of workstations
(COW)1, or networks of workstations (NOW)2, or multicomputer clusters3. To compare clusters
with other competing computer systems, we summarize in Table 1 four major classes of
computer architectures that compete with each other for a fair market share.

          The term MPP stands for massively parallel processors. SMP refers to symmetric
multiprocessors with shared memory. The term CC-NUMA is associated with a scalable
multiprocessor having a cache-coherent non-uniform memory access architecture. Distributed
systems are the conventional network of independent computers.

          Since each node runs with its own operating system, a traditional network of computers
have multiple system images on different nodes. On the other hand, an SMP server must have a
single system image (SSI) with a centralized shared memory. In a cluster, it is desired to have a
SSI across all computer nodes.

          As shown in Fig.1, the distributed systems and SMP are two extreme architectures with
respect to the concept of SSI. The clusters, MPP, and CC-NUMA are computer architectures
between the two extremes.  Table 1 reveals the architectural and functional characteristics of the
competing computer architectures.  Interesting readers are referred to references1, 3 for details.
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              Table 1  Key Characteristics of  Scalable Parallel Computers3

Characteristic MPP SMP ,
CC-NUMA

Cluster Distributed
System

Number
of Nodes

O(100) - O(1000) O(10) - O(100) O(100) or less O(10) - O(1000)

Node
Complexity

Fine or
medium grain

Medium or
coarse grain

Medium
grain

Wide range

Internode
Communication

Message passing or
shared variables

for DSM

Centralized and
distributed shared

memory

Message
Passing

Shared files, RPC,
message passing,

IPC protocol
Job

Scheduling
Single run

queue at host
Single run

 queue mostly
Multiple queues
but coordinated

Independent
multiple Queues

SSI
Support

Partially Always in SMP
and some NUMA

Desired No

Node OS
Copies and Type

N microkernels
and 1 monolithic

OS at host

One monolithic
for SMP and multiple

for NUMA

N  OS platforms
(Homogeneous or

microkernel)

N OS platforms
(Heterogeneous)

Address
Space

Multiple
(Single for DSM)

Single Multiple
or single

Multiple

Internode
Security

Unnecessary Unnecessary Required
if exposed

Required

Ownership One
organization

One
organization

One or More
organizations

Many
organizations

Network
Protocol

Nonstandard Nonstandard Standard Standard

System
Availability

Low to
medium

 Low for SMP and
higher for NUMA

Highly available
or fault-tolerant

Medium

Performance
Metric

Throughput and
Turnaround Time

Turnaround Time Throughput and
turnaround time

Response
Time
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___________(End of Sidebar A)_________________

COMPLETE TRANSPARENCY

   The SSI layer should let the user see a single cluster system, instead of a collection of
independent nodes. For example, in a SSI cluster with a single entry point, users can login at any
node. The software installation needs to be loaded only at one node of the cluster. In a loosely
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coupled network of computers, one needs to install the same software for each node. Towards
complete transparency in resource allocation, de-allocation, and replication, the implementation
details should be kept invisible to user processes.

            To have a single entry point, when a user telnet and ftp to the cluster, the two sessions
should see the same home directory. The user wants to use a single file hierarchy, but how the
file system is physically organized in the backup storage is transparent. The file system could be
mounted from a central file server; or fully distributed among many nodes. A file could be
duplicated in several nodes. When a node fails, the portion of the file system could be migrated
to another node.

SCALABLE PERFORMANCE

 The scalability is related to the performance of a cluster. An efficient cluster should not be
limited in physical size and loading pattern. When a node is added to a cluster, the protocol and
API (application programming interface) do not have to change. The cluster performance should
scale with more nodes allocated. The SSI services must include load balancing and parallel
support. The workload among the nodes should be evenly distributed. For example, single entry
point should distribute a login request to the most lightly loaded node. The cluster efficiency
demands that the SSI services have small overheads. The time to execute the same operation on a
cluster should not be much longer than that on a single workstation.

ENHANCED AVAILABILITY

In a cluster, the SSI services should be highly available all the time. Any single point of
failure should be recoverable without affecting user’s applications. High availability should
employ checkpointing and fault tolerant technologies to enable rollback recovery.  Fault-tolerant
cluster demands the features of hot standby, failover, and failback services1, 2.

        While replicating resources, the consistency problem arises. For example, file system
coherency and shared memory consistency. If multiple operations are performed simultaneously,
the cluster system should be able to keep the duplicated data objects consistent. Critical section
resources must be properly locked or protected to avoid data races. Other availability issues
include security and data encryption to achieve protected access of cluster resources.

Desired SSI and Availability Services
    We first identify all useful SSI services and availability functions. Then we use an

example cluster configuration to illustrate the key concepts introduced.

SSI SERVICES

           Ideally, a cluster should provide a variety of SSI services. Listed below are fundamental
issues of SSI services in a cluster of computers. These services stretch along different dimen-
sions of the application domain. Yet they are mutually supportive in nature.
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• Single entry point: A user logins to the cluster as a single system (e.g., telnet
cluster.mycompany.com), instead of login individual nodes as in a LAN environment
(e.g., telnet node1.cluster.mycompany.com).

• Single file hierarchy (SFH): Once logged in, the user sees a single hierarchy of file
directories under the same root directory, just like a single file management environment
for workstation users.  Example SFHs include the NSF, AFS, xFS, and Solaris MC
Proxy3.

• Single control point: The entire cluster is managed from a single place using a single
GUI tool, much like an AIX workstation managed by the SMIT tool.

• Single virtual networking: Single networking means any node can access any network
connection throughout the cluster domain.

• Single memory space: This service gives users the illusion of a distributed shared
memory (DSM) over local memories physically distributed over the cluster nodes.  DSM
enables shared-variable programming. Examples include the TreadMark, Wind Tunnel,
and SHRIMP to be discussed in the sidebar titled “Middleware Packages for SSI and
Availability”.

• Single job management system (JMS): Under a global job scheduler, a user job can be
submitted from any node to request any number of host nodes to execute it. Concurrent
job scheduling is possible either in batch, interactive, or parallel modes. Example JMSs
for clusters include the GLUnix, LSF, and CODINE to be discussed in the same sidebar.

• Single user interface: The users should be able to use the cluster through a single graphic
interface. Such an interface is available for workstations (e.g., the Common Desktop
Environment, or CDE) and PCs (e.g., Microsoft Windows 95). Developing a cluster GUI,
one can leverage on the Web technology.

AVAILABILITY SUPPORT FUNCTIONS

   Several availability support features are listed below.  We will describe the concept of
single I/O space in Section 8.  The checkpointing and process migration are two mechanisms
required to achieve fault tolerance and load balancing

� Single I/O space (SIOS): This function allows any node to remotely access any I/O
peripheral or disk devices without the knowledge of the physical location of the I/O
devices. In this SIOS design, all distributed disks, RAIDs, and devices form a single
address space.

� Single process space (SPS): This requires mutual understanding between processes
belonging to a single process space. They share a uniform process identification scheme.
A process on any node can create (e.g., through a Unix fork) or communicate with (e.g.,
through signals, pipes, etc.) any other process on a remote node.

� Checkpointing and Process Migration (CPM): Checkpointing is a software mechanism
to save the process state and intermediate computing results in memory or in disks
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periodically. The purpose is to allow rollback recovery after a failure. Process migration
dynamic load balancing among the cluster nodes. It also supports the checkpointing
process.

AN I LLUSTRATIVE CLUSTER EXAMPLE
               The example cluster in Fig. 3 has exactly one network connection. In two of the four
nodes, each has two I/O devices attached to it. A properly designed cluster should behave like
one system (the shaded area). In other words, the cluster behaves like a giant workstation with
four network connections and four I/O devices attached. Any process on any node can use any
network and I/O device as if it is attached to the local node.

            Assume that the cluster is used as a Web server. The Web information database is
distributed between the two RAIDs. An http daemon is started on each of the nodes to handle
web requests, which come from all four-network connections. Single I/O space implies that any
node can access the two RAIDs. Suppose most requests come from the ATM network. It would
be beneficial if the functions of the http on node 3 could be distributed to all four nodes.

For single point of control, the system administrator should be able to configure, monitor,
test, and control the entire cluster and each individual node from a single point. Many clusters
aid this through a system console that is connected to all cluster nodes as shown in Fig.3. The
system console is normally connected to an external LAN so that the administrators can remote
login to the system console from anywhere on the LAN. Single point of control does not mean
that solely the system console carries out all system administration work. The entire cluster is
managed from a single place using a single GUI tool.

Figure 3  An example cluster of four workstations
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Distributed RAID/Cluster Architectures
 Three architectural design options are assessed below for enhancing the availability and

fault tolerance of a cluster of workstations or PCs. The first two cluster architectures, namely the
RADD and NASD, were previously proposed. The third one is newly proposed to combine the
advantages of the two earlier architectures.

 THE RADD ARCHITECTURE

The RADD (Redundant Arrays of Distributed Disks) architecture was first proposed by
Stonebraker and Schloss4 as a multicopy algorithm for distributed RAID systems. All local disks,
attached to different cluster hosts, logically form the RADD subsystem. Normally, the
checkpointing data blocks are stored in local disk blocks sequentially, while their parity is stored
in the parity blocks residing in other local disks.

Among different nodes, the RAID-5 algorithm is applied only to handle local I/O
operations, which are transparent to the higher-level RADD operations. For simplicity, one can
simply apply the RAID-1 architecture on local disks. Mirroring on neighboring disks is
implemented, but no parity among the distributed local disks.

 THE NASD ARCHITECTURE

In NASD (Network-attached Secure Disks)5, the RAIDs are directly attached to the
network as a stable storage to allow shared access by all cluster nodes. Each workstation node in
the cluster may or may not have local disk attached. Even with locally attached disks, they serve
to buffer the data retrieved from the NASD to local nodes. NASD supports independent accesses
by all nodes. Thus access conflicts must be resolved with a specially designed NASD controller.

The NASD architecture is quite different from the server-attached RAID. In the latter
case, block data transfer must be done through the network server, instead directly from the
network to end users at local workstations. The NASD improves in the area of scalability by
removing the bottleneck problem on the network server. This is made possible by a technique
called network striping as reported in Gibson et al5.

 THE CHECKPOINTING CLUSTER ARCHITECTURE

          This architecture, originally proposed by Hwang and associates6, is conceptually illustrated
in Fig.4. The cluster nodes are either workstations or PCs. Gigabit LAN or SAN7 connects all
nodes.  Local disks are attached to each workstation node. Each local disk is only accessible
from its own host attached as depicted by the vertical arrows.  All the local disks form a RADD.
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    Figure 4    A fault-tolerant cluster architecture with distributed local disks
                          (RADD) and network-attached RAIDs (NASD)

            The network-attached RAIDs form a NASD as the stable storage for implementing
various checkpointing schemes. We use independent checkpointers6 over the coordinated
checkpointers in order to reduce the checkpoint overhead and recovery latency. The uniqueness
of this cluster design lies in its distributed checkpointing RAID architecture. This fault-tolerant
cluster design is based on a new 3-level adaptive recovery scheme and a new single I/O space
introduced in this paper.

Hierarchical Checkpointing Schemes
  In general, the scenario of having a few failures in a cluster is more likely to occur than

that of having a large number of simultaneous failures. Three checkpointers are suggested for
designing checkpointing schemes. The timing charts of four checkpointing schemes are given in
Fig.5. The checkpointer overhead corresponds to the bar width in the chart.

SCHEME A: L OCAL CHECKPOINTING

           Figure 5a shows the simplest checkpointing scheme involving only the local disks. The
host processor saves the 1-checkpointer periodically in the local disk. The major drawback of
this scheme is its poor fault coverage. A single permanent failure will paralyze the node by
losing the l-checkpointer and therefore prevent any chance of a rollback recovery.
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               Figure 5    Four hierarchical checkpointing and recovery schemes

SCHEME B: VAIDYA ’S  CHECKPOINTING /RECOVERY

Vaidya introduced this scheme8 as a two-level recovery scheme (Fig.5b). It improves
from Scheme A by tolerating local disk crashes, because of the allowed rollback to an N-
checkpointer after a fixed number of n local checkpoints. Its major drawback is the large N-
checkpoint overhead and recovery latency introduced. This scheme requires two levels of
recovery.  The recovery latency of this 2-level rollback improves sharply from the 1-level
rollback in Scheme A.

SCHEME C:  INTERLEAVED M IRROR AND STABLE CHECKPOINTING
              This scheme saves the M-checkpoints in mirrored disks and the N-checkpoints in the
stable storage (Fig. 5c). Every m-th consistent checkpoint is stored in the stable storage, while all
other checkpoints are stored in local memories (instead of local disks) and mirrored in neighbor’s
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disk. This scheme rolls back to a local memory for transient failure.

             For permanent failures, it rolls back to a mirrored copy of the checkpoint. The scheme
rolls back to the stable storage, only when there is a permanent failure immediately following an
N-checkpointer. The recovery latency reduces further from Scheme B. As a matter of fact, this
scheme results in the lowest recovery latency, among the four schemes.

SCHEME D: ADAPTIVE CHECKPOINTING AND RECOVERY

            Figure 5d shows that the host processor periodically saves the 1-checkpoints to its local
disk. Every m-th checkpoint is saved as an M-checkpoint. Every mn-th consistent checkpoint is
stored on the stable storage, while all other checkpoints on local disks.  Three levels of recovery
are possible under this checkpointing scheme as described in the next section. The recovery
latency is slightly higher than that in Scheme C.  But the latency gap diminishes as the cluster
size grows larger.

Adaptive Recovery with Reduced latency
   The Scheme D offers an adaptive, three-level, recovery scheme. The adaptive rollback

recovery is illustrated in Fig.6. The adaptability leads to a much reduced recovery latency.  The 3
levels of recovery are stated below:

• Level-1 recovery – Rollback to a 1-checkpoint, when a processor has a transient
failure which does not immediately follow an M-checkpoint or an N-checkpoint.

• Level-2 recovery – Rollback to an M-checkpoint, when a node has a permanent
failure, assuming no adjacent failures occur and they do not follow an N-checkpoint.

• Level-3 recovery – Rollback to the stable storage checkpoint (N-checkpoint), when
there is a failure immediately following an N-checkpoint or when a processor or a
local disk has a permanent failure and its mirrored checkpoint is lost.

               Figure 6.    Adaptive rollback recovery in using Scheme D at three
                                  levels of the distributed disk hierarchy
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In the worse case, the loss of useful computation for an M-recovery is mT, while the loss
of useful computation for an N-recovery is mnT, where T is the checkpointing period. With
much higher recovery latency due to network latency and simultaneous access of the central
stable storage, the N-recovery latency is expected to be much larger than the M-recovery latency.
This will reduce the probability of an N-rollback to the stable storage. The M-recovery shortens
the expected recovery latency significantly.

Figure 7 compare the expected recovery latency of four recovery schemes in the worst
case. Scheme A has the shortest checkpointing overhead but the longest recovery latency, which
is independent of the cluster size. Essentially, Scheme A can only tolerate transient fault. For
permanent fault, Scheme A must roll back all the way to the beginning of the job execution. The
recovery time of scheme A is about 5 times higher than that of Scheme B in Fig.7.
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        Figure 7  Expected recovery latency of four checkpointing schemes

          The expected recovery latencies for Schemes B, C and D are much shorter than that of
Scheme A, because they can roll back either to the image checkpoint or to the last N-checkpoint.
Among them, the Scheme C has the shortest recovery latency, because rolling back to an M-
checkpoint at the neighboring disk is much faster than rolling back to an N-checkpoint in the
stable storage.

In Fig.7, Scheme D takes slightly longer time to recovery than Scheme C does. This is
because D takes longer time to recover from an M-checkpoint. For large clusters with more than
128 nodes, both Schemes C and D perform almost equally, because the probability of rolling
back to the mirrored checkpointer increase faster in Scheme D than that in Scheme C.
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_____________(Beginning of Sidebar B)____________

Middleware Packages for Supporting SSI and Availability in
Clusters

Cluster design concerns the size scalability, enhanced availability, system manageability,
fast message passing, security and encryption, and distributed computing environments. Table 2
summarizes four representative middleware packages for SSI and availability support. The
GLUnix is available in the public domain and the rest are commercial products. The features in
the first 7 rows support SSI services. The next eight facilitate job management and parallel
programming. The remaining four are for availability and fault tolerance.

Table 2 Four Middleware Packages for SSI and Availability Services

Support Features GLUnix TreadMarks Codine LSF

Single control point Yes No Yes Yes

Single entry point Yes No No No

Single file hierarchy Yes Yes Yes Yes

Single memory space No Yes No No

Single process space Yes No No No

Single I/O space No No No No

Single networking No No No No

Batch support Yes No Yes Yes

Interactive support Yes Yes Yes Yes

Parallel support Yes Yes Yes Yes

Load balancing Yes No Yes Yes

Job monitoring Yes No Yes Yes

Suspend/Resume No No Yes Yes

Dynamic resource Yes No Yes Yes

User interface cmd-line cmd-line GUI/cmd-line GUI

Checkpointing No No Yes Yes

Process migration No No Yes Yes

Security  standard Unix Unix Kerboros Kerboros

Fault tolerance Yes No Yes Yes
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            The batch support means the dedicated use of cluster resources by a single user job in a
batch mode. The interactive support refers the time-sharing use of cluster resources by multiple
users simultaneously. The parallel support refers to the management of parallel processes, MPI
and PVM environments. So far, none of the four middleware packages has implemented the
single I/O space and single networking features.

              Process migration is needed to achieve dynamic load balancing among cluster nodes or
to enable fail over after a detected failure. Process migration enables load distribution, fault
resilience, system administration, and improved data access locality. Migrating processes from
overloaded nodes to lightly loaded ones can achieve the load distribution. Migrating processes
from nodes that may have partial failure can achieve the fault resilience.

              Job monitoring, suspend/resume, dynamic resources, and user interfaces are useful
features to provide an user-friendlier environment in program debugging, performance
evaluation, resource allocation, and program optimization. The fault-tolerance and checkpointing
are features to enhance the cluster system availability. To achieve transparency, the JMS should
be able to dynamically reconfigure the cluster with minimal impact on the running jobs.

               To make the JMS scalable, the functionality of a JMS is often distributed. For instance,
a user server may reside in each host node, and the resource manager may span all over the
cluster nodes. The system can migrate process from the nodes that are about to be shutdown so
that the system administrator doesn’t need to wait until user logout. Migrating processes towards
the source of the data can also improve the data access locality.

THE GLUnix AT BERKELEY NOW PROJECT

           GLUnix stands for Global Layer Unix as named in Anderson et al1. It can be easily
downloaded to any cluster through the public domain.  This global layer provides a single system
image of the nodes in a cluster, so that all of the processor, memory, network capacity, and disk
bandwidth can be allocated for sequential and parallel applications. The global layer is realized
as a protected, user-level, operating system library that is dynamically linked to every appli-
cation. The library intercepts all system calls and realizes them as procedure calls.

             Distinct advantages of the GLUnix package include the following aspects. It is easy to
implement and to modify the source code of GLUnix at user level. The package supports co-
scheduling of parallel programs, idle resource detection, process migration, and load balancing,
remote paging, and some availability support. It was deigned to port to any OS that supports
interprocess communication, process signaling, and access to loading information.

THE ThreadMarks AT RICE UNIVERSITY

  To enable shared-memory computing on NORMA (no remote memory access) and non-CC-
NUMA systems, researchers have proposed the software-coherent NUMA (SC-NUMA) memory
model, also known as the distributed shared-memory (DSM) model. Example DSM systems
include the TreadMarks project at Rice University2, the Wind Tunnel project at University of
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Wisconsin3, and the SHRIMP project at Princeton University4. A software-implemented DSM
relies on software extensions to achieve single memory address space and consistency control.

 THE CODINE DERIVED FROM THE DQS
  The CODINE package is evolved from the Distributed Queuing System (DQS) created at

Florida State University. CODINE is offered by GENIAS Software GmbH in Germany.
GENIAS claims that this package has become a de facto JMS in Europe5.  The major strength of
CODINE lies in hardware and software resources management in a heterogeneous networked
environment. The CODINE uses GUI tools to provide a SSI of cluster resources. Checkpointing
is supported only if the kernel supports it. Kernel checkpointed jobs can be migrated. Resources
can be dynamically added or deleted from a resource pool.

THE LSF FROM PLATFORM COMPUTING

 Load Sharing Facility (LSF)6 from Platform Computing is evolved from the Utopia system
developed at University of Toronto. This package emphasizes job management and load sharing
of both parallel and sequential jobs. In addition, it has support for checkpointing, availability,
and load migration. Checking the entries in Table 2, CODINE and the LSF are almost equally
capable of supporting the same set of SSI and availability features.
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  RELATIONSHIP AMONG  M IDDLEWARE PACKAGES

  In Fig. 8, we show the functional relationships among six key middleware packages.
These middleware packages are used as interfaces between user applications and cluster
hardware and OS platform. They support each other at the management, programming, and
implementation levels.

            Figure 8 Relationships among supporting middleware modules

 The JMS is essentially a global job scheduler. The SFH and DSM support distributed file
management and shared-memory programming, respectively.  The SPS, CPM, and SIOS
provide support to implement the JMS, SFH, and DSM services. All middleware packages work
together to support the desired availability and SSI services.  This paper presents the
development of the CPM mechanisms and functional design of the SIOS module.

Single I/O Space Design
 In Solaris MC3, an uniform device naming scheme was developed to achieve a single I/O

space (SIOS) in addressing any peripheral or disk devices attached to the Unix cluster of Sun
workstations. A device address consists of a node number and the device number. A process can
access any device by initiating a system call at a remote processor using this uniform address.
remote node.  We consider the Solaris MC definition of SIOS a rather restricted one, because it
only accesses remote devices as a whole, not the remote disk memory by blocks or by strips.

 On the other hand, a single address space operating system (SASOS)9 was developed at
University of California at Berkeley. This system is primarily designed for use as a distributed
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operating system for a network of independent and homogeneous computers, not for the SSI
clusters in which we are interested.  Therefore, SASOS is not a SIOS by our definition.

Examining the middleware modules in Fig.8, we see that the SIOS enables efficient
implementations of the DSM, SFH, and CPM functions. The SIOS is a low-level construct,
which supports the DSM, but cannot replace the DSM. We broaden the SIOS functions by
making the remote access transparent, instead of using the system call. Our addressing scheme is
initiated by local hosts, rather the remote hosts where the device is attached.

ADVANTAGES OF SINGLE I/O SPACE

The proposed SIOS is implemented primarily at user level. But some local OS system
calls must be modified to enable remote disk accesses. Four distinct advantages of the extended
single I/O space design are identified below.

� Firstly, the SIOS addressing elimiates the gap between accessing local disk and
remote disk. Remote disk access does not have to be handled as system calls from
the remote host. Instead, the local host can address the remote disks directly by a
modified system call.

� Secondly, the SIOS supports a persistent programming paradigm. The DSM and SFH
can be more easily implemented with the SIOS. All device types and their physical
locations are now transparent to all users. At present, the MPI-based I/O cannot
achieve this transparency.

� Thirdly, the SIOS allows stripping on remote disks. This will accelerate parallel I/O
operations, often needed in moving large data files among the cluster nodes.

� Finally, the SIOS greatly facilitates the implementation of distributed checkpointing
and recovery scheme we have suggested in Sections 4 and 5. Mirroring on remote
disks becomes faster and easy to control. Recovery from the shared RAIDs or NASD
requires less time than current systems without the SIOS.

THE SIOS DESIGN AT USC AND HKU
This design was jointly developed at the University of Southern California and at the

University of Hong Kong.  As shown in Fig,9, the integrated I/O address space covers  n local
disds, m shared disks in the RAID, and h peripheral devices. The sequential address space is
essentially a single, large, linear array of addresses down to the disk block level or to the device
number level. For simplicity,  we conder t blocks per local disk and  k blocks per disk in the
RAID. All NAP devices are assigned with high-order addresses in the linear array. These high-
order addresses preserved the uniform naming  scheme built in the Solaris MC3.
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(a) The integrated I/O address space

(b) Addressing and mapping mechanisms

Figure 9  Single I/O address space  design (RADD: redundant arrays of distributed
disks, NASD: network-connected secure disks, NAP: network-attached peripheral devices)

Data mapping onto the distributed local disks uses parity blocks, mirroring, or
shadowing6.  In order to imporve the efficiency of I/O access, user data sets are stored  on  local
disks with ckeckpointing or parity information stored on one or more remote disks. Sequential
addesses are assumed horizontally in each local disk (LDi) in Fig.9a.  Addresses in the shared
RAID disks are interleaved horizontally across the vertical disks (SDj) in the RAID array. This
address scheme can be implemented by hardware, or firmware, or software.
          The entire SIOS is organized as a single linear array of sequential addresses according to
the following ordering among the local disks, shared RAID disks, and NAP devices:

  . . .

B11

SD1 SD2 SDm

. . .

. . .
  . . .
 . . .  ...

  . . .

  . . .

D11 D12 D1t

D21 D22 D2t

Dn1 Dn2 Dnt

B12

B1k

B21

B22

B2k

Bm1

Bm2

Bmk

LD1

LD2

LDn

Local
Disks,
(RADD
Space)

Shared
RAIDs,
(NASD
Space)

S
e

q
u

e
n

tia
l a

d
d

re
s

s
e

s

  . . .

 P1

   Ph

.   .   . Peripherals,
(NAP
Space)

User-level
Middleware
plus some
Modified OS
System Calls

User Applications

RADD

I/O Agent

Name Agent Disk/RAID/NAP
Mapper

Block Mover

I/O Agent

NASD

I/O Agent

NAP

I/O Agent



19

 D11, D12, … , D1t, D21, D22, … , D2t,   .  . .   ,Dn1, Dn2, … ,Dnt,
 B11, B21, … , Bm1, B12, B22, … , Bm2,  .  . .   ,B1k, B2k, … ,Bmk,

 P1, P2, .  .  .  ,Ph.

            Figure 9b shows the middleware functional modules needed to implement the SIOS for a
cluster of workstations. The Name Agent  maps the name known to the I/O Agent onto the
unique device number known to the Disk/RAID/NAP Mapper. The Mapper uses the techniques
of striping and replication4, 5 to implement the address mapping.
            The Block Mover is responsible for copying data to and from the storage media and
transmiting the data from a source to a destination. Each I/O agent performs the I/O operations
according to the I/O type. Multiple I/O Agents are used to interface local dsiks,  DASD, or
peripheral devices.  The agents receive the I/O command from the Mapper or from the Block
Mover.  The agent performs low-level I/O operations under the control of the local system call.

The user-level agents and functions can be written as Java processes, which will faciliate
the porting to various host  platforms. The system call for remote disk access requires to change
the page-fault mapping table in the kernel.  In an experimental cluster construction at USC, we
modify the device-relevant system calls in Linux to run on Pentium-based PC hosts. The mapper,
the mover, and various agent routines form the SIOS middleware package. We aim to make the
SIOS package portable to all major OS platforms in the future.

DATA M OVEMENT PROCEDURES

Figure 10 illustrates the request and return procedures of moving data blocks between
distributed local disks and the shared RAID disks. User application on Node 1 requests a data
block A residing on a local disk LD2 of Node 2 or from a shared disk SDi of the NASD.

By checking with the Name Agent and the Mapper, the I/O Agent in Node 1 sends the
request to the Block Mover to copy a data block A from Node 2 to Node 1. After the I/O Agent
in Node 2 receives the request from the Block Mover, it performs an  I/O operation to get the
data block A from its local storage. The I/O Agent then sends block A to the Block Mover and
transmits it to the I/O Agent in Node 1.

Conclusions
             Clusters of workstations or PC clusters are bound to become commodity products in the
computer industry. However, the major difficulty in clustering lies in lack of adequate SSI
software support. To build multicomputer clusters with SSI, efficient mechanisms or protection
schemes are needed for global interprocess communication and for global security control
without worry about access conflicts or unauthorized access of shared resources in the cluster.

   The SSI and fault tolerant clusters are high goals that are nontrivial to achieve. It makes
such a cluster construction a lot easier, systematic, and more efficient to use a single I/O space
across all disks and I/O devices based on the proposed checkpointing RAID architecture6. We
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need numerous SSI services, including single point of control, a single memory space, a single
I/O space, single networking, a global file hierarchy, and a global job management system.

(a) Node 1 requests data block A on  LD2 or SDI

(b) Node 2 gets a data block from LD2 or SDi and transmits it to Node 1

Figure  10  Moving  data blocks between  distributed disks and shared  RAIDs

        We demand total transparency not only in resources allocation and replication, but also in
the control and management of concurrency and parallelism in clusters of workstations or PCs.
Furthermore, checkpointing, high availability, and fault tolerance are equally important to cluster
operations. The size of clustered platforms become larger and larger due to the use of commodity
hardware, software, and middleware in cluster construction.

  A dynamic mechanism is desired to effectively manage the fast changing cluster envi-
ronment. Load balancing and process migration are necessary. This adds to another dimension of
challenge in clustering of multiple computers. In the industrial track, Wolfpack for Intel-based
Windows NT servers10, NOW and Solaris MC3 for Unix workstations are all aimed at high
availability, scalability, and manageability.

   On the other hand, the rapid growth in multimedia and the WWW applications has further
increased the demand of clustered and network-based platforms. These applications demand
higher computing power, higher communication bandwidth, more flexible control of the cluster
resources, and higher availability and fault tolerance.  SSI clusters or robust clusters will
efficiently meet these requirements.  The use of an unified or adaptive communication protocol
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is in demand.  In addition, when the cluster is exposed to public networks, security control
becomes the most critical concern in cluster applications.

        The Internet-based metacomputing11 uses a large number of remote hosts from the Internet
to form a supercluster. Any user sitting in front of a PC or workstation can utilize resources in
the supercluster.  However, metacomputing cannot be easily arranged due to the ownership
problem associated with scattered workstations and PCs. Lack of software support to manage the
huge Internet-connected resources makes it impractical to practice metacomputing at this time.

            Java-based intelligent agents are suitable for distributed cluster computing. This applies
especially to distributed financial computing12, information retrieval in digital libraries, and
electronic business areas. Furthermore, PC or workstation clusters demonstrate the potential in
large-scale database search or datamining applications.  Robust clusters can be more cost-
effectively used in bioinformatics, telemedicine, telemarketing, data warehousing, and distance
learning than using today’s mainframes or supercomputers.
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