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Abstract—Cloud computing augments applications with ease-

of-access to the enormous resources on the Internet. Combined 

with mobile computing technologies, mobile applications can 

exploit the Cloud everywhere by statically distributing code 

segments or dynamically migrating running processes onto 

cloud services. Existing migration techniques are however too 

coarse-grained for mobile devices, so the overheads often offset 

the benefits of migration. To build a truly elastic mobile cloud 

computing infrastructure, we introduce eXCloud (eXtensible 

Cloud)–a middleware system with multi-level mobility support, 

ranging from as coarse as a VM instance to as fine as a run-

time stack frame, and allows resources to be integrated and 

used dynamically. In eXCloud, a stack-on-demand (SOD) ap-

proach is used to support computation mobility throughout the 

mobile cloud environment. The approach is fully adaptive, 

goal-driven and transparent. By downward task migration, 

applications running on the cloud nodes can exploit or take 

control of special resources in mobile devices such as GPS and 

cameras. With a restorable MPI layer, task migrations of MPI 

parallel programs can happen between cloud nodes or be in-

itiated from a mobile device. Our evaluation shows that SOD 

outperforms several existing migration mechanisms in terms of 

migration overhead and latency. All our techniques result in 

better resource utilization through task migrations among 

cloud nodes and mobile nodes. 

Keywords-stack-on-demand;mobile cloud;computation 

migration; cloud computing 

I.  INTRODUCTION 

The essential characteristics of cloud computing, such as 
on-demand self-service, flexible network access, rapid 
elasticity and pay-per-use style of utility services, attract 
much attention from commercial users. However, despite the 
popularity of cloud computing, cloud computing is still an 
evolving paradigm [1]. There are some fundamental issues 
that hinder the widespread adoption of cloud computing in 
the future. 

One of the issues is related to mobile cloud computing. 
With the desire of mobility of resources, mobile cloud 
computing has been evolved. It is basically the combination 
of mobile computing and cloud computing. Mobile devices 
connect to the cloud, and mobile applications make use of 
the resources of cloud. In mobile cloud computing, mobile 
applications can offload computation-intensive operations to 
clouds for speedup and use the resources for extend 
functionality, or simply draw services provided by clouds in 
client-server model. The importance of mobile cloud 

computing can be reflected by a recent study that more than 
240 million businesses will use cloud service through mobile 
devices by 2015, and that would push mobile cloud 
computing revenues to an enormous amount [2]. However, 
in the current evolvement of mobile cloud computing, 
mobile applications can only use clouds in a restricted 
manner. Applications are executed in client-server models in 
order to use the cloud resources. This execution model is 
different from the one in pervasive computing. The basic 
problem that leads to this constrained execution model is the 
mobility of applications. In pervasive computing, 
computation components can move freely from one place to 
another. However, in mobile cloud computing, applications 
are not really “mobile”. Data and application states cannot 
move freely between mobile devices and clouds. In the push-
pull manner in the client-server model, data and state can be 
sent in a few ways only. When a client is requesting a service 
from the server, data and state are sent from client to the 
server. When a server is responding to a service, updated 
data and state are sent to the client. Apart from this request-
reply occasion, data and state cannot move among clients 
and servers. In addition, only a small part of data can be sent 
between the mobile device and the clouds. 

Some may argue that the above scenario is what cloud 
computing is: applications offload execution from mobile 
devices to the cloud, get the result back after execution, and 
cloud nodes never need to migrate application computation 
to the mobile devices. But we would argue that, although this 
constrained way may be enough for simple mobile 
applications, true mobility would allow powerful features 
which are essential to our future clouds. One of such features 
is the seamless and autonomous integration of mobile 
devices and clouds. With true mobility, it is no longer 
necessary to have mobile applications executed in a client-
server model in order to use the cloud resources. Besides this, 
the unique resources of mobile devices, such as the bundled 
cameras and microphones, can be used freely by the 
computations that have been migrated to the clouds. In a 
broader view, with the capability to move computation 
across cloud nodes and mobile nodes, our future clouds can 
grow, in terms of resources, by utilizing resources whenever 
possible. Whether or not the resources are being used is 
another question relating to the policy. 

Another issue is related to granularity of task mobility. 
Task mobility refers to the capability to allow users to 
continue their tasks on different nodes. The importance of 
task mobility in cloud computing can be reflected by the 



work on VM migration. By realizing mobility through VM 
migration, resource utilization can be improved by load 
balancing. System serviceability and availability can also be 
improved by migrating applications from machines that have 
planned maintenance. However, just VM migration alone is 
far from enough for the need of mobility. As VM migration 
transfers the whole VM to another computer, it does not 
allow fine-grained load balancing among VMs. There would 
often be a dilemma of making migration decisions. For 
example, a migration would favor the execution of some 
tasks but penalize other tasks in the same VM. Therefore, we 
need better cloud computation migration techniques.  

To support task mobility, the most classical method is 
process migration [3].  SPRITE, MOSIX, and the recent 
system OpenSSI [4] are typical examples of process 
migration systems. Process migration provides extra 
opportunities for dynamic load balancing and improving data 
locality or communication latency during the process's 
runtime. Despite these advantages, process migration has not 
been widely used. It is often too expensive to transfer the 
entire address space of a process. Some VM migration 
techniques improve on this by moving all dirty pages alone, 
yet the overheads involved are still much big for a mobile 
cloud environment. Moreover, most existing solutions re-
quire extensive modifications hacking into OS kernels [5], 
JVMs [6], system libraries [7] or applications [8]. These 
systems usually suffer from poor portability across 
constantly changing OS versions or heterogeneous hardware 
architectures. 

To achieve more elastic cloud computing, we propose a 
middleware system, namely Extensible Cloud (eXCloud), 
with stack-on-demand (SOD) integrated atop VM systems to 
support multi-level mobility. SOD is based on a stack 
machine, specifically JVM in our case. Unlike traditional 
process migration which performs full-rigged state migration 
(including code, stack, heap and program counter), SOD 
migrates only the top stack frame, or top segment of frames, 
while the required code and heap data are brought in on 
demand subsequently. With SOD, we can dynamically move 
input processing to the location(s) where the greatest demand 
is being generated; we can also move the execution of a 
software component close to its associated data source for 
shorter access latency. We can offload a task onto a cloud 
platform if the desktop or mobile device has insufficient 
processing capacity or memory to carry out the computation. 
User tasks at a mobile device can be offloaded onto clouds to 
save energy consumption.  It allows lightweight transparent 
migration among mobile devices and cloud nodes. Tasks can 
be migrated from mobile devices to cloud nodes, and from 
cloud nodes to utilize the resources. 

The rest of this paper is organized as follows. Section II 
gives the introduction of eXCloud. Section III presents the 
system design and architecture of eXCloud. In Section IV, 
we evaluate and compare the performance characteristics of 
the various computation migration systems. Finally, Section 
V concludes our work. 

II. EXCLOUD: MULTI-LEVEL MOBILITY SUPPORT FOR 

MOBILE CLOUD COMPUTING 

A. Overview 

In a mobile cloud, there are mainly two types of nodes— 

cloud nodes and mobile nodes. Cloud nodes refer to the 
computing nodes which are located statically. These nodes 
are powerful computing machines, equipped with powerful 
processors and plenty of memory to provide high perfor-
mance computing. VM instances can be executed in these 
machines to provide elastic computing to clients. Mobile 
nodes refer to the mobile devices that are added dynamically 
to form the mobile cloud. These nodes are usually low-
power and equipped with “just enough” resources, such as 
memory and storage. These devices are not designed to pro-
vide high-performance computation. As mobile applications 
become more and more complicated, much more computing 
power is needed to execute the applications. Resources from 
clouds can be used to execute the applications. However, 
among existing approaches, applications are often restricted 
to execute in a client-server manner, in which mobile devic-
es act as a thin client and most computations are executed in 
the cloud nodes. This greatly reduces the application flex-
ibility. 

eXCloud is a multi-level mobile cloud infrastructure for 
providing transparent runtime support for scaling mobile 
applications. It allows different levels and different 
granularity of mobility in an adaptive and goal-driven 
manner. In this infrastructure, SOD is integrated atop VM. 
Live migration of VM instances [9] are allowed. SOD can 
also distribute and migrate the tasks across different nodes 
according to the following goals: 
• constraint-driven: tasks are migrated when the executing 

node does not have sufficient resource or required 
resources. E.g. tasks are offloaded from mobile devices 
to the clouds when CPU or memory capacity is not 
enough, or certain required libraries are missing. 

• locality-driven: migration is taken to move the 
computation closer to the data source for shorter access-
latency. 

B. State-On-Demand execution 

SOD [10] is an ultra-lightweight computation migration 
in which only the top portion of the runtime stack is being 
migrated. This design exploits the temporal locality of stack-
based execution–the most recent execution state always sits 
on the top segment of a stack. By a partial stack migration, 
this speculative approach can reduce the migration cost of a 
bulky stack pointing to many objects. In addition, mobile-
agent solutions, which allow autonomous components to 
move around a heterogeneous network, seem best to survive 
in highly dynamic and unpredictable environments. So the 
SOD design also incorporates this notion, and as a whole, 
offers a very flexible style of mobile cloud computing in 
three features: 
• Lightweight task migration: SOD copies only the 

required part of data to the destination. This saves a lot 



of network bandwidth and reduces resource footprints 
on the target site. It allows a big task to fit into a small 
device in a discretized manner, with an extremely short 
freeze time. This allows quick access to non-local idle 
computing resources. 

• Distributed workflow style: SOD allows different parts 
of the stack migrate concurrently to different sites, 
forming a distributed workflow. Freeze time between 
multiple hops is fully or partially hidden. Data locality 
can be enhanced, and streamlined elastic task scheduling 
on cloud servers is possible. 

• Autonomous task roaming: SOD mimics strong-mobility 
mobile agents, and is capable of adapting to a new 
environment. Tasks can roam across a set of information 
bases for best locality. SOD-driven roaming can be 
more agile and flexible than traditional MAs because 
SOD is down to granularity of a method instead of the 
whole process. 

 

C. Task Migration using SOD 

Basically, different migration techniques focus on dif-
ferent computing applications and different execution para-
digms. VM migration moves the whole VM, while SOD 
performs lightweight task migration to utilize resources. 
With SOD migration, only the topmost stack frame, or top-
most segment of stack frames is transferred. This avoids the 
overhead and complexity of migrating the underlying stack 
frames, especially when the underlying stack frames are 
native frames or contain reference to native objects. Besides 

this, as SOD migration transfers heap data on demands, mi-
grating large portion of heap data can be avoided. Fig. 1 
shows the application scenario of SOD migration. In this 
multi-level migration system, apart from using SOD as a 
traditional migration mechanism to support load balancing 
and load sharing, SOD can be used in the following ways: 

1. Constraint-driven migration. With SOD migration, 
tasks can be migrated among cloud nodes and mobile devic-
es without significant overheads. There can be three types of 
migrations: i) migration among cloud nodes; ii) migration 
from mobile devices to cloud nodes; iii) migration from 
cloud nodes to mobiles devices. Migration among cloud 
nodes can allow dynamic load balancing, improved data 
access locality, and auto-provisioning of computing re-
sources. Besides this, resources can be better utilized. As 
shown in Fig. 1, migration is taken from mobile devices to 
cloud nodes. This allows mobile applications to use the 
cloud resources seamlessly without following the client-
server model. Tasks can also be migrated from cloud nodes 
to small-capacity devices to use the unique resources in the 
devices. E.g. Photos stored in a mobile phone can be used 
and found dynamically by a searching process of a web 
server which is originally executed in a cloud node. 

Migration can be triggered either actively or proactively. 
In the active way, migration is triggered by migration man-
ager. When certain conditions of the system, such as the 
threshold of loading, are reached and detected by the migra-
tion manager, the migration manager would issue the migra-
tion request and carry out migration. In the proactive way, 
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Figure 1. Task migration between cloud node and mobile node 



migration is triggered by the program itself indirectly. This 
would happen when the executing program has reached cer-

tain special states, such as exceptions like ClassNotFoun-

dException and OutOfMemoryException. The excep-
tions are handled by the exception handlers which are in-
strumented into the program during bytecode preprocessing. 
For example, in a mobile device, when the program is trying 
to load a certain library which is not available in the device, 

a ClassNotFoundException would be thrown. The ex-
ception handler would then capture the execution state and 
issue SOD migration request. The task would be migrated to 
a cloud node where the required library is available. The 
task is resumed execution. Upon completion of the task, 
execution is returned to the original program in the mobile 
device, and the execution of the program continues. 

2. Scale-out. This is mainly for parallel programs to 
allow dynamic load distribution, scale-up and scale-down 
auto-provisioning. With the use of restorable MPI layer, 
tasks in parallel programs can be scale-out to different ma-
chines to use the computing resources at there. Tasks can 
still communicate properly among each other after scale-out 
through the use of the restorable communication support. 

3. Task Roaming. This is to roam tasks from a node to 
another node to improve data locality. Suppose a very large 
data file storing dynamic data is stored distributedly among 
a number of machines. When a searching process needs to 
perform searching among these files, in order to exploit the 
data locality, the searching process can be roamed among 
these machines to perform local search of the data file. 

D. Adaptive migration mechanisms for task mobility 

Cloud nodes and mobile nodes have different computing 
power. Besides this, their hardware and software architec-
ture have different characteristics. Cloud nodes are powerful 
with plenty of computing related resources, such as memory 

and storage. VM instances are created in these nodes and 
computation tasks are performed insides these VM instances. 
Among the VM instances, similar hardware and software 
working environments are provided. For cloud nodes, com-
putation performance is considered as one of the most im-
portant criteria. For mobile nodes, the nodes are often in 
different hardware and software configurations. As there are 
no VM instances between user applications and the underly-
ing systems, portability becomes the most important criteria 
for execution. Due to the different criteria, different state-
capturing and state-restoring mechanisms are used when 
migrations are taken places in different types of nodes. 
When state-capturing or state-restoring is taken in cloud 
node, states are captured using JVMTI functions. As JVMTI 
is a low-level layer that can access the internal of JVM, state 
can be captured more efficiently. However, when state-
capturing or state-restoring is taken in mobile nodes, state 
are captured and restored at application level. This allows 
portable state migration. 

III. SYSTEM DESIGN AND ARCHITECTURE 

A. Design Goals 

The SOD system has the following design goals: 
1. Low overhead. The main objective of SOD is to 

deliver lightweight task migration. The total amount of 
overhead induced by the system must be low. The system 
must not induce delay or slowdown on the execution of the 
applications, especially during normal execution when there 
is no migration in place. 

2. Transparency. The whole SOD mechanism needs to 
be transparent to users. There is no need for users to modify 
their programs, or to use specific libraries. Normal user 
applications are passed to the system for execution. 

3. Portability. There is no need to use a specific JVM. 
Standard JVM and Java Standard Library should be used. 

4. Adaptation to the new environment. When tasks are 
migrated to a new environment, they should be able to use 
the resources in the new location to utilize the resources and 
to improve the locality of resources. 
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Figure 2. Main building modules of a eXCloud cloud node 

Object Manager
Migration Manager

Application data

Heap Threads

Task partitioning 

policyobjects

process location and 

prefetching info object  

info.
migration 

info.

Worker Manager

process 

location

JVM

Resource 

Manager

exception 

info

 

Figure 3. Main building modules of a eXCloud mobile node 



SOD model was implemented with Java runtime as a 
migration middleware system named SOD Execution Engine 
(SODEE). SODEE is a layer between user applications and 
the underlying supporting components. The middleware is 
transparent to user applications. There is no need to modify 
source codes of applications. There are no specific 
restrictions on the application programs. In the underlying 
components, standard JVM are used. There are no 
modifications of JVM.  

B. Main buildling modules 

Fig. 2 and 3 illustrate the high-level design and the main 
building modules of a cloud node and a mobile node in 
eXCloud respectively. The main differences between the two 
type of nodes are that class preprocessor and MPI 
communication components are found in the cloud nodes 
only, while resource manager is found in mobile nodes only. 
Besides this, all the components in a cloud node are atop VM 
while there is no VM used in mobile node. This means that 
multi-level migration is available among cloud nodes only. 
For migration involving mobile nodes, only SOD migration 
can be taken. Though the high-level views in both nodes are 
very similar, the implementations are very different. This is 
mainly due to the different design criteria. One of the main 
criteria for a cloud node is elasticity, while it is portability 
for a mobile node. 

The main modules are described as follows: 
1. Class preprocessor is responsible for transforming 

Java application bytecode before it is loaded into JVM. The 
instrumentation is executed offline once for each related 
bytecode file, adding code for state capturing and restoring. 

2. Migration manager is responsible for serving 
migration requests, and communicating with other migration 
managers to carry out the state and code migration. Task 
migration policies are used to dynamically determine the 
distribution of tasks during execution. The decision criteria 
include the resources needed by the task, and the locality 
information of data and resources. The decision would be 
used by migration manager to schedule SOD migration, and 
by object manager to do prefetching. 

3. Object preprocessor is responsible for the object 
synchronization among sites. It serves other sites their 
required objects, and also updates objects which are received 
from other sites. As objects are migrated, they need to send 
from home site to the target site. Besides this, objects can be 
updated in other sites, and it is necessary to have the updated 
copy of objects for execution. 

4. Worker manager is responsible for the managing 
worker processes. In SOD, a worker process is created in the 
target site to execute the migrating task on behalf of the 
home site. Before a migration request is received by a site, 
an instance of worker process can be created to stand-by for 
any coming SOD migration. This would minimize the 
initialization time on creating worker process instance. As 
the stand-by working processes are in suspended state, and 
the number of stand-by working processes is controlled by 
the worker manager, the amount of resources consumed by 
these stand-by processes would be very small, well under 
control of the worker manager. 

5. Communication manager and MPI daemon work 
together to provide restorable MPI communications. 
Application programs communicate with MPI daemon 
though the JavaMPI binding API. The MPI daemon 
performs native MPI communication to provide efficient 
MPI communications. Communication manager is 
responsible for managing the channels. It receives migration 
information from migration manager, and is responsible for 
communicating and coordinating MPI daemons to restore 
MPI channels for during migration. 

6. Resource manager is in mobile nodes only. It is used 
to aid for handling proactive migrations which are triggered 
when applications are requesting resources which are not 
available in the current node. When an application is trying 
to use a resource which is not available in the current device, 
a resource-related exception would be thrown. Examples of 
resource-related exception are ClasssNotFoundExcept-
ion and OutOfMemoryException. Information of these 
exceptions are redirected to resource manager. Resource 
manager would check if the resource is available in other 
nodes. When the resource is found, resource manager would 
then select an appropriate node, and contact migration 
manager to carry out a SOD migration, in which the 
requesting task would be migrated to the selected node 
where its execution would then be resumed. After finishing 
the task, results are sent back to the original node, and 
execution is resumed. 

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the eXCloud performance in 
various aspects. We evaluate SOD migration with other 
computation migration mechanisms on a Xen virtual cluster, 
emulating a multi-instance cloud infrastructure. A virtual 
cluster is created on top of physical clusters with sufficient 
hardware processors given to all VM instances. All hosts are 
connected through Gigabit networks. In this performance 
evaluation, although live VM migrations are allowed, we 
focus on the evaluation of fine-grained task migration by 
SOD in different scenarios. 

A. Environments 

Two platforms, namely Platform A and Platform B, were 
used. Platform A targets for high performance computing, 
which are used in Section B. Platform B targets for mobile 
cloud computing with mobile devices connected, which are 
used in Section C-E. Platform A is a cluster of nodes 
interconnected by a Gigabit Ethernet network. Each node 
consists of 2 × Intel 6-Core X5650 Xeon 2.66GHz CPUs, 
48GB 1333MHz DDR3 RAM and 7.2K rpm SATA II drives. 
The OS is Scientific Linux 5.5 x86_64. All nodes mount the 
same home directory on Network File System (NFS) to faci-
litate shared file access. The virtual machine manager (VMM) 
used is Xen 3.0.3-105.el5_5.2. 5 VMs are started in each 
host. Each VM is allocated with 4 logical processors and 
512MB memory, running RedHat Enterprise Linux AS 4.6 
(32-bit). The Java VM used is Oracle JDK 1.6.0_20-b02 (32-
bit), operating in server mode. 



Platform B is a cluster of nodes interconnected by a 
Gigabit Ethernet network and Wi-Fi (802.11g). Each node 
consists of 2 × Intel E5540 Quad-core Xeon 2.53GHz CPUs, 
32GB 1066MHz DDR3 RAM and SAS/RAID-1 drives. The 
OS is Fedora 11 x86_64. All nodes mount the same home 
directory on Network File System (NFS) to facilitate shared 
file access. The tested JVM version is SunJDK 1.6 (64-bit). 
For the mobile devices, iPhone 4 handsets were used. It 
contains an Apple A4 CPU (800MHz), 512MB RAM, and 
16GB storage. JamVM 1.5.1b2-3 (VJM) and GNU Classpath 
0.96.1-3 (Java class library) were installed on the iPhone. It 
was connected through Wi-Fi connection to the cluster 
network. 

B. Overhead Analysis  

Overhead analysis of SOD migration in a single level 
migration system had been taken in our previous work [10]. 
In this section, we evaluate SOD migration in a multi-level 
migration system. Several computation-intensive 
applications are used. Table 1 lists the applications, their 
problem sizes (n), maximum Java stack heights (h) and data 
size (D) of all local/static fields for reference. Fib and NQ 
have small data sizes but many stack frame operations. TSP 
and FFT has relatively fewer stack frame operations, but 
have much larger data size. This part of evaluation aims to 
characterize and compare the overheads of different 
migration mechanisms on top of VM environment. We ran 
each program listed in table 1 atop SODEE [10], JESSICA2 
[6], and G-JavaMPI [11] in order to measure the overhead of 
stack segment migration, thread migration, process migration 
respectively. JESSICA2 performs Java thread migration in 
JIT mode; its mobility support is implemented at the JVM 
level by modifying the Kaffe JVM [12]. G-JavaMPI uses an 
earlier generation of JVM debugger interface to perform 
eager-copy process migration. SODEE and G-JavaMPI need 
an underlying JVM (JDK 1.6) to execute. Their executions 
were encapsulated in VM instances. Xen is used to support 
the guest OSes. 

Table 2 shows the migration overhead of different 
approaches. The following metrics were measured: 

i. Exec. time w/o mig–the total execution time under the 
system with no migration taken. 

ii. Exec. time w/ mig–the total execution time under the 
system with 1 migration taken. 

iii. Migration overhead (MO)–the time difference 
between the total execution time with migration and the 
execution time without migration. 

Exec. time w/o mig of SODEE and G-JavaMPI are about 
the same. Both of them use the debugger interface. SODEE 
uses JVM TI while G-JavaMPI uses the older version 
JVMDI. The time for JESSICA2 is significantly larger, as it 
uses a rather old version Kaffe JVM in which JIT compiler is 
not as optimized as JDK. With migration, MO of SODEE is 
the smallest. It captures and restores the smallest amount of 
frames and data. MO of JESSICA2 is the second-smallest. 
State-capturing and restoring can be done efficiently as it is 
taken inside JVM. MO of G-JavaMPI is the longest, as it 
captures the whole process, including the whole heap, which 
is heavyweight. 

Table 3 shows the breakdown of migration latencies. The 
following metrics were measured: 

i. Capture time–the interval between a migration request 
being received and the state data being ready to transfer. 

ii. Transfer time–the time needed for the state data, upon 
being ready for transfer, to reach the destination. 

iii. Restore time–the time when state data being available 
at the destination to the point of execution resumption. 

iv. Migration latency–the time between receiving a 
migration request and getting the execution resumed at the 
destination. The value is equal to the sum of capture time, 
transfer time and restore time. The migration latency of SOD 
is the smallest. The migration latencies among different 
applications are about very close. Among the applications, in 
SOD, only the top stack frame is captured and restored. As 
heap data is not transferred during migration, the migration 

TABLE 2. MIGRATION OVERHEAD IN DIFFERENT SYSTEMS 

App 

SODEE on Xen 

(Stack seg. mig.) 

JESSICA2 on Xen 

(Thread mig.) 

G-JavaMPI on Xen 

(Process mig.) 

Exec. time 

(sec) MO 

(sec) 

Exec. time 

(sec) MO 

(sec) 

Exec. time 

(sec) MO 

(sec) w/ 

mig 

w/o 

mig 

w/ 

mig 

w/o 

mig 

w/ 

mig 

w/o 

mig 

Fib 12.78 12.70 0.083 47.31 47.25 0.060 16.45 12.68 3.770 

NQ 7.722 7.670 0.049 37.49 37.30 0.193 7.937 7.638 0.299 

TSP 3.599 3.59 0.013 19.54 19.45 0.096 3.674 3.590 0.084 

FFT 10.8 10.6 0.194 253.6 250.2 3.436 15.13 10.75 4.381 

 

TABLE 3. MIGRATION LATENCY IN DIFFERENT SYSTEMS 

App 

SOD G-JavaMPI JESSICA2 

Migration latency (ms) Migration latency (ms) Migration latency (ms) 

Capture 

(ms) 

Transfer 

(ms) 

Restore 

(ms) 

Capture 

(ms) 

Transfer 

(ms) 

Restore 

(ms) 

Capture 

(ms) 

Transfer 

(ms) 

Restore 

(ms) 

Fib 
6.31 894.73 12.75 

0.25 2.71 3.4 42.5 2.44 45 0.2 10.3 2.26 

NQ 
6.8 69.25 8.06 

0.32 2.89 3.6 35.5 2.81 31 0.11 1.73 6.23 

FFT 
19.39 3659.56 59.08 

0.35 14.9 4.1 742 2440 477 0.08 2.4 56.6 

TSP 
8.08 78.84 19.4 

0.3 2.8 5 32 4.46 42 0.05 10.6 8.74 

 

TABLE 1. PROGRAM CHARACTERISTICS 

App Description n h D (byte) 

Fib Calculate the n-th Fibonacci number recursively 46 46 < 10 

NQ Solve the n-queens problem recursively 14 16 < 10 

TSP Solve the traveling salesman problem of n cities 12 4 ~ 2500 

FFT Compute an n-point 2D Fast Fourier Transform 256 4 > 64M 



latency is the smallest. The migration latencies of G-
JavaMPI are the longest. During migration, eager-copy is 
used and the whole process data is captured and restored. 

C. Scaling out by SOD Migration 

In this experiment, we demonstrate how SOD with 
restorable MPI layer can be used to achieve task offloading 
among cloud nodes to have adaptive computing power ac-
cording to the need. The program used is a parallel Java ray-
tracing program using MPI to render 3D images. These 
images all have 360x275 pixels, and 182 objects. The 
rendering process uses anti-aliasing, tracing level 20, and 7 
worker processes. The program renders the 3D images 
repeatedly and the average throughput is recorded. Initially, 
the program is executed with all worker processes executed 
in a single node. This simulates the situation that low 
rendering power is required at the beginning. Usually cloud 
resources are used adaptively when necessary. And then 
scale-out is taken by migrating rendering worker processes to 
other cloud nodes. This simulates the situation that a higher 
rendering power is required as time goes by, which can be 
obtained adaptively by scaling-out tasks to other nodes. In 
each migration, tasks are migrated to other idle cloud nodes 
by using SOD migration to allow rapid scale-up of the use of 
cloud computing resources. Fig. 4 shows the results of the 
experiment. Initially, as one node is used, the throughput is 
not high. With the increasing demands of rendering power, 
rending tasks are migrated to other available nodes by SOD. 
This experiment demonstrates the use of task mobility for 
on-demand scaling. 

D. Migration from mobile device to cloud nodes 

In this experiment, we evaluate the performance gain of 
using the migration techniques to migrate computation-
intensive tasks from mobile devices to cluster nodes. In the 
experiment, instead of evaluating specific migration strate-
gies, we focus on evaluating the achievable performance 
gain. We first execute the applications in a mobile device. 

When the computation-intensive task is just started, migra-
tion is taken to migrate the task from the mobile device to a 
cloud node where it is resumed to continue execution. When 
the task finishes, the results are returned back to the mobile 
devices where the application continues the execution. The 
result is shown in Table 4. It is shown that the performance 
gain with migration can be 3 to 56 times. The migration 
latency ranges from around 250ms to 400ms. The capture 
time and transfer time are much larger than the time in Sec-
tion B. As the programs are originally executed in the mo-
bile device, state-capturing refers to the capturing of state of 
the program in the mobile device. As the device’s speed is 
much slower than the cloud node, the capturing time is larg-
er. Besides this, in mobile device, state-capturing is taken at 
application level, and Java object serialization is used. The 
transfer time is also much larger as Wi-Fi instead of gigabit 
network is used. 

E. Migration from cloud node to mobile devices 

In this experiment, we demonstrate how SOD can be 
used to use the resources in mobile devices in a feasible 
manner without significant memory overhead. In the expe-
riment, a web server program is executed in a cloud node, 
which returns file information and files to the clients. In the 
setting, there are 5 directories, each holding 100 image files. 
There is another empty directory named “ip4”. When the 
server program tries to read from this directory, a migration 
request is triggered. The task is migrated to an iPhone, 
where the directory information is actually read. After the 
task completes, the execution returns to the server program 
with the information of the image files found. The server 
program then returns the aggregated results in HTML for-
mat to the clients. Here are testing results: The memory 
footprint of the process in the cloud node is 31,907,096 
bytes (about 30MB) while the memory footprint of the 
process in the iPhone is 852,544 bytes. That means, when 
compared with process migration, SOD avoids a significant 
amount of memory consumption (up to 97%). Besides this, 
in the whole execution, there are active network connections 
between the server program and the clients. With the use of 
SOD, the need of migrating these native states can be 
avoided. 

 

FIGURE 4. SCALING OUT FOR PARALLEL PROGRAM 

TABLE 4. MIGRATION FROM MOBILE DEVICE TO CLOUD’S NODE IN ACTIVE 

MIGRATION  exec. 

time w/o 

mig. (s) 

exec. 

time w/ 

mig. (s) 

gain 

(%) 

capture 

time 

(ms) 

transfer 

time 

(ms) 

restore 

time 

(ms) 

total 

migration 

latency 

(ms) 

Fib 56.79 0.99 5636 140.33 94.33 11.67 246.33 

NQ 32.67 1.04 3041 183.26 86.31 10.52 280.09 

FFT 6.06 1.26 381 156.48 232.46 14.58 403.52 

 



V. RELATED WORK 

CloneCloud [13] is a system that seamlessly offloads 
part of the execution of mobile applications from mobile 
devices to a computational cloud. During migration, in the 
cloud nodes, VM is used to simulate an execution environ-
ment identical to the mobile devices. The partition of migra-
tion is determined by offline static and dynamic profiling. 
Possible migration points are determined, and the actual 
migration point is set based on profiling before execution. In 
our approach, there is no need to clone an identical envi-
ronment. It is more adaptive to the new execution environ-
ment. Besides this, migration in our system is determined 
dynamically at runtime. 

Cloudlet [14] is a transiently customized computing in-
frastructure where mobile devices leverage resources of a 
nearby cloudlet by VM migration. Their migration approach 
is rather coarse-grained while ours can migrate tasks at 
much finer granularity within very short time. 

MAUI [15] is platform which minimizes power con-
sumption of mobile devices by offloading tasks to cloud 
nodes. Method shipping with related heap objects is used. 
Application codes are analyzed, and potential migration 
points are annotated to allow remote execution. The migra-
tion decisions are based on the amount of runtime resources. 
In our system, granularity of migration is much finer as it 
allows migration to take place in the middle of a method 
execution. Besides this, apart from resources, migration is 
goal-driven in various aspects, such as constraints and local-
ity. 

VI. CONCLUSION 

In this paper, we have introduced eXCloud as a 
middleware system to provide seamless, multi-level task 
mobility support to allow migration at different granularity, 
ranging from coarse to fine. While virtual machines and live 
migrations already provide resource isolation and execution 
mobility at the infrastructure level, our stack-on-demand 
(SOD) execution model advances the state-of-the-art by al-
lowing lightweight partial state migration to facilitate fine-
grained task migration among cloud nodes and mobile nodes. 
Computation can now migrate quickly among nodes to allow 
better resource utilization . 
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