
eXCloud: Transparent Runtime Support for Scaling Mobile Applications in Cloud

Ricky K. K. Ma, King Tin Lam, Cho-Li Wang

Department of Computer Science
The University of Hong Kong

Hong Kong
{kkma, ktlam, clwang}@cs.hku.hk

Abstract—Cloud computing augments applications with ease-

of-access to the enormous resources on the Internet. Combined

with mobile computing technologies, mobile applications can

exploit the Cloud everywhere by statically distributing code

segments or dynamically migrating running processes onto

cloud services. Existing migration techniques are however too

coarse-grained for mobile devices, so the overheads often offset

the benefits of migration. To build a truly elastic mobile cloud

computing infrastructure, we introduce eXCloud (eXtensible

Cloud)–a middleware system with multi-level mobility support,

ranging from as coarse as a VM instance to as fine as a run-

time stack frame, and allows resources to be integrated and

used dynamically. In eXCloud, a stack-on-demand (SOD) ap-

proach is used to support computation mobility throughout the

mobile cloud environment. The approach is fully adaptive,

goal-driven and transparent. By downward task migration,

applications running on the cloud nodes can exploit or take

control of special resources in mobile devices such as GPS and

cameras. With a restorable MPI layer, task migrations of MPI

parallel programs can happen between cloud nodes or be in-

itiated from a mobile device. Our evaluation shows that SOD

outperforms several existing migration mechanisms in terms of

migration overhead and latency. All our techniques result in

better resource utilization through task migrations among

cloud nodes and mobile nodes.

Keywords-stack-on-demand;mobile cloud;computation

migration; cloud computing

I. INTRODUCTION

The essential characteristics of cloud computing, such as
on-demand self-service, flexible network access, rapid
elasticity and pay-per-use style of utility services, attract
much attention from commercial users. However, despite the
popularity of cloud computing, cloud computing is still an
evolving paradigm [1]. There are some fundamental issues
that hinder the widespread adoption of cloud computing in
the future.

One of the issues is related to mobile cloud computing.
With the desire of mobility of resources, mobile cloud
computing has been evolved. It is basically the combination
of mobile computing and cloud computing. Mobile devices
connect to the cloud, and mobile applications make use of
the resources of cloud. In mobile cloud computing, mobile
applications can offload computation-intensive operations to
clouds for speedup and use the resources for extend
functionality, or simply draw services provided by clouds in
client-server model. The importance of mobile cloud

computing can be reflected by a recent study that more than
240 million businesses will use cloud service through mobile
devices by 2015, and that would push mobile cloud
computing revenues to an enormous amount [2]. However,
in the current evolvement of mobile cloud computing,
mobile applications can only use clouds in a restricted
manner. Applications are executed in client-server models in
order to use the cloud resources. This execution model is
different from the one in pervasive computing. The basic
problem that leads to this constrained execution model is the
mobility of applications. In pervasive computing,
computation components can move freely from one place to
another. However, in mobile cloud computing, applications
are not really “mobile”. Data and application states cannot
move freely between mobile devices and clouds. In the push-
pull manner in the client-server model, data and state can be
sent in a few ways only. When a client is requesting a service
from the server, data and state are sent from client to the
server. When a server is responding to a service, updated
data and state are sent to the client. Apart from this request-
reply occasion, data and state cannot move among clients
and servers. In addition, only a small part of data can be sent
between the mobile device and the clouds.

Some may argue that the above scenario is what cloud
computing is: applications offload execution from mobile
devices to the cloud, get the result back after execution, and
cloud nodes never need to migrate application computation
to the mobile devices. But we would argue that, although this
constrained way may be enough for simple mobile
applications, true mobility would allow powerful features
which are essential to our future clouds. One of such features
is the seamless and autonomous integration of mobile
devices and clouds. With true mobility, it is no longer
necessary to have mobile applications executed in a client-
server model in order to use the cloud resources. Besides this,
the unique resources of mobile devices, such as the bundled
cameras and microphones, can be used freely by the
computations that have been migrated to the clouds. In a
broader view, with the capability to move computation
across cloud nodes and mobile nodes, our future clouds can
grow, in terms of resources, by utilizing resources whenever
possible. Whether or not the resources are being used is
another question relating to the policy.

Another issue is related to granularity of task mobility.
Task mobility refers to the capability to allow users to
continue their tasks on different nodes. The importance of
task mobility in cloud computing can be reflected by the

work on VM migration. By realizing mobility through VM
migration, resource utilization can be improved by load
balancing. System serviceability and availability can also be
improved by migrating applications from machines that have
planned maintenance. However, just VM migration alone is
far from enough for the need of mobility. As VM migration
transfers the whole VM to another computer, it does not
allow fine-grained load balancing among VMs. There would
often be a dilemma of making migration decisions. For
example, a migration would favor the execution of some
tasks but penalize other tasks in the same VM. Therefore, we
need better cloud computation migration techniques.

To support task mobility, the most classical method is
process migration [3]. SPRITE, MOSIX, and the recent
system OpenSSI [4] are typical examples of process
migration systems. Process migration provides extra
opportunities for dynamic load balancing and improving data
locality or communication latency during the process's
runtime. Despite these advantages, process migration has not
been widely used. It is often too expensive to transfer the
entire address space of a process. Some VM migration
techniques improve on this by moving all dirty pages alone,
yet the overheads involved are still much big for a mobile
cloud environment. Moreover, most existing solutions re-
quire extensive modifications hacking into OS kernels [5],
JVMs [6], system libraries [7] or applications [8]. These
systems usually suffer from poor portability across
constantly changing OS versions or heterogeneous hardware
architectures.

To achieve more elastic cloud computing, we propose a
middleware system, namely Extensible Cloud (eXCloud),
with stack-on-demand (SOD) integrated atop VM systems to
support multi-level mobility. SOD is based on a stack
machine, specifically JVM in our case. Unlike traditional
process migration which performs full-rigged state migration
(including code, stack, heap and program counter), SOD
migrates only the top stack frame, or top segment of frames,
while the required code and heap data are brought in on
demand subsequently. With SOD, we can dynamically move
input processing to the location(s) where the greatest demand
is being generated; we can also move the execution of a
software component close to its associated data source for
shorter access latency. We can offload a task onto a cloud
platform if the desktop or mobile device has insufficient
processing capacity or memory to carry out the computation.
User tasks at a mobile device can be offloaded onto clouds to
save energy consumption. It allows lightweight transparent
migration among mobile devices and cloud nodes. Tasks can
be migrated from mobile devices to cloud nodes, and from
cloud nodes to utilize the resources.

The rest of this paper is organized as follows. Section II
gives the introduction of eXCloud. Section III presents the
system design and architecture of eXCloud. In Section IV,
we evaluate and compare the performance characteristics of
the various computation migration systems. Finally, Section
V concludes our work.

II. EXCLOUD: MULTI-LEVEL MOBILITY SUPPORT FOR

MOBILE CLOUD COMPUTING

A. Overview

In a mobile cloud, there are mainly two types of nodes—

cloud nodes and mobile nodes. Cloud nodes refer to the
computing nodes which are located statically. These nodes
are powerful computing machines, equipped with powerful
processors and plenty of memory to provide high perfor-
mance computing. VM instances can be executed in these
machines to provide elastic computing to clients. Mobile
nodes refer to the mobile devices that are added dynamically
to form the mobile cloud. These nodes are usually low-
power and equipped with “just enough” resources, such as
memory and storage. These devices are not designed to pro-
vide high-performance computation. As mobile applications
become more and more complicated, much more computing
power is needed to execute the applications. Resources from
clouds can be used to execute the applications. However,
among existing approaches, applications are often restricted
to execute in a client-server manner, in which mobile devic-
es act as a thin client and most computations are executed in
the cloud nodes. This greatly reduces the application flex-
ibility.

eXCloud is a multi-level mobile cloud infrastructure for
providing transparent runtime support for scaling mobile
applications. It allows different levels and different
granularity of mobility in an adaptive and goal-driven
manner. In this infrastructure, SOD is integrated atop VM.
Live migration of VM instances [9] are allowed. SOD can
also distribute and migrate the tasks across different nodes
according to the following goals:
• constraint-driven: tasks are migrated when the executing

node does not have sufficient resource or required
resources. E.g. tasks are offloaded from mobile devices
to the clouds when CPU or memory capacity is not
enough, or certain required libraries are missing.

• locality-driven: migration is taken to move the
computation closer to the data source for shorter access-
latency.

B. State-On-Demand execution

SOD [10] is an ultra-lightweight computation migration
in which only the top portion of the runtime stack is being
migrated. This design exploits the temporal locality of stack-
based execution–the most recent execution state always sits
on the top segment of a stack. By a partial stack migration,
this speculative approach can reduce the migration cost of a
bulky stack pointing to many objects. In addition, mobile-
agent solutions, which allow autonomous components to
move around a heterogeneous network, seem best to survive
in highly dynamic and unpredictable environments. So the
SOD design also incorporates this notion, and as a whole,
offers a very flexible style of mobile cloud computing in
three features:
• Lightweight task migration: SOD copies only the

required part of data to the destination. This saves a lot

of network bandwidth and reduces resource footprints
on the target site. It allows a big task to fit into a small
device in a discretized manner, with an extremely short
freeze time. This allows quick access to non-local idle
computing resources.

• Distributed workflow style: SOD allows different parts
of the stack migrate concurrently to different sites,
forming a distributed workflow. Freeze time between
multiple hops is fully or partially hidden. Data locality
can be enhanced, and streamlined elastic task scheduling
on cloud servers is possible.

• Autonomous task roaming: SOD mimics strong-mobility
mobile agents, and is capable of adapting to a new
environment. Tasks can roam across a set of information
bases for best locality. SOD-driven roaming can be
more agile and flexible than traditional MAs because
SOD is down to granularity of a method instead of the
whole process.

C. Task Migration using SOD

Basically, different migration techniques focus on dif-
ferent computing applications and different execution para-
digms. VM migration moves the whole VM, while SOD
performs lightweight task migration to utilize resources.
With SOD migration, only the topmost stack frame, or top-
most segment of stack frames is transferred. This avoids the
overhead and complexity of migrating the underlying stack
frames, especially when the underlying stack frames are
native frames or contain reference to native objects. Besides

this, as SOD migration transfers heap data on demands, mi-
grating large portion of heap data can be avoided. Fig. 1
shows the application scenario of SOD migration. In this
multi-level migration system, apart from using SOD as a
traditional migration mechanism to support load balancing
and load sharing, SOD can be used in the following ways:

1. Constraint-driven migration. With SOD migration,
tasks can be migrated among cloud nodes and mobile devic-
es without significant overheads. There can be three types of
migrations: i) migration among cloud nodes; ii) migration
from mobile devices to cloud nodes; iii) migration from
cloud nodes to mobiles devices. Migration among cloud
nodes can allow dynamic load balancing, improved data
access locality, and auto-provisioning of computing re-
sources. Besides this, resources can be better utilized. As
shown in Fig. 1, migration is taken from mobile devices to
cloud nodes. This allows mobile applications to use the
cloud resources seamlessly without following the client-
server model. Tasks can also be migrated from cloud nodes
to small-capacity devices to use the unique resources in the
devices. E.g. Photos stored in a mobile phone can be used
and found dynamically by a searching process of a web
server which is originally executed in a cloud node.

Migration can be triggered either actively or proactively.
In the active way, migration is triggered by migration man-
ager. When certain conditions of the system, such as the
threshold of loading, are reached and detected by the migra-
tion manager, the migration manager would issue the migra-
tion request and carry out migration. In the proactive way,

Cloud service

provider

2. Scale out

using SOD

Xen-aware host OS

Network

JVM

1. Constraint-driven migration

using SOD

Mobile

client

Stack

segments

Partial

Heap

Method

Area

Code

OS

Small

footprint

Multi-thread

Java process

3. Roaming

using SOD

Cloud service

provider

MPI

JVM

guest OS

Xen VM

MPI

JVM

guest OS

Xen VM

Stacks
Heap

JVM process

Method

Area

Code

… …

comm.

Figure 1. Task migration between cloud node and mobile node

migration is triggered by the program itself indirectly. This
would happen when the executing program has reached cer-

tain special states, such as exceptions like ClassNotFoun-

dException and OutOfMemoryException. The excep-
tions are handled by the exception handlers which are in-
strumented into the program during bytecode preprocessing.
For example, in a mobile device, when the program is trying
to load a certain library which is not available in the device,

a ClassNotFoundException would be thrown. The ex-
ception handler would then capture the execution state and
issue SOD migration request. The task would be migrated to
a cloud node where the required library is available. The
task is resumed execution. Upon completion of the task,
execution is returned to the original program in the mobile
device, and the execution of the program continues.

2. Scale-out. This is mainly for parallel programs to
allow dynamic load distribution, scale-up and scale-down
auto-provisioning. With the use of restorable MPI layer,
tasks in parallel programs can be scale-out to different ma-
chines to use the computing resources at there. Tasks can
still communicate properly among each other after scale-out
through the use of the restorable communication support.

3. Task Roaming. This is to roam tasks from a node to
another node to improve data locality. Suppose a very large
data file storing dynamic data is stored distributedly among
a number of machines. When a searching process needs to
perform searching among these files, in order to exploit the
data locality, the searching process can be roamed among
these machines to perform local search of the data file.

D. Adaptive migration mechanisms for task mobility

Cloud nodes and mobile nodes have different computing
power. Besides this, their hardware and software architec-
ture have different characteristics. Cloud nodes are powerful
with plenty of computing related resources, such as memory

and storage. VM instances are created in these nodes and
computation tasks are performed insides these VM instances.
Among the VM instances, similar hardware and software
working environments are provided. For cloud nodes, com-
putation performance is considered as one of the most im-
portant criteria. For mobile nodes, the nodes are often in
different hardware and software configurations. As there are
no VM instances between user applications and the underly-
ing systems, portability becomes the most important criteria
for execution. Due to the different criteria, different state-
capturing and state-restoring mechanisms are used when
migrations are taken places in different types of nodes.
When state-capturing or state-restoring is taken in cloud
node, states are captured using JVMTI functions. As JVMTI
is a low-level layer that can access the internal of JVM, state
can be captured more efficiently. However, when state-
capturing or state-restoring is taken in mobile nodes, state
are captured and restored at application level. This allows
portable state migration.

III. SYSTEM DESIGN AND ARCHITECTURE

A. Design Goals

The SOD system has the following design goals:
1. Low overhead. The main objective of SOD is to

deliver lightweight task migration. The total amount of
overhead induced by the system must be low. The system
must not induce delay or slowdown on the execution of the
applications, especially during normal execution when there
is no migration in place.

2. Transparency. The whole SOD mechanism needs to
be transparent to users. There is no need for users to modify
their programs, or to use specific libraries. Normal user
applications are passed to the system for execution.

3. Portability. There is no need to use a specific JVM.
Standard JVM and Java Standard Library should be used.

4. Adaptation to the new environment. When tasks are
migrated to a new environment, they should be able to use
the resources in the new location to utilize the resources and
to improve the locality of resources.

MPI Daemon
Communication

Manager

Class

preprocessor

Object Manager
Migration Manager

Application data

Heap Threads

Task partitioning

policy

transformed

bytecode

objects

process location and

prefetching info

migration

info.

object

info.

MPI

communicationNative MPI

communication

channel

info.

migration

info.

Worker

Manager

process

location

JVM

VM

Figure 2. Main building modules of a eXCloud cloud node

Object Manager
Migration Manager

Application data

Heap Threads

Task partitioning

policyobjects

process location and

prefetching info object

info.
migration

info.

Worker Manager

process

location

JVM

Resource

Manager

exception

info

Figure 3. Main building modules of a eXCloud mobile node

SOD model was implemented with Java runtime as a
migration middleware system named SOD Execution Engine
(SODEE). SODEE is a layer between user applications and
the underlying supporting components. The middleware is
transparent to user applications. There is no need to modify
source codes of applications. There are no specific
restrictions on the application programs. In the underlying
components, standard JVM are used. There are no
modifications of JVM.

B. Main buildling modules

Fig. 2 and 3 illustrate the high-level design and the main
building modules of a cloud node and a mobile node in
eXCloud respectively. The main differences between the two
type of nodes are that class preprocessor and MPI
communication components are found in the cloud nodes
only, while resource manager is found in mobile nodes only.
Besides this, all the components in a cloud node are atop VM
while there is no VM used in mobile node. This means that
multi-level migration is available among cloud nodes only.
For migration involving mobile nodes, only SOD migration
can be taken. Though the high-level views in both nodes are
very similar, the implementations are very different. This is
mainly due to the different design criteria. One of the main
criteria for a cloud node is elasticity, while it is portability
for a mobile node.

The main modules are described as follows:
1. Class preprocessor is responsible for transforming

Java application bytecode before it is loaded into JVM. The
instrumentation is executed offline once for each related
bytecode file, adding code for state capturing and restoring.

2. Migration manager is responsible for serving
migration requests, and communicating with other migration
managers to carry out the state and code migration. Task
migration policies are used to dynamically determine the
distribution of tasks during execution. The decision criteria
include the resources needed by the task, and the locality
information of data and resources. The decision would be
used by migration manager to schedule SOD migration, and
by object manager to do prefetching.

3. Object preprocessor is responsible for the object
synchronization among sites. It serves other sites their
required objects, and also updates objects which are received
from other sites. As objects are migrated, they need to send
from home site to the target site. Besides this, objects can be
updated in other sites, and it is necessary to have the updated
copy of objects for execution.

4. Worker manager is responsible for the managing
worker processes. In SOD, a worker process is created in the
target site to execute the migrating task on behalf of the
home site. Before a migration request is received by a site,
an instance of worker process can be created to stand-by for
any coming SOD migration. This would minimize the
initialization time on creating worker process instance. As
the stand-by working processes are in suspended state, and
the number of stand-by working processes is controlled by
the worker manager, the amount of resources consumed by
these stand-by processes would be very small, well under
control of the worker manager.

5. Communication manager and MPI daemon work
together to provide restorable MPI communications.
Application programs communicate with MPI daemon
though the JavaMPI binding API. The MPI daemon
performs native MPI communication to provide efficient
MPI communications. Communication manager is
responsible for managing the channels. It receives migration
information from migration manager, and is responsible for
communicating and coordinating MPI daemons to restore
MPI channels for during migration.

6. Resource manager is in mobile nodes only. It is used
to aid for handling proactive migrations which are triggered
when applications are requesting resources which are not
available in the current node. When an application is trying
to use a resource which is not available in the current device,
a resource-related exception would be thrown. Examples of
resource-related exception are ClasssNotFoundExcept-
ion and OutOfMemoryException. Information of these
exceptions are redirected to resource manager. Resource
manager would check if the resource is available in other
nodes. When the resource is found, resource manager would
then select an appropriate node, and contact migration
manager to carry out a SOD migration, in which the
requesting task would be migrated to the selected node
where its execution would then be resumed. After finishing
the task, results are sent back to the original node, and
execution is resumed.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the eXCloud performance in
various aspects. We evaluate SOD migration with other
computation migration mechanisms on a Xen virtual cluster,
emulating a multi-instance cloud infrastructure. A virtual
cluster is created on top of physical clusters with sufficient
hardware processors given to all VM instances. All hosts are
connected through Gigabit networks. In this performance
evaluation, although live VM migrations are allowed, we
focus on the evaluation of fine-grained task migration by
SOD in different scenarios.

A. Environments

Two platforms, namely Platform A and Platform B, were
used. Platform A targets for high performance computing,
which are used in Section B. Platform B targets for mobile
cloud computing with mobile devices connected, which are
used in Section C-E. Platform A is a cluster of nodes
interconnected by a Gigabit Ethernet network. Each node
consists of 2 × Intel 6-Core X5650 Xeon 2.66GHz CPUs,
48GB 1333MHz DDR3 RAM and 7.2K rpm SATA II drives.
The OS is Scientific Linux 5.5 x86_64. All nodes mount the
same home directory on Network File System (NFS) to faci-
litate shared file access. The virtual machine manager (VMM)
used is Xen 3.0.3-105.el5_5.2. 5 VMs are started in each
host. Each VM is allocated with 4 logical processors and
512MB memory, running RedHat Enterprise Linux AS 4.6
(32-bit). The Java VM used is Oracle JDK 1.6.0_20-b02 (32-
bit), operating in server mode.

Platform B is a cluster of nodes interconnected by a
Gigabit Ethernet network and Wi-Fi (802.11g). Each node
consists of 2 × Intel E5540 Quad-core Xeon 2.53GHz CPUs,
32GB 1066MHz DDR3 RAM and SAS/RAID-1 drives. The
OS is Fedora 11 x86_64. All nodes mount the same home
directory on Network File System (NFS) to facilitate shared
file access. The tested JVM version is SunJDK 1.6 (64-bit).
For the mobile devices, iPhone 4 handsets were used. It
contains an Apple A4 CPU (800MHz), 512MB RAM, and
16GB storage. JamVM 1.5.1b2-3 (VJM) and GNU Classpath
0.96.1-3 (Java class library) were installed on the iPhone. It
was connected through Wi-Fi connection to the cluster
network.

B. Overhead Analysis

Overhead analysis of SOD migration in a single level
migration system had been taken in our previous work [10].
In this section, we evaluate SOD migration in a multi-level
migration system. Several computation-intensive
applications are used. Table 1 lists the applications, their
problem sizes (n), maximum Java stack heights (h) and data
size (D) of all local/static fields for reference. Fib and NQ
have small data sizes but many stack frame operations. TSP
and FFT has relatively fewer stack frame operations, but
have much larger data size. This part of evaluation aims to
characterize and compare the overheads of different
migration mechanisms on top of VM environment. We ran
each program listed in table 1 atop SODEE [10], JESSICA2
[6], and G-JavaMPI [11] in order to measure the overhead of
stack segment migration, thread migration, process migration
respectively. JESSICA2 performs Java thread migration in
JIT mode; its mobility support is implemented at the JVM
level by modifying the Kaffe JVM [12]. G-JavaMPI uses an
earlier generation of JVM debugger interface to perform
eager-copy process migration. SODEE and G-JavaMPI need
an underlying JVM (JDK 1.6) to execute. Their executions
were encapsulated in VM instances. Xen is used to support
the guest OSes.

Table 2 shows the migration overhead of different
approaches. The following metrics were measured:

i. Exec. time w/o mig–the total execution time under the
system with no migration taken.

ii. Exec. time w/ mig–the total execution time under the
system with 1 migration taken.

iii. Migration overhead (MO)–the time difference
between the total execution time with migration and the
execution time without migration.

Exec. time w/o mig of SODEE and G-JavaMPI are about
the same. Both of them use the debugger interface. SODEE
uses JVM TI while G-JavaMPI uses the older version
JVMDI. The time for JESSICA2 is significantly larger, as it
uses a rather old version Kaffe JVM in which JIT compiler is
not as optimized as JDK. With migration, MO of SODEE is
the smallest. It captures and restores the smallest amount of
frames and data. MO of JESSICA2 is the second-smallest.
State-capturing and restoring can be done efficiently as it is
taken inside JVM. MO of G-JavaMPI is the longest, as it
captures the whole process, including the whole heap, which
is heavyweight.

Table 3 shows the breakdown of migration latencies. The
following metrics were measured:

i. Capture time–the interval between a migration request
being received and the state data being ready to transfer.

ii. Transfer time–the time needed for the state data, upon
being ready for transfer, to reach the destination.

iii. Restore time–the time when state data being available
at the destination to the point of execution resumption.

iv. Migration latency–the time between receiving a
migration request and getting the execution resumed at the
destination. The value is equal to the sum of capture time,
transfer time and restore time. The migration latency of SOD
is the smallest. The migration latencies among different
applications are about very close. Among the applications, in
SOD, only the top stack frame is captured and restored. As
heap data is not transferred during migration, the migration

TABLE 2. MIGRATION OVERHEAD IN DIFFERENT SYSTEMS

App

SODEE on Xen

(Stack seg. mig.)

JESSICA2 on Xen

(Thread mig.)

G-JavaMPI on Xen

(Process mig.)

Exec. time

(sec) MO

(sec)

Exec. time

(sec) MO

(sec)

Exec. time

(sec) MO

(sec) w/

mig

w/o

mig

w/

mig

w/o

mig

w/

mig

w/o

mig

Fib 12.78 12.70 0.083 47.31 47.25 0.060 16.45 12.68 3.770

NQ 7.722 7.670 0.049 37.49 37.30 0.193 7.937 7.638 0.299

TSP 3.599 3.59 0.013 19.54 19.45 0.096 3.674 3.590 0.084

FFT 10.8 10.6 0.194 253.6 250.2 3.436 15.13 10.75 4.381

TABLE 3. MIGRATION LATENCY IN DIFFERENT SYSTEMS

App

SOD G-JavaMPI JESSICA2

Migration latency (ms) Migration latency (ms) Migration latency (ms)

Capture

(ms)

Transfer

(ms)

Restore

(ms)

Capture

(ms)

Transfer

(ms)

Restore

(ms)

Capture

(ms)

Transfer

(ms)

Restore

(ms)

Fib
6.31 894.73 12.75

0.25 2.71 3.4 42.5 2.44 45 0.2 10.3 2.26

NQ
6.8 69.25 8.06

0.32 2.89 3.6 35.5 2.81 31 0.11 1.73 6.23

FFT
19.39 3659.56 59.08

0.35 14.9 4.1 742 2440 477 0.08 2.4 56.6

TSP
8.08 78.84 19.4

0.3 2.8 5 32 4.46 42 0.05 10.6 8.74

TABLE 1. PROGRAM CHARACTERISTICS

App Description n h D (byte)

Fib Calculate the n-th Fibonacci number recursively 46 46 < 10

NQ Solve the n-queens problem recursively 14 16 < 10

TSP Solve the traveling salesman problem of n cities 12 4 ~ 2500

FFT Compute an n-point 2D Fast Fourier Transform 256 4 > 64M

latency is the smallest. The migration latencies of G-
JavaMPI are the longest. During migration, eager-copy is
used and the whole process data is captured and restored.

C. Scaling out by SOD Migration

In this experiment, we demonstrate how SOD with
restorable MPI layer can be used to achieve task offloading
among cloud nodes to have adaptive computing power ac-
cording to the need. The program used is a parallel Java ray-
tracing program using MPI to render 3D images. These
images all have 360x275 pixels, and 182 objects. The
rendering process uses anti-aliasing, tracing level 20, and 7
worker processes. The program renders the 3D images
repeatedly and the average throughput is recorded. Initially,
the program is executed with all worker processes executed
in a single node. This simulates the situation that low
rendering power is required at the beginning. Usually cloud
resources are used adaptively when necessary. And then
scale-out is taken by migrating rendering worker processes to
other cloud nodes. This simulates the situation that a higher
rendering power is required as time goes by, which can be
obtained adaptively by scaling-out tasks to other nodes. In
each migration, tasks are migrated to other idle cloud nodes
by using SOD migration to allow rapid scale-up of the use of
cloud computing resources. Fig. 4 shows the results of the
experiment. Initially, as one node is used, the throughput is
not high. With the increasing demands of rendering power,
rending tasks are migrated to other available nodes by SOD.
This experiment demonstrates the use of task mobility for
on-demand scaling.

D. Migration from mobile device to cloud nodes

In this experiment, we evaluate the performance gain of
using the migration techniques to migrate computation-
intensive tasks from mobile devices to cluster nodes. In the
experiment, instead of evaluating specific migration strate-
gies, we focus on evaluating the achievable performance
gain. We first execute the applications in a mobile device.

When the computation-intensive task is just started, migra-
tion is taken to migrate the task from the mobile device to a
cloud node where it is resumed to continue execution. When
the task finishes, the results are returned back to the mobile
devices where the application continues the execution. The
result is shown in Table 4. It is shown that the performance
gain with migration can be 3 to 56 times. The migration
latency ranges from around 250ms to 400ms. The capture
time and transfer time are much larger than the time in Sec-
tion B. As the programs are originally executed in the mo-
bile device, state-capturing refers to the capturing of state of
the program in the mobile device. As the device’s speed is
much slower than the cloud node, the capturing time is larg-
er. Besides this, in mobile device, state-capturing is taken at
application level, and Java object serialization is used. The
transfer time is also much larger as Wi-Fi instead of gigabit
network is used.

E. Migration from cloud node to mobile devices

In this experiment, we demonstrate how SOD can be
used to use the resources in mobile devices in a feasible
manner without significant memory overhead. In the expe-
riment, a web server program is executed in a cloud node,
which returns file information and files to the clients. In the
setting, there are 5 directories, each holding 100 image files.
There is another empty directory named “ip4”. When the
server program tries to read from this directory, a migration
request is triggered. The task is migrated to an iPhone,
where the directory information is actually read. After the
task completes, the execution returns to the server program
with the information of the image files found. The server
program then returns the aggregated results in HTML for-
mat to the clients. Here are testing results: The memory
footprint of the process in the cloud node is 31,907,096
bytes (about 30MB) while the memory footprint of the
process in the iPhone is 852,544 bytes. That means, when
compared with process migration, SOD avoids a significant
amount of memory consumption (up to 97%). Besides this,
in the whole execution, there are active network connections
between the server program and the clients. With the use of
SOD, the need of migrating these native states can be
avoided.

FIGURE 4. SCALING OUT FOR PARALLEL PROGRAM

TABLE 4. MIGRATION FROM MOBILE DEVICE TO CLOUD’S NODE IN ACTIVE

MIGRATION exec.

time w/o

mig. (s)

exec.

time w/

mig. (s)

gain

(%)

capture

time

(ms)

transfer

time

(ms)

restore

time

(ms)

total

migration

latency

(ms)

Fib 56.79 0.99 5636 140.33 94.33 11.67 246.33

NQ 32.67 1.04 3041 183.26 86.31 10.52 280.09

FFT 6.06 1.26 381 156.48 232.46 14.58 403.52

V. RELATED WORK

CloneCloud [13] is a system that seamlessly offloads
part of the execution of mobile applications from mobile
devices to a computational cloud. During migration, in the
cloud nodes, VM is used to simulate an execution environ-
ment identical to the mobile devices. The partition of migra-
tion is determined by offline static and dynamic profiling.
Possible migration points are determined, and the actual
migration point is set based on profiling before execution. In
our approach, there is no need to clone an identical envi-
ronment. It is more adaptive to the new execution environ-
ment. Besides this, migration in our system is determined
dynamically at runtime.

Cloudlet [14] is a transiently customized computing in-
frastructure where mobile devices leverage resources of a
nearby cloudlet by VM migration. Their migration approach
is rather coarse-grained while ours can migrate tasks at
much finer granularity within very short time.

MAUI [15] is platform which minimizes power con-
sumption of mobile devices by offloading tasks to cloud
nodes. Method shipping with related heap objects is used.
Application codes are analyzed, and potential migration
points are annotated to allow remote execution. The migra-
tion decisions are based on the amount of runtime resources.
In our system, granularity of migration is much finer as it
allows migration to take place in the middle of a method
execution. Besides this, apart from resources, migration is
goal-driven in various aspects, such as constraints and local-
ity.

VI. CONCLUSION

In this paper, we have introduced eXCloud as a
middleware system to provide seamless, multi-level task
mobility support to allow migration at different granularity,
ranging from coarse to fine. While virtual machines and live
migrations already provide resource isolation and execution
mobility at the infrastructure level, our stack-on-demand
(SOD) execution model advances the state-of-the-art by al-
lowing lightweight partial state migration to facilitate fine-
grained task migration among cloud nodes and mobile nodes.
Computation can now migrate quickly among nodes to allow
better resource utilization .

ACKNOWLEDGMENT

This work is supported by Hong Kong RGC grant HKU
7179/09E and Hong Kong UGC Special Equipment Grant
(SEG HKU09).

REFERENCES

[1] P. Mell and T. Grance. “The NIST definition of cloud computing,”
Technical report, National Institute of Standards and Technology,
Information Technology Laboratory

[2] "Report: Mobile Cloud Computing A $5 Billion Opportunity"
Internet: http://www.crn.com/mobile/222300633

[3] D. S. Milojicic, F. Doublis, Y. Paindaveine, R. Wheller, and S. Zhou.
“Process Migraiton,” ACM Computing, 2000

[4] "OpenSSI project", Internet: http://openssi.org/cgi-bin/view?page=
openssi.html

[5] S. Osman, D. Subhraveti, G. Su, and J. Nieh. “The Design and
Implementation of Zap: A System for Migrating Computing
Environments,” In Proc. of 5th Symposium on Operating Systems
Design and Implementation, pp. 361–376, 2002

[6] W. Zhu, W. Fang, C. L. Wang, and F. C.M. Lau. “A New Transparent
Java Thread Migration System Using Just-in-Time Recompilation,”
In Proc. of the 16th IASTED International Conference on Parallel

and Distributed Computing and Systems (PDCS 2004), pp. 766-771,
MIT Cambridge, MA, USA, November 9-11, 2004.

[7] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, "Checkpoint
and migration of UNIX processes in the Condor distributed
processing system," Technical Report UW-CS-TR-1346, University
of Wisconsin - Madison Computer Sciences Department, April 1997.

[8] M. Factor, A. Schuster, and K. Shagin, "JavaSplit: a Runtime for
Execution of Monolithic Java Programs on Heterogenous Collections
of Commodity Workstations," In Proc. of the 5th IEEE Intl. Conf. on

Cluster Computing (CLUSTER’03), pages 110–117, Hong Kong,
China.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.
Pratt, and A. Warfield. “Live migration of virtual machines,” In Proc.

of the 2nd conference on Symposium on Networked Systems Design &

Implementation - Volume 2, NSDI 2005, Berkeley, CA, USA, pp.
273-286. USENIX Association.

[10] R. Ma, K. T. Lam, C. L. Wang, and C. Zhang. “A stack-on-demand
execution model for elastic computing,” In Proc. of the 39th

International Conference on Parallel Processing (ICPP 2010), pp.
208-217.

[11] L. Chen, T. C. Ma, C. L. Wang, F. C. M. Lau, and S. P. Li. “G-
JavaMPI: A Grid Middleware for Transparent MPI Task Migration,”
Chapter 20, Engineering the Grid: Status and Perspective, Nova
Science Publisher, Jan 2006

[12] "Kaffe JVM" Internet: http://www.kaffe.org

[13] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. "CloneCloud:
Elastic execution between mobile device and cloud," In Proc. of
EuroSys 2011

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. “The Case
for VM-based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, 8(4), 2009

[15] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Stefan, R.
Chandra, and P. Bahl. "MAUI: making smartphones last longer with
code offload," In Proc. of MobiSys 2010

[16] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg. “Live
wide-area migration of virtual machines including local persistent
state,” In Proc. of the 3rd International Conference on Virtual

Execution Environments, VEE 2007, New York, NY, USA, pp. 169-
179. ACM.

[17] M. Nelson, B.-H. Lim, and G. Hutchins. “Fast transparent migration
for virtual machines,” In Proc. of the USENIX Annual Technical

Conference (ATEC 2005), Berkeley, CA, USA, pp. 25-25. USENIX
Association.

[18] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J.
Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath, and P.
Y.Wang. “Seamless live migration of virtual machines over the
MAN/WAN,” Future Gener. Comput. Syst. 22, 901-907.

[19] R. Ho, C. L. Wang, and F. Lau. “Lightweight Process Migration and
Memory Prefetching on openMosix,” In Proc. of the 22nd IEEE

International Parallel and Distributed Processing Symposium
(IPDPS2008), Miami, Florida USA, April 14-18, 2008

[20] C. L. Wang, K. T. Lam, and K. K. Ma, "A Computation Migration
Approach to Elasticity of Cloud Computing,” Internet and Distributed
Computing Advancements: Theoretical Frameworks and Practical
Applications, IGI Global

