
1

Directed Point: An Efficient Communication Subsystem for
Cluster Computing

Chun-Ming Lee, Anthony Tam, Cho-Li Wang
The University of Hong Kong

{cmlee+clwang+atctam}@cs.hku.hk

Abstract

In this paper, we present a new communication subsystem, Directed Point (DP) for

parallel computing in a low-cost cluster of PCs. The DP model emphasizes high abstraction

level of interprocess communication in a cluster. It provides simple application programming

interface with syntax and semantics similar to UNIX I/O function call, to shorten the learning

period. The DP achieves low latency and high bandwidth based on (1) a efficient

communication protocol Directed Messaging, that fully utilizes the data portion of packet

frame; (2) efficient buffer management based on a new data structure Token Buffer Pool that

reduces the memory copy overhead and exploits the cache locality; and (3) light-weight

messaging calls, based on INTEL x86 call gate, that minimizes the cross-domain overhead.

The implementation of DP on a Pentium (133 MHz) cluster running Linux 2.0 achieves 46.6

microseconds round-trip latency and 12.2 MB/s bandwidth under 100 Mbit/s Fast Ethernet

network. The DP is a loadable kernel module. It can be easily installed or uninstalled.

1. Introduction

Commodity workstation/PC clusters represents a cost-effective platform for scalable

parallel computation. The message passing mechanism is usually employed for interprocess

communication in a cluster for data sharing and process synchronization. To let users can

easily develop their parallel program, the design of communication subsystem should not only

consider high performance but also emphasize on programmability.

The most widely used network programming interfaces are Berkeley Socket and

UNIX System V TLI (Transport Layer Interface) [12]. However, both are designed based on

client/server communication abstraction. The client/server model is not suitable for cluster

computing since it a peer-to-peer relationship between the processes. In addition, they cannot

deliver underlying network communication performance due to the large software overhead

incurred in various protocol stacks. In recent years, various communication subsystems, such

as Active Message [6], Fast Messages[10], BIP[11], U-Net[1], GAMMA[3] and etc., have

been implemented to provide high-performance communication. While they achieves better

performance in data communication, legacy network applications must be re-coded since the

2

semantics and syntax of the new application programming interface (API) is different from

classic UNIX I/O model like Socket and TLI. For example, the file descriptors in Socket is

used to abstract the communicating process at the remote side and a sequence of read and

write operations are performed to deliver the data. The API of those proposed mechanisms is

lack of programability, thus not attractive for users to write parallel applications.

In this paper, we propose a new communication subsystem called Directed Point

(DP) for commodity clusters system. To provide higher level of abstraction, we view the

interprocess communication in a cluster as a directed graph. In the directed graph, each

vertice represents a communicating process. Each process may create multiple endpoints for

the identification of communication channels. A directed edge connecting two endpoints at

different processes represent a uni-directional communication. The DP model can be used to

describe any interprocess communication pattern in the cluster. The programmer or the

parallel programming tool can easily translate the directed graph to the SPMD code. DP also

provides a small set of new API which conform the semantics and syntax of UNIX I/O calls.

This further makes the translation very easy.

In contrast to the advocacy of user-level communication mechanism, DP is implemented

in kernel level. This design makes DP a highly protected communication software. To achieve

low latency and high bandwidth, we propose a simple communication protocol Directed

Message (DM), that fully utilizes data field of packet frame. The DP can send message

directly from user space to network interface without copying to intermediate buffer in kernel.

On the receiver side, we design an efficient buffer management mechanism based on a new

data structure Token Buffer Pool that shortens the memory copy time and reduces the

multiplexing and signaling overhead. The interrupt handler can efficiently multiplex the

incoming packets directly to the user space without delay. In DP, a set of light-weight

messaging procedures are implemented based on INTEL x86 Call Gate. The call gate

command provides a leeway to enter kernel without causing extra overhead in rescheduling or

additional context switch delay.

Based on the above techniques, the implementation of DP on a Pentium (133 MHz) PC

cluster, running Linux 2.0 operating system, achieves 46.6 microseconds round-trip latency

and 12.2 MB/s bandwidth under 100 Mbit/s Fast Ethernet network, which exploits the

maximum power of the underlying network. We have also implemented the MPI point-to-

point communication by modifying the MPICH package using DP. We achieve an 8.7 MB/s

point-to-point communication bandwidth on the same platform.

The rest of the paper is organized as follows. In the next section, we present the Directed

Point model. Section 3 shows the system architecture of DP. In section 4, we discuss the

techniques used in DP to achieve high performance. Section 5 shows the API provided by DP.

Performance evaluation of DP and comparison with other research work are conducted in

3

section 6. Section 7 discusses the related work. Finally, we present our conclusion in section

8.

2. The Directed Point Model

Our communication subsystem is designed based on a new communication endpoint

abstraction, called Directed Point (DP). The DP abstraction provides programmers with a

virtual network topology among a group of communicating processes. Using DP model, all

interprocess communication patterns can be described by a directed graph, with the vertex

representing the communicating processes and the directed edge as a uni-directional

communication channel between a pair of processes. In Figure 1, we show a typical

interprocess communication pattern based on the DP abstraction. In DP model, each node in

the cluster is assigned a logical identity called Node ID (NID). Multiple processes can run on

each node. Each endpoints of the directed edge is labeled with a unique Directed Point ID

(DPID). Thus using an association of 3 tuples: { local DPID, peer Node ID, peer DPID} we

can uniquely identify a communication channel in the DP model.

Figure 1. An abstract view of the DP communication model.

DP model provides flexible abstraction for depicting the virtual topology for data

communication in a cluster. This feature can facilitate the design of higher level parallel

languages or runtime support for cluster computing.

3. DP System Architecture

In this section, we describe the DP architecture. Figure 2 shows the system overview

of our DP design.

DPID=12

DPID=15

DPID=13

DPID=14

NID=1 NID=2

NID=3
{15,1,12}

{12,2,13}

{12,3,14}

{14,2,15}

4

Figure 2. A design overview of DP communication subsystem.

3.1 DP Programming Interfaces

DP APIs consists of one new system call, user level function calls, lightweight

message calls, and traditional UNIX I/O calls. Details of the DP API and the functions of each

command will be discussed in Section 5.

All DP I/O calls follow the syntax and semantics of the UNIX I/O calls. Similar to the

the file descriptor used in UNIX I/O calls to identify the target device or a file, we also use

the it to abstract the communication channel. Once the connection is established, a sequence

of read and write operations are performed to receive and send the data. The DP API

provides handy and friendly interface for network programming. This unloads the burden of

learning new API and makes it easier to be used, since the UNIX I/O calls have been widely

used for developing code in the past.

3.2 DP Services Layer

DP Services Layer is the core of the DP subsystem. It is built by different components

to provide services for passing message from user space to network hardware and deliver

incoming packets to the buffer of the receiving processes. These components are:

1. DP Communication Acquirement Table (DP CAT): At user process level, DP

endpoint is represented by the DPID. In kernel it is an entry of CAT. Each entry

keeps the information about which process acquired the communication resource.

2. Message Dispatch Routine (MDR): MDR is responsible to distribute or multiplex

the incoming message to the destination process. It is called by the interrupt

handler.

3. Network Address Resolution Table (NART): Each node’s network address is

maintained in this table. Each node will keep an identical copy of it. It is accessed

by message transmission operation to translate a NID to network address in order

to build the packet frame.

Process space

Kernel space

DP APIs

DP Services Layers

DP Network Interfaces

ATM, Ethernet NIC Hardware

UNIX I/O APIs

5

4. DP I/O Operation Routines: These routines handle the actual send and receive

requests from user processes.

3.3 DP Network Interfaces

This layer provides an interface for DP Services Layer to interact with the network

hardware. The interface is primarily to signal the hardware to receive message or inject it to

the network. It consists of the data structures required by a particular network controller. In

the current implementation, we use Digital 21140 fast Ethernet controller. It requires one

circular message transmission (TX) descriptor chain and one circular reception (RX)

descriptor chain to be setup. Each descriptor contains a pointer to physical memory address

of the buffer space in host memory that storing incoming and outgoing messages.

4. Techniques to Achieve High Performance

To achieve efficient communication, we employ various techniques to reduce

software overhead in handling the messages. In this section, we describe each of them.

4.1 Directed Message

The transmission unit of DP is Directed Message (DM), which is variable-sized

packet with a header and a data portion called container. The header is constructed at DP

Services Layer. It consists of three fields: target NID, target DPID, and the length of the

container.

On the Fast Ethernet implementation, the DM header is put in the source address

portion of the IEEE-802.3 frame. Thus, the container has maximum size of 1500 bytes.

Comparing with other implementations, U-Net has 4 bytes header put in data port, GAMMA

has 20 bytes, while DP consumes no data space.

4.2.Efficient Buffer Management

Buffer management affects the communication performance[5]. In DP, we adopt an

approach which avoids intermediate buffering of outgoing message. One the receiving side,

we maintain a dedicated buffer, called Token Buffer Pool (TBP) for receive buffer. Token

Buffer Pool is a fixed size physical memory area dedicated to a single DP endpoint. TBP is

shared by kernel and the receiving process through the page remapping. Thus, the interrupt

handler can directly copy incoming messages to the dedicated buffer space without delay. To

provide protection in a multitasking environment, the TBP is defined as read-only memory

space. In Figure 3, we show the chain structure of TBPs associated with a process.

6

Figure 3. The data structure of the Token Buffer Pool (TBP) associated with a
typical process

The unit storage in TBP is Token buffer. It is a variable length storage unit for storing

the incoming DP message. Each token buffer has a control header, called token. It is a control

structure containing the length of message and the pointer to next token buffer. Token buffers

are chained as a singular FIFO queue in the TBP. New message is always appended to the

tail. Old message is removed from the head by the receiving process.

4.3 Lightweight Messaging Calls

In contract to advocacy of user-space high-speed communication, all messaging

procedures in Directed Point are implemented in the kernel level. DP API consists of a small

set of new API to provide well-protected, low latency and high bandwidth communication for

data communication. The kernel level approach provides maximum protection to the network

resources.

In DP, light weight messaging call triggers the kernel level transmission routine by using

Intel x86 call gate. The call gate does not cause CPU exception unlike software interrupt that

is used to implement, for example, the Linux system calls. The call gate command provides a

leeway to enter kernel without causing extra overhead. In general, traditional system call will

incur process rescheduling and necessary context switching after returns from a system call.

Moreover, some bottom-half operations in interrupt handling will be performed after returning

from system call, which leads to unexpected delay in data communication.

Using call gate, the wrapper routine is very short which only consists of a x86 CALL

instruction and a few instructions to pass parameters. Thus, it is desired to be put inline at the

user source code so as to reduce overhead in traditional function calls.

4.4. Sending and Receiving

Figure 4 shows a simplified diagram for illustrating the interaction between the user

processes and the network component. The network component is the Digital 21140

controller.

TBP 1

TBP 2

TBP 3

Directed Message

tokens

7

RX Descriptor List

TX Descriptor List

Network Component

Process 0

Token Buffer Pool

LWP directly

deposits messages

Message Dispatching
to different processes

Put

Get

NIC

Process 1

Token Buffer Pool

Figure 4. The Interaction between the communicating processes and the network component.

In this example, we show two communicating processes at the user space. When a

process wants to transmit the message, it simply issues either a traditional write system call or

a DP lightweight messaging call dp_write(). The process then switches from user space to

kernel space. The corresponding DP I/O operation for transmission is triggered to parse the

NART to find the network address based on the given NID for making the network packet

frame. The network packet frame is directly deposited to the buffer pointed by the TX

descriptor without intermediate buffering. Afterward, it signals the network hardware to

indicate that there is message to be injected on the network. At this stage, it is on the context

of calling user process or thread which is consuming its host CPU time. After the messages

stored in TX descriptor, the network component takes the message and then injects it to the

network without CPU interference.

When a message arrives, the interrupt signal is triggered and the interrupt handler is

activated. The interrupt handler calls MDR to look at the Directed Message header to identify

the destination process. If it finds the process, the process’s TBP is used to save the incoming

message. In our implementation, the TBP is pre-allocated and locked in the physical memory.

Thus, it is guarantee that the destination process will obtain the message without any delay.

5. The DP API

DP APIs consists of one new system call, user level function calls, lightweight

8

message calls, and traditional UNIX I/O calls. Table 1 shows all the DP function calls in our

current implementation.

Table 1: The Directed Point Application Programming Interface

NEW SYSTEM CALL

dp_open (int dpid) create a DP endpoint

USER LEVEL FUNCTION CALLS

int dp_read (int fd, char **address) read an arrival DP message

int dp_mmap (int fd, dpmmap_t *tbp) associate a TBP with an DP
endpoint

void dp_close (int fd) close the connection

LIGHTWEIGHT MESSAGING CALLS

int dp_write (int fd, void *msg, int len) send a DP message

int dp_fsync (int fd, int n) flush n DP messages in TBP

void dp_connect (int fd, int nid, int dpid) establish the connection with the
remote endpoint.

UNIX I/O CALLS

int read(fd, char *buf, int len) blocking receive

int write(fd, char *buf, int len) blocking send

int fsync(fd) flush 1 DP message in TBP

Among the DP function calls, the dp_open() is the only new system call added. It is

used to acquire a DP endpoint with a user specified DPID. It returns a file descriptor for

further access on the created commuication channel. The dp_read() is a non-blocking

receive operation. It takes the file descriptor and a pointer to pointer as the argument. It

returns length of message and the virtual address of message stored in Token Buffer Pool

(TBP). The dp_mmap maps the Token Buffer Pool to user virtual address. The dp_close()

releases the acquired DP communication object that is represented by the file descriptor to the

system.

There are some lightweight messaging procedure calls implemented in DP. These

lightweight message procedure calls are compiled as inline functions. The dp_write() is a

non-blocking transmission operation. The dp_connect() constructions a uni-directional

communication channel with another process by given two DP endpoints. This command can

be used during the runtime to reconfigure the virtual topology. The dp_fsync() command free

the token buffer stored in TBP. Thus, the TBP can store more incoming DP messages.

Some UNIX I/O calls such as read(), write(), and fsync() can be used in DP. They

follow the same syntax and semantics as before but can achieve better performance while link

9

with DP layer.

The DP program can be developed and executed in an SPMD model. The DP

communication subsystem consists of a single API library and a header file. Compiling a DP

program does not require to construct any complex Make file. Writing DP program is much

less sophisticated and has better program structure.

6. Performance Measurement

In this section, we report the performance of DP and the comparison with other

research results. Benchmark tests are designed to explore the round-trip latency and

bandwidth benchmarks. We also conduct micro-benchmark tests which provide in-depth

timing analysis to justify the performance of DP.

6.1 The Testing Environment

Our experimental setup consists of two AST Bravo MS5133 PCs running Linux

2.0.3x kernel. These AST machines are configured with Pentium-133 processors, 256K L2

cache, and 32MB of main memory. They are linked back-to-back by a cross-over twisted pair

cable. All the benchmark measurements are obtained by using software approach, and these

programs are compiled by using gcc with optimization option -O2. These tests are running in

multi-user mode. To have more accurate timing measurement, we construct our timing

function with Pentium TSC counter that is incremented by 1 for every CPU clock cycle.

Therefore, we are able to measure the execution time in resolution of less than 16 clock

cycles1 with 133MHz CPU clock.

6.2 Bandwidth and Round-trip Latency

To measure the round-trip latency, we implemented an SPMD version of Ping-

Pong program using DP API. The Ping-Pong program measures the round trip time

for message size from 1 byte to 1500 bytes. Timing results are obtained by measuring

the average execution time of this message exchange operation in 1000 iterations.

myrank == 0:
start = rdtsc();
for i = 1..1000

dp_write(fd, msg, n);
while (dp_read(fd, buf) <=0);
dp_fsync(fd, 1);

endfor
stop = rdtsc();
calculate latency;

myrank == 1:
for i = 1..1000

while (dp_read(fd, buf) <=0);
dp_write(fd, buf, n);
dp_fsync(fd, 1);

 endfor

1 Due to the overhead of executing the RDTSC instruction, the resolution of a pair of rdtsc instructions
is bounded by this overhead.

10

In Figure 5, we see that DP achieves 46.6us round trip latency for a 1-bytes message.

For 1500 bytes which is the maximum data size of IEEE-802.3 frame, the round trip latency

is about 386us. The latency increases linearly respect to the message size at the rate about

0.225us/byte. Further, we observe that for small message size (m < 64 bytes), the measured

latencies are more or less constant.

Figure 5. Round-trip latency vs transmitted message size for Fast Ethernet DP
implementation on a pair of back-to-back Pentium-133 machines. The
graph on the right is a magnified version for message size smaller than
128 bytes.

The bandwidth is measured by transferring 2 Megabytes of data with DP message

size from 1 byte to 1500 bytes. From Figure 6, one can see that the measured bandwidth is

about 12.2MB/s, which is closed to the Fast Ethernet raw bandwidth – 12.5MB/s.

Figure 6. Throughput vs message size for Fast Ethernet DP implementation.

6.3 Micro-benchmark Analysis

To evaluate the performance of the DP communication system, a set of benchmark

routines are designed. These tests are derived from a simple data transfer model of DP. This

DP Round-trip Latency (Back-to-Back)

0

50

100

150

200

250

300

350

400

450

0 300 600 900 1200 1500

Message size (bytes)

L
at

en
cy

 (
u

se
c)

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140
bytesu
se

c

DP Throughput (Back-to-Back)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0 500 1000 1500
Message size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

11

data transfer model is based on an analytical view of the data flow through a peer-to-peer

connection during a communication event. Message exchanges are going through three

phases in general, from sender address space to receiver address space. First, the data on the

sender side traverse through the send phase which is under the control of the host processor.

Then they are handled by the network hardware (network interface cards - NICs, switches,

cables, etc.) during the transfer phase of the transmission. The receive phase happens in the

destination node when the processor of the receiving node is signaled by the NIC upon

reception of incoming data.

The send phase includes all those events happen before the network adapter takes

over the control. In traditional communication data path, this includes system call handling,

cross-domain data copying, checksum computing, protocol stacks traversing, and, other

processing overheads. Using the techniques described in Section 4, all those unnecessary

overheads have been removed to shorten the gap between the user process and network

hardware. This phase includes only a light-weighted system call, cross-domain copying, and

of minimal processing overhead.

Typical system calls are expensive, it is usually involved many instructions before it

can reach the actual routine. At the return of each system call, some events may have to be

handled such as handling bottom half of interrupt routines (non-critical section code), system

housekeeping, and context switching etc. Moreover, system calls are triggered by the wrapper

routines in the C library that cause additional overheads such as stack frame construction and

destruction, pushing parameter to stack due to function call transition and runtime linking of

library routine. The light-weighted system call is devised to alleviate this problem. By

directly jump to the handling routine and removal of all housekeeping tasks, it significantly

reduces the call overhead. Some micro-benchmarking programs are designed to explore this

situation. We have found that for those DP light-weight message calls, the calling overhead

for the x86 call gate is within the range of 1.0~1.2 usec. While for traditional system call, an

artificial null system call and the simple getpid system call cost us 1.65 and 1.68 usecs

respectively when measured on the same P-133 machine. We can see the improvement

makes by the use of light-weighted system call. Although it seems that the improvement is

insignificant as compared to the “dummy” system call, the strength of this approach is the

impact on removing those housekeeping tasks on the system entry.

Similarly, the receive phase includes all events happen in the remote node when

arrived messages are ready to be handled by the remote processor, till it is being dispatched to

the corresponding receiver’s process space. This is an asynchronous event in a sense that the

receiving process does not involve in the whole reception. To dispatch the data to the right

place, one needs to know where the data should go. This has to be managed by a privilege

process which could get hold of those protected information. Thus in our DP

12

implementations, we are using the interrupt signals to notify the Operating System on the

arrival of data. In general, this phase includes an interrupt event, destination process and

buffer selection, data copying and of minimal processing overhead.

In order to estimate the overhead of using interrupt handling, a benchmark routine is

designed to measure the software overhead involved, such as interrupt table lookup, interrupt

handler dispatch, entry, and return, etc. We find that the cost of handling interrupts on the P-

133 machine is approximately 4 usec, of which 2.5 usec is the dispatching and entry cost, and

the rest is the cost of interrupt return.

The model also identifies an interesting phenomenon about data movement. As in the

case of the send phase, we are involving a data copy from the cache to the main memory.

This is because the data message is most likely found in the cache due to the temporal

locality, and the output buffer of this phase is a memory block that has not been accessed

recently. While in the case of the receive phase, we are performing a data copy from the main

memory to another memory block. It is known that the incoming data is placed in a uncached

memory block, and it is being copied to another memory block which is also not being

accessed recently. From this observation, we can make a conjecture that the data movement

overheads involved in the send and receive phases have different memory efficiencies. Thus,

another set of benchmark tests is designed to evaluate this phenomenon. Figure 6c provides a

diagrammatic summarization of the results find by this set of benchmark tests. We can see

that the memory copy efficiency is greatly affected by the locations of the source and

destination. Further, for the case of the Ethernet packet, which is of size 1 ~ 1500 byte, the

difference in data copy performance could affect the overall performance of the receive phase.

Figure 7. Memory copy bandwidth vs the transfer size on different source and
destination combination - cache-to-cache, cache-to-memory, &
memory-to-memory.

Comparison of Memory Copy

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

transfer size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

cache-to-mem
mem-to-mem
cache-to-cache

13

6.4 Comparison

In order to have more objective comparison, here we only list the performance of the

approaches those implementation using same OS, similar network hardware and host machine

in the Table 2. From the table, we see that DP is very competitive to other new proposed

system. In fact, the bandwidth we achieve is better than others.

Approach Platform Round Trip
Latency (us)

Bandwidth
(MB/s)

Unet/FE Linux 1.3.x, Digital 21140 Fast
Ethernet, Pentium 133MHz

57 12

PARMA Linux 2.0, 3com 3C595-TX Fast
Ethernet, Pentium 100MHz

74 6.6

GAMMA Linux 2.0, 3com 3C595-TX Fast
Ethernet, Pentium 133Mhz

61.4 (cold ache)
36.8 (hot cache)

9.6
9.8

Linux
TCP/IP
socket

Linux 2.0, 3com 3C595-TX Fast
Ethernet, Pentium 133MHz

151 5.3

DP Linux 2.0, Digital 21140 Fast
Ethernet, Pentium 133MHz

46.6 12.2

Table 2. Performance comparison with U-Net, PARMA, GAMMA, Linux BSD Socket, and
DP on similar platforms

We also implemented the MPI ADI layer using the DP. We observed an 8.7 MB/s

bandwidth based on the MPI point-to-point communication between two Pentium PC

connected by Fast Ethernet.

7. Related Work

There are many research projects on the design of communication architecture for

high-speed cluster networking. Active Message [6] and U-Net [1] have implemented new

protocols and new programming interfaces to improve the network performance. Their

protocols and interfaces are light-weight and provide programming abstractions that are

similar to the underlying hardware. Both systems realize latency and throughput close to the

physical limits of the network. However, none of them offer API compatible with existing

applications.

GAMMA [3] is one of Active Message implementation on Linux platform using Fast

Ethernet. The GAMMA achieved light-weight system call using trap gate. Modification of

kernel is necessary. However, the DP is a loadable kernel module which makes it very easy

for installation and maintenance. Similar to GAMMA, Fast Message [10] is a variant of

Active Message with additional features like flow control and simple buffer management.

14

Also motivated by the idea of Active Message, BIP (Basic Interface for Parallelism) [11] can

achieve very low latency. However, the goal of BIP is to achieve the maximum performance

of the network device. The level of abstraction is not sufficient. In addition, it only allows one

dedicated process to run in a node in the current implementation. This contradicts to the fact

that most of cluster system should run on a time-sharing and multi-programming

environment.

Other research work on the aspect of client-server based communication are Fast

Socket [12], SHRIMP Stream Socket [4] and PARMA project. Fast Socket is implemented

on top of Active Message. And it does not support multi-processes. SHRIMP Stream Socket

is built on top of SHRIMP network interface which is a customized hardware to provide a

communication mechanism called virtual memory mapped communication. PARMA project

[8] provides a new protocol called PRP (PaRma Protocol) to Linux socket implementation.

Comparing to other proposed mechanisms (including DP), PRP has higher latency and lower

bandwidth.

8. Conclusion

In this paper, we introduce Directed Point architecture which is a flexible mechanism

for constructing virtual network topology for cluster networking. The DP API is consistent

with the syntax and semantics of classic UNIX I/O calls, which makes DP a simple interface

for network programming. It facilities the development of higher level communication

libraries, such as MPI and PVM, or communication protocols (e.g., TCP, UDP, IP, etc). The

all-in-kernel design makes DP a highly protected communication subsystem, which can

deliver low latency and high bandwidth network communication for clusters computing. We

believe with proper design and implementation using low-level optimization techniques in

reducing memory copy, efficient buffer management, interrupt handling, avoid the system call

overhead, the kernel-level approach is capable of achieving high performance using

commodity network component. Currently, we are porting the DP to an ATM platform. A

Java-based programming interface for DP is under construction. Performance evaluation of

DP on various commodity platforms will be reported in the final version of the paper.

.

References

[1] A. Basu, V. Buch, W. Vogels, T. von Eicken, "U-Net: A User-Level Network Interface
for Parallel and Distributed Computing," Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP), Copper Mountain, Colorado, December 3-6,
1995.

[2] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg, "A Virtual

15

Memory Mapped Network Interface for the SHRIMP Multicomputer", In Proceedings
of 21th International Symposium on Computer Architecture, pp. 142-153, April 1994

[3] G. Chiola and G. Ciaccio,"GAMMA: a Low-cost Network of Workstations Based on
Active Messages", Proceedings of PDP'97 (5th EUROMICRO workshop on Parallel
and Distributed Processing), London, UK, January 1997.

[4] S. Damianakis, C. Dubnicki, and E. W. Felten, "Stream Sockets on SHRIMP",
Technical Report TR-513-96, Princeton University, Princeton, NJ, October 1996.

[5] P. Druschel, L. L. Peterson, “Fbufs: A High-Bandwidth Cross-Domain Transfer
Facility”, In Proceedings of the 14th Symposium on Operating Systems Principles,
pp.189-202, Asheville, NC, December 1993.

[6] T. von Eicken,D. E. Culler, S. C. Goldstein, and K. E. Schauser, "Active Messages: a
Mechanism for Integrated Communication and Computation.", Proceedings of the 19th
Int'l Symp. on Computer Architecture, May 1992, Gold Coast, Australia.

[7] K. Langendoen, R. Bhoedjang, and H. Bal, “Models for Asynchronous Message
Handling”,IEEE Concurrency, pp. 28-38, June 1997.

[8] P. Marenzoni, G. Rimassa, M. Vignali, M. Bertozzi, G. Conte, and P. Rossi, "An
Operating System Support to Low-Overhead Communications in NOW Clusters",
Proceedings of Communication and Architectural Support for Network-Based Parallel
Computing CANPC97, San Antonio, Texas, February 1997.

[9] N. Nupairoj, and L. M. Ni, “Benchmarking of Multicast Communication Services”, Tech.
Rep. MSU-CPS-ACS-103, Department of Computer Science, Michigan State
University , Apr, 1995.

[10] S. Pakin, M. Lauria, and A. Chien, "High Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet," Proc. Supercomputing '95, CS Press, Los
Alamitos, Calif., 1995.

[11] L. Prylli, R. Westrelin, and B. Tourancheau, "Modeling of a High Speed Network to
Maximize Throughput Performance: the Experience of BIP Over Myrinet,"
http://www-bip.univ-lyon1.fr/bip.html, 1997.

[12] H. Steven, Rodrigues, Thomas E. Anderson, and David E. Culler, "High Performance
Local-Area Communication With Fast Socket," Proceedings of Winter 1997 USENIX
Symposium, January 1997.

[13] W. R. Stevens, “Unix Network Programming”, Prentice Hall, 1994

[14] M. Welsh, A. Basu, and T. von Eicken, "ATM and Fast Ethernet Network Interfaces for
User-level Communication", Proceedings of the Third International Symposium on
High Performance Computer Architecture (HPCA), San Antonio, Texas, February 1-5,
1997.

