
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

G-PASS: An

Instance-oriented Security

Infrastructure for Grid

Travelers‡

Tianchi Ma ,Lin Chen ,Cho-Li Wang ,Francis C. M.
Lau†

Department of Computer Science
The University of Hong Kong, Hong Kong

SUMMARY

Grid computing unifies distributed resources via its support for the creation and use of
virtual organizations (VOs), where a VO represents a collection of distributed resources
to be accessed through predefined resource sharing and coordination policies. We
consider a special type of mobile processes, named Grid travelers, which can travel
across boundaries of virtual organizations for the detection of resource availability, to
negotiate for the approval of access privileges, and to conduct remote execution. A
new security infrastructure named G-PASS is proposed to guarantee the validity and
integrity of the travelers and the critical security knowledge they collect while traveling,
especially while crossing some VOs. G-PASS borrows the idea of passport and custom,
as well as the procedures for people’s travel in real life, to provide role-based delegation
mapping and access control. We demonstrate the power and feasibility of G-PASS with
a simulated mobile agent environment and a distributed ray-tracing application running
on multiple VOs. Various security overheads coming from migration decisions and actual
agent or process migration are reported. G-PASS can be installed with GSI as the base,
which makes it compatible with the existing Grid middleware.

key words: security, delegation, trust, mobile agent, process migration

∗Correspondence to: Tianchi Ma, Systems Research Group, Department of Computer Science, The University
of Hong Kong, Hong Kong
†E-mail: tcma@cs.hku.hk
‡This research is supported in part by HKU Foundation Seed Grant 28506002, the China 863 National Grid
project, and a HKU grant for the HKU Grid Point.

Received 15 March 2005
Copyright c© 2005 John Wiley & Sons, Ltd. Revised 19 March 2005

2 A. N. OTHER

1. INTRODUCTION

In grid computing [1], a virtual organization (VO) consists of a group of individuals or
institutions who share some computing resources which can be used to achieve a common
goal. All members in a VO follow predefined policies for resource sharing and coordination.
Since its emergence, grid has achieved a remarkable union of distributed resources such as CPU
cycles, storages, sensors, data and software via the creation and use of virtual organizations.

As grid technologies have become mature and pervasive, more and more VOs are formed and
various types of resource and information sharing are possible. It is envisioned that the future
development of grid applications will be more dynamic and complex, as these applications
need to access miscellaneous services and resources that are scattered among different VOs.

However, existing grids impose certain restrictions on resource sharing and accesses. First,
as a VO is established based on predefined policies and identities, the identity space of the
VO is completely closed and the policy for resource access cannot be adjusted during runtime.
Thus, it is not possible for a complex grid application to dynamically generate requests to access
resources in multiple VOs. A possible solution is to break up the application into several parts,
each carrying a specific task and being assigned to a different VO to execute. At runtime, a
special mobile agent bearing the identity of the application will traverse the grid nodes of the
potential VOs for on-line resource discovery and access rights negotiation.

Given the mobility and VO-crossing property of these special mobile agents, strong
protection is required to guarantee the security of these special mobile agents. Current
security infrastructures for grid, such as GSI (Grid Security Infrastructure) [2], PMI[12], and
PRIMA[11], define trust models that can meet the requirements of today’s grid applications.
They are, however, not capable or flexible enough to adapt to dynamic grid environments and
the increasingly more complicated grid applications. In particular, the delegation mechanism
lacks support in two aspects:

Role-based authorization Each VO has its own local identity and privilege space. The
special mobile agent may travel to multiple hosts in name of different VOs. To support
VO-crossing, there should be a mechanism for dynamic privilege mapping, which is
usually called role-based authorization [3]. That is, an identity should be dynamically
assigned for a new role that replaces its current role. As we decompose the application
into several mobile code segments, several roles may be necessary for a single grid
application to function. Each of them may be granted (approved) only partial privileges
to access resources at a grid node. This complicates the algorithm design. The approval
“carrier” must be well designed, in order to avoid any confusion in role-based mapping
and compliance checking. From the security point of view, all the approvals should be
well protected to prevent malicious amplification or reduction of the approved privileges
during execution.

Security knowledge collection During the special mobile agent’s trip, one cannot be sure
about the reliability of the visited hosts, nor that the mobile agent has not caused any
harm to any of the hosts. Nevertheless, once any misbehavior is detected, corresponding
measures should be quickly activated to locate the source of the damage and adjust
the trust relationship automatically so that the occurrence of similar accidents can be

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 3

prevented. More knowledge and information on the distributed trust states and the
mobile agent’s past experience are required for establishing such measures and for making
security decisions.

In this paper, we propose a new type of mobile agent, called grid traveler, which has the
special ability to move across VO boundaries to coordinate the use of resources and access
control in different protection domains. An accompanying security infrastructure named G-
PASS is proposed for the credential management of grid travelers. G-PASS provides two useful
functions: (1) It implements a new trust model for supporting simple credential verification and
transfer, as well as the creation and atomicity of security transactions. At the core of this trust
model is the concept of “security instance”. A security instance includes a security transaction
and its constraint specification. One can accomplish the delegation by binding his/her identity
onto the security instance instead of onto some special host. (2) G-PASS supports VO crossing
via an RBAC2 [3] qualified role-based privilege mapping with the granularity of a security
instance. Different from traditional role-based access control (RBAC), a gateway service called
G-custom is imported to map the original credentials (recorded in a credential carrier called
G-passport) to a locally recognized approval table. The local resource publisher can then work
with the normal access control directly without having to install the role-mapping mechanism.

The rest of the paper is organized as follows. Section 2 gives the background of this research.
In Section 3, an overview of G-PASS and its features are given. The instance-oriented trust
model and role-based privilege mapping are discussed in Section 4. Section 5 presents the
performance test of G-PASS. Sections 6 and 7 discuss related work and conclude the paper.

2. Background

GSI (Grid Security Infrastructure) is the security system generally used in current grids. It
maintains basic trust relationships for resource sharing and job submission. GSI, however,
cannot satisfy the complex security requirements of grid travelers during VO crossings.

Firstly, GSI is too simple to deal with grid travelers. In general, each VO has its own
security policy space. There is a set of identity bindings on access rights. A delegation issued
from outside of the policy space will be regarded as an invalid request because the identity
binding on it cannot be recognized by the local access control policy. Although GSI has
implemented a simple role-based mapping mechanism, it is just a simple one-to-one mapping
and can hardly deal with complex situations when crossing VOs. For example, a traveler that
assists in the execution of a complicated grid application, may need to have multiple identities.
Upon entering a VO, an identity is used to validate the application’s role in the corresponding
VO and to approve its resource usage. As an application may carry multiple identities and
there are different resource access rules to follow in each VO, the one-to-one mapping cannot
support such complex role mapping relationships.

Secondly, GSI uses the X.509 delegation model and the delegation is bound to the target
host. As the grid traveler travels over from hop to hop, the delegation will be transferred by
continuously issuing new delegation documents. The verifier at a grid entry point has to check

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

4 A. N. OTHER

G-

passport

G-

passport

Delegation

Reservation

Policy

Publish

Policy

Space I

Policy

Space II

Access

Control

Dispatcher

Grid Traveler

G-proxy

G-custom

Record

of

Bypass

Resource

Auditor
Auditing

Figure 1. G-PASS Architecture

all the signatures created in the delegation chain, thus introducing large overheads, and the
whole security system would become not so scalable.

Thirdly, the atomicity of security transactions cannot be ensured in GSI. For example, a
modification to a bank account will include a read and a write operation. There is no safe state
between the two operations. If the two operations are approved by two identities, it is difficult
to decide which operation should take the responsibility upon the occurrence of an exception
during the modification—the “separation of duty” problem. GSI allows only simple approvals
from single identity. It can not deal with the separation of duty problem well.

3. System Architecture

Figure 1 shows the basic working mechanism of G-PASS. G-PASS consists of various security-
related components to support grid travelers.

The G-passport resembles a passport in real life with continuous passport pages. The G-
passport keeps several types of page content: (1) G-dispatch declares the delegation from the
traveler’s dispatcher. It records a privilege set asserted to be legal by the original dispatcher. (2)
G-warrant specifies the intent of warranting a subset of the privileges declared in G-dispatch
by a certain warrantor. At the same time, the warrantor promises to be responsible for the
traveler’s corresponding behavior. (3) G-exception records the security exceptions thrown by
the hosts or resource access controllers. It is used for security monitoring. Systems can adjust
their policy according to such records. (4) G-event records the user-defined security events.

With the G-passport, we design an instance-oriented trust model [4], which ensures the
atomicity of security transactions. A chained signature technology [4] is adopted to ensure the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 5

integrity of the G-passport. Thus, the attacker cannot find a way to substitute, modify, or
delete a page in the G-passport, nor to insert a page. Each page is defined as a contract, in
which at least two identities are required to provide a digital signature, and to claim their
responsibilities. This complies with Clark-Wilson’s principle of separation of duty [6]. An
auditor, if it exists, may be required to reserve a copy of the contract and to accuse any
concerned identity who attempts to deny the approval or the event.

G-custom is a border checker at the entry of a policy space. The role-based mapping is
performed in G-custom. G-proxy grants new delegation in the name of the user. It enables
single sign-on by the user and keeps his/her policy active even the user is currently off-line.
This procedure is called delegation reservation.

4. Trust Management

4.1. Instance-oriented Trust Model

The traditional trust model sits on top of the Public Key Infrastructure (PKI). Suppose that
user U holds the keypair KP = (Pk, Sk), where Pk is the public key and Sk the private key.
A digital signature SKP (v) proves the correctness of statement v in U ’s name. We define the
delegation

Del(U
′

, p, U) = ((U
′

‖ p), SKP (U
′

‖ p), Pk), p = {ri, ci)|i = 1, . . . , n}, n ≥ 1

to claim that U
′

can have privileges in the set p in the name of U , where ri represents the
detailed privilege and ci is the constraint of ri.

From the above, we can see that the traditional delegation is identity-oriented. During the
migration of a grid traveler, the target identity is the identity of the target host. So the
delegation is also a host-oriented one. It has the following disadvantages for supporting grid
travelers. Firstly, it fails to achieve separation of duty. The Clark-Wilson’s principle stipulates
that the states before and after the transaction must be safe and verifiable, so that the
responsibility is clear once any exception is raised. It is the issuer of the delegation who
can define transactions; the privileges, however, are defined by the resource provider. So a new
delegation mechanism should be developed to enforce the recording of privileges in the form
of transactions. Secondly, it incurs a large overhead. Suppose that a grid traveler obtains a
delegation of p1 from identity U1; and after k − 1 times of migration, it arrives at the host
with identity Uk. A delegation chain is generated during the trip. The host will need to check
at least k − 1 signatures to assert the validity of this delegation document.

To overcome the above drawbacks, we adopt an instance-oriented approach [4]. A security
instance includes a security transaction and its validity specifications. Identities will be simply
delegated to the transaction instead of the privilege operations. This provides the atomicity
of security transactions by which the separation of duty can be achieved.

Let T (r1, . . . , rk) be a transaction including a sequence of k operations (o1, . . . ,
ok), where the operation oi is performed according to the defined privilege ri, for 1 ≤ i ≤ k.
During delegation granting, the issuer can specify the constraint set C for the transaction.
Let Ins(T,C) = ({r1 . . . rk}, C) be a security instance of T (r1, . . . , rk) under C. Let req(r, S)

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

6 A. N. OTHER

represent a request for operating p under the system state S. When it satisfies r ∈ {r1 . . . rk}
and S ∈ C, the request is said to be covered by the instance Ins(T,C).

When U wants to grant delegation to Ins(T,C) with keypair KP = (Pk, Sk), it can
simply issue a capability, which is a signed document with permitted privileges to serve as
the delegation of the instance; that is,

Del(Ins(T,C), U) = (Ins(T,C), SKP (Ins(T,C)), Pk)

Note the target identity in the traditional host-oriented delegation has been removed from
the new delegation document. Thus there need not be a delegation chain to implement the
one-by-one security guarantee, and the overhead in verifying the delegation can be greatly
reduced from k − 1 to 1.

The goal of the instance-oriented delegation is mainly for giving some convenience to the
security designers, and providing a more flexible and stable protocol to carry the security
polices. The most remarkable characteristic of the instance-oriented model is its mobility
support. In conventional host-oriented delegation, as mentioned in Section 2, everything will be
re-established upon the traveler’s move, hence leading to inflexibility and abuse of delegation.
With the support of host-absence binding, the traveler is allowed to move everywhere subject
to the predefined conditions.

Besides, the existence of instances can also achieve an atomic assurance on authorizations
and delegations of complex operations. Suppose there is a database updating operation in which
two operations, namely read and write-back, are involved. This operation will be regarded
normally as a transaction and thus cannot be divided. Assume one identity has delegated its
name to the read operation, while another identity has delegated to the write-back. There will
be responsibility confusion once some misbehavior is detected during this operation. Therefore
we encapsulate the whole operation in a security instance. The instance will be delegated
entirely or not at all. Thus the atomicity is guaranteed implicitly in the definition of security
instances and policy establishment. The detail of designing and implementing the instance-
oriented model is discussed in [4] [5]. With the atomic assurance, the complexity of role-
based delegation mapping and compliance checking can be greatly reduced since it provides
larger granularity in privilege definition as well as avoids the detection of potential delegation
conflicts.

4.2. Contractual Model and Stamps

Stamps serve as the proof of past events and authorizations. A contractual model is used to
realize the stamps. In the real world, people use contracts to record and prove some agreements
that had been established, and to verify whether they are executed correctly. In the G-passport,
contractual stamps are adopted for recording and proving some approvals or events, as well as
protecting them from being denied. Usually, a real-life contract should include signatures of the
people concerned. Similarly, all the identities that have direct relation with the to-be-proved
approval or event are required to digitally sign on the stamp, in order to make a trustable
assurance. The requirement of significant knowledge collection and protection mentioned in
Section 1 can be achieved by importing and enforcing stamps on the G-passport. Figure 2
shows a sample G-passport.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 7

Migration
VOa->VOb

Signature
of custom
of VOa

Contents of
Authorization

Signature
of

Dispatcher

G-passport

Stamp2Stamp1
G-dispatchG-evidence

New
Authorization

Signature
of custom
of VOb

Stamp3
G-warrant

Signature
of custom
of VOb

Initiating Migrating from VOa to VOb

...

Figure 2. A sample G-passport with two recorded events: Initiation and Migration from VOa to VOb

The contractual model imports several functions and has the following benefits:

Validate-ability A third party can check and testify the past businesses by verifying the
stamps. No one can deny the content of the contract, because all the concerned hosts
have signed on it.

Accountability It is enforced that all the concern identities who have signed on the contract
should reserve a copy of the signed contract. This is for assuring when one or some
signatories (not all) try to deny the past, another contract holder can stand out to
impeach the denial.

Integrity Stamps are chain-linked in the G-passport with proved double-direction pointers.
The system can quickly detect that if one or more stamps have been disguised between
the two given ones.

We introduce a protocol based on a bidirectional-linked contract list to be used to protect
the integrity of the chain-linked stamps. The structure of this protocol is partially derived from
that for traceable X.509 proxy certificates [9]. The criteria of this protocol are listed below:

1. The agent must travel with a document called bidirectional-linked contract list.
2. A contract is an event-recording document on which one Initiator and one Acceptor are

required to digitally sign. Each of them will reserve a copy of the contract. The contract
can be shown to any one as an evidence proving the historical existence of the recorded
event. The Initiator and the Acceptor should be responsible for the correctness of the
recorded event.

3. On agent migration, a new stamp should be generated and appended to the tail of the
contract list. Each stamp will have an incremental ID number. A stamp is a contract
while its Initiator is the source host of the migration and its Acceptor should be the
target host.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

8 A. N. OTHER

4. A bidirectional-linked contract list with length n is valid if and only if for all 1 < i < n,
the source host of stamp i is equal to the target host of stamp i − 1.

5. Once a new approval is generated or consumed (by resource access), a new trace record

must be generated and pasted onto the stamp recording the next migration of the agent.
Each trace record is also a contract.

(a) On getting approval, the Initiator will be the warrantor, and the Acceptor will be
the current host of the agent.

(b) On consuming an approval, the Initiator will be the resource provider, and the
Acceptor will be the current host of the agent.

6. Suppose an agent moves from host i − 1 to host i. Once the agent wants to apply for
a warrant approval from host i, it should contact host i − 1 for a signed ticket, proving
that host i − 1 knows about this event. The agent then sends its warrant request to the
warrantor, attaching the ticket and the stamp recording the agent’s migration from host
i − 1 to host i. After checking all these contracts, the warrantor can issue and sign on
the approval contract. Similarly for resource consumption. The agent also needs to show
such a ticket from its previous host.

7. Once the agent is about to move from host i to host i + 1, it will require host i − 1 to
issue a stamp certificate recording all the events during the time that the agent is at host
i. Also the certificate needs to record the name of host i + 1. Then a new stamp will be
generated on host i + 1 by pasting all the certified trace records onto it.

8. If the agent is about to move from host i − 1 to host i, and then to host i + 1, where
host i− 1, i and i + 1 are the same hosts as m− 1, m and m + 1 in the agent’s historical
path, the agent must require host i− 1 to claim that this is the second occurrence of the
m−1 −→ m −→ m+1 pattern, and record it in the stamp certificate. This is to prevent
the system from replay attack (the host plays the agent again and again to disturb the
normal state of the system).

This protocol can protect the document’s content from being illegally modified, removed,
inserted and forged. Also, as mentioned above, it can even prevent the replay attack.

4.3. Role-based Privilege Mapping

To support VO crossing, the security credentials should be effectively made in the target VO’s
local policy space. G-PASS imports a role-based privilege mapping, which can proceed in
two phrases: (1) role-based privilege mapping, and (2) normal access control. Figure 3 shows
the main operations performed in phase (1). The credentials recorded in the G-passport are
transformed into a privilege table that can be fully recognized in the target VO’s local policy
space. The privilege table is formed with an array of instances. Each instance is approved
by several locally recognizable roles. As an assistance of the transformation, a role table is
imported in which roles and their corresponding global identities are recorded. The role table
can be published via a G-custom service. In phase (2), because the role-based mapping has
been done when the grid traveler entered the VO, the local resource provider need not perform
RBAC again on the G-passport. It will firstly select an instance according to the given requests.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 9

IdentityRole

Role

Role
Instance Role Role

Instance Role Role

Instance Role

Instance Role Role

Role

InstanceDispatcher Instance

ApprovalWarrantor Approval Approval

G-passport

Role Table

Privilege Table

+

Identity

Identity

Identity Identity Identity

Figure 3. Role-based privilege mapping

Then it will check if there exists a role that is granted to use all the privileges recorded in the
instance by the local access control policy.

The advantage of this two-phase procedure is that the local resource provider need
not provide a role table themselves. This makes policy adjustment easier because no
synchronization and consistency problem need to be considered.

5. Performance Evaluation

In this section, we evaluate the performance of G-PASS in two cases: (1) a large-scale mobile
agent system on grid by simulation; (2) a parallel ray tracing program in a WAN-connected
grid testbed.

5.1. Mobile Agents with G-PASS

We simulate 500 mobile agents traveling in a grid platform connected by the Internet. Suppose
that the 500 mobile agents, A[0..499], enter the randomly-connected network sequentially with
the time interval of 50ms. There are two scenarios:

Single-task agent Each agent A[i] has a randomly predefined path with (i%10)+1 hops. The
code of each agent is originally approved by its dispatcher (the first privilege granter).
Having crossed a hop, the agent will try to access a local resource. Before each resource
access, the agent is required to obtain an additional approval from a remote privilege
granter. Assume there are totally five instances in the G-passport (for delegation, and
different types of operations). In this scenario, the number of hops for the agents ranges
from 2 to 11.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

10 A. N. OTHER

Multi-task agent Each agent A[i] has a randomly predefined path with (i%30)/4 + 1 tasks.
After each hop, the agent will also try to access a local resource. Different from the
single-task scenario, all the resource access operations within the same task should be
approved by the same remote privilege granter. In this scenario, the number of hops for
the agents varies from 2 to 30, and the number of instances in the G-passport is set to
hops/3.

Suppose that the requirement of our application is that the agent’s path and historical
resource access events should be traceable, and the tracing information should be referred
in the authorization decisions. Below are the protocols of the two trust models under this
requirement.

Protocol of G-PASS When an agent is dispatched, it brings along the necessary instances
for all possible operation types. For each resource access (in the single-task scenario) or at
task start (multi-task scenario), the agent will send its corresponding instance and trace-
list in a warrant request to the specific remote warrantor. The warrantor will approve
on the request and return it to the agent after it has checked the instance. The agent
can then submit the approved instance to the resource provider to get authorized for the
required operation. A handover event will be added to the trace-list for each migration.

Protocol of delegation When the agent is dispatched, it will ask all the delegators to sign
a delegation certificate for all the possible operations. The agent will then travel with
all these certificates. Upon each resource access (in the single-task scenario) or at task
start (multi-task scenario), the agent will simply show the delegation certificate list to
the resource provider to get authorized for the required operation. At migration time, an
additional certificate will be attached signifying that the current host further delegates
all the privileges to the next host.

We used a Pentium III 500MHz dual-CPU server with 1GB memory to emulate the tasks’
execution. The emulator is a single-thread process without networking ability. It simply records
down the actual execution time of all non-network operations (called CPU overhead) and also
the network traffic required in bytes. All these information will be dumped into a report file.
Figure 4 shows the overheads under the single-task mode, and figure 5 shows the multi-task
mode. From the figures we can see the different slopes of using G-PASS and delegation, which
show G-PASS’s superiority in scalability. Also we have noticed that the slopes of both curves in
Figure 5 (multi-task agents) are increasing. This is because the instance number in the multi-
task mode is set to be variable, which causes the complexity of generating the G-passport to
increase non-linearly.

5.2. Parallel Ray Tracing on Grid

In this experiment, we execute a distributed ray tracing application in the Hong Kong Grid
(HKGrid) testbed [17]. The testbed currently composes of five sites in four universities in
Hong Kong. In each grid point, there are a group of Linux machines connected to a gatekeeper
machine running G-PASS and the Globus middleware. These grid sites are interconnected by
the Hong Kong Academic and Research NETwork (HARNET).

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 11

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10 11

A
vg

. S
ec

ur
ity

 O
ve

rh
ea

d
in

 E
xe

cu
tio

n
(s

)

Hops

G-PASS
Delegation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 3 4 5 6 7 8 9 10 11

A
vg

. S
ec

ur
ity

 O
ve

rh
ea

d
in

 N
et

w
or

k
T

ra
ffi

c
(B

yt
es

)

Hops

G-PASS
Delegation

Figure 4. Comparison of average security overheads for single-task agents

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30

A
vg

. S
ec

ur
ity

 O
ve

rh
ea

d
in

 E
xe

cu
tio

n(
s)

Hops

G-PASS
Delegation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30

A
vg

. S
ec

ur
ity

 O
ve

rh
ea

d
in

 N
et

w
or

k
T

ra
ffi

c
(B

yt
es

)

Hops

G-PASS
Delegation

Figure 5. Comparison of average security overheads for multi-task agents

The ray tracing program was implemented using G-JavaMPI [10], which is an MPI
middleware that supports parallel and distributed Java computing in a grid environment.
A special feature of G-JavaMPI is its support of transparent Java process migration which can
facilitate dynamic load sharing and resource-driven task migrations. The migratable JavaMPI
process in G-JavaMPI is regarded as a grid traveler for which the G-PASS mechanisms can
provide security protection when migration across VOs happens.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

12 A. N. OTHER

 400

 500

 600

 700

 800

 5 10 15

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Processes

No Migration
Migration without G-PASS

Migration with G-PASS

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 5 10 15

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Processes

No Migration
Migration without G-PASS

Migration with G-PASS

Figure 6. Comparison of execution times of ray tracing for Image A (left) and B (right)

We execute the ray tracing application with two different image sizes and we scale the
number of processes. The performance difference has been observed under the conditions of
no migration, migration without G-PASS and migration with GPASS. We partition the image
into equal-sized image blocks, each being assigned to a different process. The processes are
shuffled and distributed to the HKGrid sites for computation. During execution, the process
migrations are decided by a simple but efficient load sharing strategy called WorkStealing.
When a site finishes all its processes and becomes idle, the decision procedure for migration
is invoked immediately. If there are several sites that are idle, the site with the largest CPU
capacity is chosen as a destination host for the migration act. However, if the CPU capacity
of the destination host is less than or equal to that of the source host and there is only one
unfinished process in the source host, no process migration will take place.

Figure 6 presents the execution times of ray tracing for two images, A and B. Image B has a
larger problem size than image A. There are two reasons that will trigger the process migration
(and thus activate G-PASS): (1) the five grid nodes have different CPU capacities, so that the
processes in the faster nodes will finish earlier; (2) the image blocks (of equal size) may create
uneven workload because of their different contents.

As the figures show, with the support of process migration, the execution times are shortened
very much because of better utilization of idle resources. In image A, comparing the execution
time with migration and G-PASS enabled to that with migration disabled, process migration
and G-PASS improve the executions by 15.5% ∼ 30%. The average improvement over all six
testing cases for both image A and B is 22.4%.

The G-PASS operations introduce some additional overhead to the migration procedures,
and therefore the execution times with G-PASS enabled are larger than those without G-
PASS. The execution times are extended by 3.5% ∼ 11.8% in the six testing cases. The
average increase of the execution times is 6.4%. Based on the WorkStealing strategy, the
number of migrations observed ranges from 2 to 5. The increase ratio depends on the number
of migrations.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 13

When we increase the number of processes from 5 to 15, the average improvement of all
6 cases is 40.2%. By using more processes, the initial workload distribution is more even.
The migration overhead becomes less as the problem size associated with each process is
reduced. Moreover, the workload can be balanced in finer granularity. Therefore, performance
improvement is observable.

The ray tracing application demonstrates the feasibility of using G-PASS on grid middleware,
G-JavaMPI in this case. The experiments show that the execution performance can be
improved by the efficient process migration mechanism and load sharing strategy. The security
of process migration across the grid can be guaranteed by G-PASS without introducing
significant overhead.

6. Related Work

In [8], a Community Authorization Server (CAS) is proposed to issue delegation capabilities.
However, CAS is a centralized server that is pre-authorized by the resource provider. In G-
PASS, the capabilities can be issued by the user, which do not have to be recognized by
the resource provider. Indeed, it is the role-based mapping mechanism that makes this more
efficient access control possible. Warrantors are allowed to issue their approvals to part of the
capabilities in a distributed manner. Therefore G-PASS is more flexible than CAS and is more
suitable for grid travelers.

Akenti [16] has provided a multi-stakeholder, pull-sequenced mechanism for grid-based
resource authorizations. It merges policy tokens from all the stakeholders together, and
provides central authorization. The policy tokens are self-proved, and hence can be securely
transferred to everywhere. Also, indentures specifying the condition of the authorization are
attached to the token. Akenti shows a good example of decoupling the policy enforcement
point and policy determination point. The virtual custom feature of G-PASS may also require
multiple stakeholders inside the administrative domain to update the role table cooperatively.
Anchor [14] is a mobile agent platform supported by Akenti for the purpose of agent
authorization. It requires all the hosts in an agent’s history itinerary to record the agent’s
code and behavior. Once an agent wants to authenticate to a host, all these trace information
are required to be inspected. The Anchor, however, has not provided the technique to protect
these trace information from malicious insertion or removal.

In [9], an extensible delegation profile is proposed with support for host tracing and privilege
shrinking. Host tracing can also be implemented in our G-passport by defining a handover event
and enforcing the hosts to record it. Privilege shrinking can be implemented as another event
in which the host declares that the delegation on some events is invalid from that moment on.
However, extensible delegation cannot provide atomicity support on authorization, while such
a support is provided by the G-passport.

PRIMA [11] achieves direct user-user delegation and fine-grained privilege granting by
importing a privilege container. It allows a user to hold container-based privileges from multiple
users, and the user can select some of them and bind to the resource request. The access
control policy is also dynamically generated by merging all the privileges together. Actually,
the privilege container is similar to the attribute certificate in X.509 v4. When it is transferred,

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

14 A. N. OTHER

there is also a delegation chain that needs to be generated. The authorization of a job is
simply a many-to-one mapping to an existing account or a dynamically generated account with
permission control, but without any accountability issues being considered. PRIMA therefore
is still not sufficiently equipped to support grid traveler.

A pull sequence, role-based access control is proposed in PERMIS [13], which adopts the
Privilege Management Infrastructure (PMI) [12] defined in X.509 v4. It defines the role
assignment in attribute certificates, by its own DTD language. Therefore, it will not need
a role-table and the role-based policy can be dynamically generated by retrieving all the
corresponding role assignments from a public LDAP service. This is good enough if the role-
based policy is not updated frequently. In a scenario like ours where the security infrastructure
is built on a trust model, an identity needs to be dynamically assigned with a proper role,
according to its current credit. The attribute certificates can hardly adapt to this kind of
frequent adjustment. Therefore, we still use a local role table.

Cardea [15] has provided an access control by dynamically evaluating authorization requests
according to a set of relevant characteristics of the resource and requester rather than
considering specific local identities. It facilitates resource usage reporting and dynamic session
management together with authorization. However, it intends to collect the related information
itself. This requires the stakeholder to be privileged and powerful in history information
searching. A better mechanism, which we introduce in this paper, is to enforce the information
collection in the protocol of the regular behavior of the mobile processes, and transfer that
along with the processes.

7. Conclusion

In this paper, a security infrastructure called G-PASS is proposed. The goal is to support VO
crossing and information gathering for grid travelers. G-PASS works as an infrastructure that
provides protocols and documents (G-passport) as well as primary establishments (G-custom).
It is compatible with the GSI in terms of key preparation and GRAM plug-in. Therefore, G-
PASS can be used together with existing grid middleware, especially the Globus Toolkit.
We envision that with more large-scale applications taking advantage of the grid environment,
mobile travelers will be more common and demand more capabilities; and thus mobility support
and role-based privilege mapping will be under the limelight in the grid security field.

REFERENCES

1. I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing Applications 2001; 15 (3):200–222.

2. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for Computational Grids.
Proc. 5th ACM Conference on Computer and Communications Security Conference 1998; 83–92.

3. R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman. Role-Based Access Control Models. IEEE
Computer 1996; 29(2): 38–47.

4. T. Ma, S. Li. An Instance-Oriented Security Mechanism in Grid-based Mobile Agent System. IEEE
International Conference on Cluster Computing 2003; 492-495.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

A DEMONSTRATION OF THE CPE CLASS FILE 15

5. Tianchi Ma, Shanping Li. Instance-Oriented Delegation: A Solution for Providing Security to Grid-
based Mobile Agent Middleware. Journal of Zhejiang Univerisity Science; Accepted in Apr. 2004, to
be published.

6. D.D. Clark. and D.R. Wilson. Non Discretionary Controls Commercial Applications. IEEE Symposium
on Security and Privacy 1997; 184-194.

7. S. F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. J.
Mol. Biol 1990; 215:403-410.

8. L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A Community Authorization Service for Group
Collaboration. IEEE 3rd International Workshop on Policies for Distributed Systems and Networks 2002.

9. S. Tuecke, et.al. Internet X.509 Public Key Infrastructure Proxy Certificate Profile. IETF 2003.
10. L. Chen, C.L. Wang, and F.C.M. Lau. A Grid Middleware for Distributed Java Computing with MPI

Binding and Process Migration Supports. Journal of Computer Science and Technology 2003; 18(4):
505–514.

11. M. Lorch, D. Kafura. Supporting Secure Ad-hoc User Collaboration in Grid Environments. 3rd
International Workshop on Grid Computing, Baltimore 2002.

12. D.W.Chadwick, A. Otenko. RBAC Policies in XML for X.509 Based Privilege Management. Security in
the Information Society: Visions and Perspectives: IFIP TC11 17th Int. Conf. On Information Security
(SEC2002) 2002; 39–53.

13. D. W. Chadwick, O. Otenko. The PERMIS X.509 Role Based Privilege Management Infrastructure.
Proceeding of the 7th ACM SYMPOSIUM ON ACCESS CONTROL MODELS AND TECHNOLOGIES
(SACMAT 2002) 2002.

14. S. Mudumbai, A. Essiari and W. Johnston. Anchor Toolkit (A Secure Mobile Agent System). Technical
paper 1999.

15. R. Lepro. Cardea: Dynamic Access Control in Distributed Systems. NASA Technical Report NAS-03-020
2003.

16. M. Thompson, A. Essiari, S. Mudumbai. Certificate-based Authorization Policy in a PKI Environment.
ACM Transactions on Information and System Security (TISSEC), Volume 6, Issue 4 2003. pp: 566-588

17. Hong Kong Grid. http://www.hkgrid.org

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–7
Prepared using cpeauth.cls

