
Path-Analytic Distributed Object Prefetching 

 

Yang Luo, King Tin Lam, Cho-Li Wang 

Department of Computer Science 

The University of Hong Kong 

Hong Kong 

{yluo, ktlam, clwang}@cs.hku.hk

 

 
Abstract—This paper presents our studies on the connectivity 

between objects and traversal behavior over the access paths 

among objects in order to devise profitable prefetching policies 

for object-based distributed systems. We propose a profiling 

strategy that can classify classes and fields into a handful of 

generic types exhibiting distinctive and exploitable access pat-

terns during the runtime. Based on the classifications, we pro-

pose an improved algorithm of object prefetching to select best 

candidates to prefetch under practical message size limits. We 

implement the methodology into our JESSICA2 distributed 

Java virtual machine and evaluate its effectiveness. Our ex-

perimental results show that our prefetching policies are able 

to eliminate over 93% cache coherence protocol messages and 

halve the execution time for fine-grained applications.  

Keywords-object sharing; prefetching; object access patterns; 

distributed Java virtual machine; distributed shared memory 

I. INTRODUCTION 

In most distributed systems, prefetching is a canonically 
useful technique to reduce data access latency by aggregating 
more data units into a single round-trip. If the amount of 
prefetched data sustains good spatial or temporal locality, the 
speculation will be positive and give lower amortized access 
cost. The usual data unit is a memory page or an object. 
Page-based prefetching has been well-studied in previous 
work including [1, 2, 3, 4]. In this paper, we focus on object 
prefetching techniques. Generally, there are two approaches 
to determining which objects to prefetch: static (by compiler-
based analysis [5]) or dynamic (by exploiting connectivity 
between objects online [6]). With runtime information acces-
sible, the latter is usually more flexible and accurate.  

For object-based distributed shared memory (DSM) sys-
tems, prefetching shared objects for reducing data misses is 
critical to performance since the network latency involved in 
fetching an object from remote memory is much more costly 
than local heap access. As future accesses on prefetched ob-
jects are not all guaranteed to happen, we need to strike a 
balance on the prefetching amount to reduce the negative 
impact of sending unneeded objects. Prefetching accuracy 
can be calculated by accessed bytes over the total bytes of 
data prefetched (we consider all bytes of an object accessed 
if a single read/write on any of its fields is performed). 

Significant speed improvement in recent years [12, 13] 
has enabled the unlocking of Java for high-performance 
computing over heterogeneous platforms. The distributed 
Java virtual machine (JVM) is a design of middleware plat-

form that aims to provide multithreaded Java applications 
with transparent clustering support. Our previous work [6, 7] 
has built a virtual shared heap, the global object space 
(GOS), to hide JVM boundaries from object access. Connec-
tivity-based prefetching is known to be good in accuracy for 
the distributed JVM since objects in Java cannot be accessed 
without following reference fields. On top of a home-based 
cache coherence protocol, we proposed object pushing to 
prefetch objects in close proximity to the current or root ob-
ject being accessed. In one implementation [6], upon receiv-
ing an object access request, the home node uses a breadth-
first search to collect the reachable objects to push into the 
message buffer until its size reaches an optimal length. An-
other implementation [8] is to fetch only objects at the next 
immediate level under the current object graph without mes-
sage length limit but carry out compression on the outgoing 
message to save network bandwidth. 

However, we find that these rather conservative policies 
are still far from ideal for fine-grained applications that need 
more careful design on prefetching to achieve good aggrega-
tion effect while not worsening accuracy. In a heap compris-
ing home and cache objects, problems could arise from stale 
cache or unstable connectivity among shared objects. Cap-
turing correct interrelations between objects in such an envi-
ronment to aid prefetching has to consider various issues 
including access locality, message size limit, search orienta-
tions (depth or breadth of traversal) and other system dynam-
ics like home migrations [6]. 

This paper studies more advanced techniques to do object 
pushing based on path analysis. To be specific, an object is 
prefetched via following a reference field of another object, 
and we recognize the field a specific path of access. By re-
cording access counts along different paths, we classify the 
relevant fields and classes into a few generic types with tai-
lor-made policies. Our new prefetching can adapt in traversal 
order, breadth and depth of reachability for the best candi-
dates to prefetch under practical message size limits. We 
implement the proposed methodology in an upgraded version 
of our JESSICA2 distributed JVM with a vastly revamped 
GOS that runs a more efficient protocol enforcing home-
based lazy release consistency (HLRC) [11]. In our protocol, 
only home objects holding the latest copy can be prefetched 
along to the requester. Our system adopts a per-thread cache 
storage model that avoids the arrival of prefetched objects 
from overwriting dirty cache objects. By proper invalidation 
and flushing updates to homes across lock/unlock bounda-



ries, cache coherence is maintained regardless of our pre-
fetching mechanism introduced. The system is tested with 
medium- to fine-grained applications, seeing promising per-
formance gain after applying the path-analytic policies.  

For the rest of this paper, Section 2 explains the difficult 
issues involved in object prefetching. Section 3 and 4 present 
our observed access patterns and the path-analytic prefetch-
ing algorithm respectively. Section 5 evaluates our imple-
mentation experimentally. We review the related work in 
Section 6 and conclude this paper in Section 7. 

II. CHALLENGES AND PROBLEMS 

In this section, we will explain several interrelated issues 
posing stern difficulty to distributed object prefetching. 

1) Excessively fine granularity: fine-grained and object-

intensive applications generally make prefetching harsher to 

work effectively. Taking Barnes-Hut, one of our tested 

benchmark programs, as an example: its basic data unit, the 

Body object, is composed of a few small-sized objects with a 

total size less than 100 bytes only. This implies at least 10-

100 objects need to be packed in a single message if we are 

to achieve good aggregation effect on communication. For 

this application, our earlier scheme in [8] which prefetches 

only a single level deeper into the current object graph 

seems too conservative although it can maintain quite good 

accuracy. However, the dilemma is aggressive prefetching 

can benefit this case but hurt performance in another due to 

the negative impact of prefetching unneeded objects, which 

is equivalent to paying multiple times of access cost for a 

single memory location as well as network bandwidth. If the 

thread in execution will not access the prefetched objects 

eventaully, this will on the contrary slow down the system. 

So we need more intelligent prefetching that can guarantee 

accuracy while going beyond conservative policies. 

2) Biased paths: Different paths of access often indicate 

different usage in application-specific logics. It is a natural 

phenomenon that some paths are followed less frequently 

than others. A good example is that in many recursive data 

structures like trees and linked lists, some paths acting as 

“backlinks” (such as fields regularly named node.parent, 

item.prev, etc) are seldom accessed. Without analysis on 

path usage, we would hurt performance by following and 

prefetching along these rarely used paths. Apparently, we 

cannot make a guess at path usage based on field names and 

require a profiling method to discover such biasness to give 

more weight to those more frequently used objects. 

3) Fragmentation effect: As mentioned, using a breadth-

first search (BFS) to pack objects until hitting the message 

length limit is a rational policy to do prefetching. However, 

if the BFS stops immediately at a certain buffer threshold, 

this can leave many objects isolated, which have not been 

prefetched but their parents have been. These orphans have 

to be fetched individually later, in short messages, making 

the communication largely fragmented. Fig. 1 illustrates this 

problem. At the beginning (see (a)), thread T1 only has a 

 

Figure 1.  Orphaned objects causing fragmented communication 

reference to object A. When it accesses A, it asks the home 

of A for its latest copy. With simple buffer-limit prefetching, 

the home packs objects A, B and C altogether for T1, with 

references of D, E, F and G left behind. Later (see (b)), T1 

accesses D, E, F and G in turns and sees they have to be 

fetched separately from the home because there is no more 

connectivity between them. Missing to include D to G in the 

first prefetch message creates four short-length but long-

latency fetching round-trips over the cluster network. 

III. OBJECT PATH TRAVERSAL PATTERNS 

This section describes our classification scheme over 
classes and reference fields to characterize access behavior. 

A. Class-Level Types (Object Types) 

An object type or class can be broadly classified into the 
below generic types to characterize their access behavior.  

1) Recursive class: a class is recursive if and only if it 

contains at least one reference field forming a recursive 

path. In other words, a recursive class would have self-

referential pointers and most likely corresponds to common 

recursive data structures like trees and linked lists. 

2) Terminal class: a class is terminal if and only if it has 

no outgoing paths of reference fields or all outgoing paths 

are either terminal or backward (to be explained). 

3) Normal class: refer to simply all other object types. 

B. Field-Level Types (Path Types) 

A prefetching path, i.e. reference field, can be character-
ized into a few different types as follows. 

1) Recursive field: a field is recursive if and only if its 

enclosing class and the target class it points to are the same 

or share a non-trivial common base (parent or super-) class, 

and it is not a backward field. Here a non-trivial common 

base class means classes other than java.lang.Object.  

2) Backward field: a field is identified (by the system) 

as backward if most prefetched objects through that path are 

found duplicate. As mentioned in Section 2, some fields like 



TABLE II. PATH-ANALYTIC PREFETCHING ALGORITHM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

23 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

START_PREFETCH(root) 

   ENQUEUE(root)  // put the root object into queue to start the search 

   while (not QUEUE_EMPTY()) do  // BFS loop 

      obj = DEQUEUE() 

      PREFETCH_OBJ(obj) 

   end while 

PREFETCH_OBJ(obj) 

   PACK_OBJ_WITH_DFS(obj)  // fetch it first with its terminal children 

   obj_fields = TERMINAL_FIELDS(obj)  +  

                RECURSIVE_FIELDS(obj) +  

                NORMAL_FIELDS(obj)  // priority of paths 

   if obj_fields is empty then 

      obj_fields = BACKWARD_FIELDS(obj) 

   end if 

   for each field in obj_fields do 

      path = GET_PATH(obj, field)  // path data structure  

      cand = GETFIELD(obj, field)  // candidate object 

      if PREFETCHED(path, cand) then 

         continue 

      end if 

      if IS_TERMINAL(path) or not TERM_COND() then 

         ENQUEUE(cand)  // put candidate object to search queue 

      end if 

   end for 

PACK_OBJ_WITH_DFS(obj) 

   PACK_OBJ(buf, obj)  // fetch itself first into message buffer 

   term_fields = TERMINAL_FIELDS(obj) 

   for each field in term_fields do 

      path = GET_PATH(obj, field) 

      cand = GETFIELD(obj, field) 

      if PREFETCHED(path, cand) then 

         continue 

      end if 

      PACK_OBJ_WITH_DFS(cand)  // recursive call for DFS 

   end for 

PREFETCHED(path, obj) 

   if DUP_LOOKUP(obj) then  // check for any duplicate 

      path.fail_count++ 

   endif 

   if BECOME_BACKWARD(path) then  // backward path discovery 

      CHANGE_TO_BACKWARD(path) 

      return false 

   else 

      path.success_count++ 

      return true 

   end if 

TERM_COND()  // don’t push any more if buffer exceeds predefined limit 

   return (buf.length > pre_limit) ? true : false 

 

node.parent and item.prev acting as “backlinks” are rarely 

followed by threads. A simple unbiased scheme prefetching 

these paths as well within the same HLRC interval will see 

many duplicate objects prefetched from these “backward” 

paths. Our definition of backward fields is not given by a 

path’s function which is difficult to guess. Instead, they are 

discovered by the system which observes paths’ prefetching 

behavior. Backward paths receive the lowest priority during 

prefetching unless there are no other choices. 

3) Terminal field: a field is terminal if and only if it 

points to a terminal class. Since terminal class cannot be 

fetched except via a single specific field, the default policy 

is to always follow it unless we encounter some very large 

objects (normally arrays in Java) as aggressively prefetching 

them usually impacts performance when there is no absolute 

guarantee on accuracy. Terminal paths are usually reached 

near the end of the prefetch traversal or search process. 

4) Normal field: simply refer to all other fields. 

TABLE I.  EXAMPLE OF OBJECT AND PATH TYPES 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

class Link{  // RECURSIVE class 

   Molecule mol; // TERMINAL path (was NORMAL path) 

   Link prev;    // BACKWARD path (was RECURSIVE path) 

   Link next;    // RECURSIVE path 

} 

class Molecule{  // TERMINAL class (was NORMAL class) 

   Link parent;       // BACKWARD path (was NORMAL path) 

   Vector3D position; // TERMINAL path 

   Vector3D velocity; // TERMINAL path 

   double mass; 

} 

class Vector3D{  // TERMINAL class 

   double x, y, z; 

} 

 

Table I shows a real example of object and path types 
from a typical molecule dynamics application. The use of 
terminal classes like Vector3D is very common in Java as 
composite value type is not supported by the language itself. 
Notice that at the very beginning there is no backward path. 
All backward paths are identified at runtime. Since the defi-
nition of terminal class depends on backward paths, once we 
detect a backward path, we need to search over the JVM’s 
internal class graph to mark all class and path type changes. 
In this example, detecting Molecule.parent to be backward 
will change Molecule to be a terminal class (since outgoing 
paths no longer exist) and Link.mol to be a terminal path. 

IV. PREFETCHING STRATEGIES 

In this section, we present our new object prefetching 
scheme that raises the overall prefetching effectiveness by 
giving more weight to those important paths. 

Table II shows the pseudo-code of our object prefetching 
algorithm. A queue is used to maintain candidate objects for 
path analysis. Prefetching begins with putting the root object 
into the queue (START_PREFETCH(root)). A BSF loop keeps 
consuming items from the queue (DEQUEUE()) and calls the 
PREFETCH_OBJ routine on the dequeued object. The routine 
will find for every reference field of the object the path data 

structure (GET_PATH) maintaining metadata like the field’s 
class, path type, and profiling counts for backward path dis-
covery. By checking like lines 18, 21, the algorithm can tell 
if the current field would contribute a good path to continue 
the prefetching (ENQUEUE(cand) if yes). The whole process is 
aided by the following designs of policy. 

1) Priorities of paths: Priority is given to terminal paths, 

recursive paths and then normal paths. Backward paths will 

only be used as a last resort. The traversal order on fields in 

PREFETCH_OBJ() is adjusted according to their path types. 

2) Forcing terminal: If we find a terminal path during 

prefetching, we will always prefetch the target object if it is 

not too big even if the termination condition (TERM_COND() 

at line 21) has been reached. This is because if we do not 

prefetch it at this moment, we would have no chances and 

they will become orphans to be separately fetched later. 

Since the cost of creating one extra message is much more 



than just including some more bytes in the current message, 

this speculation is usually profitable. 

3) Discovering backward paths: For an HLRC protocol, 

each object only needs to be fetched at most once within the 

same interval. So we can maintain a simple hashed lookup-

set on which objects have been prefetched for which thread 

during its current interval, so that objects will never be 

fetched twice. This doesn’t take much space overhead since 

hash entries for past intervals can simply be discarded, and a 

thread only has to append its current interval number to an 

object request. Based on this mechanism, we can discover 

backward paths dynamically by computing their duplicate 

rates online (obtained by comparing counts of successful 

prefetching and attempted but duplicate prefetching). We 

detect backward paths in PREFETCHED(), which checks if the 

object has been prefetched before (from the same thread’s 

same HLRC interval), and updates our per-path statistics of 

successful and failed (duplicate) prefetch attempts. When 

the duplicate rate is exceedingly high, the path is changed to 

backward (i.e. calling CHANGE_TO_BACKWARD(path)). 

4) Traversal order of terminal objects: Even with limit 

on message length, a straightout BFS traversal could still 

make the outgoing buffer greatly overflow because of our 

terminal-forcing policy. For example, Fig. 2 shows a tree-

like object graph composed of terminal and non-terminal 

objects. If we use a BFS-only policy, we first prefetch non-

terminal objects A, B and C, then terminal objects D, E, F 

and G which are found near the end of traversal. When we 

have prefetched D, the size limit is already hit, but we have 

to force E, F, and G into the buffer to avoid orphans; such 

overflow is too much to be acceptable. To make our limit 

meaningful, we alter the original BFS policy to be a global 

BFS with a local DFS (depth-first search). In this policy, if 

we discover a subgraph with terminal paths, we use a DFS 

to prefetch all these objects immediately (by the recursive 

call PACK_OBJ_WITH_DFS()). As prefetching goes on, if we 

hit the message size limit, the worst-case overflow would be 

the extra bytes for finishing our current terminal subgraph. 

In realistic fine-grain applications, such terminal subgraph is 

usually quite small (within several hundreds bytes). We will 

evaluate in the next section whether it is true that message 

size overflow is reasonably close to the predefined limit. 

Fig. 2 also shows how our revised policy works. We first 

prefetch object A, then B. When we are prefetching B, we 

find its terminal paths towards D and E, so we change to use 

a local DFS to prefetch them immediately. Now the size 

limit has been hit, so we stop and leave C, F, G to the next 

message. The rationale behind this “global BFS; local DFS” 

policy is that a subgraph with terminal paths often indicates 

a logical aggregation of objects that should be fetched 

together. This policy achieves a balanced situation depicted 

by Fig. 3 (b) between serious fragmentation (Fig. 3 (a)) and 

poor accuracy with excessive bytes prefetched (Fig. 3 (c)). 

 
Figure 2.  Overflow of prefetch message buffer 

 
Figure 3.  Effect of different message length limits 

V. PERFORMANCE EVALUATION 

A. Experimental Platform and Benchmarks 

Our experiments are conducted in the HKU Gideon 300 
Cluster [9] which consists of 300 PCs interconnected by a 
312-port 100BASE-T Fast Ethernet switch. Each PC is of the 
following hardware configuration: an Intel Pentium 4 2GHz 
processor, 512MB DDR RAM and a 40GB-IDE hard disk. A 
segment of 8 nodes is used for all the experiments. 

We evaluate our prefetching policies with two bench-
mark programs ported from the SPLASH-2 suite [10] to 
Java, namely Barnes-Hut and Water-Spatial, which belong to 
fine- and medium-grained applications respectively. Barnes-
Hut is an N-Body simulation using hierarchical methods in 
which basic elements (i.e. bodies) are organized into a hier-
archy, in our case an octree, to speed up computations. Such 
a hierarchy often involves a fine-grained recursive data struc-
ture that is difficult to support efficiently in early DSM sys-
tems without a careful prefetching scheme. Barnes-Hut also 
shows an irregular fine-grained object sharing pattern (each 
terminal body is of size less than 100 bytes) with some local-
ity and moderate compute-intensiveness. Water-Spatial is a 
molecule dynamics application, simulating interactions be-
tween groups of water molecules. Each molecule is of at 
most a few hundreds bytes. Molecules within the same 3D 
box are put into a linked list to allow fast adding or removal 
of molecules. To sum up, runtime properties of Water-
Spatial include near-neighbor 3D-box sharing patterns with 
medium granularity and intensive computations. For large 
problem sizes (sufficient room for JIT optimization), the raw 
speed of our ported Java version when running in server VM 
mode (tested with Sun JDK 1.6) is highly comparable to the 
C version (compiled with -O3 option). Barnes-Hut in Java 
runs even faster than the C code by 8-10% while Water-
Spatial in Java is about 10% slower than its C counterpart. 



TABLE III. EFFECT OF PREFETCHING POLCIES ON BARNES-HUT 

Execution Time Message Count Message Volume 
Prefetching 

Policy Raw 

(sec.) 

Change 

(%) 
Raw 

Change 

(%) 

Raw 

(KB) 

Change 

(%) 

None 51.19 N/A 384,155 N/A 37,833 N/A 

Simple 41.90 -18.15 187,010 -51.32 60,193 +59.10 

Backward 26.62 -48.00 48,455 -87.39 57,175 +51.12 

Backward + 

Terminal 
24.47 -52.20 23,508 -93.88 59,563 +57.44 

 

TABLE IV. EFFECT OF PREFETCHING POLCIES ON WATER-SPATIAL 

Execution Time Message Count Message Volume 
Prefetching 

Policy Raw 

(sec.) 

Change 

(%) 
Raw 

Change 

(%) 

Raw 

(KB) 

Change 

(%) 

None 11.59 N/A 144,059 N/A 31,087 N/A 

Simple 9.29 -19.89 72,337 -49.79 32,058 +3.12 

Backward 7.96 -31.35 18,578 -87.10 31,224 +0.44 

Backward + 

Terminal 
7.91 -31.81 18,579 -87.10 31,231 +0.46 

 
 

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  100  200  300  400  500  600  700  800  900  1000

M
e

s
s
a

g
e

 l
e

n
g

th
 (

b
y
te

s
)

Message index sorted by message length

(a) Barnes-Hut

Backward
Backward+Terminal-DFS
Backward+Terminal+DFS

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600  700  800  900  1000

M
e

s
s
a

g
e

 l
e

n
g

th
 (

b
y
te

s
)

Message index sorted by message length

(b) Water-Spatial

Backward
Backward+Terminal-DFS
Backward+Terminal+DFS

 

Figure 4. Message length distribution under different policies 

B. Testing Methodology 

We evaluate our implementation in the following aspects: 

1) Effect of policies: To testify the effectiveness of each 

of our policies, they are enabled incrementally and compared 

to no prefetching and the simple policy (used in our earlier 

work [6]). In each configuration, we measure the execution 

time, message count and volume in bytes for each program. 

2) Accuracy of different message size limits: As we’ve 

discussed, choosing an optimal message size limit is vital to 

strike a balance between accuracy and aggreation effect. To 

check this out, we do the benchmarking with different trials 

of message size limits and measure each configuration’s 

accuracy and real performance (total execution time). To 

measure prefetching accuracy, we compare message volume 

for different configurations with and without prefetching. If 

we do not enable prefetching and fetch a single object every 

time, it is guaranteed that each fetched object will be 

accessed. Therefore, we can use the measured message 

volume without prefetching as a reference of how many 

bytes a perfectly accurate prefetching scheme should 

prefetch, thus deducing prefetching accuracy by comparing 

with our prefetching schemes. This measurement is also 

more meaningful than calculating accuracy by object count, 

because object size can vary a lot in real-life applications. 

3) Message length distribution: From the viewpoint of 

load balancing, we need to ensure short messages are as few 

as possible and most messages are uniform in size. To test 

for this, we log each protocol message’s size for different 

policies, and draw a distribution graph. We also check 

whether the “global BFS; local DFS” policy is effective to 

avoid too much overflow of our buffer size limit. 

C. Experimental Results 

Table III-IV show the effect of our object prefetching 
policies for each application. Our scheme does prefetch more 
bytes but the reduction on total execution time and message 
count is phenomenal. Skipping backward paths is useful to 
both applications. Forcing terminal objects by a local DFS is 
very effective for finer granularity. We can see Barnes-Hut is 
more sensitive to the policies than Water-Spatial since it is 
not only more fine-grained but also having a recursive data 
structure (octree) with a much larger fan-out (8 vs. 1). 

Table V-VI show the effect of different size limits on ob-
ject prefetching (Note: raw execution times in Table V-VI do 

not reconcile with those in Table III-IV which were taken 
with some other profiling options, out of the scope of this 
work, enabled). Configurations of small limits (256B-1KB) 
are inferior to larger limits (4KB-16KB) in terms of message 
count and execution time. Lifting up the limit doesn’t affect 
accuracy and generally improves speedup due to less frag-
mentation. Barnes-Hut shows an abnormal increase of mes-
sage count with 64KB size limit, slightly extending the exe-
cution time. After close inspection, we attribute this to the 
application’s inherent fragmentation so that prefetching a too 
large object graph leaves many smaller object graphs behind 
that need be fetched individually. Thus, we consider 4K a 
fairly appropriate size limit parameter although other sizes 
close to it may behave equally well. Again, Barnes-Hut re-
acts more readily towards the effect than Water-Spatial. 

Fig. 4 displays the size distribution of some real message 
samples collected using 2KB size limit. Water-Spatial un-
dergoes regular behavior with high accuracy under all poli-
cies. By application nature, the objects are larger and there is 
no complex data structure. Therefore, incrementally enabling 
more advanced policies won't help much in further regulat-



TABLE V. EFFECT OF MESSAGE SIZE LIMIT ON BARNES-HUT 

Execution Time Message Count 
Size 

Limit Raw 

(sec.) 

Change 

(%) 
Raw 

Change 

(%) 

Message 

Volume 

(KB) 

Accuracy 

(%) 

No Pre. 40.00 N/A 384,155 N/A 37,833 N/A 

256B 24.72 -38.20 91,000 -76.31 59,567 63.51 

1KB 20.83 -47.91 33,690 -91.23 59,692 63.38 

4KB 19.47 -51.31 16,923 -95.59 59,745 63.32 

16KB 19.76 -50.60 10,666 -97.22 59,617 63.46 

64KB 21.41 -46.48 15,487 -95.97 59,282 63.82 
 

TABLE VI. EFFECT OF MESSAGE SIZE LIMIT ON WATER-SPATIAL 

Execution Time Message Count 
Size 

Limit Raw 

(sec.) 

Change 

(%) 
Raw 

Change 

(%) 

Message 

Volume 

(KB) 

Accuracy 

(%) 

No Pre. 12.30 N/A 144,061 N/A 31,087 N/A 

256B 8.79 -28.53% 36,499 -74.66% 32,098 96.85% 

1KB 8.41 -31.62% 23,060 -83.99% 31,988 97.18% 

4KB 7.61 -38.11% 14,098 -90.21% 31,227 99.55% 

16KB 7.44 -39.46% 5,138 -96.43% 31,218 99.58% 

64KB 7.41 -39.72% 5,116 -96.45% 31,204 99.63% 
 

 
ing communications and shortening execution since the sim-
pler policy stack is already good enough, though enabling all 
policies won’t make things worse too. The case of Barnes-
Hut is more complex, but we can observe two things. First, 
the two policies with terminal forcing induce much fewer 
small messages, i.e. less fragmentation. Second, if we do not 
enforce the local DFS policy (i.e. Backward + Terminal - 
DFS), there could be significantly more messages that ex-
ceed much our size limit. To sum up, our best policy (Back-
ward + Terminal + local DFS) works pretty well to regulate 
message sizes, eliminating most small messages while ensur-
ing message overflow is bounded. 

VI. RELATED WORK 

Remote page prefetching has been studied in a number of 
page-based DSMs. In [2, 3], history prefetching and aggre-
gate prefetching, which exploit temporal and spatial locality 
respectively, are studied and compared. Their work also did 
evaluation on Barnes and Water but showed no practical 
speedup. Page-based prefetching is found not effective for 
fine-grained applications. Our work belongs to dynamic or 
runtime prefetching at per-object granularity. Previously, we 
have studied connectivity-based prefetching at a basic level 
[6]. The work of this paper discusses a more advanced pre-
fetching strategy that analyzes access paths with their behav-
ior learnt. Compared to [6], this work shows an extra 34% 
improvement in execution time in the best case. 

Jackal [5] employs object-graph aggregation techniques 
to reduce access checks and network roundtrips needed to 
fault in relevant objects. Their compiler detects regions that 
contain susceptible cache misses, and replaces access checks 
on the individual objects in the object graph with a single 
access check on the graph’s root object. Object fault will 
bring in the entire graph. This improves both sequential and 
parallel performance. While Jackal uses the compiler to rec-
ognize a local aggregation of objects, our system detects it 
by more general and less conservative runtime methods of 
access tracking and path analysis. 

VII. CONCLUSION AND FUTURE WORK 

This paper has described a new method to prefetch ob-
jects more effectively in a distributed object sharing system. 
By means of access path tracking and analysis, we classify 
fields and classes into a handful of types providing clues on 
how likely they will be needed by the requester. Our pre-

fetching scheme can learn about the weights of paths and 
balance between accuracy and aggregation effect. It would 
be interesting to see if any other generic access patterns are 
worth being analyzed during the prefetch process. 

ACKNOWLEDGMENT 

This research is supported by Hong Kong RGC grant 
HKU7176/06E and China 863 grant 2006AA01A111. 

REFERENCES 

[1] C. Amza, A. Cox, S. Dwarkadas, L. Jin, K.Rajamani and W. 
Zwaenepoel, “Adaptive Protocols for Software Distributed Shared 
Memory”, In Proc. of IEEE Special Issue on Distributed Shared 
Memory, pp.467-475, Mar 1999. 

[2] Hu Weiwu , Zhang Fuxin , Liu Haiming, “Dynamic data prefetching 
in home-based software DSMs”, Journal of Computer Science and 
Technology, v.16 n.3, p.231-241, May 2001. 

[3] H. Liu, W. Hu, “A Comparison of Two Strategies of Dynamic Data 
Prefetching in Software DSM,” pp.10062a, 15th International 
Parallel and Distributed Processing Symposium (IPDPS’01), 2001. 

[4] H.-H. Wang , K.-C. Li , K.-J. Wang , S.-H. Lu, “On the Design and 
Implementation of an Effective Prefetch Strategy for DSM Systems”, 
The Journal of Supercomputing, v.37 n.1, p.91-112, Jul 2006. 

[5] R. Veldema , R. F. H. Hofman , R. A. F. Bhoedjang , C. J. H. Jacobs , 
H. E. Bal, “Source-level global optimizations for fine-grain distributed 
shared memory systems”, Proceedings of the eighth ACM SIGPLAN 

symposium on Principles and Practices of Parallel Programming, 
p.83-92, June 2001, Snowbird, Utah, United States. 

[6] W. Fang, C. L. Wang, and F. C. M. Lau. “Efficient global object 
space support for distributed JVM on cluster.” In Proc. Int. Conf. on 
Parallel Processing, British Columbia, Canada, 2002, pp. 371-378. 

[7] W. Zhu, C. L. Wang, and F. C. M. Lau. “JESSICA2: A distributed 
Java virtual machine with transparent thread migration support”. In 
Proc. IEEE 4th Int. Conf. Cluster Comput., Chicago, USA, 2002, pp. 
381-388. 

[8] W. Zhu. “Distributed Java Virtual Machine with Thread Migration”. 
PhD thesis, The University of Hong Kong, Aug. 2004. 

[9] The HKU Gideon 300 Cluster. http://www.srg.cs.hku.hk/gideon/. 

[10] The modified SPLASH-2 benchmark suite. CAPSL, University of 
Deiaware. http://www.capsl.udel.edu/splash/index.html. 

[11] Zhou, Y., Iftode, L., and Li, K. “Performance evaluation of two home-
based lazy release consistency protocols for shared virtual memory 
systems”. SIGOPS Oper. Syst., Rev. 30, SI (Oct. 1996), 75-88. 

[12] J. M. Bull , L. A. Smith , L. Pottage, and R. Freeman, “Benchmarking 
Java against C and Fortran for scientific applications”, Proceedings of 

the 2001 joint ACM-ISCOPE conference on Java Grande, p.97-105, 
June 2001, Palo Alto, California, United States. 

[13] J.P.Lewis and U. Neumann, “Performance of Java versus C++”. 
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html. 


