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Abstract—To achieve single-lock atomicity in software transac-
tional memory systems, the commit procedure often goes through
a common clock variable. When there are frequent transactional
commits, clock sharing becomes inefficient. Tremendous cache
contention takes place between the processors and the computing
throughput no longer scales with processor count. Therefore,
traditional transactional memories are unable to accelerate
applications with frequent commits regardless of thread count.
While systems with decentralized data structures have better
performance on these applications, we argue they are incomplete
as they create much more aborts than traditional transactional
systems. In this paper we apply two design changes, namely zone
partitioning and timestamp extension, to optimize an existing
decentralized algorithm. We prove the correctness and evaluate
some benchmark programs with frequent transactional commits.
We find it as much as several times faster than the state-of-the-
art software transactional memory system. We have also reduced
the abort rate of the system to an acceptable level.

I. INTRODUCTION

Parallel programming has become an important issue since
the beginning of this century. With the appearance of modern
multicore processors, domestic computers are able to run
multiple threads concurrently. It becomes a necessity to write
parallel programs in order to fully utilize the computation
power. The old lock-based programming is no longer enough
as it encourages excessive mutual exclusion, and is error-
prone (e.g., deadlock) while lacking simple error detection
mechanisms.

Software transactional memory (STM) [1] is a promising
next-generation programming paradigm. Critical regions are
replaced by transactions, each of which is executed atomi-
cally, consistently, and also in isolated manner. It promises
easy programming [2] similar to coarse-grain locking but
the programs remain scalable. There are lots of researches
through the last decade, including object-based [1], [3], [4] and
word-based [5], [6], [7], [8] implementations. As the systems
do not require programmers to specify locks or labels on
the transactions, they usually follow a single-lock atomicity
model. Intuitively, clock, a common meta variable, is required
to serialize the transactions in a globally known order. Before
a transaction commits and makes its effect visible in the main
shared memory space, the clock is usually updated once.

Although multicore processor accelerates meta-data sharing
though the common cache, there are situations clock value
sharing is still slow. For example, when there are multiple
multicore processors on a system, data sharing between two
threads on two processor packages is as slow as before, as

we will further discuss in the next section. The clock, which
updates frequently, becomes a serious data sharing hotspot.
To update clock values in commit procedure, the processors
have to exchange large amount of cache coherence messages
through the long circuit on motherboard or processor modules.
Much less time is available for useful computations. To distin-
guish from other types of contentions, in the following context,
we call this particular phenomenon as clock contention.

To actually claim STM is truly ready for general purpose
programming, besides assuring it works for long transac-
tions [9], we should also ensure it works when there are
frequent transactional commits. Unfortunately, the clock con-
tention makes traditional STM unable to accelerate this type
of applications.

There are many attempts to avoid having the clock con-
tention but the results are not satisfactory because they usually
increase the likelihood of false conflicts. In this paper we
start from an existing distributed-clock STM design and make
changes to reduce the false conflicts. Results show distributed-
clock protocol outperforms the traditional counterpart in par-
ticular system workload. The contributions of this paper are
as follows:

• We identify a current (rather than future) computing
hardware bottleneck, which obstructs STM from scaling
in some transactional workloads.

• We extend a distributed-clock STM with two optimization
changes, and prove the correctness of the resultant design.

• We evaluate the distributed-clock STM, including our op-
timizations, with some real world benchmark programs,
and recorded huge performance difference.

• We successfully reduced the abort rate of the distributed-
clock STM to an acceptable level.

II. BACKGROUND

Clock-based validation is a necessity to avoid the quadratic-
time validation complexity. Meanwhile clock sharing hits the
wall of cache coherence capacity. Although distributed clock
design works around the clock contention issue, it has higher
storage overhead and more false conflicts.

A. Clock-based validation in STM

The very early STM do not have a common clock. In
DSTM [3], there is a meta-object pointing to different versions
of a transactional object. A consistent snapshot is essential
to avoid accidental infinite loops or invalid array references.



T1 Release x, TS(x) := 12
T1 Release y, TS(x) := 12

T2 Release z, TS(z) :=13

T3 Read x, TS(x) = 12

T4 Read y, TS(y) = 12, okay
T4 Read z, TS(z) = 13, no good

T3 Read y, TS(y) = 12, okay
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T3 Start, T3.RV := 12
T4 Start, T4.RV := 12

T2 New clock := 13

T1 New clock := 12

T2 Lock z for update

T1 Lock x, y for update

Tim
e

Fig. 1. Snapshot validation in TL2

Therefore, for every new open-for-read operation, all the
previous reads have to be verified again. When a transaction
opens n objects for reading, it entails checking the meta-
objects for 1 + 2 + · · ·+ n = O(n2) times.

Introduction of clock-based validation [10] makes the
quadratic validation time complexity unnecessary. In the global
shared memory, there is a common clock which is incremented
every time a transaction commits. Objects (or data words) are
given corresponding timestamps, which indicate the relative
time (in clock values) they were last updated. An example
is given on Figure 1. When a transaction starts on thread i,
it copies the clock value into its thread local variable Ti.RV .
Through execution, it ensures the timestamps that it encounters
must have a value not bigger than Ti.RV . This way, all the
data that the transaction reads belong to a single consistent
snapshot when the clock value is copied at beginning. (e.g.,
T3 in the figure)

There are two drawbacks in this clock-based design. Firstly,
the constant Ti.RV makes the transaction unable to handle
any data that are updated after the transactional start, even
if it still forms a consistent snapshot. (e.g., T4 in the figure)
Secondly, the common clock mandates commit procedure to
visit a common memory spot. Therefore, the processors’ cache
coherence capacity limits the transactional commit rate. The
first issue is solved by timestamp extension technique [11].
We investigate on coherence capacity in the next subsection.

B. Cache coherence on modern hardware

Modern computers are equipped with multicore processors
(CMP). A multicore processor features several computation
cores and a shared cache. With chip multithreading (CMT)
technology, a core can run multiple threads concurrently.
Threads within the same core share the L1 cache while threads
on different cores (but same processor) share L2 or L3 cache.
The cache sharing makes data sharing much faster, as the data

TABLE I
PING-PONG RATES (ROUND TRIPS PER SECOND) OF SOME INTEL

MULTICORE PROCESSORS

Processor Clockspeed Intra-Die Inter-Die
Core 2 Quad Q6600 2.40 GHz 1.6× 107 3.9× 106

2× Xeon E5540 2.53 GHz 1.3× 107 5.4× 106

2× Xeon E5550 2.66 GHz 1.5× 107 6.3× 106

2× Xeon X5670 2.93 GHz 1.4× 107 6.2× 106

4× Xeon X7750 2.00 GHz 5.4× 106 9.0× 105

remains on cache instead of being copied to the main memory
modules.

To pursue high performance, high-end computers are
equipped with multiple multicore processors. This complicates
the cache-sharing situation. Threads on different processors
do not share any common cache. To share data, the cores
exchange cache coherence signals through the long circuit
on the motherboard or processor modules. In this case, data
sharing is almost as slow as before.

We run ping-pong tests on several systems equipped with
typical multicore processors. Our aim is to evaluate how fast
data sharing can be. Performance data on inter-thread sharing
may give us some inspiration how STM policies and protocols
can be designed. Results are shown on Table I. For example, a
pair of Xeon E5540 processors can exchange cache ownership
for 5.4 × 106 round trips in a second, or 1.1 × 107 transfers
only. If there is a common clock in STM and transactions
commit evenly on both processors, this is likely the limit for
the transactional throughput. The actual limit may be even
lower, given there are more timestamps or shared data cache
invalidations to handle. For example, with a common clock, we
can only achieve throughput of at most 5.8× 106 transactions
per second with ssca2 benchmark on two E5540.

C. Distributed Clock STM

To work around the clock contention issue, various solutions
are suggested. Avni proposes TL2C [12], which provides a
distinct clock per thread, thus removing the memory hotspot
in commit procedure. In the proposal, a timestamp is a tuple
of the thread id and the clock of the last writer. On each
thread i, there is a thread local counter Ti.TLClock, as well
as a cache storing n − 1 clock values from different threads,
Ti.CArray[0 · · ·n]. 1

When thread i updates some value and commits a trans-
action, it increments its clock Ti.TLClock and set each of
the related timestamps to be a tuple of its thread id and
the new clock value. When transactional thread j performs
a read operation, it encounters a timestamp with thread id i
and clock value t. If i = j, there is no need for validation;
otherwise the transaction considers the read as valid only if
Tj .CArray[i] is not smaller than t. If this condition is not
satisfied, the transaction updates Tj .CArray[i] to be t, aborts
the speculative computation, and starts from transaction begin
again. Note the threads do not visit other threads’ TLClock

1Although there are n array elements, Ti.CArray[i] is not used as a thread
never caches its own clock.



counters. They use the timestamp table as the only indirect
way to acknowledge newer clock numbers. Although it causes
extra unnecessary aborts, it avoids clock sharing and keeps the
Ti.TLClock of each thread i resides exclusively within the
respective L1 caches.

D. Disadvantages of Distributed Clock Systems

Although this solution makes clock contention less frequent,
the inventors also notice the design introduces more chance
for a transaction to abort. We suspect it is because the
updated clocks cannot propagate to new transactions as fast
as before, thus the numbers in Ti.CArray are smaller than
optimal. When there are more threads, there are also more
clocks in Ti.CArray to keep up-to-date, implying more aborts
are necessary. Storage overhead may also become a design
problem in future. A timestamp is usually as long as a machine
word (64 bits) only, which is now responsible storing both a
thread id and a clock. When there are more threads, there
will be more bits taken from the latter for the former. Clock
overflow issue will appear when there are too few bits for the
clock. Also, in a system with n threads, each thread has an
array CArray[0 · · ·n], resulting O(n2) storage overhead.

We believe eliminating some of the clocks wisely improves
the system performance. Timestamp extension technique may
also help updating the cached clocks in a live transaction, and
thus reducing the abort ratio. Meanwhile, it remains an open
question whether these can be combined with the distributed
clock design. To our knowledge, there have been no attempts
in doing so.

III. RELATED WORKS

There are a few solutions targeting to relieve from global
clock contention or remove the global clock. An incomplete
list is as follows.

The early-time transactional memory systems do not have
any common clocks. Instead, there is a status field on each
meta object. Disjoint transactions do not overlap in commit
data path, and can commit concurrently. Unfortunately, to
have a consistent memory view in a transaction, these systems
need to revalidate all previous reads per new read operation,
resulting quadratic time complexity.

TL2 [5] is a state-of-the-art word-based STM. According
to Avni [13] and Hill [14], there are several global versioning
techniques with TL2. Among them, GV5 defers updating the
global clock as late as another transaction encounters a false
conflict due to the stale clock. This makes global clock updates
less frequent and therefore relieves the clock contention issue.
As the stale clock values also create more aborts, there is
another scheme, GV6, updating the clock sparsely with a given
probability. These schemes have not removed the common
global clock, and is also generating more false conflicts then
the original GV4 design.

TL2C [12] is another variant of TL2, with distributed global
clock variable. Avni also provided a TCV model [13] to
prove the correctness of the TL2 family including TL2C.
Unfortunately TL2C also suffers from the increased abort ratio

like other TL2 siblings. While our solution is similar to TL2C,
we avoided large portion of the aborts by applying multicore-
friendly partitioning, as well as reusing the timestamp exten-
sion from TinySTM [7].

TLRW [15] abolishes the global clock completely, only
relying on the vector timestamp table for disjoint transactional
executions. To avoid the quadratic validation overhead, the
transactional reads are semi-visible in form of reader counters.
A transaction cannot start writing on a shared data until there
are not any readers or writers. This design eliminates the
need for any validations. Meanwhile, as readers also have to
modify the counters, there are cache invalidations among the
processors even when all the transactions are read only. Attiya
et al. show [16] that to ensure successful commits of read-only
transactions, there must be Ω(t) memory updates on metadata
for the t read operations.

There are several attempts trying to remove the global clock
or the timestamp mechanism, namely TML [17], NOrec [18],
RingSTM [19], InvalSTM [20], etc. While these designs
successfully removed the bulky timestamp table, they retain
some global data structure, such as a single version number in
TML and a ring in RingSTM. Transactions have to compete
updating the global data structure in order to serialize among
themselves, which means the contention issue is not ever
solved.

There are also several distributed transactional memory
systems which are meant to span over a number of cluster
nodes in computation. They require either a broadcast [21],
[22], [23] or a token server [24], [25] in the commit procedure,
with the goal to serialize the transactions. The data contention,
in addition to the network latency, make these systems not
ready for frequent transactions.

There are also several works that do not follow the in-
tuitive single-lock consistency, such as z-linearization [26]
and snapshot isolation [27]. It is natural these systems touch
less common data structure in commit procedure, but their
programming models are not intuitive to existing programmers
who used to use locks.

Lastly, there are solutions [28] that require manual parti-
tioning of data into multiple instances of transactional memory
systems. These solutions require heavier programming effort,
making them useful in large cluster environments but not
among simple programmers.

IV. DESIGN CHANGES TO DISTRIBUTED GLOBAL CLOCK
ALGORITHMS

We propose changes to the distributed clock algorithm
TL2C. We first define several data structures in Table II and
show the resultant algorithm on Table III and IV. We call the
design as TrC-MC, standing for “Transactional Consistency
for Multicore”. For simplicity, we assume each data word
is associated with an unique timestamp and a word is never
written for the second time within a single transaction. 2

2In actual implementation, we have handled these conditions. But they are
beyond the scope of this paper.



TABLE II
TRC-MC VARIABLES

Variable Usage Scope
j zone number found on a timestamp function
t clock number found on a timestamp function
x shared memory to be accessed function
v data to be written on shared memory function
i current thread number thread
k zone number of current thread thread
Tx transaction descriptor for thread x thread

(Ti stands for current thread’s tx descriptor)
Tx.CArray cache clock array for thread x thread
Tx.readset read set of Tx, containing tuples of locations

and timestamps
thread

Tx.writeset write set of Tx, containing tuples of loca-
tions, values and timestamps

thread

Zx zone descriptor for zone x zone
(Zk stands for current zone’s descriptor)

Zx.CArray cache clock array for zone x zone
Zx.TLClock actual clock for zone x zone

TABLE III
TRC-MC READ WRITE PROTOCOL

1 function stm read(x)
2 if x ∈ Ti.writeset
3 return Ti.writeset[x]
4 end if
5 TS2← timestamp(x)
6 value← x
7 TS ← timestamp(x)
8 if is locked(TS)
9 stm abort( )

10 else if TS2 6= TS
11 restart this function
12 end if
13 j ← zone bits(TS)
14 t← clock bits(TS)
15 if t > Ti.CArray[j]
16 share clock(j, t)
17 if (extend( ) = success)
18 Ti.CArray[j]← t
19 restart this function
20 else
21 stm abort( )
22 end if
23 end if
24 Ti.readset← Ti.readset ∪ (x, TS)
25 return value
26 end
27
28 function stm write(x, v)
29 TS ← timestamp(x)
30 if is locked(TS)
31 stm abort( )
32 else if TS 6= cas(timestamp(x), TS, my lock)
33 restart this function
34 end if
35 j ← zone bits(TS)
36 t← clock bits(TS)
37 if t > Ti.CArray[j]
38 share clock(j, t)
39 timestamp(x) ← TS
40 if (extend( ) = success)
41 Ti.CArray[j]← t
42 restart this function
43 else
44 stm abort( )
45 end if
46 end if
47 Ti.writeset← Ti.writeset∪ (x, v, TS)
48 end

TABLE IV
TRC-MC AUXILIARY PROTOCOL

49 function stm begin( )
50 for each zone j
51 Ti.CArray[j]← Zk.CArray[j]
52 end for
53 end
54
55 function stm abort( )
56 for each (x, v, TS) in Ti.writeset
57 timestamp(x) ← TS
58 end for
59 restart from transaction begin
60 end
61
62 function stm commit( )
63 if extend( ) = failure
64 stm abort( )
65 end if
66 wv ← Zk.TLClock + 1
67 for each (x, v, TS) in Ti.writeset
68 x← v
69 timestamp(x) ← (i, wv)
70 end for
71 share clock(k, wv)
72 end
73
74 function share clock(j, t)
75 Zk.CArray[j]← max(Zk.CArray[j], t)
76 end
77
78 function extend( )
79 for each (x, TS) in Ti.readset
80 if timestamp(x) 6= TS
81 return failure
82 end if
83 end for
84 return success
85 end

A. Zones

In the original TL2C system, all the STM metadata, except
timestamp table, are decentralized to be thread local variables.
In our proposed system, we have a new intermediate layer
of information sharing called zones. Each of the threads (or
transactions) is assigned to belong to a zone. Ideally, threads
running on the same processor are assigned to the same zone.
Alternative configurations mimic other STM. For example,
when all threads are assigned to a single zone, it is similar
to a traditional STM with a single clock. When each of the
threads is assigned a unique zone, it is similar to the TL2C
design.

While a thread still possesses some thread locals such as
read set and write set, threads within a zone also share the
same clock and cache clock array. In the commit procedure,
a thread updates the clock in the zone (line 71), allowing new
threads within the zone acknowledge the new clock without
extra effort. When a thread encounters a new timestamp clock
from a foreign zone (line 15, 37), it shares with other zone
members by posting it onto the zone data structure (line
16, 38). Other zone members receive the new cache clocks
when they start the upcoming transactions (line 49–53). In
this design threads see new clocks faster than the original



decentralized design, yet do not incur much contention as
threads within a zone share a common cache.

B. Timestamp Extension

It is inevitable to encounter newer timestamp clocks in
TL2C because there are not other means to acknowledge the
new values for the CArray. Unfortunately encountering a new
timestamp value also implies an abort in the design.

We reuse the design of timestamp extension and apply to
TrC-MC. The extend function is called every time a new
timestamp clock is encountered (line 17, 40). It checks the
content in read set again, asserting all the originally-obtained
timestamp values are still valid (line 79–83). If the extension
fails, the transaction aborts as usual.

V. CORRECTNESS PROOF

In this section we prove correctness of zone partitioning
with mathematical induction. We first let |Z| be number of
zones. To prove the correctness of our new design changes,
we first assume the TL2 algorithm is correct. Readers may find
proofs on the original TL2 paper [5] and the TCV model [13].
Although there is a proof for TL2C already, we believe the
addition of zone concept makes a separate proof necessary.

Lemma 5.1: A transaction T1 is consistent if memory re-
ferred by its readset is not modified, or modified by T2 while
T1 has not yet encountered any data updated by T2 and
subsequent transactions.

Proof: If data referred by a readset is not modified, it
is trivially true. If it is partially modified, without actually
reading anything written by T2 and subsequent transactions,
the snapshot is just the same as if T2 did not exist.

Lemma 5.2: All the zone-shared Zk.CArray[j] cache
clocks are under-estimations of the respective true clocks
Zj .TLClock.

Proof: The Zj .TLClock is already incremented in stm -
commit procedure before the value is written onto the times-
tamp table (line 66, 69). Contents in Zk.CArray can be only
be updated through the share clock function, which is invoked
only when the new timestamp clock is seen on timestamp table
(line 15, 37). Therefore, Zk.CArray[j] cannot hold any clock
values higher than the true clocks Zj .TLClock.

Lemma 5.3: The thread local Ti.CArray[j] are also under-
estimations of the true clocks Zj .TLClock.

Proof: Ti.CArray is a snapshot of Zk.CArray when a
transaction starts at stm begin function. Therefore it is also
an under-estimation of Zk.CArray, and thus the true clocks
Zj .TLClock.

When |Z| = 1, the system is just the same as TL2 after
partitioning, and therefore correct: There is a single clock
Z1.TLClock, shared by all the threads. Although there is also
a cache clock Z1.CArray[1], it represents under-estimation
of the actual clock, and creates false-conflicts but not invalid
commits.

Assume the system is correct when |Z| = n ≥ 1, with
zones Z1···n. Consider the case when |Z| = n + 1, that is,
with the extra zone Zn+1. We consider a case T1 has read a

shared variable X and T2 has subsequently overwritten X with
a new value. As the zone numbers are dummy, without loss
of generality, we assume T1 is within Z1···n and T2 is within
Zn+1. To have the system considered working correctly, T1

must follow Lemma 5.1, and detect its consistent snapshot
with X is broken when it encounters any data location Y that
is also updated by T2.

T1 was able to start transaction and read X before T2

commits a timestamp operation on X . Through Lemma 5.3,
we know the T1.CArray[n + 1] is an under-estimation of
Zn+1.TLClock right before T2 commits, and is strictly
smaller than what T2 writes onto the timestamp entries. When
T1 reads any timestamp written by T2, the extend function is
called and it detects timestamp of X is being changed.

If another transaction, T3, modifies Y , erasing the times-
tamp trace of T2, T1 is still able to detect the change. If T3

belongs to Z1···n, changes to X must be detected as extend
function is invoked. (We assume the system is correct among
Z1...n.) If T3 belongs to Zn+1, the detection is just the same
as detecting T2, as the Zn+1.TLClock is further increasing.
Therefore we know given the system is correct when |Z| = n,
the system is also correct when |Z| = n+1. By mathematical
induction, we now know the system is valid for all positive
natural numbers of zones.

With the basic zoned timestamp mechanism proved, we
now discuss about timestamp extension. In order to update
any entries in Ti.CArray (line 18, 40), the extend function is
called once. First of all, we know write set entries are already
locked and are not possible to be modified. Next, the extend
function revisits all the read set entries, ensuring the timestamp
is the same as before. If the extend function returns success,
the thread has revisited all of the read set and realized there
are not any changes, which is effectively the same as restarting
the transaction and finding the execution result is the same.
Therefore, Ti.CArray can be updated to any valid contents
as long as Lemma 5.2 and 5.3 are followed.

VI. EVALUATION

A. Test Platforms and Subjects

We took experiments on two computers—Dell PowerEdge
M710 and PowerEdge M910. They are respectively equipped
with two Xeon E5540 (2.53 GHz) and four Xeon X7550 (2.00
GHz). With hyper-threading (CMT) technology enabled, they
are able to run 16 and 64 concurrent threads respectively. The
computers run Fedora 11 and CentOS 5.4 respectively. We
use the same GCC compiler version 4.4.1 for compiling the
test programs. The computers have abundant memory (16GB
and 128GB) so there are unlikely page swap outs in the
experiment.

We have two implementations for testing. Firstly, we have
TinySTM 0.9.5 [7] obtained from the Internet. TinySTM has
a single common clock with clock-based validation and times-
tamp extension mechanism. When a transaction encounters
a timestamp clock that is too new, it attempts to revalidate
the read set before resorting to abort. Secondly, we have our
TrC-MC implemented with flexible parameters. By default we



TABLE V
BENCHMARK SOFTWARE PARAMETERS

Software Parameters
disjoint (each thread increment a counter for 108 times.)

ssca2 -s20 -i1.0 -u1.0 -l3 -p3
genome -g16384 -s64 -n16777216

vacation -n4 -q60 -u90 -r1048576 -t4194304

have timestamp extension enabled and the number of zones
equal to number of processors. With sched setaffinity system
calls, we lock the threads to their particular processors and
zones. Threads in the same processor share information in
the respective zone descriptor. The same implementation is
capable mimicking other STM designs. By switching off the
timestamp extension and setting number of zones to be number
of processors, the system is very similar to the original TL2C.
Therefore we will call this mimic version as TL2C in the rest
of the evaluation.

B. TM Benchmark Programs

We put four applications into testing. disjoint is our self-
brew benchmark, with transactions touching totally disjoint
data. It reveals how many writing transactions a TM platform
can handle. By its disjoint nature, there are not any aborts
or timestamp extensions. ssca2, genome and vacation are
the STAMP benchmarks [29] specially tailored for TinySTM.
We pick the “real” problem size so each run takes several
seconds to complete, ensuring timing accuracy and fairness.
Through our experience [30], we know ssca2 is difficult to
scale because the transactions are short and frequent. genome
is a gene-matching benchmark with moderate inter-thread
data sharing. vacation is a company database simulation with
random data access and is similar to TPC-C benchmark. The
parameters given to the benchmark programs are shown on
Table V. Each of the software is run for 4 times for data taking.
Through the process, no anomalies (e.g., process crashing,
abnormal data items) are detected.

C. Performance

Figure 2 shows the performance of some TM applications
on two computers. In this paper we observe the performance
in two metrics, the commit rate and abort rate. Commit rate
indicates the relative speed of a platform to complete the
same task. Abort rate indicates the amount of wasted work
of a platform. Timestamp extension counters are available for
TinySTM and TrC-MC. For comparison, we also have taken
relative performance of the sequential counterparts that also
come with the STAMP package.

Although disjoint involves simple, short and disjoint trans-
actions only, the performance difference among different
STMs is huge. TinySTM is the worst among the three test
platforms. It cannot scale at all. It is because all the threads
contend to access a single clock variable. TrC-MC is generally
better in quad-processor platform while TL2C is better in dual-
processor platform. This is probably because the two platforms

perform differently in cache coherence. Nevertheless, support-
ing several 107 transactions per second on a system is useful
enough in most situations, as real life applications would be
at least slightly longer and less frequent.

The inability of TinySTM (and other single-clock STMs)
is revealed completely on the ssca2 benchmark. On the
dual-processor system, TinySTM barely has 2 times absolute
speedup when there are 16 threads running. On the quad-
processor system, it simply cannot scale any faster than the
sequential program, no matter how many threads are put
into computation. Meanwhile, TrC-MC and TL2C performs
relatively well, providing several times of absolute speedup.
Note TrC-MC also has much less aborts when there are 32 or
64 threads running.

In genome benchmark, we see the distributed-clock STM are
in slight disadvantage on the quad-processor platform. While
we are unable to give a proved explanation, we notice that
TrC-MC, being less distributed than TL2C, performs slightly
better. We suspect the distributed clock allowed the threads to
run faster, and create more transactional conflicts. As other
researchers [31], [32], [33] and we have already noticed,
sometimes stalling some threads leads to better performance.
Note genome has the lowest commit ratio [30] among the four
benchmarks we have on this paper.

In vacation benchmark, as the transactions are much less
frequent, we observe the three STM platforms perform sim-
ilarly. Meanwhile, similar to what Avni has noticed [12],
TL2C has increasing abort rate and it is especially obvious
in this benchmark. 3 TrC-MC has solved the issue by having
the clocks less distributed, and also providing a timestamp
extension mechanism. TinySTM and TrC-MC have similar
protocols except the former has single-clock and later is dis-
tributed. While TinySTM virtually has no timestamp extension
activated, TrC-MC has certain amount of extensions. This
suggests the extensions are related to the distributed clock
design. TL2C and TrC-MC are also similar except former does
not have timestamp extension and has much more aborts. This
reveals the extensions actually help reducing the abort rate.

VII. CONCLUSIONS

In this paper, we have discussed two design changes to a
distributed clock-based software transactional memory system.
We proved the correctness and evaluated the performance
with several benchmarks. Compared to traditional single-clock
systems, our solution performs much faster when there are
frequent transactional commits. Compared to the previous
distributed clock-based TL2C, our solution no longer suffers
from the issue of increasing abort rate.

As a future work, we plan to investigate separating the
timestamp table into several cache zones, evaluating whether
it is a good mean to achieve a word-based distributed trans-
actional memory system.

3Indeed, we remove the abort data points for 64 threads as they would
distort the graph.
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Fig. 2. Transaction commits and aborts of some TM applications on two computers
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