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Abstract—The rising core count per processor is pushing
chip complexity to a level that hardware-based cache coherency
protocols become too hard and costly to scale someday. We
need new designs of many-core hardware and software other
than traditional technologies to keep up with the ever-increasing
scalability demands. A cluster-on-chip architecture, as exempli-
fied by the Intel Single-chip Cloud Computer (SCC), promotes
a software-oriented approach instead of hardware support to
implementing shared memory coherence. This paper presents a
shared virtual memory (SVM) system, dubbed Rhymes, tailored
to new processor kinds of non-coherent and hybrid memory
architectures. Rhymes features a two-way cache coherence pro-
tocol to enforce release consistency for pages allocated in shared
physical memory (SPM) and scope consistency for pages in per-
core private memory. It also supports page remapping on a per-
core basis to boost data locality. We implement and test Rhymes
on the SCC port of the Barrelfish OS. Experimental results show
that our SVM outperforms the pure SPM approach used by
Intel’s software managed coherence (SMC) library by up to 12
times through improved cache utilization for applications with
strong data reuse patterns.
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I. INTRODUCTION

Processor architectures have undergone seismic changes in
recent years with a bifurcated roadmap to manycore: one goes
for coprocessors like GPGPUs; the other keeps increasing core
counts of general-purpose CPUs in a Moore’s Law pattern.
With conformity to accustomed instruction sets, the latter is
naturally more welcomed by software architects. If it goes on,
2020 and beyond would be the time that 1000-core CPUs
become commonplace. It is however a great challenge to
software developers marching to such many cores. Operating
systems, parallel programming tools and support infrastruc-
tures for efficiently driving so many cores are hard to make.
Harnessing parallelism of 1,000 cores in a chip does require a
radical rethink to address at least two fundamental problems.

The long-existing “memory wall” problem, first described
by Wulf and McKee [1], will get intensified on a many-
core CPU. Current memory architectures do not keep up
with the scale of hundreds, let alone a thousand, of cores.
Entering the 1000-core era, imbalanced growth rates of core
count and off-chip memory bandwidth will narrow the external
bandwidth available to each core. The problem is compounded
by big data workloads that impose high stress on the off-chip
DRAM. The second roadblock is the “coherency wall” beyond

which the protocol overhead of enforcing hardware cache
coherency exceeds the value of adding cores. These problems
are rooted in the limitations of current hardware designs.
Consequently, researchers are exploring tiled architectures to
incorporate more cores by two game-changing ideas: replacing
the bus/crossbar interconnect with a fast on-chip network and
forgoing hardware cache coherency.

The Intel Single-chip Cloud Computer (SCC) is a 48-core
research processor epitomizing this architectural shift from
traditional ccNUMAs to a non-coherent, “cluster-on-chip”
architecture. Each core is assigned its own private memory
and runs a separate OS instance. As a perfect match with
the SCC, a more scalable OS design approach—rmultikernel—
has been proposed and realized into the Barrelfish OS [2].
All cores (OS instances) can access shared memory as usual
despite the fact that cache coherence is then ensured by
software. The SCC exposes programmable on-chip memory,
called message passing buffer (MPB), to software for fast
inter-core communication such as coherence maintenance. The
research problem is then about how to exploit the complex
memory hierarchy—on-chip vs. off-chip memory and private
vs. shared memory—efficiently and easily.

This paper describes our research effort to design and
implement Rhymes (Runtime with HYbrid MEmory Sharing),
a shared virtual memory (SVM) system, on top of Barrelfish
to achieve the goal. The emergence of recent non-coherent
many-core architectures such as Intel SCC has revived the
topic of SVM, reassessing what the right memory consistency
model and software optimizations (affinity, profiling, etc) are
suited to many-core CPUs. Despite a myriad of SVMs built
for clusters of workstations, many old design principles have
outlived their usefulness for a many-core SVM. In the past,
due to long network latencies, the chief protocol design goal
was to minimize the number of message roundtrips between
the loosely-coupled cluster nodes, say by caching more data in
node-local memory. But now, today’s experimental tiled chips
can already attain inter-core latency as low as tens of clock
cycles. This implies (on-chip) message passing between two
processes is even faster than local DRAM access. The off-
chip memory bandwidth wall is likely to widen the gap. Thus,
the entire SVM design philosophy for many-core is somewhat
the reverse for the traditional. Instead of message round-trips,
it is now of higher priority to minimize DRAM accesses
(for performance) and next the total on-chip network traffic
(for power saving). Our protocol design and implementation,
detailed in Section II and Section III-C respectively, strive



to maintain maximal on-chip data locality, minimal metadata
footprint and coherence traffic accordingly.

To the best of our knowledge, this is the first work to build
SVM support on Barrelfish. The novelty of our work lies in a
two-way cache coherence protocol (Section III) implementing
a hybrid memory model which combines the architectural
benefits of software distributed shared memory (DSM) and
shared physical memory (SPM) approaches to share virtual
memory pages efficiently. Each page can be mapped to DSM
mode, SPM mode or MPB mode (cached in on-tile MPB for
fast shared access) to meet its own consistency and locality
needs. In other words, pages can be placed in different types
of physical memory (private DRAM, shared DRAM or on-chip
MPB), cached differently and have their coherence maintained
at selectable granularity (cache lines vs. pages) using different
protocols (scope- vs. release-consistent) that run in harmony.
Pages can be mode-switched, or remapped, dynamically to
respect memory access patterns on a per-page-per-core ba-
sis. In effect, Rhymes boosts data locality by maximizing
the utilization of on-chip caches and programmable buffers.
Currently, the SVM prototype relies on user annotations to
trigger page mode switching. But our ultimate goal is to help
users gain performance transparently through automatic page
remapping guided by a memory access profiler which tracks
shared access frequency through regular memory protections.
We evaluate the system with a range of benchmarks, including
Graph 500 [3] and Malstone [4]. Experimental results (Section
IV) show that our SVM, with frequently accessed shared data
marked in the application code (as if they were detected by
a profiler), can win over the pure SPM approach used by
Intel’s SMC by up to 12 times due to cache effects from page
remapping—a speedup substantial enough to compensate all
online profiling costs (generally about 10% of the runtime).

Although SCC and Barrelfish, where our SVM is built
atop, are just research prototypes that are presently no match
for another x86-based many-core architecture—Intel’s MIC
(Xeon Phi running embedded Linux OS)—in popularity and
many aspects, we hold an original view that the use of a non-
coherent architecture with programmable on-chip memory plus
a multikernel OS is a big step forward in designing a highly
scalable many-core system of a large scale per chip. Besides
saving the ever-increasing protocol verification complexity
and cost, saving of energy (wasted in cache snooping) is
an secondary advantage. Previous work [5] has shown that
only about 10% of the application memory references actually
require cache coherence tracking. Applications can have most
data RO-shared and few RW-shared; hardware coherence thus
could overkill and also lead to waste of energy (possibly up to
40% of the total cache power [6], [7]). A further merit, which
we consider the biggest, of an SCC-like architecture is its
flexibility offered to the upper (software) level. With software-
defined networking (SDN) being a new approach to designing,
building and managing networks, we have the sense that
future networks-on-chip might also have some SDN functions
that can be used for implementing software-defined coherence
(SDC)—a new concept. Processor chips that eternally bypass
the hardware coherence wall and allow flexible SDC-based
protocols defined on a per-application basis may become pop-
ular one day. In terms of generic contributions of our work that
are independent of SCC or Barrelfish, our proposed software
techniques—hybridized memory model, two-way protocol and

page mode switching (or remapping)—are particularly useful
to enhance the system performance when it comes to the need
of a chip with a massive scale of cores and of an SDC-based
approach in the future.

II. SYSTEM DESIGN OF RHYMES SVM

Figure 1 depicts the entire system hierarchy (Rhymes atop
Barrelfish on SCC). Summarized in one sentence, Rhymes
is a page-based, scope-consistent' SVM system implemented
in user space, using locks and a home-based?, invalidate-
based, multiple-writer protocol to synchronize shared memory
updates. The use of relaxed memory consistency models and
“traffic-thrifty”” coherence protocols is a critical factor affecting
the network communication cost and hence the system perfor-
mance. To design a high-speed, scalable SVM system atop
the Barrelfish-SCC stack, we propose a novel hybrid memory
model to maintain the coherence of shared data at page level.
When shared variables are allocated, they can be mapped into
different virtual memory page types.

The SCC features a new memory type known as the
message-passing buffer type (MPBT) for handling data allo-
cated in the on-tile MPB (16KB SRAM on each tile), together
with an additional instruction—CLI1INVMB—to invalidate all
the L1 cache lines that are tagged with MPBT?. The memory
address space covered by all the MPBs (a total of 386KB
SRAM) are accessible by all cores, and are cacheable in L1
but not L2. The memory model used for synchronizing a page
depends on the page type (MPBT vs. non-MPBT). Logically,
each page is given a sharing mode:

e  Shared Physical Memory (SPM) mode: In SPM mode,
cache means ‘“cache lines” in L1. For each virtual
memory page, there is only one data copy allocated
in the shared DRAM. This is a centralized approach
bearing much similarity to traditional shared-memory
systems (SMP or multi-core) except that the cache co-
herence of the shared memory now becomes software-
managed. SPM-mapped shared pages are located in
the shared DRAM of SCC and synchronized based
on release consistency.

e Distributed Shared Memory (DSM) mode: In DSM
mode, cache means “cached pages” in private memory.
For each virtual memory page, there exist multiple
cached copies of the page. Each cached copy is
allocated in the private DRAM of each core accessing
the page. The cached copy is replicated to private
memory from a golden copy allocated in the shared
DRAM, which is referred to as the home copy of the
page. The memory coherence of DSM-mapped pages
is maintained using a scope consistency protocol.

The two-mode protocol semantics are detailed in Section
III. Here, we illustrate the global virtual address space provided

IThe data consistency model guaranteed for the programmer is scope
consistency (ScC), but the underlying mechanism to realize a scope-consistent
view of the virtual memory may be stronger than ScC when the pages are
mapped to SPM mode

2SCC provides shared DRAM, so we can simply store shared pages’ home
copies there, and every core maps each home at the same virtual address.

3Data not allocated in MPB can also be tagged with MPBT by setting
a bit in the page table; the purpose is to bypass L2 cache and exploit the
write-combine buffer.
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Fig. 2. A global address space virtualized by Rhymes

by our SVM in Fig. 2. Private memory of each core acts like
a cache of the shared memory. Programmer’s view of a single
memory space is seamlessly provisioned through the page-fault
mechanism. Coherence metadata such as page mode and state
(page control data) are maintained internally in the SVM.

II1.

Based on SCC-supported invalidate and flush operations,
the SPM mode basically follows an eager release consistency
model. The merit of adopting scope consistency for the DSM
mode is to keep the number of write notices and invalidations
minimal, taking advantage of the association between the lock

TwO-WAY CACHE COHERENCE PROTOCOL

mesh network
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id and the shared variables. As we mentioned, the system
supports dynamic page remapping from one memory type to
another. But this can cause consistency problems unless the
system has protocol support for both DSM- and SPM-mapped
pages running in harmony. The handling of two pages mapped
to DSM mode and SPM mode respectively will be different
and never redundant. Figure 3 illustrates the semantics and
overheads of the two-way protocol. In the code snippet, the
array a of 1024 integers (exactly one page denoted by A) is
being read and written in the three loops. Below we detail the
protocol actions the system applies to each cache line/page,
based on the page mode assigned.



Code SPM Mode

DSM Mode

rhy_lock(1); invalidate MPBT cache lines (CLLINVMB) invalidate cached pages per write notices received
for (i=0; i<1024; i++) overhead-free read fault trapped on 1st read:
sum +=ali]; (but all cold misses) memcpy H[A] to C[A]; remap VA(A) to C[A];

set C[A] to read-only; resume access;
(but all cold misses)

for (i=0; i<1024; i++)
for (j=0; j<1024; j++)
c[i] +=al[jl;

overhead-free
(L1 cache hits for a)

overhead-free
(L1 and L2 cache hits for a)

for (i=0; i<1024; i++)
for (j=0; j<1024; j++)

write through (to WCB) 102472 times;
flush to DRAM 131,072 times

write fault trapped on 1st write:
memcpy C[A] to T[A]; add A to dirty list;

afi] +=bljl; (1024 x 4 / 32) set C[A] to read-write; resume access
overhead-free for all the (1024 2 -1) writes to a
rhy_unlock(1); flush WCB flush diffs of each dirty page:

for each trunk k in A, if (C[A][k] xor T[A][k]) H[A][k] = C[A][k]

#DRAM access (due to a):
128 (cold misses) + 131,072

#DRAM access (due to a): 128 (cold misses) +
128 x 7 = 896 (worst case) or 128 x 4 = 512 (best case)

keys: H[] = home copy; C[] = cached copy; T[] = twin copy; VA() = virtual address of; assume sum, b, c are local variables;
bold underlined (red-colored) to represent probable off-chip access to DRAM

Fig. 3. Tllustration and cost analysis of the two-way coherence protocol

A. SPM Mode

Our coherence mechanism for the SPM Mode is the same
as that in Intel SMC and MetalSVM [8]. The PMB bit (i.e.
MPBT) of the page table entry is set to bypass L2 cache, i.e.
the shared data are cacheable in L1 only. Recall that SCC L1
cache can be made write-back or write-through. For write-back
cache, update will be lost when multiple writers write different
parts of the same cache line. To avoid this, we follow Intel
SMC’s way to make L1 cache write-through by setting the
PWT flag in the page table for each page frame.

For writes on MPBT-tagged cache lines, the writing
through will not go to the main memory directly but to the
write combining buffer (WCB) first. So what we need to flush
is the WCB* for ensuring that the modifications are written
down to the off-die shared memory. We add a dummy write
to the last line of the MPB across synchronization points such
as lock acquire to flush the WCB. When entering a critical
section (no matter which lock id), the lock acquire routine will
invalidate the cache entries in L1 by executing the CLIINVMB
instruction. This invalidation affects all MPBT-tagged cache
lines for all the page frames which are allocated in SPM
page mode. When leaving a critical section, the SVM lock
release routine will flush the WCB to reflect the updates to
main memory. In contrast to the original LRC model [9], this
mechanism will write down also modifications which are out-
side the current critical section. This will invalidate cached data
more than necessary, lowering cache hits. But the advantage
is that almost no software coherence maintenance overheads
(e.g. write detection) are generated. Obvious disadvantages of
this protocol are that L2 cache is bypassed for shared data,
and the writing through to DRAM may put heavy stress on
the off-chip memory bus, despite the help of the WCB, as we
analyzed in Fig. 3.

4WCB is flushed in 3 cases: 1) 32 bytes filled in; 2) next write to a non-
consecutive MPBT addr. (not in the same cache line); 3) next write to non-
MPBT addr.

B. DSM Mode

To address the drawbacks of the SPM protocol, the DSM
protocol works in a reverse philosophy. It traps writes to shared
memory using memory protection and synchronizes per-core
private cache copies of shared pages across synchronization
points. The associated page-level false sharing issues are
resolved by using the classical twinning and diffing technique
[9]. We illustrate this protocol using Fig. 3. In our system,
every page begins with SPM mode. Some pages switch to
DSM mode, assumed a profiler (or programmer via API) varies
their page mappings system-wide. Suppose the virtual page
A [virtual address = VA(A)] in the example was originally
mapped to a physical frame H[A] in the shared DRAM.
This page frame is the golden (home) copy. After A has
switched to DSM mode, the original SPM-mapped frame will
be unmapped. The unmap system call is provided by Barrelfish
and its internal implementation has included invalidating TLB
using the INVLPG instruction. So the OS page table or TLB
no longer has the VA — PA mapping for page A. However,
its page control record stored at the SVM library level won’t
be deleted, and the record has stored the frame address (or
capability reference, capref, in Barrelfish) of the golden copy.
Hence, the SVM still knows where to locate the golden-copy
physical frame for memory copying when necessary. The page
control record is updated to set page state to read-only and set
mode to DSM (a.k.a. private mode).

Later, when a core tries to read/write using VA(A), a page
fault will be generated since VA(A) is no longer mapped to
any frame. The faulting core traps this exception and call
the SVM’s page fault handler to locate the golden copy of
A and replicate it from shared DRAM to a newly allocated
frame that we call the cached copy, C[A], in private DRAM
of the core. Then VA(A) is remapped to C[A]; access is
resumed on C[A] instead of on H[A]. Access to C[A] has
advantages over H[A] because this cached copy can exploit
the L2 cache by tagging it as non-MPBT. So concerning the
second for-loop in the example, DSM mode always performs
better than SPM mode. At the cost of page faulting, replication



and remapping upon the first read/write in a critical section, we
gain a better guarantee of on-chip access speed for probably
a lot of accesses. DSM mode is suitable for pages that have
strong reuse patterns.

In a critical section, upon the first write on a shared page
(i.e. write fault), the faulting core will perform the following:

1)  Make a page replication from the golden copy (shared
DRAM) to a cache copy (private DRAM) if the page
is of read-only state and of private mode but the
faulting core does not have a cached copy mapped
in its private memory, as the page control record
indicates.

2)  Modify the page access control: change read-only to
read-write state.

3) Create a twin copy from the local copy of the page
in its private memory.

4)  Add the page id of the page being written to a dirty
page list.

One important bridge between the SPM- and DSM-mode
protocols is the introduction of memory protection of the
golden copy of a shared page when it begins being remapped
to a private copy by any core. Our system is indeed able
to support the flexibility that different cores use different
mappings for the same page, provided that some conflicting
combinations are avoided by the design of the library APIs.
One combination our system allows is this: core 1 maps page A
to DSM mode (non-MPBT, write-back cache, private memory)
whilst core 2 maps A to SPM mode (MPBT, write-through,
shared memory). So in the runtime, they are accessing different
page replicas. To support this functionality seamlessly through
our coherence protocol, a remapping of the golden page to
read-only MPBT is required. With this read-only protection,
any writer of the page in SPM mode will be trapped by
the write fault handler when it updates the golden page. The
faulting core will add this page to the dirty list. Upon unlock,
it will generate a write notice of this page into the write notice
list of the lock id used to guard this update. Next time, when
a core holding a private copy of this page acquires this lock,
it will get the write notice and know that the golden copy has
been changed by someone else. So it must invalidate the local
cached copy. This is the only channel for SPM-mode updates
to propagate to the cores running the DSM-mode protocol.

C. Implementation

Our SVM implementation is based on the 2012-06-06
release of Barrelfish. We modified the Barrelfish rck code to
hijack the whole MPB space which was originally managed by
the OS. In other words, it is then up to our library’s decision
about how to use all the 8§ KB per-core MPB space. The
virtual memory subsystem of Barrelfish is very different from
Linux. Barrelfish manages resources, including physical page
frames, using capabilities. In user space, Barrelfish borrows
the BSD concept of keeping the hardware-dependent bits of
memory management (e.g. inserting mappings) in a physical
map (pmap) and providing a more general interface built on
virtual memory regions (vregions) and virtual address spaces
(vspaces). Having this platform-independent API keeps user-
level code and new hardware-specific optimizations portable.
We call pmap—f.modify_flags to change the various bits

of a page table entry (PTE). On SCC, a new status bit—PMB
(bit position 7)—has been added to the TLB entries of the
data cache. The PMB bit together with the PCD and PWT bits
(cache-disable and write-through bits) determine the memory
type of the data. For example, encountering VREGION_FLAGS_
MPB (in Barrelfish speak) on the SCC port, the Barrelfish kernel
will set both the PMB and PWT bits of the PTE to true, and the
memory region is mapped as MPBT type. We provide custom
malloc, lock/unlock and barrier routines for programmers as if
they were programming on a cache-coherent shared-memory
machine using POSIX mutex and barrier functions.

IV. PERFORMANCE EVALUATION

Our performance evaluations are conducted on an Intel
SCC machine with 32GB RAM and Barrelfish installed. We
run all experiments using a static frequency setting: 533MHz
(tile) and 800MHz (mesh). For convenience, we use the
terminology of Hybrid mode to mean the system runs with
both SPM and DSM page modes while the SPM mode means
all pages are mapped to SPM page mode.

A. Bucket Sort

We ported a bucket sort kernel similar to that in Terasort
whose program logic is essentially a parallel bucket sort with
three major steps: 1) spawn the data generator in parallel
on each compute node; 2) perform sort locally on the data
assigned to each node; 3) merge results onto global file system.
Our experiment uses a problem size of 8,388,608 keys, 256
buckets per core and applies bubble sort as the per-bucket
local sorting algorithm. In step 1, the program only performs
sequential access. So we can set both the original array and
bucket array as SPM mode. Before step 2, we set only the
bucket array as DSM mode, since we would sort on the bucket
array (intense access). In step 3, we can either set the bucket
array back to SPM, or just leave it alone, since we only read the
bucket array in step 3 (we chose the latter). Then hybrid mode
has no twin and diff overhead in step 1 and step 3, while still
having page fault overhead, which is almost negligible. The
benchmarking results are plotted as Fig. 4(a) and Fig. 4(b).

The program running in Hybrid mode exhibits superlinear
speedup and greatly outstrips the SPM counterpart when
scaling the number of cores, thanks to augmented cache effect
due to L2 enabling when every core is intensively sorting its
portion of the shared data. Superlinear speedup phenomena
were also observed by others like MetalSVM [8]. To study
the performance in more depth, we have taken the hardware
performance counter statistics as shown in Fig. 5 to analyze the
performance. We observe that the items (2) “bus utilization”,
and (7) “pipeline stalled waiting for data memory read” are
many times higher in the 32-core SPM execution mode. The
bus utilization cycles in SPM mode are about 100 times more
that in Hybrid mode, and this is the key reason for why
Hybrid mode outstrips SPM mode that much. A significant
portion of CPU time is wasted on waiting for the bus—the
major performance killer of the SPM mode. This can also
be reflected in the number of cycles that the pipeline stalls
on read (item (7) in Fig. 5). We can infer from here that the
SPM-mode execution has involved many more off-chip DRAM
accesses than the Hybrid-mode. This proves that having a
hybrid memory model to cater for the diversity of memory
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Fig. 4. Benchmarking results of BucketSort (For 1-core case, Hybrid mode skips all DSM mappings and falls back to pure SPM handling.)

access patterns that exist in many programs is an important
move to make scalable many-core SVM systems.

B. Malstone

Malstone [4] is a benchmark that emulates detecting “drive-
by exploits” from log files. We ported Malstone (version A)
to our SVM library. The core function of the program is to
compute the ratio of compromised (a.k.a. flagged or marked)
visits to total visits for each website. See Fig. 6(a) and 6(b)
for the execution time and speedup measurements respectively.
The run in hybrid mode has attained 6x to 8x performance gain
over the run in SPM mode. The best case of this application
happens on 16 cores (8x better speedup resulted in Hybrid
mode). Again, superlinear speedup is observed due to cache
effect and slightly due to the relative increase of the number
of memory controllers when scaling up the number of cores to
run the parallel program. The superlinear speedup in the case
of using hybrid mode is even much higher than that observed
with SPM mode. The reason is that with the hybrid memory
model, the pages mapped as private page mode (MPBT bit
off) can exploit L2 cache and hence have augmented the cache
effect enormously.

C. Graph 500

We ported the Graph 500 benchmark to our SVM. One
thing is that the original Graph 500 BFS kernel is somewhat
unrealistic—real-world applications won’t just traverse each
node without doing anything on it. Therefore, we slightly
modify it to model a more real-life application scenario like the
case of Malstone—finding the scope of vulnerable users on a
social network graph. Each node in the graph represents a user
profile. Each edge in the graph represents some relationship
with another user. The process begins with a black list of
suspicious users who are posing security threats on the social
network. For a particular user (source node), we check its
relations against the black list of users. We want to traverse
all users (nodes) connected to this user to see if any of them
belong to the black list. The benchmark uses a shared array
of 64-bit long integers to implement blacklist of user ids, and
outputs a count of users linking to the blacklisted members at

program end. We test with a blacklist of size 128KB and mark
it as “read-only private” using the SVM API so that the array
can be cached in L2. The benchmark was run in both SPM
and Hybrid modes. The benchmarking results of the ported
Graph 500 benchmark are shown in Fig. 7(a) and 7(b). We get
a 5x performance gain from Hybrid over SPM in running the
BFS kernel (step 3) on 48 cores. In terms of total time (steps
1+2+3), Hybrid mode still obtains 2.15 times better speedup
than SPM mode on 48 cores. We also observe that the gain
from hybrid increases with the number of cores. This is a direct
result of exploiting a larger aggregate L2 cache capacity. Or in
other words, with more cores to share the workload, the size
of per-core partition of the graph data set gets closer to the L2
cache size of each core, resulting in fewer cache misses that
go to the off-chip DRAM.

V. RELATED WORK

Currently, SVM research efforts have all been made on
SCC Linux. Our work is the first SVM on Barrelfish. Software
Managed Coherence (SMC) [10] is an open-source package
shipped by Intel to provide an SVM space for the SCC. As
SMC is runnable on SCC Linux only, we could not make
a direct experimental comparison with it. However, we have
studied its synchronization mechanism. SMC directly maps
the SVM space to the cacheable shared physical memory
(SPM) or shared DRAM. Shared data can only be cached in
L1. Mapping all pages to SPM mode for execution on our
system is equivalent to SMC on Barrelfish. On the other hand,
we augment this baseline system with DSM mode and page
remapping to enhance data locality.

MetalSVM [8] is a page-based SVM built into a bare-metal
hypervisor that emulates NUMA architecture for guest Linux
operating systems on SCC. MetalSVM currently supports two
memory models: lazy release consistency and strong consis-
tency. They claimed to provide lazy release consistency (LRC)
as in Treadmarks [9], but their implementation is the same as
Intel SMC (using CLIINVMB and write-through L1 caches).
There is no lock id associated with each critical section, so
the scope of invalidation affects all MPBT-tagged cache lines
including those that were not updated in or before the current
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Fig. 6. Benchmarking results of Malstone

lock interval. So some updates are propagated eagerly, not
lazily. In contrast, our DSM mode (scope consistency) using
lock ids to differentiate scopes of updates is a truly lazy and
fine-grained approach. Regarding their strong memory model,
their motivation is for legacy code. At each moment, only one
core, the page owner, is allowed to read/write the page. This
serialized behavior may result in poor scalability for write-
intensive programs.

Kim et al. [11] developed a page-based release-consistent
software SVM for SCC Linux based on the commit-reconcile
and fence (CRF) memory model. Our SVM is similar to theirs
in that cores keep private copies of shared data. But our way
of doing this is selective on a per-page basis (guided by the

Ratio of SPM/Hybrid

48

Core Count

«=4=SPM =@i=HYBRID
(b) Speedup

programmer or profiler). In their SVM, all paged data must go
through a private memory region called “sache” before they
can be accessed. Bringing updates of a page from one core
to another entails two memcpy’s between saches and shared
DRAM. Our SVM supports direct update to the golden copy
in shared memory. As another difference, the coherence unit
of their SVM is the variable’s length. While this design avoids
false sharing, they require the user or compiler framework
to reconcile and commit every defined shared variable. Their
inserted code for per-variable reconcile and commit may
penalize the overall runtime, induce more memory transactions
and state bookkeeping overheads while page-based reloads,
in our SVM, play an aggregate effect and fit data-intensive
workloads better.
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VI. CONCLUSION

Efficient system software support for many-core processors
is an inexorable next step in the evolution of computers.
This has revived the topic of software managed coherency
in recent years following the release of Intel’s SCC. We
propose a scope-consistent page-based shared virtual mem-
ory (SVM) system to support POSIX-like lock-based parallel
programming. As an innovation, we devise a hybrid memory
model to enforce release consistency for pages allocated in
shared physical memory (SPM) and scope consistency for
page copies distributed in per-core private memory spaces
(DSM). Our SVM system supports a per-core specific choice
of page remapping. Embracing such diversity allows different
memory access patterns to exploit enhanced cache effects.
The memory model is implemented into a two-way cache
coherence protocol which synchronizes SPM-mapped pages
by partial hardware support (SCC’s CLIINVMB) and synchro-
nizes DSM-mapped pages via conventional SVM techniques
(page faulting, twinning, diffing, etc). A hybrid execution mode
is to mix the handling of the two kinds of virtual memory pages
in a harmonious way. This win-win design reaps the benefits
of the two protocols. Our experimental results collected from a
series of benchmarks, including Malstone and Graph 500, have
proved the effectiveness of our coherence protocol design and
dynamic page remapping technique to boost cache locality.
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