Lightweight Transparent Java Thread Migration for Distributed JVM*

Wenzhang Zhu , Cho-Li Wang, and Francis C. M. Lau
The Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam, Hong Kong
{wzzhu,clwang,fcmlau }@csis.hku.hk

Abstract

A distributed JVM on a cluster can provide a high-
performance platform for running multi-threaded Java
applications transparently. Efficient scheduling of Java
threads among cluster nodes in a distributed JVM is
desired for maintaining a balanced system workload so
that the application can achieve maximum speedup. We
present a transparent thread migration system that is
able to support high-performance native execution of
multi-threaded Java programs. To achieve migration
transparency, we perform dynamic native code instru-
mentation inside the JIT compiler. The mechanism
has been successfully implemented and integrated in
JESSICA2, a JIT-enabled distributed JVM, to enable
automatic thread distribution and dynamic load balanc-
ing in a cluster environment.

We discuss issues related to supporting transpar-
ent Java thread migration in a JIT-enabled distributed
JVM, and compare our solution with previous ap-
proaches that use static bytecode instrumentation and
JVMDI. We also propose optimizations including dy-
namic register patching and pseudo-inlining that can
reduce the runtime overhead incurred in a migration
act. We use measured experimental results to show that
our system is efficient and lightweight.

Keywords: distributed JVM, multi-threading, Java
thread migration, mobility, JIT compiler,

1 Introduction

The Java programming language supports threads
and provides concurrency constructs at the language
level for thread-based parallel computing. It is a more
portable parallel programming tool than many other

*This research is supported by Hong Kong RGC grant HKU-
7030/01E and by HKU under Large Equipment Grant 01021001.

existing parallel languages or libraries for parallel com-
puting. In contrast to message passing systems such as
MPI, multi-threaded Java applications favor the alter-
native shared memory programming paradigm.

Cluster is becoming important for high-performance
computing. Therefore, it is worth studying the possi-
bility of extending the JVM to run on clusters in such
a way that the execution of a single multi-threaded
Java program can span multiple machines. Such an
extended JVM is a “distributed JVM”. An ideal dis-
tributed JVM can provide a single system image (SSI)
to multi-threaded Java applications, which is a much
desired feature in a cluster.

One of the essential features of a distributed JVM re-
alizing SSI is the transparent migration of Java threads.
This should happen not just once at the start of ex-
ecution, but dynamically during runtime in order to
achieve a balanced system load throughout. It is only
through maintaining a balanced load will the system
be able to achieve maximum speedup for its applica-
tions. Being transparent, the migration operation is
done without explicit migration instructions to be in-
serted in the source program by the programmer. The
runtime system would provide all the support neces-
sary to schedule a migration when such a need arises.
The migration will still be carried out efficiently and
the application is unaware of the migration operation.

Among the many challenges in realizing a migration
mechanism for Java threads, the transferring of thread
contexts between cluster nodes requires the most care-
ful design. One could use the raw thread context for
the purpose, as is done in C/C++ thread migration
systems [3]. Such systems however exhibit poor porta-
bility simply because the C/C++ thread context by
design is not portable. For example, all nodes may
need to reserve the same virtual address in order to
properly access a stack variable [3]. On the contrary,
Java threads operate with a bytecode-oriented con-
text which is highly portable. This bytecode-oriented

thread context is understood by bytecode instructions,
and no machine-dependent information will ever ap-
pear inside the bytecode context.

For parallel computing to achieve high performance,
the JIT compilation mode is very much a necessity.
The practical goal of our work to extend a JIT-enabled
JVM is to provide an efficient transparent thread mi-
gration mechanism. We address the following issues.

e Lightweight. The JIT mode offers much higher
performance than the interpreter mode. Hence,
the migration overheads are more sensitive to the
overall performance. Runtime overheads in terms
of time and space to support thread migration
should be minimized.

e Dynamic. Any preprocessing of Java code or
bytecode of applications should be avoided so that
a large variety of multi-threaded Java applications
distributed in bytecode format can be downloaded
and executed during runtime on our system.

e Transparent. The system should not introduce
any special API for Java threads to make explicit
calls for migration. The entire migration operation
should be transparent to Java threads.

Based on the proposed design, a transparent Java
thread migration mechanism has been implemented
and successfully integrated in our distributed JVM,
JESSICA2 [13], which allows JESSICA2 to perform
automatic thread distribution and dynamic load bal-
ancing on a Linux PC cluster. This paper differs from
a previous paper for the same project [13] in that it pro-
vides in-depth discussion on the design principles, im-
plementation techniques and performance evaluation of
the thread migration mechanism.

The rest of the paper is organized as follows. Section
2 discusses the overview of the transparent Java thread
migration system. Sections 3 and 4 discuss the two
main components of the system for stack capturing and
stack restoration, respectively. Section 5 presents the
experimental results. Section 6 discusses related work.
The paper ends with a conclusion in Section 7.

2 Overview
2.1 Distributed Java Virtual Machine

A Distributed Java Virtual Machine (DJVM) is a
middleware that supports parallel execution of mul-
tithreaded Java applications in a distributed system.
DJVM supports the scheduling of Java threads on clus-
ter nodes and provides location transparency on object

access and 1/O operations for Java threads. The se-
mantics of Java thread execution on a DJVM will be
preserved just as if it were executed in a single node.
From the viewpoint of a multi-threaded Java applica-
tion, the DJVM offers an SSI illusion.

JESSICA2 [13] is a DJVM running on a PC cluster
to provide a single system image to multi-threaded Java
applications. During runtime, the Java threads can be
automatically migrated from one node to another to
achieve dynamic load balancing. The JIT compilation
support of the migration mechanism significantly im-
proves the performance of JESSICA2 over the previous
JESSICA project [7] which works only in interpreter
mode. Figure 1 shows the overall architecture of JES-
SICA2. JITEE stands for JIT compiler based execu-
tion engine. The global object space provides a single
Java object heap across multiple cluster nodes to facili-
tate location transparent object access in a distributed
environment.

multithreaded Java program
i)

{ new Thread();

) \
Master

L igration Migration
ration
Worker Worker
M M

i A%?Awsf f f Thremsi i f Thrwsf f f
Migralizlfr:reques ’ JTEE ‘ ’ JTEE ‘ ’ JTEE ‘
|
Load l\;lonitor ’ Global Object Space ‘
oS oS oS oS
Hardware Hardware Hardware Hardware

| | | |

Communication Network

Figure 1. Overall architecture of JESSICA2.

2.2 Transparent Java thread migration

Transparent thread migration has long been used
as a load balancing mechanism to optimize the re-
source usage in distributed environments [3]. Such sys-
tems usually use the raw thread context (RTC) as the
communication interface between the migration source
node and target node. RTC usually includes the virtual
memory space, thread execution stack and hardware
machine registers.

Existing solutions for Java thread migration mainly
use bytecode-oriented thread context (BTC) as the in-
terface. The BTC consists of the identification of the
Java thread, followed by a sequence of frames. Each
frame contains the class name, the method signature
and the activation record of the method. The activa-
tion record consists of bytecode program counter(PC),

JVM operand stack pointer, operand stack variables,
and the local variables encoded in a JVM-independent
format. There are three main approaches in existing
systems: extending a JVM interpreter [7], static byte-
code instrumentation [10], and using the JVM Debug-
ger Interface (JVMDI) [5, §].

To extend a JVM interpreter seems to be an obvious
approach since the interpreter has the complete picture
and control of the BTC. However, modifying a JVM
interpreter to deal with the BTC adds to the already
rather slow execution by the interpreter.

Static bytecode instrumentation can be used to ex-
tract limited thread stack information, but the price
to pay for is a significant amount of additional high-
level bytecodes in all the Java class files. This addi-
tional amount could result in large space overheads.
For example, in JavaGoX [10] and Brakes [11] which
use static bytecode instrumentation, about 50% addi-
tional space overhead can be observed in running the
simple recursive Fibonacci method.

In a JIT-enabled JVM, the JVM stack of a Java
thread becomes native stack and no longer remains
bytecode-oriented. In the face of this, JVMDI is a
convenient solution. The earlier JVMDI implementa-
tions did not support JIT compilers and only the latest
JDK [1] from Sun is able to support full-speed debug-
ging using deoptimization techniques that were intro-
duced in the Self compiler [4]. However, JVMDI needs
huge data structures and incurs large time overhead in
supporting the general debugging functions. Moreover,
the JVMDI-based approach needs to have the Java ap-
plications compiled with debugging information using
specific Java compilers such as the javac in Sun JDK,
which will deny many Java applications distributed in
bytecode format but without debugging information.
Furthermore, not all existing JVMs have realized the
JVMDI defined in Sun JDK.

2.3 Our solution

In contrast to the aforementioned approaches, we
solve the transformation of the RTC into the BTC di-
rectly inside the JIT compiler. Our solution is built on
two main functions, stack capturing and stack restora-
tion (see Figure 2). Stack capturing is to take a
snapshot of the RTC of a running Java thread and
transforms the snapshot into an equivalent BTC. Stack
restoration is to re-establish the RTC using the BTC.
Such a process via an intermediate BTC takes advan-
tage of the portability of the BTC. The following two
sections discuss in detail the operation of these two
important functions, and optimizations that help to
reduce the time overheads and the memory footprint.

Raw Thread Context (RTC)

90esp: 0x00000000
%esp+4: 0x0x86243c
%esp+8: 0x08623200
%esp+16: 0x08293010

Y%oesp: 0x00000000
Y%esp+4: 0x082ca809
%esp+8: 0x08225400
Y%esp+16: 0x8266bcO

Yoeax=0x8623200

X
0*
\0/\9
’/})

Frames{ \/
method CPI::run V@111
local=13;stack=0;

var:
arg 0:CPI;33,0x8225400;
local 1:[D;33,0x8266bc0@2;
local 2:int,2;

Bytecode-oriented Thread Context (BTC)

Figure 2. The thread stack transformation.

3 Stack capturing

To capture a thread stack in JIT compilation en-
vironments, we identified the following items that are
needed to be transformed from RTC into BTC: method
id, bytecode Program Counter(PC), stack pointer for
JVM operand stack, the local variables and the JVM
stack operands.

The general idea of our approach is to use the JIT
compiler to instrument native codes which help the
transformation of the RTC into BTC. These native
codes will spill the most recent information of vari-
ables in the stack at some points, i.e., the latest val-
ues will be written back to memory from registers.
When the migration request arrives, the thread sched-
uler can perform on-stack scanning to derive the BTC
from the RTC instead of using a stand-alone process
to collect the context like JVMDI. During this process,
we emphasize simple and efficient solutions that solve
the Java thread migration problem without introduc-
ing large volume of auxiliary data structures and costly
or unnecessary transform functions.

3.1 Migration points and pseudo-inlining

The BTC requires that the bytecode PC be well-
defined so that a thread must be stopped at a point
that has equivalent bytecode PC. In other words, the
stopped point should be at the bytecode boundary.
However, when a thread is stopped by the scheduler
and is chosen to be the migration candidate, it is most
likely running at some point of native codes that is
not at the bytecode boundary. It may be very hard
to “slide” the execution by simulating the execution

. push %ebp
JIT compiler mov %esp,%ebp
sub $0x28,%esp

Oiconst_0
Llistore 1 mov Ox8(%ebp),%besi
2goto 18 mov Oxc(%ebp),%eax
/‘ B-point
5 getstatic #2 xor %ebx,%bebx
8iload_1 jmp 0x81e0526
o) M-point PRS- : mpl $0xe200109e,0xffffffec(% eby
i i imigration checkini !
g 9|nvokeﬁ.at|c#3 g 9 ine lablel
x _ M-point e - movl $0x100,0xffffffe8(% ebp)
8| 12invokevirtual #4 typespilling 9%ebx,Oxffffffed(%ebp)
15iinc11 register spillingmovl $0x4,0xfffffff0(%ebp)
I
oad_ . movl $OX5,0xFFfffffA(%ebp)
%2 bipush 30 startmigration " 0x4009bde0 <migr ate_stub>
if_icmplt 5 Dynamic lablel:

_native code / mov Ox812cdc0,Y%eax

instrumentation movl $0x11a,0xffffffe8(%6ebp);
mov Yoeax,0xffffffdc(%ebp)
mov %%ebx,Oxfiffed(%ebp)

Figure 3. Dynamic native code instrumenta-
tion.

of native instructions from the stopped point to the
next immediate bytecode boundary. In fact a transpar-
ent thread migration system does not need such fine-
grained breakpoints. As long as the migration request
can be acknowledged within a reasonable time, say a
few microseconds, it still makes sense. In our system,
instead of stopping and sliding, we use checking at some
specific points in native codes. Such points are called
migration points. The BTC will be consistent with the
RTC at such points, i.e., the semantics of the stack
context are identical to both BTC and RTC at the mi-
gration points. When the migration request is issued
by JVM, the thread will delay the acknowledgement
until it reaches the next migration point.

Generally, all points at the bytecode boundary can
be chosen as the migration points. However, checking
at all points will degrade the execution performance
dramatically. We choose two types of points in our
system. The first type (referred as M-point) is the site
that invokes a Java method. The second type (referred
as B-point) is the beginning of a bytecode basic block
pointed by a back edge, which is usually the header of
a loop. The concepts of migration points and dynamic
code instrumentation are illustrated in Figure 3.

The M-point is necessary because we need to make
sure that a frame should have consistent BTC before
it is pushed in the stack so that later capturing can
get the correct BTC from the pushed stack frame. At
such points, we need to spill the values and types of
variables, bytecode PC and stack pointer to the mem-
ory slots in the thread stack. We also have one test
instruction to check if the migration request is issued.

The M-point will add overheads to the thread ex-
ecution and too many migration points will lead to a
performance degradation caused by the blowup in code

size. The observations that short methods can skip the
migration checking without delaying the migration re-
sponsive time too much lead to the following decisions
made in our system: We treat Java library method
invocations, which usually last for a relatively short
time, as “straight” code sequences, i.e., no migration
points will be inserted before such method invocations.
Nevertheless, the advantage of such a decision is that
the context will become more portable as the context
contains only application methods. And such a deci-
sion can be generalized to inlined methods which are
typically tiny. As migration will not happen inside an
inlined methods, no additional efforts are needed to
transform an inlined stack to a normal stack as used
in the deoptimization technique (A debugger, however,
needs this mechanism to support the user’s request to
breakpoint at inlined methods.).

The B-point is used to prevent a thread from be-
ing unable to respond to the migration request in a
reasonable time when it is running inside a loop. If
adopting the same spilling used for M-point, it will
be much costly for JIT compilers to perform so many
memory operations at each iteration in a loop. We
observed that no spilling is needed if no migration re-
quest is issued. We check the migration request first. If
no request happens at the migration point, no spilling
will be performed. Therefore during normal execution,
each iteration in a loop needs only one additional flag
checking. Note that M-point can not have such opti-
mization, because if a frame is not consistently pushed
in the stack, the capturing caused by the later migra-
tion request will get the wrong data from the stack.

As Java applications typically have many small-size
methods, if a JIT compiler has inlining optimization,
the migration checking can be eliminated dramatically
as many M-points will be eliminated. For a JIT com-
piler that does not introduce method inlining optimiza-
tion, we propose a pseudo-inlining technique to elimi-
nate the checking overheads with the same effect as in-
lining optimization. “Pseudo” means that the method
is not actually inlined by the compiler. Rather our
M-point checking tries to treat it as if it was inlined
(see Figure 4). A small-size method is considered as an
pseudo-inlined candidate if the method contains no fur-
ther method invocations. The M-point will not place
any checking and spilling if the callee is an inlined can-
didate. The B-point will not be called for inside such
candidate methods either.

3.2 Type spilling

The thread context includes the values of stack
operands together with their types. As stack operands

call short_meth1()

check_migration
call short_methi()
check_migration
call short_meth2()

n’| check_migration

call long_meth()

cheek—migration
call short_methi()

call short_meth2()
check_migration
call long_meth()

check_migration
call short_meth3()

eheek—migration
call short_meth3() call short_meth3()

Figure 4. Example of Pseudo-inlining.

are dynamically pushed into or popped from the thread
stack during thread execution, their types cannot be
determined in advance. For example, the bytecode in-
struction “f2d” (convert float value to double value) will
pop off a float variable from operand stack and push a
double operand on the stack top. In Sumatra [9], it is
proposed to use a separated type stack operating syn-
chronously in the JVM interpreter during thread exe-
cution, so that at the time of migration the operand
type can be known. Although such a method can be
used in the case of JIT compilers, it doubles the oper-
ation time to access the stack operand.

To tackle this problem in JIT compilers, we choose
to perform the type spilling at the migration points dis-
cussed above. The type information of stack operands
at migration points will be gathered at the time of byte-
code verification before compiling the Java methods.
We use one single type to encode the reference type of
the stack operand as we can deduce the real type of
a Java object from the object header. We choose one
encoding for each of primitive types. Therefore, we can
compress one type into 4-bit data. KEight compressed
types will be bound in a word, and an instruction to
store this 32-bit machine word will be generated at the
migration points to spill the information to appropriate
location in the current method frame. For typical Java
methods, only a few instructions are needed to spill
the type information of stack operands in a method,
which results in better performance improvement than
the synchronous type stack method used in Sumatra
[9].

4 Stack restoration

In this section we will discuss how to restore the ex-
ecution of the migrated thread from the point it was
stopped, given the BTC, the JVM-independent thread
stack context as input. The approach of restoration a
Java thread execution under JIT mode has rarely dis-
cussed in related projects. In interpreter-based JVM, a
simple frame-by-frame interpretation mode can be used
[7]. For static bytecode instrumentation approach,

instrumented bytecodes will simulate the calling se-
quences [11].

Both approaches can not fit well in a JIT-enabled
JVM, because the native codes compiled from the byte-
codes of Java methods may assume certain usage of
hardware registers at the restored points. We use a
scheme called “dynamic register patching” in JIT com-
pilers to rebuild register context.

4.1 Startup and closing

As the input is in the JVM-independent text format,
the initial step to restore thread execution needs to
quickly parse the input. The parser was written using
YACC. Invalid inputs will be rejected by the JVM dae-
mon thread which is responsible for accepting incoming
thread migration. For valid inputs, a data structure
containing the stack context will be created for later
processing. As the daemon thread needs to handle all
the requests from other JVMs, we can not use it to
restore the execution of the migrated Java thread. In-
stead a new native thread will be created by the dae-
mon thread and the input context will be assigned to
it. Then the newly created thread becomes the clone of
the migrated thread in current JVM. Given the stack
context data structure as the input, the clone thread
will start the bootstrapping.

The thread will load the necessary classes in the
thread stack context and resolve the reference vari-
ables. After that, it will bring back the calling sequence
as described by the input context, which is the most
difficult task in the bootstrapping. In our system, we
build a sequence of stack frames with the returning
addresses and the frame pointers properly linked to-
gether to simulate the method invocation. The local
variable inside the frames will be initialized to the val-
ues according to the input thread context. Next the
dynamic register patching module will generate small
code stubs to handle the restoration of machine regis-
ters. The detail of dynamic register patching will be
discussed in next subsection.

A trampoline function will then be used to swap
the current stack frame with the newly created stack
frames. It also makes sure that upon completion the
thread will return the control to the closing handling
function. The closing handling function will collect the
return data and notify the migration source. Then the
thread can terminate its migration journey.

4.2 Dynamic register patching

In our system, we introduce a scheme called “dy-
namic register patching” to rebuild register context just

before the control returns to the restored points. The
register-variable mapping information comes from the
JIT compilers. The dynamic register patching mod-
ule will generate a small code stub using the register-
variable mapping information at the restored point of
each method invocation. The thread execution will
switch to the code stub entry point for each method
invocation. The last instruction to be executed in the
code stub will be one branching instruction to jump
to the restored point of the method. To make our so-
lution efficient, we allocate the code stub inside the
thread stack so that when the control jumps to the re-
stored point, the code stub will be automatically freed
to avoid memory fragmentation caused by the small-
size code stub. Figure 5 illustrates the dynamic register
patching on 1386 architecture. Shaded areas represent
the native codes. “Ret Addr” is the return address of
the current function call and “%ebp” is the 1386 frame
pointer.

Thread Stack

Code | regl <- valuel i
Stub | dmpl restore_pointl | Compiled methods

Method1()
{

frame 1

.r.e.store_point:l:
M %ebp ¥
Ret Addr
regl <- valuel]
reg2 <- value2

jmpl resotre_point0_|

?g Methodo()

o frame 0 {

<

3 restore_point0:
g = %ebp ¥

2] Ret Addr

trampoline frame trampoline()

Bootstrap()

bootstrap frame
= %ebp

trampoline();
losing_handler();

}

Figure 5. Dynamic register patching on i386
architecture.

5 Experimental results

To evaluate the proposed transparent Java thread
migration mechanism, we use our distributed JVM,
JESSICA2, which is developed based on Kaffe open
JVM 1.0.6 [6] and runs on the HKU Gideon 300 Linux
cluster. The cluster consists of 300 2GHz Pentium 4
PCs running Linux kernel 2.4.14 that are connected
by a 312-port Foundry Fastiron 1500 Fast Ethernet
switch.

5.1 Space and time overhead

We first measure the execution overheads caused by
the migration mechanism. The time overhead is mainly
due to the checking at the migration points; and the
space overheads are mainly due to the instrumented
native code at the migration points.

We use SPECjvm98 [2] benchmark in the tests. The
initial heap size is set to 48 MB. We compare the dif-
ferences in time and space costs between enabling and
disabling the migration checking at migration points.
We also measure the impact of using pseudo-inlining.

Table 1 shows the time and space overheads caused
by thread migration, when migration checking is dis-
abled (M-), enabled but without pseudo-inlining (M+I-
), or enabled with pseudo-inlining turned on (M+I+).
The space overhead is in terms of the average length of
native code per bytecode instruction.

From the table we can see that if pseudo-inlining
is disabled, on average, the time overhead reaches
36.33%, and the space overhead reaches 42.74%. How-
ever, if we enable pseudo-inlining, the average time
overhead charged to the execution of Java thread with
thread migration drops to 3.66% and the generated na-
tive code overhead becomes 15.73%. The additional
costs in the case of pseudo-inlining being disabled are
caused by the checking at migration points for the short
methods.

Both the time and space overheads after applying
the pseudo-inlining technique are much smaller than
the reported results from other static bytecode instru-
mentation approaches. For example, JavaGoX [10] re-
ported that for four benchmark programs (fibo, gsort,
nqueen and compress in SPECjvm98), the additional
time overhead ranges from 14% to 56%, while the ad-
ditional space cost ranges from 30% to 220%.

For JVMDI-based approaches, we use the fibo and
the nqueen program to measure the space cost caused
by the embedded debugging information using the
javac in Sun JDK 1.4. Both programs need about an
additional 25% space for the debugging information in
the class files.

5.2 Migration latency and breakdown

We also measured the overall latency of a migra-
tion operation using different multi-threaded Java ap-
plications. These applications include a latency test
(LT) program, 7 calculation (CPI), All-pair Shortest
Path (ASP), NBody simulation and Successive Over-
Relaxation (SOR). The latency measured includes the
time from the point of stack capturing to the time when
the thread has finished its stack restoration on the re-

Table 1. SPECjvm98 benchmarks.

Benchmarks Time overhead Space overhead
M+I-/M- | M1+ /M- | M+1L-/M- | M+1+/M-

compress 178.16% 106.78% 121.45% 110.18%
jess 116.34% 101.38% 160.78% 122.27%
raytrace 183.04% 106.38% 149.70% 113.65%
db 100.73% 101.51% 119.51% 108.86%
javac 113.33% 102.91% 180.30% 129.52%
mpegaudio 125.20% 104.96% 118.09% 107.13%
mtrt 171.96% 104.30% 149.73% 113.66%
jack 101.91% 101.04% 142.38% 120.58%
Average 136.33% 103.66% 142.74% 115.73%

mote node and has sent back the acknowledgement.
CPI only needs 2.68 ms to migrate and restore thread
execution because it only needs to load one single frame
and one Java class during the restoration. LT and ASP
need 5.0 ms and 4.7 ms respectively to migrate a thread
context consisting of one single frame and to restore the
context. Although they only have one single frame to
restore, they both need to load two classes inside their
frame contexts. For SOR which migrates two frames,
the time is about 8.5 ms. For NBody, which needs to
load four classes in 8 frames, the time is about 10.8 ms.

In additional, the breakdown of the latency test pro-
gram LT is shown. LT accepts a parameter to specify
the nested level so that we can migrate different num-
bers of Java frames in different tests using the same
program. Using LT, we give a fine-grain view of the
different steps inside the migration mechanism. These
steps include stack capturing, frame parsing, cloning
a thread, partial compilation to retrieve the register
mapping, and to build the new frame layout.

Table 2 shows the migration time breakdown of LT.
The first three rows show the information about the
bytecode context migrated, including the frame num-
ber, the number of variables inside all frames, and the
size of the frame context in JVM-independent format.
The last five rows show the breakdown of each major
step in the migration mechanism with different frame
numbers ranging from 1 to 8. In this breakdown, the
time to create the clone thread is constant, and its
average time is about 360 microseconds for different
frame sizes. The capturing time, frame parsing time,
compilation time and stack building time are a linear
function of the size of the frame. The total cost of all
these operations listed in last row shows that the major
steps of the migration only charge about 1.282 millisec-
onds to the overall migration latency for migrating one
frame, and less than 3.05 milliseconds for migration up
to 8 frames.

Table 2. Migration breakdown.
Frame# 1 2 4 8
Variable# 4 15 37 81
Size(bytes) 201 417 | 849 | 1713

Capture(us) 202 266 | 410 605

Parse(us) 235 | 253 | 447 | 611
Create(us) 360 360 360 360
Compile(us) | 478 | 575 | 847 | 1,451
Build (is) 7 11 14 21
Total(us) 1,282 | 1,465 | 2,078 | 3,048

5.3 Discussion

Compared with other proposed systems realizing
limited thread migration, our system provides a higher
performance platform with dynamic load balancing
achieved through Java thread migration in running
multi-threaded Java applications. The lower cost
in execution with the migration mechanism enabled
(M+I+) in the first part of the evaluation speaks for
the high-performance execution of Java threads in the
migration system. In the tests using the SPECjvm98
benchmark, the time overhead is about 3.66% on av-
erage and the space overhead is about 15.73%, which
points to the fact that using dynamic native code in-
strumentation in JIT compilers inside the JVM is a
promising solution to achieving high performance in
applications with thread migration.

In the latency test, we observe that communication
costs for transferring thread contexts and class loading
from local disk dominate the overall migration latency
(about 74% in the LT program). The major steps in
the migration mechanism excluding the communication
costs contribute only a small part of the overhead. This
attests to the lightweight characteristics of our design
in terms of time overhead of the migration operation
inside the JVM.

6 Related work

c¢JVM [12] is a cluster-aware JVM that provides SSI
of a traditional JVM running on cluster environments.
The c¢JVM prototype was implemented by modifying
the Sun JDK1.2 interpreter. ¢cJVM does not support
thread migration. It distributes the Java threads at
the time of thread creation.

JavaGoX [10] and Brakes [11] use static bytecode
instrumentation to realize transparent Java thread mi-
gration. Unlike their approach, our solution instru-
ments native code during runtime, and only instru-
ments executed methods.

Sumatra [9] extends the JVM interpreter to enable

capturing and restoring of Java thread context in or-
der to support resource aware mobile threads. The
interpreter-based thread migration mechanism, how-
ever, will result in poor execution performance com-
pared to the approach based on JIT compilers as used
in our system.

M-JavaMPI [8] uses JVMDI to support transparent
migration of single-threaded Java process to achieve
dynamic load balancing. Migrated processes can con-
tinue their MPI communication with other processes.
Our system supports the migration of threads, which
suits best multi-threaded Java applications.

7 Conclusion

We have presented a lightweight solution to trans-
parent Java thread migration in a JIT-enabled JVM
based on dynamic native code instrumentation and dy-
namic register patching. Our dynamic native code in-
strumentation is different from existing static bytecode
instrumentation approaches in that it instruments fine-
grain native code on demand at runtime so that it is
able to preserve the important features of Java such
as dynamic class loading. The approach puts little
constraints on the Java bytecode distribution, which is
in contrast to the JVMDI-based thread migration ap-
proach which requires embedding debugging informa-
tion in Java class files. The dynamic register patching
scheme represents a new way to solve the restoration
of the native Java thread stack in a JIT-enabled JVM.

Our design represents a balance between traditional
native thread migration at the system level and static
bytecode instrumentation at the user level. It uses the
portable Java thread context as an interface to glue to-
gether independent JVMs running in different nodes.
Our solution preserves high-performance JIT compila-
tion execution in the presence of thread migration.

References

[1] Java Platform Debugger Architecture.

http://java.sun.com/j2se/1.4.1/docs/guide/jpda/.

[2] The Standard Performance Evaluation
Cooporation. SPEC JVM98 benchmarks.
http://www.spec.org/org/jvm98, 1998.

[3] B. Dimitrov and V. Rego. Arachne: A Portable
Threads System Supporting Migrant Threads on
Heterogeneous Network Farms. IEEE Transac-
tions on Parallel and Distributed Systems, 9(5),
1998.

[4] U. Hlzle, C. Chambers and D. Ungar. Debugging
Optimized Code with Dynamic Deoptimization.
In the SIGPLAN 92 Conference on Programming
Language Design and Implementation, 1992.

[5] Torsten Ilmann, Tilman Krueger, Frank Kargl
and Michael Weber. Transparent Migration of Mo-
bile Agents Using the Java Platform Debugger Ar-
chitecture. In Proceedings of the MA’01, Atlanta,
USA, December 2001.

[6] Transvirtual Technologies Inc. Kaffe Open VM.
http://www kaffe.org.

[M. J. M. Ma, Cho-Li Wang and Fran-
cis C.M. Lau. JESSICA: Java-Enabled Single-
System-Image Computing Architecture. Jour-
nal of Parallel and Distributed Computing,
60(10):1194-1222, 2000.

[8] Ricky Ma, Cho-Li Wang and Francis C.M. Lau.
M-Javampi: A Java-mpi Binding with Process Mi-
gration Support. In The Second IEEE/ACM In-
ternational Symposium on Cluster Computing and
the Grid, Berlin, Germany, 2002.

[9) Mudumbai Ranganathan, Anurag Acharya,
Shamik Sharma and Joel Saltz. Network-aware
Mobile Programs. In Proceedings of the USENIX
1997 Annual Technical Conference, Anaheim,
CA, USA, 1997.

[10] Takahiro Sakamoto, Tatsurou Sekiguchi and Aki-
nori Yonezawa. Bytecode Transformation for
Portable Thread Migration in Java. In Joint Sym-
posium on Agent Systems and Applications / Mo-
bile Agents, pages 16-28, 2000.

[11] Eddy Truyen, Bert Robben, Bart Vanhaute,
Tim Coninx, Wouter Joosen and Pierre Ver-
baeten. Portable Support for Transparent Thread
Migration in Java. In ASM, pages 29-43, 2000.

[12] M. F. Yariv Aridor and A. Teperman. cJVM: A
Single System Image of a JVM on a Cluster. In
International Conference on Parallel Processing,
pages 4-11, 1999.

[13] Wenzhang Zhu, Cho-Li Wang and Fran-
cis C. M. Lau. JESSICA2: A Distributed
Java Virtual Machine with Transparent Thread
Migration Support. In IEEE Fourth International
Conference on Cluster Computing, Chicago, USA,
September 2002.

