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Abstract

Push-Pull Messaging is a novel messaging mechanism for high-speed interprocess
communication in a cluster of symmetric multi-processors (SMP) machines. This messaging
mechanism exploits the parallelism in SMP nodes by allowing the execution of
communication stages of a messaging event on different processors to achieve maximum
performance. Some optimizing techniqgues were implemented along with Push-Pull
Messaging to further improve its performanGzoss-space Zero Bufferovides a unified
buffer management mechanism to achieve a copy-less communication for the data transfer
among processes within a SMP nodédress Translatio©Dverhead Maskingemoves the
address translation overhead from the critical path in the internode communiasbrand-
Acknowledge Overlappingoverlaps thepush and acknowledge phases to hide the
acknowledge latency. Push-Pull Messaging effectively utilizes the system resources. It has
been implemented to support high-speed communication for connecting quad Pentium Pro

SMPs with 100Mbit/s Fast Ethernet.
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Introduction
A cluster refers to a group of whole computers that works cooperatively as a single

system to provide fast and efficient computing services. A commodity cluster integrates
mainstreamoff-the-shelfcomponents with customized software. Clusters can be classified
into two main categories: Cluster Of Uni-Processor machin@JP) and Cluster Of Multi-
Processor machine€EQMP). A COUP node contains one computation processor, whereas a
COMP node has two or more processors. As the cost of multiprocessor machines decreases,
typically those small-scale SMPs with two to four processors, building a low-cost commodity
COMP is a cost-effective solution to achieve high computing power. However, effective
clustering requires high-performance communication between nodes.

Some representative commodity COUPs are UC Berkeley's NOW [4], CESDIS’s
Beowulf Project [6], and among others [15]. Recently, COMP has been proven to be a viable
approach to achieve teraflops computing power. IBM’'s Blue Pacific [3] and SGI/Cray’s Blue
Mountain [2] are two examples of large-scale COMP. COMPaS developed by RWCP [18],
Clumps by UC Berkeley [14], and FMP by Tsinghua University [16], are the most successful
SMP-type COMPs. All these small-scale COMP used Myrinet as the connection network.
Each Myrinet NIC is equipped with a programmable co-processor (LANai processor) to
enhance the communication performance by moving packet handling and protocol processing
codes from kernel to the NIC [5]. Thus, most implementations can achieve very low point-to-
point communication latency.

Messaging in a distributed environment is non-trivial since the sender and receiver
are not synchronized. The asynchronous nature of message passing leads to additional
overheads in buffering, queuing/de-queuing, and synchronizing communication threads. To
achieve low latency, we should eliminate these overheads from the critical path in
communication. To achieve larger communication bandwidth, efficient coordination between
all communication threads thus maximizing the utilization of the underlying resources is
essential. Building COMPs brings new challenges in designing a high-performance

communication system. In COMP, all processors in a SMP node can process different



messages in parallel. Efficient messaging mechanism should minimize the locking effect and
reduce the synchronization overhead while multiple user and kernel processes are accessing
the shared resources and intelligently use any idle or less loaded processor in the SMP node to
handle the messages.

In this paper, we discuss Rush-Pull Messagingnd its optimizing techniques to
achieve low latency and high bandwidth communication between processes in the COMP
environment. The concept of Push-Pull Messaging is similar to the claiziealphase
protocol The messaging process is started by the send party. The send party transmits a
message by first directly “pushing” a portion of the message to the receive party. The receive
party starts theull phase after the receive operation has been issued and the pushed message
has arrived. The rest of the message is sent after an acknowledgement from the receive party
received by the send party. This communication pattern makes it possible to apply four
optimizing techniques to remove those unexpected overheads from the critical path to achieve
low-latency and high-bandwidth communication. The optimizing techniques include:

» Parallelism Exploitation which is a technigue to allow different execution stages of
both push and pull phases running on different processors to perform protocol
processing concurrently.

» Cross-Space Zero Buffewhich is a unified buffer management mechartisrspeed
up the data transfer between process spaces and NIC buffers by eliminating all
unnecessary memory copies.

» Address Translation Overhead Maskinghich is an overhead masking technique to
hide the address translation overhead from the critical path by delaying the translation
after communication events.

« Push-and-Acknowledge Overlappingvhich is a technique to overlap theshphase
with theacknowledgenessagé¢o hide the acknowledge latency from the critical path

and further minimize the size of the pushed buffer.



With the above optimizing techniques and the use of additional processor in an SMP
node, we can significantly enhance the data communication speed. Our implementation
supports quad Pentium Pro SMP, connected through 100Mbit/s Fast Ethernet. We have
measured the single-trip latency of 3418 and the peak bandwidth of 12.1 MB/s for the
internode communication. The single-trip latency between processes within the same SMP
node is as low as 7% and the achievable bandwidth is 350.9 MB/s. We also devedagya
receiveand alate receivetests for examining the run-time performance of the proposed
messaging mechanism. It is an low-cost solution to achieve high-speed communication, other
than using expensive interfaces like Myrinet, ATM, or future network interface VIA [20].

For the rest of the paper, we first present the basic idea of Push-Pull Messaging in
Section 1. In Section 2, we discuss the four proposed optimizing techniques. In Section 3, the
performance results are show. Analyses are discussed for both internode and intranode cases.

Finally, the conclusion is given in Section 4.

1 Push-Pull Messaging
Before we start designing the messaging mechanism for SMP clusters, a generic
communication model with four pipelining stages is examined. Related design issues in

COMP are also discussed.

1.1 A Generic Communication Model for SMP
The communication between a pair of COMP nodes can be viewed as a
communication pipeline with multiple process stages. Our Push-Pull Messaging was
developed based on this simple communication model.
e Stage 1: Transmission Thread InvocationUser applications initiate the transmission
by issuing a send operation in user space. Then, the data transmission thread will be
invoked to format outing packets. The thread puts the packets to the outgoing first-in-
first-out (FIFO) queue in the data dump of the network interface card (NIC). In COMP,

several processors may access the NIC simultaneously. To ensure the correctness of the



invocation in the multiprocessor environment, the system has to restrict that only one user
or kernel thread invokes the thread at a time. Efficient synchronization between
concurrent processes in the COMP node is critical to the communication performance
[12][19].

Stage 2:Data Pumping. After the submission of packets, the NIC pumps packets to the
physical network through the hardware on the NIC. The time spent in data pumping
mainly depends on the hardware performance. For example, it can be affected by the
performance of DMA engines in the host node and the NIC, and the network switch
performance [15].

Stage 3:Reception Handler Invocation.The data arrives the receive party and stores in

a designated buffer in the NiGiterrupt andpolling are two main mechanisms to invoke

the handler to serve the data arrival requests. For COMP nodes, there are two types of
interrupt —asymmetricandsymmetricinterrupt. With asymmetric interrupt, requests are
always delivered to one pre-assigned processor. With symmetric interrupt [11], requests
can be delivered to different processors, where the selection of processors is governed by
an arbitration scheme. For example, a commonly used scheme selects the least-loaded
processor to serve the interrupt. On the other hand, polling is a light-weight approach to
handle incoming packets. Polling routine watches the change of state variables and starts
the handling routine if necessary. The frequency of polling determines the reliability of
the channel. In COMP nodes, efficient polling mechanisms have been discussed [10][13].
Stage 4: Reception Processing.After invoking the reception handler, the handler
processes packets immediately. Reception processing involves re-assembly of packets,
copying between buffers, de-queuing buffers and pending requests, and synchronization
between user and kernel threads. In a COMP node, there are multiple active user-level
receiving threads. Without careful coordination between these communication threads

and the reception handler in kernel space, high-speed communication is impossible.



1.2 The Main Idea

This section describes the main idea of Push-Pull Messaging based on the
communication model described in Section 1.1. Figure 1 illustrates the communication

architecture of Push-Pull Messaging.
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Figure 1. Communication Architecture of Push-Pull Messaging.

As shown in the above figure, each send or receive process has its application-
allocated buffersource buffeandreceive bufferespectively, resided in the user space. Each
process also shares three data structures with the kernelséFiie queuestores the
information of pending send operations. Thaeeive queustores the information of pending
receive operations. Thieuffer queueand pushed bufferstores pending incoming packets
where their destinations in memory are undetermined.

In Push-Pull Messaging, the send process fitsthesa part of the message to the
receive party. Thpushed messagenhich contains BYTES_TO_PUSH bytes, is then handled
by the reception handler in the receive party. Depending on the timing of the receive
operation performed by the receive processptished messageill be stored in thgpushed
buffer if the receive operation is not started. Otherwise, the message will be copied to the
destination buffer Once the receive operation started, either the reception handler in the
receive party or the receive process itself will pull the rest of the message from the send

process.



The pull phase will be started by sending acknowledgementwhich implicitly
contains request information. The reception handler in the send party processes the
acknowledgementf the request is granted, the send handlerpuitithe requested part of the
message to the receive party. The reception handler in the receive party handles the message
and directly copies the message to the destination buffer without buffering pushed
buffer.

The important parameter BYTES_TO_PUSH defines the number of bytes to be
pushed by the sender at the beginning. This is a balance parameter between the latency of the
network and the latency of the memory system. The method to obtain this parameter is

explained in Section 3.2.

1.3 Two Examples

To clearly understand how the send and receive parties communicate ugigtihe
and pull operations with different timings of treendandreceiveoperations, two examples
are given and the execution flows are shown in Figure 2 and Figure 3. In each figure, the
combined execution flow of the process and the corresponding handler is shown by a vertical
timing lines. Left and right vertical lines represent the execution flow in the send and receive
parties respectively.

In the examples, the send party sends data resided in the application-allocated source
buffer bufto the receive party. The data is transferred over a network link in internode case or
a memory bus in intranode case; then the receive party stores the received data in the

application-allocated destination bufter rbuf

1.3.1 Example 1

In this example, we assume the send process starts the send operation earlier than the

receive process.
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Figure 2. Example 1: The send operation starts before the receive operation.

As shown in the above figure, the send process first finds out the associated physical
addresses dbuf and registers the information in teend queuelt then directly transfers a
pushed messagavhich only contains the first BYTES _TO_PUSH bytes of the original
message irbuf. When the message arrives, since the receive process has not started the
receive operation, the reception handler has no knowledge where the received data saved in
the process memory space. The message is thus copied to a shared buffer galledetthe
buffer (pushed_byf which is shared between the receive process and the kernel. The copy
operation is done by the reception handler in the receive party. An entrybaffeequeuein

the receive process is registered. Once the receive process started the receive operation, it



finds out the physical addresses tof rbuf An entry in thereceive queuds registered
immediately.

In the internode case, the receive process then starts the pull operation by sending an
acknowledgemertob the send party. The reception handler in the send party processes the
acknowledgemerdccording to the registered information in gend queuelt resumes the
transmission of the message and only transfer the rest of the message. In the receive party, the
receive handler copies the pushed datgpushed_bufto to_rbuf right after it sent the
acknowledgemeniifter the arrival of the rest of the message, the receive handler copies the
received message directlytm rbuf Since the physical addresstof rbufis available in the
registered information in the receive queue, this data copy operation can be performed
without intermediate buffering.

In the intranode case, the receive process starts the pull operation by simply obtaining
the registered information from the send queue in the kernel. Then, the receive process copies
the rest of the messagetto rbuf usingcross-space zero buffawhich is explained in Section

0, without intermediate buffering. No send or receive handlers are involved in this case.

1.3.2 Example 2

When the receive operation started before the send operation, the ordepu$thhe
andpull operations is shown in Figure 3.

As compared with Example 1, thmushed messagis directly copied tao_rbuf
instead of copying tpushed_bufnd then copied t_rbuf, since the physical addresses of
to_rbufis known before theull phase. In the intranode case, the actual data transfer can be
carried out by the process which issues the send or receive operation late dupod the
phase.

By using Push-Pull Messaging, the communication system can avoid extra memory
copies between memory spaces and NIC buffers while the send and receive parties are still
implicitly synchronized. The key idea is to quickly obtain the physical addresses of the

destination buffers before large volume of data is transmitted. The attached bytes (i.e.,



BYTES_TO_PUSH) in the pushed message is used to stuff the processing cycles in the
communication pipeline and to efficiently utilize the available network bandwidth and kernel

buffer.
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Figure 3. Example 2: The receive operation starts before the send operation.

Memory is a valuable resource for improving the communication performance. A
pinned memory area is usually used as communication endpoint in either user or kernel
spaces to improve the communication performance [7][8][18]. This approach could shorten
the critical path in communication by avoiding the delay in handling complicated dynamic
memory management of paging overheads. Although the low-latency communication can be

achieved, inefficient use of these pinned memory areas will limit the communication
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bandwidth when multiple communication channels are concurrently connected between SMP
nodes. This leads to poor scalability in maintaining high-speed communication in COMP.

To use Push-Pull Messaging, only a buffer of size as small as BYTES_TO_PUSH
bytes is needed as thmushed buffer However, applications can dynamically specify or

change the size of thmushed buffeto further adapt to the runtime environment.

2 Optimizing Techniques

Push-Pull Messaging discussed previously only avoided expensive copy operations
and optimized the use of the pushed buffer by interchangiist and pull phases. In this
section, we propose several optimization techniques to further shorten the critical path in the

communication.

2.1 Parallelism Exploitation in COMP Nodes

Push-Pull Messaging can further exploit the parallelism in COMP nodes. In a COMP
nodes,push and pull phases can be carried on different processors to produce maximum
performance. Some systems, such as Intel Paragon, used the second processor as a
communication processor to offload the message processing overhead. In our design, we used
different approach.

After thepushphase, the rest of the message will be transfer byutheperation. As
the pull phase is designed to make a direct transfer from the source buffer to the destination
buffer without intermediate buffering, this phase can be handled by a lightly loaded processor.
It is not necessary to be handled by the same processor as the one used in applications. The
selection of the processor depends on the reception handler invocation method. In all tests, we
used symmetric interruptmechanism in our optimized Push-Pull Messaging. The mechanism
allows the pull phase to be executed on a least-loaded processor. Because of rummilhg the
phase on another processor, the phase can be overlapped with the computation or
communication events carrying on other processors. This overlapping can hide portion of the
communication latency in the internode test. The hiding mechanisms are discussed in Section

2.3 and 2.4.
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In the pushphase, we did in the reverse way. We did not choose the lightly loaded
processor. This is because offloading the processing overhead to other processors could not
exploit the temporal cache locality in the original processor. Contrarily, it may introduce a
large number of cache misses. Instead of offloading, we executeusiinephase on the

processor same as the one serving the send process.

2.2 Cross-Space Zero Buffer
Cross-Space Zero Buffer is a technique to improve the performance of data copying
across different protected process space and kernel spaces. In a message passing program, the

syntax of the communication commands is usually defined as follows.

sendsource_buffer_addresbuffer_length
receivgdestination_buffer_addresisuffer_length

The send operation accepts a virtual address of the source buffer and its length. Like
the send operation, the receive operation requires two input arguments, the virtual address of
the receive buffer and the buffer size. Both buffers are allocated by applications in the user
space. As user process spaces are protected, direct communication cannot be carried out
between two user processes. Typically, the communication is taken place thrshgted
memoryfacility provided by the kernel. Using shared memory approach, however, introduces
an unavoidable memory copy operation. For example, the send process needs to copy the
source buffer to the intermediate shared buffer, while the receive process reads data from the
shared buffer and copies it to the destination buffer. The unavoidable copy operation results in
extra memory copy overheads, thus lengthening the communication latency and consuming
more memory resource.

We attacked the problem by employingcioss-space zero buffeéechnique. This
technique realizes one-copy data transfer across process spaces, thus increasing the bandwidth
of the intranode communication. To realize the one-copy transfer across process spaces,
physical addresses of source and destination buffers are needed. Although the virtual

addresses of buffers are continuous, the corresponding physical addresses may be
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discontinued across pages. Since buffers may not reside in contiguous memory space, pairs of
physical addressand length need to be obtained before the actual data movement. The
physical addresgoints to the starting address of the multiple buffer pages. |rgth

denotes the number of contiguous bytes at the corresponding address. Since this data structure
only contains addresses and length values but not the actual messages, vzercaliutfer

By knowing the physical addresses of both buffers, data transfer from the source buffer to the
destination buffer can be performed by a kernel thread. Therefore, one-copy data transfer
across different process spaces could be achieved.

In Push-Pull Messaginggero buffersare implemented to improve the performance of
intranode communication between user process spaces. The buffer is also implemented to
allow direct transfer of data from the NIC designated buffer to the destination buffer in
internode communication. The data transfer is initiated once the physical addresses of buffers

are known.

2.3 Address Translation Overhead Masking

Address translation overhead masking is a technique to hide the address translation
overhead in the internode communication. With implemertgd buffer the data transfer
from the NIC buffer to the destination buffer on the same machine can be carried out directly
by the kernel without the involvement of the process. However, Push-Pull Messaging needs to
perform address translation before usiego buffers

The address translation overhead grows linearly as the size of the message increases.
Since the communication event requires relatively long latency time to complete than the
address translation, we can schedule every network communication everpushaadpull
phases before the address translation to mask the overhead. However, not all translations can
be safely delayed. The translation of the pushed message needs to be done before initiating

the first network transmission.
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Figure 4. Overhead Masking and Push-and-Acknowledge Overlapping are used in Push-
Pull Messaging. The receive operation starts before the send operation.

To further hide this translation overhead, the copy of the pushed message to the NIC
outgoing buffer has to be performed in user space. This can be dodiebl thread
invocation method The direct thread invocationmethodis a method to invoke the
transmission thread in the NIC at the user level without using system calls. This method is
achieved by mapping NIC control registers and buffers onto the user process space. Thus, the
send process can directly trigger the NIC to start the send operation. Similar approaches can
be found in DP [14], GAMMA [7] and U-Net [8].

Since all address translations can be safely delayed, the translation overhead is moved

away from the critical path in communication. Figure 4 illustrates this masking technique.
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The address translation, which is shown as “Find out physical addresses”, is delayed in the

send and receive parties as compared with Figure 2 and Figure 3.

2.4 Push-and-Acknowledge Overlapping

Push-and-Acknowledge an optimizing technique to hide the acknowledge latency in
the internode case. Originally in Push-Pull Messaging, sending the acknowledge message is
on the critical as shown in Figure 2 and Figure 3. To further enhance the performance of
Push-Pull Messaging, we overlap the push and acknowledge phases in order to hide the long
acknowledge latency. This optimization is also shown in Figure 4.

The pushed BYTES_TO_PUSH bytes, originally used in Push-Pull Messaging, are
split into two parts. The first part, tfiest-pushed messagd BYTES_TO_PUSH(1) bytes, is
pushed to the destination at the beginning. Transmission of the second padcdhd-
pushed messagef BYTES _TO_PUSH(2) bytes, is overlapped with the transmission of the
acknowledge message. The latency of the request message is rRaskeand-Acknowledge
Overlappingfurther minimized the size of thushed bufferOnly the maximum of the two

values, BYTES _TO_PUSH(1) and BYTES_TO_PUSH(2) is used as the size of the buffer.

3 Performance Results and Analysis

The proposed Push-Pull Messaging was implemented and evaluated on two ALR
Revolution 6X6 Intel MP1.4-complaint SMP computers. Each computer consisted of four
Intel Pentium Pro 200 MHz processors with 256 Mbytes of main memory. Each Intel
processor had 8-Kbyte L1 instruction cache and 8-Kbyte data caches. The size of the unified
L2 cache is 512 Kbytes. The computers were connected by Fast Ethernet with the peak
bandwidth of 100 Mbit/s. Each computer attached one D-Link Fast Ethernet 500TX card with
Digital 21140 controller. Linux 2.1.90 was installed on each machine with symmetric
interrupt enabled.

We evaluated the performance of intranode and internode communication. In each
case, the single-trip latency of the communication system with different values of the
parameter BYTES_TO_PUSH was measured. In all benchmark routines, source and
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destination buffers were page-aligned for steady performance. The benchmark routines used
hardware time-stamp counters in the Intel processor, with resolution within 100 ns, to time
the operations. Each test performed one thousand iterations. Among all timing results, the
first and last 10% (in terms of execution time) were neglected. Only the middle 80% of the
timings was used to calculate the average.

The round-trip latency test measured the ping-pong time of two communicating
processes. The bandwidth test measured the time to send the specified number of bytes from
one process to another process, plus the time for the receive process to send back a 4-bytes
acknowledgement. The time measured was then subtracted the single-trip latency time for a 4-
byte message. Thus, the bandwidth was calculated as the number of bytes transferred in the

test divided by the calculated time.

3.1 Intranode Performance Test
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Figure 5. Intranode Communication with the pushed buffer of size 12 Kbytes.
Push-Pull Messaging with different BYTES_TO_PUSH parameters were tested. The
parameter varied from zero (Push-Zero) to the whole message length (Push-All). Push-Pull
Messaging used 16 bytes as the BYTES_TO_PUSH parameter. The single-trip latency is

shown in Figure 5.
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In the intranode communication, when the size of the message was below 16 bytes,
Push-Pull and Push-All Messaging performed equally well and both outperformed Push-Zero
Messaging. In this case, both send and receive operations were equally “light”. The receive
operation could not complete the registration of the operation before the send operation
started the actual data transfer. Therefore, Push-Pull and Push-All needed to uiiizshdte
buffer for the transfer. However, copying the message twice between the buffers only costs a
small amount of overhead, as the message was so small. Push-Zero Messaging tried to avoid
copying twice by synchronizing the send and receive parties. However, the synchronization
cost a larger amount of overhead.

From 10 bytes to 3000 bytes, the receive operation could register the destination
buffer information before the send operation started the actual data transfer. All mechanisms
could proceed without using tipeshed bufferincluding Push-All for most of the cases. They
all usedzero buffergo minimize the transfer overhead. For messages shorter than 16 bytes,
Push-Pull operated like Push-Zero. For messages larger than 16 bytes, Push-Pull returned to
its standard operation. This change in communication pattern allowed Push-Pull to effectively
reduce the number of memory copies inph# phase. Push-Zero also synchronized the send
and receive parties before transferring the message. This synchronization and the change in
pattern allowed both messaging mechanisms utilizing thetio buffers Therefore both
messaging mechanisms outperformed Push-All.

Around 4000 bytes, the latency of Push-All Messaging was abruptly increased but
Push-Pull and Push-Zero kept increasing steadily. The cause of this sudden performance lost
was the timing of the send and receive operations. Originally, the receive operation could
register the destination buffer information before the actual data transfer. However, the
address translation overhead grows with the message size. As the receive operation became
“heavier”, Push-All could not always proceed without using theshed buffer The
registration could not be completed before the actual transfer in most of the times.

Consequently, the data transfer involved plushed bufferand could not exploit theero
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buffer. The average performance was further degraded around 3000 to 4000 bytes. Push-All
performed poorer than Push-Pull and Push-Zero for most of the message sizes.

Zero bufferplayed an important role in minimizing the latency in all messaging
mechanism. However, to truly exploit the mechanism, a proper communication pattern should
be adopted. Since the communication pattern of Push-Pull and Push-All reinforced the
execution order of the registration and data transfer phases, the performasoe lofiffer
could be exploited effectively. The buffer not only shortened the latency of the messaging, but
it also improved the bandwidth of the communication since only one memory copy is needed.
The measured peak bandwidth of Push-Pull is 350.9 Mbytes/s when sending around 4000
bytes, almost 66% of the theoretical 533-Mbyte bus bandwidth. The minimum latency for

sending a 10-byte message is only|1s5

3.2 Internode Performance Test

We carried out three latency tests to evaluate the effectiveness of Push-Pull
Messaging in the internode communicati8ymmetric interruptvas chosen as the reception
handler invocation method in all tests.

We used 80 bytes and 680 bytes as the value of BYTES _TO_PUSH(1) and
BYTES_TO_PUSH(2) respectively. These parameters were obtained independently by two
separate tests.

The first test measured the latency by varying the value of BYTES_TO_PUSH(2) but
let BYTES_TO_PUSH(1) be zero. This test only exploited the Push-and-Acknowledge
Overlapping technique. As the value of BYTES_TO_PUSH(2) increased, the latency of a
longer and longer second-pushed message could be hidden effectively. Thus, the remaining
bytes of the message to be pushed could be shorter and shorter. Since the pulled message was
on the critical path in communication, the overall latency could be shortened as the value of
BYTES _TO PUSH(2) increased. However, there was an upper limit on the
BYTES _TO_PUSH(2) value since the latency of the overlapped acknowledge phase was

about the single-trip time of a short message. If the value of BYTES_TO_PUSH(2) was too
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large, the overall latency would increase as the reception handler was unable to serve the
second-pushed message and the pulled message in parallel. In this test, we obtained 680 bytes
as the value of BYTES_TO_PUSH(2).

In the second test, we fixed 680 bytes as the value of BYTES_TO_PUSH(2) and
varied the value of BYTES_TO_PUSH(1). We then measured the overall latency. As the
first-pushed message was on the critical path as shown in Figure 4, the latency grew with the
value of BYTES_TO_PUSH(1) when the BYTES_TO_PUSH(1) value was larger than a
threshold value. However, when the value was smaller than the threshold value, the latency
would actually decrease. This reduction is caused by filling the time gap between serving the
first and the second pushed message, which is illustrated as “Handle message 1” in Figure 4.
As the time to handle the message was a little bit faster than the time to initiate the
transmission of the second-pushed message, the receive party would have more time to
process the first-pushed message. Therefore sending a longer first-pushed message would
save some bandwidth, thus shortening the overall latency. In this test, we obtained 80 bytes as

the value of BYTES_TO_PUSH(1).

3.2.1 Optimizing Test

250 [ ‘ ‘

: < no optimization
1 A mask only /
| X overlap onl
200 - pony
O full optimization /:/
150 ‘:: /:’

A\

Mean Latency (us)

-

0 200 400 600 800 1000 1200 1400
Size (Bytes)

Figure 6. Performance measurement of the internode communication using three
optimizing techniques.
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In the first latency test, we compared the raw performance of Push-Pull Messaging
with three optimized Push-Pull Messaging — Address Translation Overhead Masking
(represented byy]), Push-and-Request Overlapping (representedyahd their combined
version (represented bi]).

Before 760 bytes, all four messaging mechanisms behaved the same since the whole
message was pushed to the receive party directly. After 760 bytes, the messaging mechanisms
with Address Translation Overhead Masking and Push-and-Acknowledge Overlapping
efficiently masked the overheads at both send and receive parties. Therefore, both techniques
showed significant improvement over the non-optimized messaging mechanism. When we
compared these two techniques, Push-and-Acknowledge Overlapping showed larger
improvement. It is because the acknowledge latency, which is hidden by Push-and-
Acknowledge Overlapping, is larger than the translation overhead saved in Address
Translation Overhead Masking. In the figure, the full optimization showed the most

promising solution, which integrated both orthogonal techniques.

3.2.2 Early and Late Receiver Tests

?ing() ?ong()
barrier (); barrier ();
start=get_timer(); computey times;
computex times, pp_receivémessage
pp_sendmessagg computex times;
computey times, pp_sendmessagg
pp_receivémessagge }
latency = get_timer() — start;

}

Figure 7. Ping-Pong Benchmark Pseudo Codes.

In a distributed environment, the sender and receiver operate in an asynchronous
manner. Extra blocking time happens when the receive party starts earlier than the send party;
while overheads are always caused by the late start of the receive process as discussed in the
Introduction section. When we measured the latency of the internode communication, the
ping-pong benchmark routine was redesigned to simulate a typical compute-then-

communicate parallel program to examine the runtime performance of Push-Pull Messaging.
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As shown in Figure 7, theing andpong procedures compute before communicates. Before
taking the measurements, we further synchronized both parties with a barrier operation, which
was a simple ping-pong operation.

In the test, we varied both computations by inserting different number of NOP (No
Operation) instructions. Two variations were tested. Iretirey receivertest (denoted by the
word “early” in Figure 8 left), we forced the receive operation started before the send
operation. The value of andy were chosen to be 500,000 and 100,000 respectively. The
other one is callethte receivertest (denoted by the word “late” in Figure 8 right). In this test,
we forced the receive operation always started after the send operation. The wadunel pf
were chosen to be 100,000 and 300,000 in this test. In other words, we forced all messing
mechanisms utilizing thpushed bufferThe number of NOPs was pre-computed with the
consideration of the barrier synchronization delay sinceitigprocess always late about a
single-trip latency time spent in waiting the implicit synchronization message fropotige
process. We carried out the tests for the three messaging mechanisms, namely Push-Zero,

Push-Pull and Push-All, with full optimization.
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Figure 8. Performance Comparison of Push-Pull Messaging fagarly and late receive
tests with the pushed buffer of size 4 Kbytes.
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For theearly receivertest, since the receive operation always finished before the send
operation, the address of the destination buffer was already known to the reception handler at
the receive party before issuing the send operation. Therefore, the reception handlers in all
three messaging mechanisms could copy the received data directly to the destination buffer
using zero buffers without intermediate buffering. Thus, the size of the pushed buffer did not
significantly affect the performance for all message lengths.

However, because of the difference in the communication pattern, Push-Pull and
Push-All always outperformed Push-Zero. It is becaus@ubhphase in Push-Zero was not
used to perform any useful transfer of data. This phase was originally used to preserve the
execution order of the registration of the pending receive operation and the pull
communication. This order, however, was already reinforced due to the lightly loaded
receiver and the heavily loaded sender. Therefore, the push phase in Push-Zero was wasting
the communication bandwidth. As the network latency was long as compared with the bus
latency in the intranode communication, Push-Zero was constantly slowed down.

Push-Pull outperformed Push-All in most cases in the early receiver test because the
address translation overhead was effectively hidden. Push-All could not hide the overhead as
the communication pattern did not allow doing so. The improvement of Push-Pull over Push-
All, however, was not significant because the translation overhead was not large and the
number of memory copies in both mechanisms was the same. Duripgsihpghase, Push-

All could bypass the intermediate buffer as the receive operation was completed like Push-
Pull. Therefore, the performance of Push-All was similar to the performance of Push-Pull.

For the late receiver test, as the computation on the receive party was on the critical
measurement path, the computation contributed part of the latency. In this test, the
transmission of the pushed messages, if any, were always pushegtstied bufferSince
the receive operation was initiated so late, the reception handler in the receive party could not
process the remaining part of the message without intermediate bufferingpursttesl buffer
Therefore, the handler had to copy the message one more time before copying to the
destination.

22



Before 3072 bytes, Push-All performed more satisfactory than Push-Pull and Push-
Zero because whenever the receive operation was startegushed buffercontained the
whole message. The message could then be copied directly to the destination buffer by the
receive process. However in Push-Pull and Push-Zero, the receive operation always needed to
initiate the transmission of an acknowledgement. Therefore, Push-Zero performed poorly for
all message sizes whereas Push-Pull introduced long network latency time after around 800
bytes. Although Push-All delivered messages faster than others did, the performance was
degraded significantly after around 3000 bytes. This degradation showed thaisttesl
buffer in Push-All was overwhelmed by incoming packets. Most of the packets were lost
during the communication. With the implemented go-back-n reliable protocol [17], Push-All
could resume the transmission afterwards but it still could not outperform others. It took
around 150 ms to transfer a 3072-byte message while Push-Zero took 139268 Push-

Pull even took only 1227.42s.

On the other hand, Push-Pull always outperformed Push-Zero in this late receive test.
The reason is that Push-Pull had sent BYTES_TO_PUSH bytes to the receive party during the
pushphase. Therefore during tpell phase, shorter message was delivered.

Push-Pull Messaging showed very steady performance in all cases as compared with
Push-All and Push-Zero. Push-Pull Messaging could flexibly adapt to cluster environment
with different computation load and maximize the performance. We have measured the peak
bandwidth of the fully optimized Push-Pull Messaging. The peak bandwidth could be as high

as 12.1 Mbytes/s. The shortest single-trip latency was|34.9

4  Conclusion

Building COMPs brings new challenges in designing a high-performance
communication system. Our communication system is able to achieve very low-latency and
high-bandwidth interprocess communication in COMIPoss-Space Zero Buff@rovides a
unified buffer management mechanism to achieve a copy-less communication for the data

transfer among processes within a SMP node. This mechanism efficiently eliminates all
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unnecessary memory copy operations in the intranode communication, where a peak
bandwidth of 350.9 MB/s is achieveAddress TranslatiorOverhead Maskindiides the
address translation overhead, around 12 8r long messages, from the critical path in the
internode communication. Theush-and-Acknowledge Overlappimyerlaps thepush and
acknowledgephases to hide the acknowledge latency from the critical path. Among these
optimizing techniquesRush-and-Acknowledge Overlappiogn reduce most of the overheads
in the internode communication, whiiross-Space Zero Buffean significantly improve the
communication bandwidth in the intranode communication. Although several complex
optimizations were provided, the porting of high-level languages was still very easy.

Currently, the bandwidth of Fast Ethernet is still low compared with the peripheral
bus bandwidth. We believe the next important step is to design a more general mechanism to
work with multiple network interfaces using multiple processors. We also plan to implement

Push-Pull Messaging in Gigabit Ethernet to exploit the power of the SMP node.
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