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Abstract

Push-Pull Messaging is a novel messaging mechanism for high-speed interprocess

communication in a cluster of symmetric multi-processors (SMP) machines. This messaging

mechanism exploits the parallelism in SMP nodes by allowing the execution of

communication stages of a messaging event on different processors to achieve maximum

performance. Some optimizing techniques were implemented along with Push-Pull

Messaging to further improve its performance. Cross-space Zero Buffer provides a unified

buffer management mechanism to achieve a copy-less communication for the data transfer

among processes within a SMP node. Address Translation Overhead Masking removes the

address translation overhead from the critical path in the internode communication. Push-and-

Acknowledge Overlapping overlaps the push and acknowledge phases to hide the

acknowledge latency. Push-Pull Messaging effectively utilizes the system resources. It has

been implemented to support high-speed communication for connecting quad Pentium Pro

SMPs with 100Mbit/s Fast Ethernet.
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Introduction
A cluster refers to a group of whole computers that works cooperatively as a single

system to provide fast and efficient computing services. A commodity cluster integrates

mainstream off-the-shelf components with customized software. Clusters can be classified

into two main categories: Cluster Of Uni-Processor machines (COUP) and Cluster Of Multi-

Processor machines (COMP). A COUP node contains one computation processor, whereas a

COMP node has two or more processors. As the cost of multiprocessor machines decreases,

typically those small-scale SMPs with two to four processors, building a low-cost commodity

COMP is a cost-effective solution to achieve high computing power. However, effective

clustering requires high-performance communication between nodes.

Some representative commodity COUPs are UC Berkeley’s NOW [4], CESDIS’s

Beowulf Project [6], and among others [15]. Recently, COMP has been proven to be a viable

approach to achieve teraflops computing power. IBM’s Blue Pacific [3] and SGI/Cray’s Blue

Mountain [2] are two examples of large-scale COMP. COMPaS developed by RWCP [18],

Clumps by UC Berkeley [14], and FMP by Tsinghua University [16], are the most successful

SMP-type COMPs. All these small-scale COMP used Myrinet as the connection network.

Each Myrinet NIC is equipped with a programmable co-processor (LANai processor) to

enhance the communication performance by moving packet handling and protocol processing

codes from kernel to the NIC [5]. Thus, most implementations can achieve very low point-to-

point communication latency.

Messaging in a distributed environment is non-trivial since the sender and receiver

are not synchronized. The asynchronous nature of message passing leads to additional

overheads in buffering, queuing/de-queuing, and synchronizing communication threads. To

achieve low latency, we should eliminate these overheads from the critical path in

communication. To achieve larger communication bandwidth, efficient coordination between

all communication threads thus maximizing the utilization of the underlying resources is

essential. Building COMPs brings new challenges in designing a high-performance

communication system. In COMP, all processors in a SMP node can process different
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messages in parallel. Efficient messaging mechanism should minimize the locking effect and

reduce the synchronization overhead while multiple user and kernel processes are accessing

the shared resources and intelligently use any idle or less loaded processor in the SMP node to

handle the messages.

In this paper, we discuss a Push-Pull Messaging and its optimizing techniques to

achieve low latency and high bandwidth communication between processes in the COMP

environment. The concept of Push-Pull Messaging is similar to the classical three-phase

protocol. The messaging process is started by the send party. The send party transmits a

message by first directly “pushing” a portion of the message to the receive party. The receive

party starts the pull phase after the receive operation has been issued and the pushed message

has arrived. The rest of the message is sent after an acknowledgement from the receive party

received by the send party. This communication pattern makes it possible to apply four

optimizing techniques to remove those unexpected overheads from the critical path to achieve

low-latency and high-bandwidth communication. The optimizing techniques include:

• Parallelism Exploitation, which is a technique to allow different execution stages of

both push and pull phases running on different processors to perform protocol

processing concurrently.

• Cross-Space Zero Buffer, which is a unified buffer management mechanism to speed

up the data transfer between process spaces and NIC buffers by eliminating all

unnecessary memory copies.

• Address Translation Overhead Masking, which is an overhead masking technique to

hide the address translation overhead from the critical path by delaying the translation

after communication events.

• Push-and-Acknowledge Overlapping, which is a technique to overlap the push phase

with the acknowledge message to hide the acknowledge latency from the critical path

and further minimize the size of the pushed buffer.
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With the above optimizing techniques and the use of additional processor in an SMP

node, we can significantly enhance the data communication speed. Our implementation

supports quad Pentium Pro SMP, connected through 100Mbit/s Fast Ethernet. We have

measured the single-trip latency of 34.9 µs, and the peak bandwidth of 12.1 MB/s for the

internode communication. The single-trip latency between processes within the same SMP

node is as low as 7.5 µs and the achievable bandwidth is 350.9 MB/s. We also develop a early

receive and a late receive tests for examining the run-time performance of the proposed

messaging mechanism. It is an low-cost solution to achieve high-speed communication, other

than using expensive interfaces like Myrinet, ATM, or future network interface VIA [20].

For the rest of the paper, we first present the basic idea of Push-Pull Messaging in

Section 1. In Section 2, we discuss the four proposed optimizing techniques. In Section 3, the

performance results are show. Analyses are discussed for both internode and intranode cases.

Finally, the conclusion is given in Section 4.

1 Push-Pull Messaging

Before we start designing the messaging mechanism for SMP clusters, a generic

communication model with four pipelining stages is examined. Related design issues in

COMP are also discussed.

1.1 A Generic Communication Model for SMP

The communication between a pair of COMP nodes can be viewed as a

communication pipeline with multiple process stages. Our Push-Pull Messaging was

developed based on this simple communication model.

• Stage 1: Transmission Thread Invocation. User applications initiate the transmission

by issuing a send operation in user space. Then, the data transmission thread will be

invoked to format outing packets. The thread puts the packets to the outgoing first-in-

first-out (FIFO) queue in the data dump of the network interface card (NIC). In COMP,

several processors may access the NIC simultaneously. To ensure the correctness of the
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invocation in the multiprocessor environment, the system has to restrict that only one user

or kernel thread invokes the thread at a time. Efficient synchronization between

concurrent processes in the COMP node is critical to the communication performance

[12][19].

• Stage 2: Data Pumping. After the submission of packets, the NIC pumps packets to the

physical network through the hardware on the NIC. The time spent in data pumping

mainly depends on the hardware performance. For example, it can be affected by the

performance of DMA engines in the host node and the NIC, and the network switch

performance [15].

• Stage 3: Reception Handler Invocation. The data arrives the receive party and stores in

a designated buffer in the NIC. Interrupt and polling are two main mechanisms to invoke

the handler to serve the data arrival requests. For COMP nodes, there are two types of

interrupt – asymmetric and symmetric interrupt. With asymmetric interrupt, requests are

always delivered to one pre-assigned processor. With symmetric interrupt [11], requests

can be delivered to different processors, where the selection of processors is governed by

an arbitration scheme. For example, a commonly used scheme selects the least-loaded

processor to serve the interrupt. On the other hand, polling is a light-weight approach to

handle incoming packets. Polling routine watches the change of state variables and starts

the handling routine if necessary. The frequency of polling determines the reliability of

the channel. In COMP nodes, efficient polling mechanisms have been discussed [10][13].

• Stage 4: Reception Processing. After invoking the reception handler, the handler

processes packets immediately. Reception processing involves re-assembly of packets,

copying between buffers, de-queuing buffers and pending requests, and synchronization

between user and kernel threads. In a COMP node, there are multiple active user-level

receiving threads. Without careful coordination between these communication threads

and the reception handler in kernel space, high-speed communication is impossible.
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1.2 The Main Idea

This section describes the main idea of Push-Pull Messaging based on the

communication model described in Section 1.1. Figure 1 illustrates the communication

architecture of Push-Pull Messaging.
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Figure 1. Communication Architecture of Push-Pull Messaging.

As shown in the above figure, each send or receive process has its application-

allocated buffer, source buffer and receive buffer respectively, resided in the user space. Each

process also shares three data structures with the kernel. The send queue stores the

information of pending send operations. The receive queue stores the information of pending

receive operations. The buffer queue and pushed buffer stores pending incoming packets

where their destinations in memory are undetermined.

In Push-Pull Messaging, the send process first pushes a part of the message to the

receive party. The pushed message, which contains BYTES_TO_PUSH bytes, is then handled

by the reception handler in the receive party. Depending on the timing of the receive

operation performed by the receive process, the pushed message will be stored in the pushed

buffer if the receive operation is not started. Otherwise, the message will be copied to the

destination buffer. Once the receive operation started, either the reception handler in the

receive party or the receive process itself will pull the rest of the message from the send

process.
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The pull phase will be started by sending an acknowledgement, which implicitly

contains request information. The reception handler in the send party processes the

acknowledgement. If the request is granted, the send handler will put the requested part of the

message to the receive party. The reception handler in the receive party handles the message

and directly copies the message to the destination buffer without buffering in the pushed

buffer.

The important parameter BYTES_TO_PUSH defines the number of bytes to be

pushed by the sender at the beginning. This is a balance parameter between the latency of the

network and the latency of the memory system. The method to obtain this parameter is

explained in Section 3.2.

1.3 Two Examples

To clearly understand how the send and receive parties communicate using the push

and pull operations with different timings of the send and receive operations, two examples

are given and the execution flows are shown in Figure 2 and Figure 3. In each figure, the

combined execution flow of the process and the corresponding handler is shown by a vertical

timing lines. Left and right vertical lines represent the execution flow in the send and receive

parties respectively.

In the examples, the send party sends data resided in the application-allocated source

buffer buf to the receive party. The data is transferred over a network link in internode case or

a memory bus in intranode case; then the receive party stores the received data in the

application-allocated destination buffer to_rbuf.

1.3.1 Example 1

In this example, we assume the send process starts the send operation earlier than the

receive process.
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Send
Party

Receive
Party

Send(buf, len)

pushed message

push( dest_id, buf, BYTES_TO_PUSH,send_queue_no)

Copy
BYTES_TO_PUSH

bytes to
pushed_buf in
buffer_queue

acknowledge( src_id, dst_recv_queue_no,

src_send_queue_no)

buf to_rbufdata transfer

The rest of the message

put( dest_id, the_rest,

len-BYTES_TO_PUSH, dst_recv_queue_no)

Copy (len -
BYTES_TO_PUSH) to

to_rbuf

1. Find out physical addresses
2. Register receive op

Copy
BYTES_TO_PUSH
from pushed_buf to
to_rbuf

Handle
message

1. Find out physical addresses
2. Register send op

Crit ical
Communicat ion

Path

Recv(to_rbuf, len)

Figure 2. Example 1: The send operation starts before the receive operation.

As shown in the above figure, the send process first finds out the associated physical

addresses of buf and registers the information in the send queue. It then directly transfers a

pushed message, which only contains the first BYTES_TO_PUSH bytes of the original

message in buf. When the message arrives, since the receive process has not started the

receive operation, the reception handler has no knowledge where the received data saved in

the process memory space. The message is thus copied to a shared buffer called the pushed

buffer (pushed_buf), which is shared between the receive process and the kernel. The copy

operation is done by the reception handler in the receive party. An entry in the buffer queue in

the receive process is registered. Once the receive process started the receive operation, it
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finds out the physical addresses of to_rbuf. An entry in the receive queue is registered

immediately.

In the internode case, the receive process then starts the pull operation by sending an

acknowledgement to the send party. The reception handler in the send party processes the

acknowledgement according to the registered information in the send queue. It resumes the

transmission of the message and only transfer the rest of the message. In the receive party, the

receive handler copies the pushed data in pushed_buf to to_rbuf right after it sent the

acknowledgement. After the arrival of the rest of the message, the receive handler copies the

received message directly to to_rbuf. Since the physical address of to_rbuf is available in the

registered information in the receive queue, this data copy operation can be performed

without intermediate buffering.

In the intranode case, the receive process starts the pull operation by simply obtaining

the registered information from the send queue in the kernel. Then, the receive process copies

the rest of the message to to_rbuf using cross-space zero buffer, which is explained in Section

0, without intermediate buffering. No send or receive handlers are involved in this case.

1.3.2  Example 2

When the receive operation started before the send operation, the order of the push

and pull operations is shown in Figure 3.

As compared with Example 1, the pushed message is directly copied to to_rbuf

instead of copying to pushed_buf and then copied to to_rbuf, since the physical addresses of

to_rbuf is known before the pull phase. In the intranode case, the actual data transfer can be

carried out by the process which issues the send or receive operation late during the pull

phase.

By using Push-Pull Messaging, the communication system can avoid extra memory

copies between memory spaces and NIC buffers while the send and receive parties are still

implicitly synchronized. The key idea is to quickly obtain the physical addresses of the

destination buffers before large volume of data is transmitted. The attached bytes (i.e.,
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BYTES_TO_PUSH) in the pushed message is used to stuff the processing cycles in the

communication pipeline and to efficiently utilize the available network bandwidth and kernel

buffer.

acknowledge( src_id, dst_recv_queue,

src_send_queue_no)

push( dest_id, buf, BYTES_TO_PUSH,sendq_queue_no)

Send
Party

Receive
Party

Send(buf, len)

Recv(to_rbuf, len)

pushed message

buf to_rbufdata transfer

The rest of the message

put( dst_id, the_rest,
len - BYTES_TO_PUSH,

dst_recv_queue_no)

Copy (len -
BYTES_TO_PUSH) to

to_rbuf

1. Find out physical addresses
2. Register receive op

Handle
message

Handle
message

Copy
BYTES_TO_PUSH to

to_rbuf

1. Find out physical addresses
2. Register send op

Crit ical
Communicat ion

Path

Figure 3. Example 2: The receive operation starts before the send operation.

Memory is a valuable resource for improving the communication performance. A

pinned memory area is usually used as communication endpoint in either user or kernel

spaces to improve the communication performance [7][8][18]. This approach could shorten

the critical path in communication by avoiding the delay in handling complicated dynamic

memory management of paging overheads. Although the low-latency communication can be

achieved, inefficient use of these pinned memory areas will limit the communication
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bandwidth when multiple communication channels are concurrently connected between SMP

nodes. This leads to poor scalability in maintaining high-speed communication in COMP.

To use Push-Pull Messaging, only a buffer of size as small as BYTES_TO_PUSH

bytes is needed as the pushed buffer. However, applications can dynamically specify or

change the size of the pushed buffer to further adapt to the runtime environment.

2 Optimizing Techniques

Push-Pull Messaging discussed previously only avoided expensive copy operations

and optimized the use of the pushed buffer by interchanging push and pull phases. In this

section, we propose several optimization techniques to further shorten the critical path in the

communication.

2.1 Parallelism Exploitation in COMP Nodes

Push-Pull Messaging can further exploit the parallelism in COMP nodes. In a COMP

nodes, push and pull phases can be carried on different processors to produce maximum

performance. Some systems, such as Intel Paragon, used the second processor as a

communication processor to offload the message processing overhead. In our design, we used

different approach.

After the push phase, the rest of the message will be transfer by the pull operation. As

the pull phase is designed to make a direct transfer from the source buffer to the destination

buffer without intermediate buffering, this phase can be handled by a lightly loaded processor.

It is not necessary to be handled by the same processor as the one used in applications. The

selection of the processor depends on the reception handler invocation method. In all tests, we

used  symmetric interrupt mechanism in our optimized Push-Pull Messaging. The mechanism

allows the pull phase to be executed on a least-loaded processor. Because of running the pull

phase on another processor, the phase can be overlapped with the computation or

communication events carrying on other processors. This overlapping can hide portion of the

communication latency in the internode test. The hiding mechanisms are discussed in Section

2.3 and 2.4.
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In the push phase, we did in the reverse way. We did not choose the lightly loaded

processor. This is because offloading the processing overhead to other processors could not

exploit the temporal cache locality in the original processor. Contrarily, it may introduce a

large number of cache misses. Instead of offloading, we execute the push phase on the

processor same as the one serving the send process.

2.2 Cross-Space Zero Buffer

Cross-Space Zero Buffer is a technique to improve the performance of data copying

across different protected process space and kernel spaces. In a message passing program, the

syntax of the communication commands is usually defined as follows.

send(source_buffer_address, buffer_length)

receive(destination_buffer_address, buffer_length)

The send operation accepts a virtual address of the source buffer and its length. Like

the send operation, the receive operation requires two input arguments, the virtual address of

the receive buffer and the buffer size. Both buffers are allocated by applications in the user

space. As user process spaces are protected, direct communication cannot be carried out

between two user processes. Typically, the communication is taken place through a shared

memory facility provided by the kernel. Using shared memory approach, however, introduces

an unavoidable memory copy operation. For example, the send process needs to copy the

source buffer to the intermediate shared buffer, while the receive process reads data from the

shared buffer and copies it to the destination buffer. The unavoidable copy operation results in

extra memory copy overheads, thus lengthening the communication latency and consuming

more memory resource.

We attacked the problem by employing a cross-space zero buffer technique. This

technique realizes one-copy data transfer across process spaces, thus increasing the bandwidth

of the intranode communication. To realize the one-copy transfer across process spaces,

physical addresses of source and destination buffers are needed. Although the virtual

addresses of buffers are continuous, the corresponding physical addresses may be
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discontinued across pages. Since buffers may not reside in contiguous memory space, pairs of

physical address and length need to be obtained before the actual data movement. The

physical address points to the starting address of the multiple buffer pages. The length

denotes the number of contiguous bytes at the corresponding address. Since this data structure

only contains addresses and length values but not the actual messages, we call it zero buffer.

By knowing the physical addresses of both buffers, data transfer from the source buffer to the

destination buffer can be performed by a kernel thread. Therefore, one-copy data transfer

across different process spaces could be achieved.

In Push-Pull Messaging, zero buffers are implemented to improve the performance of

intranode communication between user process spaces. The buffer is also implemented to

allow direct transfer of data from the NIC designated buffer to the destination buffer in

internode communication. The data transfer is initiated once the physical addresses of buffers

are known.

2.3 Address Translation Overhead Masking

Address translation overhead masking is a technique to hide the address translation

overhead in the internode communication. With implemented zero buffer, the data transfer

from the NIC buffer to the destination buffer on the same machine can be carried out directly

by the kernel without the involvement of the process. However, Push-Pull Messaging needs to

perform address translation before using zero buffers.

The address translation overhead grows linearly as the size of the message increases.

Since the communication event requires relatively long latency time to complete than the

address translation, we can schedule every network communication event in the push and pull

phases before the address translation to mask the overhead. However, not all translations can

be safely delayed. The translation of the pushed message needs to be done before initiating

the first network transmission.
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Figure 4. Overhead Masking and Push-and-Acknowledge Overlapping are used in Push-
Pull Messaging. The receive operation starts before the send operation.

To further hide this translation overhead, the copy of the pushed message to the NIC

outgoing buffer has to be performed in user space. This can be done by direct thread

invocation method. The direct thread invocation method is a method to invoke the

transmission thread in the NIC at the user level without using system calls. This method is

achieved by mapping NIC control registers and buffers onto the user process space. Thus, the

send process can directly trigger the NIC to start the send operation. Similar approaches can

be found in DP [14], GAMMA [7] and U-Net [8].

Since all address translations can be safely delayed, the translation overhead is moved

away from the critical path in communication. Figure 4 illustrates this masking technique.
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The address translation, which is shown as “Find out physical addresses”, is delayed in the

send and receive parties as compared with Figure 2 and Figure 3.

2.4 Push-and-Acknowledge Overlapping

Push-and-Acknowledge is an optimizing technique to hide the acknowledge latency in

the internode case. Originally in Push-Pull Messaging, sending the acknowledge message is

on the critical as shown in Figure 2 and Figure 3. To further enhance the performance of

Push-Pull Messaging, we overlap the push and acknowledge phases in order to hide the long

acknowledge latency. This optimization is also shown in Figure 4.

The pushed BYTES_TO_PUSH bytes, originally used in Push-Pull Messaging, are

split into two parts. The first part, the first-pushed message of BYTES_TO_PUSH(1) bytes, is

pushed to the destination at the beginning. Transmission of the second part, the second-

pushed message of BYTES_TO_PUSH(2) bytes, is overlapped with the transmission of the

acknowledge message. The latency of the request message is masked. Push-and-Acknowledge

Overlapping further minimized the size of the pushed buffer. Only the maximum of the two

values, BYTES_TO_PUSH(1) and BYTES_TO_PUSH(2) is used as the size of the buffer.

3 Performance Results and Analysis

The proposed Push-Pull Messaging was implemented and evaluated on two ALR

Revolution 6X6 Intel MP1.4-complaint SMP computers. Each computer consisted of four

Intel Pentium Pro 200 MHz processors with 256 Mbytes of main memory. Each Intel

processor had 8-Kbyte L1 instruction cache and 8-Kbyte data caches. The size of the unified

L2 cache is 512 Kbytes. The computers were connected by Fast Ethernet with the peak

bandwidth of 100 Mbit/s. Each computer attached one D-Link Fast Ethernet 500TX card with

Digital 21140 controller. Linux 2.1.90 was installed on each machine with symmetric

interrupt enabled.

We evaluated the performance of intranode and internode communication. In each

case, the single-trip latency of the communication system with different values of the

parameter BYTES_TO_PUSH was measured. In all benchmark routines, source and
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destination buffers were page-aligned for steady performance. The benchmark routines used

hardware time-stamp counters in the Intel processor, with resolution within 100 ns, to time

the operations. Each test performed one thousand iterations. Among all timing results, the

first and last 10% (in terms of execution time) were neglected. Only the middle 80% of the

timings was used to calculate the average.

The round-trip latency test measured the ping-pong time of two communicating

processes. The bandwidth test measured the time to send the specified number of bytes from

one process to another process, plus the time for the receive process to send back a 4-bytes

acknowledgement. The time measured was then subtracted the single-trip latency time for a 4-

byte message. Thus, the bandwidth was calculated as the number of bytes transferred in the

test divided by the calculated time.

3.1 Intranode Performance Test
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Figure 5. Intranode Communication with the pushed buffer of size 12 Kbytes.

Push-Pull Messaging with different BYTES_TO_PUSH parameters were tested. The

parameter varied from zero (Push-Zero) to the whole message length (Push-All). Push-Pull

Messaging used 16 bytes as the BYTES_TO_PUSH parameter. The single-trip latency is

shown in Figure 5.
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In the intranode communication, when the size of the message was below 16 bytes,

Push-Pull and Push-All Messaging performed equally well and both outperformed Push-Zero

Messaging. In this case, both send and receive operations were equally “light”. The receive

operation could not complete the registration of the operation before the send operation

started the actual data transfer. Therefore, Push-Pull and Push-All needed to utilize the pushed

buffer for the transfer. However, copying the message twice between the buffers only costs a

small amount of overhead, as the message was so small. Push-Zero Messaging tried to avoid

copying twice by synchronizing the send and receive parties. However, the synchronization

cost a larger amount of overhead.

From 10 bytes to 3000 bytes, the receive operation could register the destination

buffer information before the send operation started the actual data transfer. All mechanisms

could proceed without using the pushed buffer, including Push-All for most of the cases. They

all used zero buffers to minimize the transfer overhead. For messages shorter than 16 bytes,

Push-Pull operated like Push-Zero. For messages larger than 16 bytes, Push-Pull returned to

its standard operation. This change in communication pattern allowed Push-Pull to effectively

reduce the number of memory copies in the pull phase. Push-Zero also synchronized the send

and receive parties before transferring the message. This synchronization and the change in

pattern allowed both messaging mechanisms utilizing their zero buffers. Therefore both

messaging mechanisms outperformed Push-All.

Around 4000 bytes, the latency of Push-All Messaging was abruptly increased but

Push-Pull and Push-Zero kept increasing steadily. The cause of this sudden performance lost

was the timing of the send and receive operations. Originally, the receive operation could

register the destination buffer information before the actual data transfer. However, the

address translation overhead grows with the message size. As the receive operation became

“heavier”, Push-All could not always proceed without using the pushed buffer. The

registration could not be completed before the actual transfer in most of the times.

Consequently, the data transfer involved the pushed buffer and could not exploit the zero
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buffer. The average performance was further degraded around 3000 to 4000 bytes. Push-All

performed poorer than Push-Pull and Push-Zero for most of the message sizes.

Zero buffer played an important role in minimizing the latency in all messaging

mechanism. However, to truly exploit the mechanism, a proper communication pattern should

be adopted. Since the communication pattern of Push-Pull and Push-All reinforced the

execution order of the registration and data transfer phases, the performance of zero buffer

could be exploited effectively. The buffer not only shortened the latency of the messaging, but

it also improved the bandwidth of the communication since only one memory copy is needed.

The measured peak bandwidth of Push-Pull is 350.9 Mbytes/s when sending around 4000

bytes, almost 66% of the theoretical 533-Mbyte bus bandwidth. The minimum latency for

sending a 10-byte message is only 7.5 µs.

3.2 Internode Performance Test

We carried out three latency tests to evaluate the effectiveness of Push-Pull

Messaging in the internode communication. Symmetric interrupt was chosen as the reception

handler invocation method in all tests.

We used 80 bytes and 680 bytes as the value of BYTES_TO_PUSH(1) and

BYTES_TO_PUSH(2) respectively. These parameters were obtained independently by two

separate tests.

The first test measured the latency by varying the value of BYTES_TO_PUSH(2) but

let BYTES_TO_PUSH(1) be zero. This test only exploited the Push-and-Acknowledge

Overlapping technique. As the value of BYTES_TO_PUSH(2) increased, the latency of a

longer and longer second-pushed message could be hidden effectively. Thus, the remaining

bytes of the message to be pushed could be shorter and shorter. Since the pulled message was

on the critical path in communication, the overall latency could be shortened as the value of

BYTES_TO_PUSH(2) increased. However, there was an upper limit on the

BYTES_TO_PUSH(2) value since the latency of the overlapped acknowledge phase was

about the single-trip time of a short message. If the value of BYTES_TO_PUSH(2) was too
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large, the overall latency would increase as the reception handler was unable to serve the

second-pushed message and the pulled message in parallel. In this test, we obtained 680 bytes

as the value of BYTES_TO_PUSH(2).

In the second test, we fixed 680 bytes as the value of BYTES_TO_PUSH(2) and

varied the value of BYTES_TO_PUSH(1). We then measured the overall latency. As the

first-pushed message was on the critical path as shown in Figure 4, the latency grew with the

value of BYTES_TO_PUSH(1) when the BYTES_TO_PUSH(1) value was larger than a

threshold value. However, when the value was smaller than the threshold value, the latency

would actually decrease. This reduction is caused by filling the time gap between serving the

first and the second pushed message, which is illustrated as “Handle message 1” in Figure 4.

As the time to handle the message was a little bit faster than the time to initiate the

transmission of the second-pushed message, the receive party would have more time to

process the first-pushed message. Therefore sending a longer first-pushed message would

save some bandwidth, thus shortening the overall latency. In this test, we obtained 80 bytes as

the value of BYTES_TO_PUSH(1).

3.2.1 Optimizing Test
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In the first latency test, we compared the raw performance of Push-Pull Messaging

with three optimized Push-Pull Messaging – Address Translation Overhead Masking

(represented by [∆]), Push-and-Request Overlapping (represented by [×]) and their combined

version (represented by [�]).

Before 760 bytes, all four messaging mechanisms behaved the same since the whole

message was pushed to the receive party directly. After 760 bytes, the messaging mechanisms

with Address Translation Overhead Masking and Push-and-Acknowledge Overlapping

efficiently masked the overheads at both send and receive parties. Therefore, both techniques

showed significant improvement over the non-optimized messaging mechanism. When we

compared these two techniques, Push-and-Acknowledge Overlapping showed larger

improvement. It is because the acknowledge latency, which is hidden by Push-and-

Acknowledge Overlapping, is larger than the translation overhead saved in Address

Translation Overhead Masking. In the figure, the full optimization showed the most

promising solution, which integrated both orthogonal techniques.

3.2.2 Early and Late Receiver Tests

ping()
{
     barrier ();
     start = get_timer();
     compute x times;
     pp_send(message);
     compute y times;
     pp_receive(message);
    latency = get_timer() – start;
}

pong()
{
     barrier ();
     compute y times;
     pp_receive(message);
     compute x times;
     pp_send(message);
}

Figure 7. Ping-Pong Benchmark Pseudo Codes.

In a distributed environment, the sender and receiver operate in an asynchronous

manner. Extra blocking time happens when the receive party starts earlier than the send party;

while overheads are always caused by the late start of the receive process as discussed in the

Introduction section. When we measured the latency of the internode communication, the

ping-pong benchmark routine was redesigned to simulate a typical compute-then-

communicate parallel program to examine the runtime performance of Push-Pull Messaging.
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As shown in Figure 7, the ping and pong procedures compute before communicates. Before

taking the measurements, we further synchronized both parties with a barrier operation, which

was a simple ping-pong operation.

In the test, we varied both computations by inserting different number of NOP (No

Operation) instructions. Two variations were tested. In the early receiver test (denoted by the

word “early” in Figure 8 left), we forced the receive operation started before the send

operation. The value of x and y were chosen to be 500,000 and 100,000 respectively. The

other one is called late receiver test (denoted by the word “late” in Figure 8 right). In this test,

we forced the receive operation always started after the send operation. The value of x and y

were chosen to be 100,000 and 300,000 in this test. In other words, we forced all messing

mechanisms utilizing the pushed buffer. The number of NOPs was pre-computed with the

consideration of the barrier synchronization delay since the ping process always late about a

single-trip latency time spent in waiting the implicit synchronization message from the pong

process. We carried out the tests for the three messaging mechanisms, namely Push-Zero,

Push-Pull and Push-All, with full optimization.
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For the early receiver test, since the receive operation always finished before the send

operation, the address of the destination buffer was already known to the reception handler at

the receive party before issuing the send operation. Therefore, the reception handlers in all

three messaging mechanisms could copy the received data directly to the destination buffer

using zero buffers without intermediate buffering. Thus, the size of the pushed buffer did not

significantly affect the performance for all message lengths.

However, because of the difference in the communication pattern, Push-Pull and

Push-All always outperformed Push-Zero. It is because the push phase in Push-Zero was not

used to perform any useful transfer of data. This phase was originally used to preserve the

execution order of the registration of the pending receive operation and the pull

communication. This order, however, was already reinforced due to the lightly loaded

receiver and the heavily loaded sender. Therefore, the push phase in Push-Zero was wasting

the communication bandwidth. As the network latency was long as compared with the bus

latency in the intranode communication, Push-Zero was constantly slowed down.

Push-Pull outperformed Push-All in most cases in the early receiver test because the

address translation overhead was effectively hidden. Push-All could not hide the overhead as

the communication pattern did not allow doing so. The improvement of Push-Pull over Push-

All, however, was not significant because the translation overhead was not large and the

number of memory copies in both mechanisms was the same. During the push phase, Push-

All could bypass the intermediate buffer as the receive operation was completed like Push-

Pull. Therefore, the performance of Push-All was similar to the performance of Push-Pull.

For the late receiver test, as the computation on the receive party was on the critical

measurement path, the computation contributed part of the latency. In this test, the

transmission of the pushed messages, if any, were always pushed to the pushed buffer. Since

the receive operation was initiated so late, the reception handler in the receive party could not

process the remaining part of the message without intermediate buffering in the pushed buffer.

Therefore, the handler had to copy the message one more time before copying to the

destination.
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Before 3072 bytes, Push-All performed more satisfactory than Push-Pull and Push-

Zero because whenever the receive operation was started, the pushed buffer contained the

whole message. The message could then be copied directly to the destination buffer by the

receive process. However in Push-Pull and Push-Zero, the receive operation always needed to

initiate the transmission of an acknowledgement. Therefore, Push-Zero performed poorly for

all message sizes whereas Push-Pull introduced long network latency time after around 800

bytes. Although Push-All delivered messages faster than others did, the performance was

degraded significantly after around 3000 bytes. This degradation showed that the pushed

buffer in Push-All was overwhelmed by incoming packets. Most of the packets were lost

during the communication. With the implemented go-back-n reliable protocol [17], Push-All

could resume the transmission afterwards but it still could not outperform others. It took

around 150 ms to transfer a 3072-byte message while Push-Zero took 1303.58 µs and Push-

Pull even took only 1227.42 µs.

On the other hand, Push-Pull always outperformed Push-Zero in this late receive test.

The reason is that Push-Pull had sent BYTES_TO_PUSH bytes to the receive party during the

push phase. Therefore during the pull phase, shorter message was delivered.

Push-Pull Messaging showed very steady performance in all cases as compared with

Push-All and Push-Zero. Push-Pull Messaging could flexibly adapt to cluster environment

with different computation load and maximize the performance. We have measured the peak

bandwidth of the fully optimized Push-Pull Messaging. The peak bandwidth could be as high

as 12.1 Mbytes/s. The shortest single-trip latency was 34.9 µs.

4 Conclusion

Building COMPs brings new challenges in designing a high-performance

communication system. Our communication system is able to achieve very low-latency and

high-bandwidth interprocess communication in COMP. Cross-Space Zero Buffer provides a

unified buffer management mechanism to achieve a copy-less communication for the data

transfer among processes within a SMP node. This mechanism efficiently eliminates all
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unnecessary memory copy operations in the intranode communication, where a peak

bandwidth of 350.9 MB/s is achieved. Address Translation Overhead Masking hides the

address translation overhead, around 12-13 µs for long messages, from the critical path in the

internode communication. The Push-and-Acknowledge Overlapping overlaps the push and

acknowledge phases to hide the acknowledge latency from the critical path. Among these

optimizing techniques, Push-and-Acknowledge Overlapping can reduce most of the overheads

in the internode communication, while Cross-Space Zero Buffer can significantly improve the

communication bandwidth in the intranode communication. Although several complex

optimizations were provided, the porting of high-level languages was still very easy.

Currently, the bandwidth of Fast Ethernet is still low compared with the peripheral

bus bandwidth. We believe the next important step is to design a more general mechanism to

work with multiple network interfaces using multiple processors. We also plan to implement

Push-Pull Messaging in Gigabit Ethernet to exploit the power of the SMP node.
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