
A Segment-Based DSM Supporting Large Shared Object Space

Benny Wang-Leung Cheung, Cho-Li Wang

The University of Hong Kong
Department of Computer Science

Pokfulam Road, Hong Kong
{wlcheung, clwang}@cs.hku.hk

Abstract

This paper introduces a software DSM that can ex-
tend its shared object space exceeding 4GB in a 32-
bit commodity cluster environment. This is achieved
through the dynamic memory mapping mechanism,
with local hard disks as backing store. We introduce the
new concept of segments with intelligent splitting to re-
duce network traffic, false sharing as well as adapt bet-
ter to the shared memory access patterns. A priority-
based swapping algorithm is designed to reduce disk
accesses for efficient dynamic memory mapping, and
maximize the use of disk space as shared object space.
A new queue-based scheme is also devised for efficient
and simple management of memory blocks. The pro-
posed solutions were implemented in LOTS V.2, and it
can outperform its previous version when running small
applications, while the maximum shared object space is
increased to one-third of the total free disk space avail-
able among all the nodes.

1. Introduction

Distributed Shared Memory (DSM) provides a par-
adigm for parallel programming, by offering a virtual
view of globally shared memory among machines in
the cluster, each of which can actually access its local
memory (Figure 1). DSM is tempting to programmers
because it handles the communication of shared data
for application programmers, who do not need to insert
explicit send and receive commands in the programs.

However, from day one software DSM was invented,
virtually all DSM systems [3, 6, 9, 13, 19] had mainly
put their focus on performance, while overlooked the

This research is supported by Hong Kong RGC Grant HKU-
7030/01E and HKU Large Equipment Grant 01021001.

Process 
Space

Proc 0

Proc 1

Shared 
ObjectsShared Object 

Space

Proc 2

Proc 3

Figure 1. The virtual shared address space
provided by DSM (object-based view)

lack of a large shared memory or object space. In par-
ticular, most DSM systems just map the whole shared
memory or object space to the virtual memory space of
every process during application execution using a fixed
one-to-one mapping technique. As a result, the size of
the shared object space cannot exceed the virtual mem-
ory space available for a single process, which is 4GB
for 32-bit machines and operating systems. Moreover,
as a large portion of the process space has to be re-
served by the kernel, the program code, heap, stack
and shared libraries, the actual size of the shared ob-
ject space supported by the DSM systems will be far
less than 4GB, regardless of the number of machines
used. For example, when a cluster of PCs, each with
128MB RAM, is used to run TreadMarks [13], the most
successful DSM system to date, only 96MB of shared
memory can be created. Another DSM system, JIA-
JIA, only allows 128MB of shared memory space to be
claimed, so as to avoid performance degradation due
to the invocation of the swap partition, in case the
shared memory cannot be wholly mapped to the phys-
ical memory of each machine.

Such limitation and lack of scalability is clearly in-
sufficient for the increasing demand for more shared
memory by real-life scientific applications nowadays.
For example, it is currently impossible to find the best
move for a Go (Weiqi) game by pre-loading all possi-



ble chessboard configurations to the memory of a com-
puter or cluster and then performing a simple lookup,
since there are a total of 3361 configurations. Even
we can eliminate some repeated configurations due to
symmetry, the number of unique configurations is still
far larger than the number of addresses available in a
128-bit machine, if there exist one. Other applications,
such as weather forecasting and DNA string match-
ing also require tens of gigabytes of memory to exe-
cute. As a result, application programmers either need
to resort to 64-bit clusters, which are yet to become
the mainstream of commodity computers and thus cost
substantially more, or they need to re-design the algo-
rithms that consume less virtual memory. But this can
take days or months to implement and the resulting
program may execute considerably more slowly.

We believe that the provision of a large shared ob-
ject space can allow a larger amount of complex scien-
tific applications to enjoy the high cost-effectiveness of
cluster computing and good programmability. So, we
have developed the first version of LOTS [7], namely
LOTS V.1, to support a shared object space larger than
the virtual memory space of a process addressable by
the underlying hardware, without any special hardware
and compiler support. The local disk of each machine
is used as the backing store for shared objects not being
accessed when the local process space is full. Only a
small amount of control information for each object is
resident in the virtual memory, while the object data is
dynamically but lazily mapped into the process space
when being accessed. With such scheme, LOTS is able
to provide a shared object space larger than the size
of the process space. The swapping of shared objects
between the process space and hard disk is done auto-
matically during runtime, without the need of special
code or dedicated compiler support. We have shown in
[7] that the scheme is able to support hundreds of giga-
bytes of shared object space, with the only limit being
the amount of free disk space available in each machine.
Moreover, with the use of scope consistency model [10]
and mixed coherence protocol, together with a few op-
timization techniques, DSM applications using small
amount of shared memory can perform under LOTS
as good as, or even better than traditional DSM when
the hard disk needs not to be used as the backing store.

In this paper, we report our further improvements
to LOTS V.1 in several aspects. The most important
one is that the free space available in the hard disks of
the participating machines is utilized more efficiently.
With its new swapping protocol, we further expand the
maximum shared object space supported by LOTS to
become one-third of the total free disk space available
in all machines.

In terms of performance, although LOTS V.1 is com-
parable to traditional DSM systems, it still contains
much room for improvement. The transmission of large
whole objects after synchronization, particularly bar-
riers, can be very time-consuming. However, only a
small part of the object may be updated or needed
by a machine. In addition, the size of a large object
such as an array can cause unnecessary false sharing
– a major performance bottleneck in DSM systems –
when different processes write to different parts of the
object simultaneously. We have solved this problem by
introducing the concept of variable-sized segments.

Finally, we successfully simplify the internal memory
management scheme of LOTS. A new memory man-
agement scheme is devised by taking advantage of seg-
ments, hence reducing memory usage and making the
swapping protocol more efficient.

All the above design enhancements have been imple-
mented in the second version of LOTS, namely LOTS
V.2. It is capable of providing an even-larger shared
object space with better performance.

Section 2 of this paper will briefly introduce the
LOTS project, addressing the features of the LOTS
V.1 DSM system. Section 3 then discusses the poten-
tial problems of LOTS V.1 in detail, and describes the
solutions as adopted in LOTS V.2. This will be fol-
lowed by the testing and results analysis in Section 4.
Section 5 presents the related work, and the paper will
end with the conclusions and future work in Section 6.

2 The LOTS DSM System

For the sake of completeness, we discuss the design
of LOTS in this section. Interested readers may refer
to [7] for a further description about the design and
implementation details of LOTS V.1.

2.1. An Overview of LOTS

LOTS is implemented as a C++ runtime library on
top of the Linux operating system. DSM applications
making use of LOTS are compiled with the library us-
ing ordinary g++. As LOTS adopts an SPMD model,
each participating machine will execute a copy of the
application binary.

Figure 2 shows how LOTS can support a large
shared object space without dedicated hardware and
compiler support. When a process is going to access a
DSM object, the runtime mechanism implemented in
LOTS will be invoked through the use of C++ operator
overloading facility, to check the status of the object,
based on the control information saved at the process
heap. If the object is not resided in the local process



Local 
Disk

a[5] = 7;

Program 
code

Network

A (1) Access invokes 
dynamic mapping 

mechanism

(3) Object 
pointed to 
by internal 
structure

(2) Bring in object from disk or network

A

Process 
Space

Figure 2. Illustrating the dynamic memory
mapping mechanism in LOTS

space, a copy will be brought in from the local hard
disk. This action may also involve swapping out other
unaccessed objects back to the disk if the region is full.
We name this mechanism dynamic memory mapping.

2.2. Virtual Memory Management

LOTS allocates shared objects to an area outside
the heap and stack of the process space to avoid con-
tention while conforming to the memory management
scheme imposed by the underlying operating system.
This area is known as the dynamic memory mapping
(DMM) area, since dynamic memory mapping can be
performed on objects inside this area.

Due to this reason, shared objects are created
through the use of a dedicated class provided by LOTS,
instead of making use of the C++ malloc() or new
functions. In particular, it uses a different allocation
strategy compared with the Doug Lea’s allocator [18]
for handling local objects. Just like the Doug Lea’s
allocator, queues are implemented for storing the free
memory blocks, which are arranged as doubly linked
lists inside the DMM area. Each queue is designated
for a different range of block sizes. However, another
set of queues is needed in LOTS for managing the al-
located memory blocks as well. This is because LOTS
needs to select allocated blocks to be swapped out to
the disk efficiently during the dynamic memory map-
ping process. LOTS V.1 uses 1024 queues to manage
memory blocks of different sizes. Moreover, it allocates
objects of small, medium and large sizes to the upper,
middle and lower part of the DMM area respectively
to improve access locality.

2.3. Dynamic Memory Mapping

When a shared object being accessed is not in the
local DMM area, the access checker needs to bring in a
clean copy, possibly swapping out a temporarily unused
one during the process. The swapping algorithm can

greatly affect the overall performance and even the cor-
rectness of the DSM system. LOTS V.1 adopts a mix of
best-fit and least-recently-used (LRU) swapping tech-
niques. Timestamps are imposed on the shared objects,
such that those last accessed within a certain thresh-
old will not be swapped out. Other objects having the
same size with the one to be accessed will have the
highest chance to be swapped out. If no such object is
available, larger ones will be considered next.

After the object is swapped into the DMM area,
the LOTS access checker passes control to the memory
consistency manager, which maintains the consistency
of the shared object in access. If the local copy of the
shared object is dirty, a clean copy or the updates in the
form of diffs will be brought in from a remote machine.
LOTS makes use of a mixed protocol to implement the
scope consistency model. The protocol combines the
homeless [8], write-update protocol for shared objects
synchronized using locks, together with the migrating-
home [5], write-invalidate protocol for shared objects
synchronized by barriers. This can reduce the number
of messages, and in particular, eliminate the possible
traffic congestion that may arise after a barrier. More-
over, to eliminate the diff accumulation problem [17]
suffered by most DSM systems when diffs are sent dur-
ing synchronization, the per-word timestamp technique,
that is, a timestamp associated with every four bytes
of the shared object, is adopted.

We have shown in the testing results of [7] that this
combination of protocols is very competitive, as LOTS
V.1 performs as good as or even better than another
DSM traditional system JIAJIA [9] in executing pro-
grams with small demand of shared memory.

3 LOTS V.2

In this section, we address several space and time
performance issues in LOTS V.1, and discuss the cor-
responding solutions in the new version, LOTS V.2.

3.1 Unit of Shared Memory

In LOTS V.1, the basic unit of shared memory is
objects. The object-based nature has an advantage
over the page-based counterparts in that small objects,
such as those with primitive types and small arrays,
will not suffer from the false sharing phenomenon as
easily as page-based DSM systems do. However, when
a coherence protocol is used with the concept of home,
such as the migrating-home protocol [5], and a process
has a dirty local copy of a shared object, the protocol
requires that the whole clean copy of the object has to
be sent to the local process from the home processor



before the object is accessed. If the object is very large
but only one small part of the object is going to be
accessed, a large amount of data traffic will be invoked
and most of the traffic becomes redundant. Worse still,
if there is another process requesting some data from
the local process while it is receiving a copy of a large
shared object, it will have to wait so long that the
flow control may mistakenly regard the request as lost
during communication. The unnecessary message re-
transmission further degrades the overall performance.

LOTS V.2 solves the above problem by introduc-
ing the notion of segments, which is a portion of a
shared object. A segment will not exceed 16KB, so
that the segment, its twin and the DSM control in-
formation can be sent altogether in a single message
within the 64KB maximum limit posed by Berkeley
sockets. With the use of segments, a process accessing
a dirty shared object will receive the appropriate seg-
ment in a single message, hence reduces unnecessary
data traffic and eliminates possible blocking by a long
message. Moreover, since each message now contains
the data of an entire segment, message assembly and
disassembly to obtain the whole object becomes unnec-
essary, and the receiving process needs not wait for all
messages comprising the same object to arrive before
assembling them. Memory usage is also reduced.

Segments also help to reduce false sharing, since in
object-based DSM, multiple processes writing to differ-
ent parts of the object (such as an array) will be consid-
ered a kind of false sharing. With segments, processes
can freely write to different segments of the same ob-
ject simultaneously without suffering from false shar-
ing. Unless multiple processes write to different parts
of the same segment at the same time, which rarely
happens due to the relatively small size of segments,
false sharing will not occur in LOTS V.2.

To improve performance further, LOTS V.2 tries
to split an object intelligently into N equal-sized seg-
ments, with N equal to a multiple of the number of
processors P used. Each processor will then be assigned
home of N/P consecutive segments, in the hope that
the home assignment matches the access pattern of the
object well, as shown in Figure 3. In case the predic-
tion is incorrect, the penalty will still be minimal due
to the presence of the migrating-home protocol. After
the first barrier synchronization, the home of a shared
segment will be migrated to one of the last processes
accessing the segment, so that a higher chance of adapt-
ing to the memory access pattern can be obtained. A
token approach is adopted just like LOTS V.1, except
that a token is associated with each segment instead of
each object. Tokens can be transferred during access
of a segment, and the process holding the token of a

(a)

8KB

2KB 2KB 2KB 2KB
P=0 P=1 P=2 P=3

75KB

2KB

P=0

P=1

P=2P=3

3KB

3KB

3KB
16KB 16KB

16KB

16KB

(b)

Figure 3. The intelligent splitting algorithm
from objects to segments in LOTS V.2

segment at barrier synchronization time becomes the
new home of the segment.

One more advantage of using segments in LOTS V.2
is that only the segment going to be accessed will be dy-
namically mapped to the DMM area. Other segments
of the same object can still reside at the secondary stor-
age or peer memory. In contrast, LOTS V.1 requires
the whole object to be dynamically mapped. Thus seg-
ments allow faster swapping and help preserve better
temporal locality, as a smaller size of shared memory
will be swapped in and out each time. Moreover, un-
like LOTS V.1, the maximum size of a single shared
object in LOTS V.2 will not be limited by the largest
free contiguous block available in the DMM area.

3.2 DMM Area Management

As mentioned in Section 2.2, LOTS V.1 allocates
shared objects of different sizes in different parts of the
DMM area. This is complicated as LOTS V.1 has to
deal with every possible memory block size. In partic-
ular, if a large shared object is going to be allocated
but the lower half of the DMM area is full, it has to be
mapped to the upper half, which is intended for small
objects. The result is a mix of small and large objects,
which violates the intension of the original design. As
we shall discuss later, the swapping process will cause
further troubles to the DMM area.

As LOTS V.2 introduces segments of at most 16KB
in size, the DMM area can be re-designed for simpler
and more efficient management. LOTS V.2 divides the
DMM area into 13 different sizes of slots from 4 bytes
to 16KB. Each slot is used to store a shared segment
of the closest size smaller than the slot. Slots of the
same size will be adjacent to each other in the DMM
area. Objects of 2KB or below can still benefit from
the possible access locality, since adjacent small objects
will be allocated and share the same physical page.

The number of queues used in LOTS V.2 can also
be substantially reduced. Instead of 1024 queues as



4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K

Seg
A

Seg
B

Seg
C

Seg
D

Seg
E

Seg
F

Free Queue

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

U
se

d 
Q

ue
u

e

Figure 4. Queue management in LOTS V.2

needed in LOTS V.1, only 13 free queues are imple-
mented, one for each size of free blocks. In addition, six
used queues are provided for each size of used blocks,
making a total of 78 used queues, as they are used
for supporting a more efficient swapping algorithm in
LOTS V.2 as described in the next subsection.

As shown in Figure 4, blocks of the same size and
type are still managed as doubly linked lists, with the
head of the list pointed to by the corresponding queue
entry. But there is a change in the design of a memory
block in the DMM area. Instead of putting the control
information of a block, including the block size and the
previous and next pointers, into the header and trailer
of the block, LOTS V.2 decides to put this information
into a new data structure called the slot map inside the
heap. As all control information of all mapped slots in
the DMM area are put together in the slot map that
spans consecutive pages, the swapping algorithm can
become faster as the traversal of the doubly linked list
will involve fewer memory pages.

3.3 New Swapping Algorithm

LOTS V.1 adopts a combination of best-fit plus LRU
algorithm to determine which object is going to be
swapped out to make space for the object in access.
This algorithm becomes space inefficient when no ob-
jects of the same size as the one in access can be found
in the DMM area. A larger object has to be swapped
out, and this often results in external fragmentation of
the DMM area. Worse still, if the object in access is
the largest shared object, the algorithm needs to swap
out multiple smaller objects in order to empty enough
space. With the introduction of segments in LOTS
V.2, the algorithm can be greatly simplified, as we can
always find a slot with the same size as the one in

Accessing Non-accessing
Home 1 2
Token 3 5
Visitor 4 6

Table 1. Priority of different types of seg-
ments to be retained in the DMM area

access for swapping, and there will not be any exter-
nal fragmentation. To further enhance performance,
LOTS V.2 utilizes the runtime access information of
each shared segment to determine which segment is to
be swapped out, to reduce the number of disk accesses
and improves the overall performance.

In LOTS V.2, the shared segments are classified into
six types during runtime by each executing process,
according to their current access status. At any time, a
segment can have one of the three states in any process
p: home, token-owner, and visitor. Home means the
segment is the current home at process p, and can be
migrated during barrier synchronization. The segment
is considered token-owner when it is not home, but it
obtains the token so that it can become the new home
after the barrier. All the other non-home processes
of the segment without holding the token are known
as visitors. Besides the three states, the segments are
further divided into accessing and non-accessing ones,
which reflect whether they have been accessed after
the last synchronization point (lock release or barrier).
Together the segments are classified into six types, and
a priority is assigned to each of them as shown in Table
1. A smaller number means a higher priority for the
segment to be retained in the DMM area.

Such priority is decided according to the rationale
below. Home segments always have the highest prior-
ity to be retained in the DMM area, since the home
process has to keep the most updated copy of the seg-
ment, and it has to serve all requests for a copy of the
segment. Retaining them in the DMM area can reduce
the disk access overhead. On the other hand, visitor
segments without being accessed after synchronization
are the safest candidates to be swapped out, since there
is no indication that they will be accessed in future. For
other non-home segment types, an accessing segment
is sure to be accessed again at the next synchronization
point for calculating the diffs [12]. So it should have a
higher priority to be retained in the DMM area than
a non-accessing segment. Note that the status of each
segment can be changed dynamically during DSM ex-
ecution. Figure 5 shows the state transition diagram
among the six states.



2 1

5 3

6 4

Access

Access

Synchronize

Synchronize

Synchronize

Grant Token at lock 
or disk full at barrier

Get Token

Becomes New 
Home (holds token)

Home migrated away 
elsewhere at barrier

Segment allocated, home 
elsewhere

Access

Segment allocated, becomes 
home

1 = Home, accessed
3 = Token, accessed
5 = Token, unaccessed

2 = Home, unaccessed
4 = Visitor, accessed
6 = Visitor, unaccessed

Figure 5. State transition diagram of the six
different segment states in LOTS V.2

The final new decision made by LOTS V.2 concerns
where the segment being swapped out is to be accom-
modated. In LOTS V.1, the victim segment, together
with the twin and the per-word timestamps are always
written back to the local hard disk. This causes the
size of the shared object space that can be supported
by LOTS V.1 no more than the minimum disk space
available among all the participating machines. If one
of the machines executing a DSM application under
LOTS V.1 has less free space in its hard disk, other
machines will be affected as well, hence lacking scal-
ability. In LOTS V.2, a non-home victim segment is
allowed to send back to the home node for storage.
The updates made will be sent, just like at synchro-
nization point. This helps to preserve memory consis-
tency. Performance will not degrade though, since the
network transmission overhead is comparable or even
smaller than the hard disk access overhead, especially if
a high-speed cluster network is used. In case too many
segments are migrated to a process, such that the total
size exceeds the available disk space, home migration
will be forbidden. Since the local hard disk is used
to store the home segments only, the new swapping
mechanism allows the maximum shared object space
supported by LOTS V.2 to increase to one-third of the
total free disk space in all the machines executing the
DSM application, as each segment of size S needs 3S
disk space storage, one for the twin, one for the per-
word timestamps and one for the segment itself.

4 Testing and Results

In this section, we present the execution timing re-
sults for LOTS V.2 for two types of applications. In

the first part, LOTS V.2 is executed with applications
with small problem size, hence needing a small amount
of shared memory. LOTS V.2 behaves just like tradi-
tional DSM systems when the large object space sup-
port is not invoked. The execution time is compared
with both the first version of LOTS V.1 and JIAJIA
V1.1, a page-based software DSM employing the home-
based protocol to implement scope consistency. In the
second part, large applications with a high demand of
shared memory is executed in LOTS V.2. Instead of
the execution time, we focus on the size of shared ob-
ject space that can be supported, as well as identifying
how the amount of RAM in each machine of the cluster
can affect the performance of the system.

4.1 Small Applications

For the first test, we have executed four different ap-
plications, each with eight different problem sizes and
two different node sizes, under JIAJIA, LOTS V.1 and
LOTS V.2. The applications include ME (merge sort),
RX (radix sort), FD (finite differences with 20 itera-
tions) and SOR (red-black successive SOR with 256 it-
erations). Except FD, the other applications have been
used in the testing of [7]. The testing was performed
on a 8- and 16-node Pentium IV 2GHz PC cluster, con-
nected by a 100Mb/s Ethernet switch. Each PC has
512MB RAM and 2GB swap space, and Linux Fedora
Core 1 was used as the operating system.

The timing results are shown in Figure 6(a) to 6(d).
The bars show the execution time of each application
with different problem sizes and nodes under LOTS
V.2. Note that it takes longer to run ME when 16
processes are used instead of 8. This is because the
numbers in each process are already sorted during ini-
tialization. With the number of processes doubled, one
extra stage is needed to merge the numbers together.

On the other hand, the lines show the improvement
percentage of LOTS V.2 over LOTS V.1 or JIAJIA
V1.1. A percentage above 0 means that LOTS V.2 ex-
ecutes faster than the other DSM. The larger the value,
the more efficient LOTS V.2 is over its counterpart.

The performance results suggest that LOTS V.2 is
more efficient than JIAJIA V1.1, especially for large
problems. In particular, for FD and SOR with 8
processes, LOTS V.2 can execute 4 and 12 times faster
than JIAJIA V1.1 respectively for the largest problem
size tested. This is because most shared variables are
accessed by only one process throughout the execution
of FD and SOR. The migrating-home protocol in LOTS
V.2 can bring them to the accessing process after the
first iteration, hence reducing network traffic in subse-
quent iterations. ME also benefits from the migrating-



Improve Percentage = (LOTS V.1 or JIAJIA Time / LOTS V.2 
Time) x 100 - 100

LOTS V.2, p=8 LOTS V.2, p=16
LOTS V.1 v V.2, p=8 LOTS V.1 v V.2, p=16
JIAJIA v LOTS V.2, p=8 J IAJIA v LOTS V.2, p=16

(a) Merge Sort (ME)

0

5

10

15

20

1K 2K 3K 4K 5K 6K 7K 8K
Problem Size (n)

T
im

e 
(s

ec
)

-50

0

50

100

150

200

250

Im
pr

ov
e 

(%
)

(b) Radix Sort (RX)

0

5

10

15

20

25

1K 2K 3K 4K 5K 6K 7K 8K

Problem Size (n)

T
im

e 
(s

ec
)

-40

-20

0

20

40

60

80

Im
pr

ov
e 

(%
)

(c) Finite Differences (FD)

0

5

10

15

20

1M 2M 3M 4M 5M 6M 7M 8M

Problem Size (n)

T
im

e 
(s

ec
)

-100
0
100
200
300
400
500
600
700

Im
pr

ov
e 

(%
)

(d) Red Black SOR (SOR)

0

50

100

150

200

250

300

0.5K 1K 1.5K 2K 2.5K 3K 3.5K 4K

Problem Size (n)

T
im

e 
(s

ec
)

-200
0
200
400
600
800
1000
1200
1400

Im
pr

ov
e 

(%
)

LOTS V.2, p=8
LOTS V.1 v V.2, p=8

JIAJIA v LOTS V.2, p=8

LOTS V.2, p=16

LOTS V.1 v V.2, p=16

JIAJIA v LOTS V.2, p=16

Improve Percentage = (LOTS V.1 or JIAJIA Time / LOTS V.2 
Time) x 100 - 100

Figure 6. Execution time of LOTS V.2 on the
four applications with small memory demand

home protocol, as it adapts well to the reverse tree-
based access pattern for shared objects. However, for
RX, most shared variables are accessed alternatively by
two processes. Such access pattern does not favor the
migrating-home protocol, as the home will be migrated
to-and-fro between the two processes.

LOTS V.2 can also outperform the first version as
well. Note that for each of the four applications, we
have declared a two-dimensional shared array to store
the numbers in LOTS V.1, although a one-dimensional
shared array is more natural in implementing ME, RX
and FD. The performance of the two-dimensional ar-
ray version is much faster than the one-dimensional
one, because LOTS V.1 treats a one-dimensional array
as a single object. False sharing becomes very serious
when different processes write to different parts of the
array at the same time. On the other hand, in LOTS
V.2, a one-dimensional array is declared for each appli-
cation, so as to avoid the doubled overhead for opera-
tor overloading during shared object access. In other
words, we are comparing the best performance achiev-
able by both versions of LOTS, and LOTS V.2 beats
its predecessor for most data points. This is attributed
to the introduction of segments with intelligent split-
ting strategy. The one-dimensional shared array is au-
tomatically splitted into different small segments no
more than 16KB in size. They reduce the redundant
network transmission overhead for maintaining mem-
ory consistency, and adapt well to the shared memory
access patterns of DSM applications by reducing the
degree of false sharing.

4.2 Testing Large Object Space Support

As LOTS is the first DSM system to support a large
shared object space, we are more keen on studying
the performance of applications that demand a large
amount of shared memory, preferably more than 4GB.
We tested LOTS V.2 with the use of three real-life ap-
plications. SOR has been used in the previous section,
while two new applications, namely MA (matrix addi-
tion) and MT (matrix transpose) were introduced.

We performed the test in two different environments.
The first one was the Pentium IV cluster as discussed
in Section 4.1. Each of the machines was equipped with
a hard disk with 9GB of free space. The other testing
platform was a cluster of eight Pentium III 700MHz
machines, in which each machine has 2GB of RAM and
about 6GB of free hard disk space. Through testing
in two different environments, we can have an idea of
whether a fast CPU or more main memory is more vital
to the performance of LOTS V.2.

The execution results are shown in Table 2. We can



Problem Size Proc Total Shared Eff. Shared P3 Cluster P4 Cluster
Problem (n) (p) Object Size Object Size Exec Time (s) Exec Time (s)

MA 32K 4 4GB+128KB 12GB+384KB 19208 53579
MA 32K 8 4GB+128KB 12GB+384KB 25046 61000
MT 32K 4 4GB+128KB 12GB+384KB 9551 15861
MT 32K 8 4GB+128KB 12GB+384KB 3538 9234
MT 64K 8 16GB+256KB 48GB+768KB 22924 35678
SOR 32K 4 8GB+256KB 24GB+768KB 54491 100861
SOR 32K 8 8GB+256KB 24GB+768KB 35599 55645

Table 2. Performance of applications with large shared object space support

observe that LOTS V.2 is able to support a shared ob-
ject space of larger than 4GB. Note that due to the
presence of the twin area and the DSM control area,
the effective shared data size claimed by LOTS V.2 is
actually 3 times the size of the shared object space.
Another observation is that when 8 machines are used,
LOTS V.2 is able to execute the MT application with
problem size n = 64K. This amounts to a total shared
object space of 16GB, which is exactly one-third of the
total free disk space available in the Pentium III clus-
ter. This verifies our claim that LOTS V.2 is able to
support a maximum shared object space of 1/3 of the
total free disk space available in the participating clus-
ter. If larger hard disks are available, LOTS V.2 can
support a shared object space of hundreds of gigabytes.
Next, by comparing the execution time using the two
clusters, we find that the Pentium III cluster has a bet-
ter execution time than the Pentium IV cluster, despite
slower CPUs are in use. The reason is attributed to
the presence of more RAM in the Pentium III cluster,
which significantly reduces the activities of swap par-
tition provided by the underlying operating system.

Finally, when we plot the execution time of the three
applications with increasing problem sizes, we obtain
the graphs in Figure 7. The results show that the exe-
cution time is not directly proportional to the problem
size. This is because when the problem size increases,
the large shared object space support of LOTS V.2 is
invoked and hard disk accesses become more frequent.
This results in extra overhead and the execution time
increases more than proportional.

5 Related Work

The need for a large shared object space has not
been addressed by previous DSM researches. One way
to achieve an object space larger than the process space
addressable by the underlying hardware is pointer swiz-
zling [21]. It refers to the runtime translation from

Large Applications Execution Time in P4 Cluster

1

10

100

1000

10000

100000

1K 2K 4K 8K 16K 32K
Problem Size (n)

Lo
g1

0(
T

im
e)

MA, p=4 MA, p=8 MT, p=4
MT, p=8 SOR, p=4 SOR, p=8

Large Applications Execution Time in P3 Cluster

1

10

100

1000

10000

100000

1K 2K 4K 8K 16K 32K
Problem Size (n)

Lo
g1

0(
T

im
e)

MA, p=4 MA, p=8 MT, p=4
MT, p=8 SOR, p=4 SOR, p=8

Figure 7. Large applications execution time
with increasing problem size



system-assigned object identifer known as persistent
pointer to virtual memory address called transient
pointer. In the translation process, persistent objects
resided in the disk will also be brought into the process
space, while unused objects in the virtual memory can
be temporarily removed (unswizzled) to the disk to
make space for the others. However, this approach has
never been adopted in DSM researches. Persistent stor-
age systems such as QuickStore [20], ObjectStore [15]
and Thor [4] did apply this technique. But instead of
providing a large object space, they adopted various
optimization strategies [14] to provide faster access of
persistent pointers by avoiding multiple references from
performing excessive amount of table lookup.

The mechanism used to achieve a large shared ob-
ject space in LOTS V.2 is in some sense analogous to
pointer swizzling. During dynamic memory mapping,
LOTS brings in a segment from the disk to the lo-
cal process space, involving a translation from persis-
tent address (segment ID) to transient address (virtual
memory address). However, LOTS does not aim at
reducing the table lookup overhead. Instead, multi-
ple references from one segment to another still require
multiple table lookup, as the pointers store the segment
IDs rather than the destination virtual memory ad-
dresses. LOTS opts not to adopt any optimization be-
cause unlike a persistent storage system, a DSM needs
to keep track of the access states of every segment.
These operations require table lookup, which waters
down the benefits of pointer swizzling optimizations.
Furthermore, LOTS uses operator overloading to trig-
ger the address translation while the persistent storage
systems aforementioned require the cooperation of ded-
icated compiler support and the page-faulting mecha-
nism of the underlying operating system.

The segment concept as introduced in Section 3.1
shares the same name with those proposed in [1, 2, 16],
but their ideas are very different. In these literatures,
the term “segment” all refers to a collection of multiple
pages as a logical memory consistency unit, while a
segment in LOTS V.2 may be smaller than or larger
than a page, ranging from 4 to 16K bytes. The actual
size of a segment depends on the size of the original
object, as well as the number of processes used.

The segments in LOTS V.2 also exhibits certain
differences from previous researches to provide a fine-
grained DSM. Examples are the notion of regions in
Jackal [19] and CRL [11]. These systems provide a
fine granularity of sharing solely to enhance the perfor-
mance by avoiding the problem of false sharing. How-
ever, segments in LOTS V.2 also aim at reducing the
transmission of the updated copy through the network.
This is because in a large shared object space, objects

tend to be large too. Sending large objects as a whole
becomes a major performance bottleneck.

In addition, the size of segments in LOTS V.2 is de-
termined intelligently by the system. With the num-
ber of executing processes in consideration, LOTS V.2
splits an object into segments to try matching the
shared memory access pattern. Such a strategy has
never been adopted in other DSM systems. In Jackal,
regions can only be applied to arrays, with each region
fixed at 256 bytes, regardless of the size of the object.
The home of each region is not allowed to migrate to
other processors throughout program execution (i.e., a
home-based protocol). CRL allows variable-sized re-
gions to be created, but the size of each region needs
to be defined by the application programmer during
shared memory allocation. This requires the program-
mer’s experience to set the correct region size for op-
timal performance. The splitting of objects to seg-
ments by LOTS V.2 is purely automatic, hence pre-
serving good programmability while adapting well to
many common shared memory access patterns.

6 Conclusion and Future Work

This paper introduces LOTS V.2, a second version of
the DSM system LOTS, for supporting a large shared
object space greater than 4GB on 32-bit clusters for
real-life scientific applications. While LOTS V.1 is an
object-based DSM, LOTS V.2 introduces the concept
of segments, which have many benefits over objects as
the basic unit of the DSM system. The smaller size
of segments allows less data to be transmitted through
the network or hard disks, avoids I/O blocking, reduces
false sharing, simplifies the internal memory manage-
ment, eases message handling, and makes dynamic
memory mapping more efficient. In addition, LOTS
V.2 introduces intelligent splitting of segments from
objects, in order to adapt better to most of the com-
mon shared memory access patterns. LOTS V.2 also
devises a new priority-based swapping strategy based
on the access status of segments. This allows more ef-
ficient use of disk space for supporting a larger shared
object space than the previous version.

Apart from these new features, LOTS V.2 preserves
most of the ideas from LOTS V.1. It implements the
dynamic memory mapping mechanism using a pure
user library approach with an off-the-shelf compiler,
without any dedicated compiler, preprocessor or oper-
ating system modification. Good programmability is
also maintained, while the use of the migrating-home
based coherence protocol allows LOTS V.2 to perform
reasonably better than many traditional DSM systems,
which are only capable of executing small applications.



From testing results, we have proved that LOTS V.2
is capable of executing applications with high demand
of shared memory. It better utilizes the free hard disk
space from the machines to support a larger shared
object space. Due to the presence of segments, false
sharing is reduced and thus the performance is better
than LOTS V.1. However, the translation overhead
from objects and offsets to segments at runtime is still
high, especially when a multiple-dimensional array is
accessed. We believe the performance can be further
improved if such translation can be made more light-
weighted. In addition, swap partition activities trig-
gered by the operating system can be a major source
of performance bottleneck in supporting a large object
space. While the testing results indicates that LOTS
V.2 runs better on clusters with more RAM, in the long
run, we have to find out ways in order to reduce the
impact of the operating system swap activities.

References

[1] R. Ananthanarayanan, S. Menon, A. Mohindra, and
U. Ramachandran. Experiences in integrating dis-
tributed shared memory with virtual memory man-
agement. Operating Systems Review, 26(3):4–26, July
1992.

[2] A. Banerji, D. Kulkarni, J. Tracey, P. Greenawalt,
and D. L. Cohn. High-performance distributed shared
memory substrate for workstation clusters. In Proc.
of the Second IEEE Int’l Symp. on High Performance
Distributed Computing (HPDC-2), 1993.

[3] B. N. Bershad and M. J. Zekauskas. Midway: Shared
memory parallel programming with entry consistency
for distributed memory multiprocessors. CMU-CS-91-
170, pages 528–537, Sept. 1991.

[4] M. Castro, A. Adya, B. Liskov, and A. C. Myers. Hac:
Hybrid adaptive caching for distributed storage sys-
tems. In Proc. of the ACM Symposium on Operat-
ing System Principles (SOSP’97), Saint-Malo, France,
Oct. 1997.

[5] B. W. L. Cheung, C. L. Wang, and K. Hwang.
A migrating-home protocol for implementing scope
consistency model on a cluster of workstations. In
the 1999 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’99), Las Vegas, Nevada, USA, June 1999.

[6] B. W. L. Cheung, C. L. Wang, and F. C. M. Lau.
Building a global object space for supporting single
system image on a cluster. Annual Review of Scalable
Computing, 4, 2002.

[7] B. W. L. Cheung, C. L. Wang, and F. C. M. Lau. Lots:
A software dsm supporting large object space. In Proc.
of 2004 IEEE Int’l Conference on Cluster Computing
(Cluster2004), pages 225–234, Sept. 2004.

[8] A. L. Cox, E. de Lara, C. Hu, and W. Zwaenepoel. A
performance comparison of home-less and home-based

lazy release consistency protocols in software shared
memory. In Proc. of the 5th High Performance Com-
puter Architecture Conference, Jan. 1999.

[9] W. Hu, W. Shi, and Z. Tang. Jiajia: An svm system
based on a new cache coherence protocol. In Proc.
of the High-Performance Computing and Networking
Europe 1999 (HPCN’99), pages 463–472, Apr. 1999.

[10] L. Iftode, J. P. Singh, and K. Li. Scope consistency:
A bridge between release consistency and entry con-
sistency. In Proc. of the 8th ACM Annual Symposium
on Parallel Algorithms and Architectures (SPAA’96),
pages 277–287, June 1996.

[11] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach.
Crl: High-performance all-software distributed shared
memory. In Proc. of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP), volume 29, pages
213–226, 1995.

[12] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy re-
lease consistency for software distributed shared mem-
ory. In Proc. of the 19th Annual International Sym-
posium on Computer Architecture (ISCA’92), pages
13–21, May 1992.

[13] P. Keleher, S. Dwarkadas, A. L. Cox, and
W. Zwanepoel. Treadmarks: Distributed shared mem-
ory on standard workstations and operating systems.
In Proc. of the Winter 1994 USENIX Conference,
pages 115–131, Jan. 1994.

[14] A. Kemper and D. Kossmann. Adaptable pointer swiz-
zling strategies in object bases: Design, realization,
and quantitative analysis. VLDB Journal, 4(3):519–
566, July 1996.

[15] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb.
The objectstore database system. Communications of
the ACM, 34(10), Oct. 1991.

[16] I. Lipkind, I. Pechtchanski, and V. Karamcheti. Ob-
ject views: language support for intelligent object
caching in parallel and distributed computations.
ACM SIGPLAN Notices, 34(10):447–460, 1999.

[17] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenpoel.
Message passing versus distributed shared memory on
networks of workstations. In Proc. of SuperComput-
ing’95, Dec. 1995.

[18] A memory allocator by doug lea.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[19] R. Veldema, R. A. F. Bhoedjang, and H. E. Bal.
Jackal, a compiler based implementation of java for
clusters of workstations. In PPoPP 2001, 2001.

[20] S. J. White and D. J. DeWitt. Quickstore: A high per-
formance mapped object store. In ACM SIGMOD In-
ternational Conference on Management of Data, pages
395–406, Paris, France, May 1994.

[21] P. R. Wilson. Pointer swizzling at page fault time:
Efficiently and compatibly supporting huge address
spaces on standard hardware. In Proc. of the Interna-
tional Workshop on Object Orientation in Operating
Systems, pages 364–377, Paris, France, Sept. 1992.


