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Abstract1 

The ever increasing number of processors used in 
parallel computers is making fault tolerance support in 
large-scale parallel systems more and more important. 
We discuss the inadequacies of existing system-level 
checkpointing solutions for message-passing 
applications as the system scales up. We analyze the 
coordination cost and blocking behavior of two current 
MPI implementations with checkpointing support. A 
group-based solution combining coordinated 
checkpointing and message logging is then proposed. 
Experiment results demonstrate its better performance 
and scalability than LAM/MPI and MPICH-VCL. To 
assist group formation, a method to analyze the 
communication behaviors of the application is 
proposed. 

1. Introduction 

Over the past few years, there has been a rapid 
growth in system size in terms of number of processors. 
According to the list of TOP500 Supercomputer Sites, 
the share of systems comprising more than 512 
processors jumped from 83% in June 2007 to 97.8% in 
November 2007. Back in the year 2003, only 23.4% of 
the systems were of such scale. Increasing system scale 
translates naturally into increasing computing power, 
but on the other hand the system becomes more 
vulnerable to failures. Fault tolerance support becomes 
more important than before. 

Among the many methods to achieve fault tolerance, 
checkpointing is one of the most well-established. With 
this method, checkpoints of applications at certain time 
instants are written to stable storage; later on, if and 
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when a system failure occurs, the checkpoint images 
are retrieved to restart the affected processes, which 
prevents complete loss of computation work.  

The increase in system size brings new challenges 
to checkpointing and restarting a typical 
message-passing application as the system size would 
cause more control and coordination overheads.  

Elnozahy et al. [6] gave a detailed survey of various 
checkpointing strategies. Among them, coordinated 
checkpointing usually incurs high coordination cost as 
checkpoints and rollbacks have to be done globally. 
Moreover, recovery by a global restart, which involves 
all other non-failed processes, would lose all the useful 
work done by these normal processes. Assuming that 
failures only occur in a small region of a large system, 
such work losses would be wasteful. To reduce such 
losses, checkpointing could be done more frequently. 
However, frequent checkpoints may slowdown the 
whole system, resulting in a worse effect than the 
failures [13]. 

Non-blocking coordinated checkpointing may be 
used to reduce the coordination costs. However, when 
checkpoint is in progress, there might be a short period 
of time when the processes are not allowed to send any 
messages. If other processes are blocked waiting for 
such messages, their execution will be paused. The 
delay may propagate to other processes, and eventually 
the whole application. Therefore non-blocking 
checkpoints may actually become blocking, defeating 
its purpose. The problem gets worse in larger systems 
as there would be more messages and message 
dependencies would become complex. 

For checkpointing approaches that require 
additional operations for handling messages, such as 
uncoordinated checkpointing, message logging [2] and 
communication induced checkpointing (CIC) [11], 
their performance would degrade when the system size 
scales up, due to the increased overheads in message 
logging and retransmissions. For example, CIC-based 



systems have to deal with the increased number of 
message transfers, either to detect undesirable patterns 
such as Z-cycles [11], or to piggyback information on 
messages to assist decision making. Other studies also 
showed that CIC-based solutions are unfavorable in 
large-scale systems [1]. 

Similarly for message logging approaches, 
overhead is induced in logging each message transfer. 
The effect could be very prominent in pessimistic 
logging; in causal logging [15], it is difficult to track 
the message dependencies. 

Uncoordinated checkpointing also involves 
message handling overheads. Even worse, it suffers 
from the high probability of having the domino effect 
while forming a consistent recovery line. Ohara et al. in 
[12] illustrated the low probability of having a recovery 
line from uncoordinated checkpoints of large systems.  

We set out to develop a more scalable and efficient 
checkpoint/restart solution for large-scale systems. We 
believe a good solution should possess the following 
characteristics: (1) low coordination and control 
overheads via non-global checkpoints; (2) low message 
management overheads in supporting non-global 
checkpoints and restarts; and (3) flexibility in real-life 
usage. Many existing checkpointing approaches failed 
to meet at least one of the above requirements, which 
could lead to poor performance when the system size is 
large, rendering the approach impractical. 

In this paper, we present a group-based 
checkpointing system. To facilitate process group 
formation, a light-weight MPI communication tracer is 
proposed. The trace outputs are used to identify those 
intensively communicating MPI processes which will 
form a group. By allowing a group of processes as a 
basic unit to checkpointing, global checkpoints and 
restarts can be avoided. Within a group, checkpoints are 
done in a coordinated manner. Consistency among the 
groups is maintained by keeping logs of intergroup 
messages. Under this approach, the checkpoint 
coordination overhead is reduced through non-global 
checkpoints; and only a smaller number of messages 
are logged, thus reducing the overhead in message 
transfers. We implemented the group-based checkpoint 
system based on LAM/MPI [14]. Experiment results 
with HPL [16] and NPB [17] show that the group-based 
solution can reduce checkpoint overhead by over 80% 
when compared with LAM/MPI which uses global, 
coordinated checkpointing. 

The remainder of the paper is organized as follows. 
Section 2 describes the limitations of existing works. 
Section 3 presents the proposed solution, whose 
implementation details are in Section 4. Experiment 

results and performance comparisons against existing 
works are presented in Section 5. Several related works 
are briefly discussed in Section 6. Finally, Section 7 
concludes the paper. 

2. Limitations of Existing Works 

In this section we present our findings on the 
limitations of two current MPI implementations with 
checkpointing support: LAM/MPI and MPICH-VCL 
[4]. 

2.1. Coordination cost in LAM/MPI 

Figure 1 shows the sum of time spent by all 
processes in coordinating one global checkpoint, when 
running HPL with LAM/MPI. Coordination time is 
estimated by excluding the time spent in creating the 
actual checkpoint image. By timing each step of the 
checkpoint process, it is found that in LAM/MPI, the 
time spent in coordination work varies largely from 
almost instantly up to a few seconds. Since the 
application can not make any progress during the 
checkpoint, this time is wasted. Besides the gradual 
increase in duration, any unexpected delay in the 
processes may greatly affect the overall performance, 
as shown in the Figure when the number of processes is 
equal to 40 and 60 respectively. 

2.2. Blocking behavior in MPICH-VCL 

MPICH-VCL, which follows Chandy and 
Lamport’s non-blocking coordinated checkpointing 
algorithm [3], exhibits blocking behavior when the 
system is scaled up. The CG application from the NPB  
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Figure 1 Checkpoint coordination time in HPL with 

LAM/MPI 



suite exhibits non-stop message transfers throughout 
the execution. In other words, the application can not 
progress when there is no message. Figure 2 shows 
partial MPI traces of CG, running with 32 and 128 
processes using MPICH-VCL, with checkpoints taking 
place every 30 seconds. Messages are shown as arrows 
from the source to the destination process. The 
checkpoint duration is shown as light grey blocks 
overlaid on the diagram. 

Figure 2a shows the trace with 32 processes. There 
are portions in the light grey blocks that appear darker 
because there are message transfers during the period, 
i.e., the application was able to make progress. This is 
due to the non-blocking checkpoint process. However, 
light grey “gaps” in Figure 2b reveal that the execution 
was actually paused when checkpointing 128 
processes. 

The problem gets worse when the system scales, as 
shown in Figure 2b where 128 processing nodes were 
used. Note that with 128 nodes the “gaps” nearly span 
the whole checkpoint process in every checkpoint, 
which is very different from the relatively smaller or 
even the lack of “gaps” in the case of 32 nodes. The 
case for 128 nodes also shows that the checkpoint 
process actually spent away more than 50% of the total 
execution time. Such overhead is unbearable. 

3. Group-based Checkpoint/Restart 

3.1. Design  

The proposed group-based solution combines 
coordinated checkpointing and message logging. The 
amount of work done on messages is reduced by 
grouping processes that communicate frequently. At 
the same time, coordinated checkpointing within a 
group tends to require less time in coordination than if 
it is done globally. 

Algorithm 1 describes the scheme of the 
group-based checkpoint/restart. Checkpoints are 
coordinated within each group. Among different 
groups there is no coordination. Only inter-group 
messages are logged by the sender asynchronously, and 
intra-group messages need not to be logged. Message 
logs are flushed to storage right before a checkpoint. 
Therefore each successful checkpoint comes with a 
correct set of message logs. When a message is sent to a 
certain process, the volume of messages sent to that 
process is recorded in terms of bytes. Volumes of 
messages received are recorded similarly. This is to 
determine the volume of messages to replay or skip 
during a restart. For the first message sending to any 

 
(a) 32 processes, showing Processes P0-P3 

 
(b) 128 processes, showing Processes P0-P3 

 
Figure 2 MPI Trace diagram for CG using 
MPICH-VCL, with checkpoints every 30s 

Algorithm 1 Group-based checkpoint/restart 

 

Definitions: 
 RX: volume of messages in bytes received from 

Process X 
 RRX: Recorded value of RX before the latest 

checkpoint 
 SX: volume of messages in bytes sent to Process X 
 VP: piggybacked value of RRX from Process P 

At process start:  
 Read group definitions; Identify the process’s own 

group and the group members 
On sending a message to process P: 

 If P is not within the group: Log message 
asynchronously. If this is the first message sending 
to P after a checkpoint, piggyback RRP to the 
message 

 Update SP 
On receiving a message from process P: 

 Update RP 
 If there is a piggybacked value VP: Do garbage 

collection of message logs for P according to VP 
On receiving a group checkpoint request: 

 Synchronize message logs 
 For each of the out-of-group process Q, remember 

RQ as RRQ 
 Coordinate with other group members to create a 

consistent checkpoint of the group 
 Wait until all group members finish taking the 

checkpoint 
On restart: 

 For each of the out-of-group process Q, request Q 
to replay messages and determine amount of 
messages to skip sending to Q by exchanging RX 
and SX values 

 Wait until all group members finish preparing the 
restart 



process after a checkpoint, the volume of messages 
received from that process before the checkpoint is 
piggybacked onto the message, such that garbage 
collection of message logs can be done accordingly. 

Under this approach, checkpoints and restarts can 
be done in units of groups. Coordination cost is reduced 
as there are fewer processes participating in a 
coordinated checkpoint. The amount of messages 
required to be logged is also reduced comparing with 
pure message logging approaches. Figure 3 illustrates a 
comparison of group-based checkpoint against a 
typical coordinated checkpoint and a typical message 
logging approach. In the next section, we discuss how 
to partition processes into groups and how to select the 
group members according to the inter-process 
communication patterns. 

3.2. Trace assisted group formation 

A good suggestion for group formation can come 
from analyzing MPI communication traces as 
illustrated in Algorithm 2. Send records in the trace are 
extracted, which have the format of (source, 
destination, size). Next, those records having the same 
unordered source/destination pair are found, the total 
number of messages and the total message size are 
calculated, and they are stored as a list of tuples of the 
form (process ranks, count, size). As we would like to 
give higher priority to process groups that 
communicate more, the list is sorted by size, then by 
count in descending order. Each tuple in this input list is 
extracted, and its two process ranks are searched in the 
tuples in the output list, to check if any merging with 
the existing groups can be done. Merging groups 
requires that they have at least one common process. 
Groups will not be merged if it would exceed the 
maximum group size defined. If no such group can be 
found, the tuple is inserted to the output list, 
representing a new group of two processes. The 
merging continues until the input list is exhausted. The 
resultant groups may not be of equal sizes and may not 
reach the given maximum group size. This is normal 
behavior since unrelated groups without any message 
transfers should not be merged into a group. 

We set an upper bound on the group size to enforce 
process grouping and avoid global checkpoint 
coordination in the first place. The default value is the 
square root of the number of processors. Indeed, the 
parameter can be adjusted according to the hardware 
environment. For example, when high speed networks 
are used, a larger maximum group size may be chosen  

 
Figure 3 Group-based checkpoint vs. coordinated 

checkpoint vs. message logging 



Algorithm 2 Group Formation 

 
to reduce the amount of message logs, so that 
overheads due to message latency can be reduced to 
retain the benefits of using a high speed network. It is 
also possible to coordinate checkpoints of a larger 
group efficiently using a faster network. In slower 
networks, having large groups may not be a good 
approach as there would be more in-transit messages to 
be cleared than having a smaller group, and 
synchronization work would be less efficient. 

4. Implementation 

Figure 4 presents a system diagram and describes 
the workflow to perform group-based checkpointing.  
To prepare a group definition, the MPI tracer library is 
linked with the application, and is executed to prepare a 
set of MPI trace. The trace can be visualized as a 
diagram, or to be analyzed to produce a group 
definition file. Subsequent executions may then make 
use of the same group definition file, and the MPI tracer 
library would not be needed anymore. mpirun is 
responsible to receive checkpoint requests from the 
system or the user, and to propagate the requests to MPI 
processes. 

Implementation of group-based checkpoint is done 
on top of LAM/MPI by enhancing its original CRTCP, 
CRLAM and CRMPI SSI modules which provide most 
of the checkpointing functionalities [14]. The mpirun 
utility is also modified to read a checkpoint target file 
which specifies which group(s) to checkpoint, and 
spawn one child for each group to propagate the 
checkpoint requests. All coordination work and barriers 
are limited within the group. One key step in the 
coordination work is to receive all pending messages 
from the group members. When a group finishes its 
checkpoint, it resumes normal execution regardless of 
other groups’ progress in their checkpoint. After all the 
groups have finished their checkpoint, mpirun finally 
checkpoints itself. During a restart, after re-creating 
process spaces and updating LAM/MPI internal 
structures, each pair of out-of-group processes 
exchange the volumes of messages sent/received, and 
messages are then replayed or skipped accordingly. 
After this step all processes return to their normal 
execution. 

 
Figure 4 System diagram and workflow 

Algorithm inputs:  
 send operations from the MPI trace, identified by 

(SRC, DST,Z), where SRC, DST and Z stand for 
source, destination and message size respectively  

 maximum group size G 
 total number of processes n 

Define data structures: 
 Tuples L=(P, N, S), where P consists of processes to 

be in a group, N is the total number of the messages, 
and S is the total size of the N messages. Each tuple 
represents a set of processes that communicates. 

 L,M,T as lists of tuples 
Define operations on tuples Li = (Pi, Ni, Si), list M: 

 Li + Lj = ),,( jijiji SSNNPP ++∪  
 numP(Li): returns number of processes in Pi 
 insert(Li, M): insert Li to M 
 find(P, M): returns the reference of the first tuple 

R=(PR, NR, SR) in M that P belongs to PR 
 delete(Mi M): remove Mi from M 
 length(M): returns number of tuples in M 

Preprocessing: 
 For each trace record ti = (SRC, DST, Z):  

Create tuple Ti = ),1,( ZDSTSRC ∪ ; insert(Ti, T) 
 For all tuples T0, T1, …, Ti in T having the same set of 

process ranks: 
insert(T0+T1+…+Ti, L) ;  delete T0, T1, …, Ti from 
T ; repeat until T is empty 

 Sort L descendingly by S, then by N, finally by P 
 Note that each tuple Li in L contains exactly 2 

processes. Therefore Li can be represented by 
),,( 21 SNPP ∪ . Let there are l tuples in L 

Main loop: For each tuple Li  = ),,( 21 SNPP ∪  in L, 
i=0,1,…l 

 R1  find(P1, M) ; R2  find(P2, M) 
 if R1=NULL & R2=NULL: insert(Li, M) 
 if only R2 is NULL & numP( R1 + Li ) ≤ G:  

R1  R1 + Li 
 if only R1 is NULL & numP( R2 + Li ) ≤ G:  

R2  R2 + Li 
 if both R1 and R2 is not NULL & R1 = R2:  

R1  R1 + Li 
 if both R1 and R2 is not NULL & R1 ≠ R2 & numP( R1 

+ R2 ) ≤ G:  
R1  R1 + R2 + Li ; delete(R2,M) 

Algorithm output:  
 M. Process ranks from each tuple of M form a group



5. Experiment Results 

The system used in the following experiments is the 
HKU Gideon 300 Cluster. Each of the computing nodes 
is equipped with single Pentium 4 2.0 GHz processor, 
512MB of physical memory, connected with Fast 
Ethernet networks. The computing nodes run on Linux 
kernel version 2.4.22. Up to 128 nodes were used in the 
experiments, where each node executes at most one 
MPI process. Each experiment was repeated five times 
to obtain an averaged result. LAM/MPI version 7.1.3b 
is used to implement the group-based checkpoint 
system, with BLCR [5] version 0.4.2 as the underlying 
system level checkpointer. Unless otherwise stated, 
checkpoint images and message logs are stored on the 
local hard disk. Experiments were carried out on two 
applications: High Performance Linpack (HPL) version 
1.0a and NAS Parallel Benchmarks (NPB) version 2.4. 

5.1. Experiments with HPL 

The experiments with HPL are done with problem 
size (N) 20000 and block size (NB) 120. 16 to 128 
processes are used, in 8-process increments. One 
process grid (P×Q) setting is chosen for each scale. P is 
fixed at 8 for the experiments. Process mapping is in 
row-major order. 

The MPI trace analysis results matched with the 
P×Q setting of the executions, that there would be Q 
groups with size P, with the process ranks in a 
round-robin fashion. This is a good example that the 
group formations can match with the application 
behavior. Table 1 shows an example for 32 processes 
(8×4). At 60 seconds after starting the program, all 
groups are signaled to take one checkpoint. After the 
program finishes it is immediately restarted from the 
only checkpoint, to measure the time needed to resume 
normal operations. 

Three grouping methods are used and compared 
with the original LAM/MPI coordinated checkpoint, 
and we use the following notations: 

 GP: Group formation decided by obtaining and 
analyzing MPI traces 

 GP1: One process per group, i.e., uncoordinated 
checkpoint with message log 

 GP4: Four groups with sequential process ranks; 
which represents an ad-hoc group formation 

 NORM: One group only, equivalent to the 
original LAM/MPI global coordinated 
checkpoint 
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(b) Difference from NORM (lower is better) 
Figure 5 Execution time with one checkpoint at 

t=60s 

Checkpoint time is measured per process, from the 
receipt of checkpoint signal until the process resumes 
normal execution. After all the processes finish the 
checkpoint, the mpirun process would do a 
checkpoint for itself. This period is not timed because it 
does not affect the normal execution anymore. Restart 
time is measured similarly, from the recreation of the 
process to its return to normal execution. Figure 5 to 
Figure 10 show the experiment results with HPL. 

Figure 5a shows the execution time of HPL from 
start to finish, with one checkpoint at the 60th second of 
the execution. Despite the adverse effect of message 
logging with group-based checkpoints in GP, GP1 and 

Table 1 Group formation for HPL, 32 processes 
(P×Q=8×4) 

Group #  
(Q groups) 

Process ranks 
(P processes) 

1 0, 4, 8, 12, 16, 20, 24, 28 
2 1, 5, 9, 13, 17, 21, 25, 29 
3 2, 6, 10, 14, 18, 22, 26, 30 
4 3, 7, 11, 15, 19, 23, 27, 31 



GP4, they perform as well as NORM. The graph for 
NORM is fluctuating, indicating that there had been 
some variable delay in the checkpoint process and the 
delay is reflected in the total execution time. This did 
not happen in GP, GP1 and GP4. For comparison, 
Figure 5b shows their difference in the time with 
respect to NORM. GP actually outperforms NORM, 
because the saving in checkpoint time is more than 
enough to compensate for the slowdown due to logging 
messages. The performance edge in GP over NORM 
steadily increases when the system is scaled up, 
indicating that GP is more scalable than NORM. 

Figure 6 shows the sum of time spent in every 
process during checkpoint and restart. This represents 
the total CPU time of the system spent in such 
operations. Figure 6a shows checkpoint time. As 
expected, GP1 performed the best since there was 
absolutely no coordination. GP, which represents a 
good grouping method, showed similar performance to 
GP1. This is because in GP processes that work closely 
are grouped together, and the processes would have 
similar progress. Therefore, when coordinating the 
processes, waiting time is minimal and there are fewer 

in-transit messages to be cleared. In addition, a small 
group of eight processes has negligible waiting time in 
barriers during the process. In contrary, in NORM, 
checkpoint time is relatively high, and is steadily 
increasing when scaled. It is also vulnerable to 
unexpected delays in checkpoints, observed as spikes 
in the graph. It is important to note that, even with a 
rather ad-hoc grouping method, as represented by GP4, 
the performance is considered better than NORM. With 
a good grouping method, group-based checkpoints 
could perform as efficiently as uncoordinated 
checkpoints. GP spent almost the same time in 
checkpoints with 16 to 128 processors, and is expected 
to have a similar behavior when further scaled. 

Figure 6b shows the time needed in preparing a 
restart. Globally coordinated checkpoint is always the 
most efficient one, since there is no need to resend any 
messages. Processes may start executing shortly after 
the checkpoint images are loaded. Although being the 
fastest to checkpoint, GP1 is the slowest and the most 
unpredictable one in restarts, which is caused by 
resending variable amounts of messages to all other 
processes. Also, any slight delay in one process might 
greatly delay the whole progress in a restart. This is 
shown as sharp spikes in the diagram. The risk of delay 
becomes higher when the system is scaled. GP 
performs only slightly worse than NORM because only 
a small amount of messages have to be resent, to a 
small set of processes. In GP, processes do not need to 
consider message replays within their group, resulting 
in a faster operation in this stage. GP is as scalable as 
NORM. 

 Figure 7 shows the total amount of data to be 
resent and Figure 8 shows the actual number of resend 
operations to complete a restart. As shown in the Figure, 
GP1 is the least scalable and the figures vary more than 
in GP and GP4. This is because of the uncoordinated 
checkpoints of GP1. GP, however, is able to achieve 
good scalability via a good formation. GP4 scales 
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(b) Restart 

Figure 6 Summed checkpoint and restart time 
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Figure 7 Amount of data to resend 



steadily like GP because in GP4, processes are always 
partitioned in 4 groups, such that the probability to 
resend messages would not vary a lot.   

Figure 9 shows the average time spent on each stage 
of checkpoint, with different grouping methods, using 
16 and 128 processes. With the same system scale, time 
spent in the actual checkpoint (“Checkpoint”) always 
remains the same as the duration is dictated by the 
memory usage of the application. Grouping method 
affects the time spent on coordination. On a small scale 
of 16 processes, NORM spent roughly the same time in 
actual checkpoint as in coordination (“Coordination”). 
When the system is scaled to 128 processes, memory 
usage is reduced as the problem is divided into smaller 
pieces, resulting in a faster Checkpoint stage. However 
the cost in coordinating the checkpoint in NORM 
increases so much that it becomes the dominating factor. 
The actual checkpoint takes only a fraction of the total. 
With a good grouping method, as demonstrated in GP, 
the overhead is kept at the minimal. 

Figure 10 shows the results of a different testing 
scenario. Instead of doing only one checkpoint, the 
application is checkpointed at fixed intervals until the 
application finishes. The problem size N is set to 56000 
to lengthen the execution time. The problem is run with 
128 processes. A checkpoint interval of zero represents 
no checkpoint is ever made. From the figure, two 
important observations are made. Firstly, when no 
checkpoint is made GP is inevitably less efficient than 
NORM due to message logging. However the loss 
could be compensated when there are more 
checkpoints. GP caught up with NORM in terms of 
execution time when both GP and NORM performed 
four checkpoints, with a 180-second checkpoint 
interval. GP would outperform NORM when there are 
sufficient checkpoints, as shown in 60- and 120-second 
intervals. 

Secondly, given its better performance, GP allows 
more checkpoints to be done, while still being more 
efficient than NORM in terms of total execution time. 
As a result the average amount of work between 
checkpoints can be reduced. This means if there are any 
restarts, the expected work loss is also reduced. As a 
conclusion, the proposed solution is suitable for 
large-scale, long-running applications. 
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Figure 8 Number of resend operations  
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Figure 9 Checkpoint time breakdown 
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Figure 10 Effect of multiple checkpoints 
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(b) Restart 

Figure 11 CG: Summed checkpoint and restart time 

5.2. Experiments with NPB 

A similar set of experiments is done using NPB, 
using the applications CG and SP. Problem sizes are of 
Class C. Due to the different restrictions on the number 
of processes, 16, 32, 64 and 128 processes are used for 
CG, for SP, 64, 81, 100 and 121 processes are used. GP4 
is only tested on CG as it is not appropriate for SP’s 
system size. MPI traces are obtained and analyzed for 
each case. Figure 11 and Figure 12 show the summed 
checkpoint and restart times for CG and SP respectively. 
Similar to the results with HPL, checkpoint time in GP 
is much better than NORM and is comparable to GP1. 
During restarts GP is as efficient as NORM, and less 
varying than GP1. 

5.3. Checkpoint on remote storage and 
comparison with MPICH-VCL 

MPICH-VCL uses non-blocking coordinated 
checkpointing as opposed to the blocking approach in 

LAM/MPI.  Also, MPICH-VCL stores the checkpoint 
images at a remote checkpoint server rather than the 
local disk.  In the following experiments, 4 isolated 
computing nodes act as the checkpoint servers for 
MPICH-VCL.  LAM/MPI is also configured to store 
checkpoint images at these servers via NFS.  
Experiments are done using CG, Class C from 16 to 128 
processes.  Checkpoints are triggered every 120 
seconds in MPICH-VCL, GP is then forced to take the 
same number of checkpoints by using a different 
checkpoint interval, to ensure fairness in the 
comparison.  This is due to the difference in execution 
time, that GP would take fewer checkpoints with 120 
second intervals.  The experiment is repeated 5 times 
to take averaged results. 

Figure 13 shows the total execution time and the 
number of checkpoints completed during the execution, 
when using remote storage for checkpoint images.  GP 
shows a clear edge over VCL as the system scales up.  

Figure 14 shows the average time required per 
checkpoint, again GP is more efficient than VCL 
throughout the experiment. Following the trend 
MPICH-VCL may perform much less efficiently than 
GP when the system is further scaled. 
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Figure 12 SP: Summed checkpoint and restart time 
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Figure 13 Effect of scale 
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Figure 14 Average time per checkpoint 

6. Related Works 

LAM/MPI and MPICH are two widely used MPI 
implementations. LAM/MPI has blocking coordinated 
checkpointing support built-in. MPICH however does 
not support checkpointing by itself. As a result, 
MPICH-V projects [2] evolved to provide fault tolerant 
support to MPICH. As described in previous sections, 
LAM/MPI and MPICH-VCL suffer from scalability 
problems. 

A recently released protocol, MPICH-PCL [4], 
which follows a blocking approach, is expected to have 
a similar behavior to LAM/MPI when applied to 
large-scale systems. Moreover, the developers of the 
MPICH-V family are aware that their protocols may 
add significant message overheads [2] to the original 
MPICH. Therefore, MPICH-V may not be efficient for 
large-scale systems where there would be a lot of 
message transfers. 

There are several projects that apply the concept of 
process groups. Process groups may be formed 

according to the architecture of the system. For 
example, MPICH-V3 [8] is being designed for grid 
environments that consist of multiple clusters. Within a 
cluster, checkpoints can be done independently using 
MPICH-VCL, and consistency among the clusters is 
maintained by message logs. For a closely connected 
cluster of clusters, also known as cluster federations, 
the HC3I project [10] works in a similar fashion. 
Checkpoints within one cluster is done coordinately, 
and among the clusters, communication induced 
checkpointing is used. The NCCU-MPI project [9], 
designed for fat-node clusters, uses coordinated 
checkpoints on multiple processes running within a 
cluster node, and logs messages transferred between 
the nodes. These works lack flexibility where the group 
formation is fixed according to the system architecture. 

There are also grouping approaches based on the 
communication behaviors of the application being 
checkpointed. Gopalan and Nagarajan [7] have 
designed a dynamic scheme that partitions processes 
into smaller, mutually disjoint process groups. 
Individual processes or groups of processes are merged 
into a single group when one sends or receives a 
message to/from the other. Coordinated checkpoints are 
done within a group, complemented by message logs. 
With this grouping method, however, all processes may 
eventually form as a single group when there is a 
sequence of messages linking up all the processes. 

The proposed solution is different from these works 
in that group formations can be freely controlled by the 
user, so that the checkpointing scheme could suit both 
hardware and software characteristics. Moreover, as the 
group formation can be freely controlled, it is possible, 
for example, to group processor nodes that fail more 
frequently, and select a shorter checkpoint interval, in 
order to increase tolerance to failures by reducing the 
amount of work loss due to restarts. The above listed 
works do not support such feature. 

7. Conclusion and Future Work 

This paper has made the following contributions. 
Firstly, the inadequacies of current checkpoint 
techniques on message passing systems are identified. 
The current techniques may not be sufficiently scalable 
and flexible to be applied in large-scale message 
passing systems. With the issues to be solved in mind, a 
novel and practical solution using group-based 
coordinated checkpointing and message logging is 
proposed and implemented. Implementation is done 
based on LAM/MPI, one of the widely adopted MPI 
implementations, which allows most MPI applications 
to acquire fault tolerance capabilities readily. The 



proposed solution does not require global checkpoints 
and restarts. Through experiments, the benefit of 
reduced coordination time by using the group-based 
approach is shown. The solution is efficient during both 
checkpoints and restarts, and remains equally efficient 
when the system scales. With the flexibility in forming 
groups, the solution is suitable for different system 
architectures, such as grids, cluster federations or 
simple clusters. Comparing with the original 
LAM/MPI implementation, the proposed solution is 
able to perform more checkpoints within the execution, 
with shorter or similar total execution times. This 
increases the throughput of the system by reducing 
work loss due to rollback recovery, in addition to the 
reduction in coordination time. The proposed solution 
also performs better than MPICH-VCL by having 
better scalability. To assist optimal process group 
formation, a light weight MPI communication tracer is 
designed and implemented, where the trace output can 
be analyzed to reveal the communication behavior of 
the application and to suggest a group formation to be 
applied in checkpointing. 

The performance of a group-based solution relies 
on the group formation. While one method is given in 
this paper, there may be better group forming 
algorithms that would need further research. For 
example, the change in communication pattern in 
different stages of the application may lead to a change 
in group formation. Moreover, the traces would also 
give a hint to select a fixed optimal checkpoint interval, 
or to place checkpoints at exact points of the execution. 
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