
Scalable Group-based Checkpoint/Restart for
Large-Scale Message-passing Systems1

Justin C. Y. Ho, Cho-Li Wang and Francis C. M. Lau
Department of Computer Science,

The University of Hong Kong,
{cyho2,clwang,fcmlau}@cs.hku.hk

Abstract1

The ever increasing number of processors used in
parallel computers is making fault tolerance support in
large-scale parallel systems more and more important.
We discuss the inadequacies of existing system-level
checkpointing solutions for message-passing
applications as the system scales up. We analyze the
coordination cost and blocking behavior of two current
MPI implementations with checkpointing support. A
group-based solution combining coordinated
checkpointing and message logging is then proposed.
Experiment results demonstrate its better performance
and scalability than LAM/MPI and MPICH-VCL. To
assist group formation, a method to analyze the
communication behaviors of the application is
proposed.

1. Introduction

Over the past few years, there has been a rapid
growth in system size in terms of number of processors.
According to the list of TOP500 Supercomputer Sites,
the share of systems comprising more than 512
processors jumped from 83% in June 2007 to 97.8% in
November 2007. Back in the year 2003, only 23.4% of
the systems were of such scale. Increasing system scale
translates naturally into increasing computing power,
but on the other hand the system becomes more
vulnerable to failures. Fault tolerance support becomes
more important than before.

Among the many methods to achieve fault tolerance,
checkpointing is one of the most well-established. With
this method, checkpoints of applications at certain time
instants are written to stable storage; later on, if and

1 This research is supported by a Hong Kong RGC grant
(HKU 7176/06E) and a China 863 grant (2006AA01A111).

when a system failure occurs, the checkpoint images
are retrieved to restart the affected processes, which
prevents complete loss of computation work.

The increase in system size brings new challenges
to checkpointing and restarting a typical
message-passing application as the system size would
cause more control and coordination overheads.

Elnozahy et al. [6] gave a detailed survey of various
checkpointing strategies. Among them, coordinated
checkpointing usually incurs high coordination cost as
checkpoints and rollbacks have to be done globally.
Moreover, recovery by a global restart, which involves
all other non-failed processes, would lose all the useful
work done by these normal processes. Assuming that
failures only occur in a small region of a large system,
such work losses would be wasteful. To reduce such
losses, checkpointing could be done more frequently.
However, frequent checkpoints may slowdown the
whole system, resulting in a worse effect than the
failures [13].

Non-blocking coordinated checkpointing may be
used to reduce the coordination costs. However, when
checkpoint is in progress, there might be a short period
of time when the processes are not allowed to send any
messages. If other processes are blocked waiting for
such messages, their execution will be paused. The
delay may propagate to other processes, and eventually
the whole application. Therefore non-blocking
checkpoints may actually become blocking, defeating
its purpose. The problem gets worse in larger systems
as there would be more messages and message
dependencies would become complex.

For checkpointing approaches that require
additional operations for handling messages, such as
uncoordinated checkpointing, message logging [2] and
communication induced checkpointing (CIC) [11],
their performance would degrade when the system size
scales up, due to the increased overheads in message
logging and retransmissions. For example, CIC-based

systems have to deal with the increased number of
message transfers, either to detect undesirable patterns
such as Z-cycles [11], or to piggyback information on
messages to assist decision making. Other studies also
showed that CIC-based solutions are unfavorable in
large-scale systems [1].

Similarly for message logging approaches,
overhead is induced in logging each message transfer.
The effect could be very prominent in pessimistic
logging; in causal logging [15], it is difficult to track
the message dependencies.

Uncoordinated checkpointing also involves
message handling overheads. Even worse, it suffers
from the high probability of having the domino effect
while forming a consistent recovery line. Ohara et al. in
[12] illustrated the low probability of having a recovery
line from uncoordinated checkpoints of large systems.

We set out to develop a more scalable and efficient
checkpoint/restart solution for large-scale systems. We
believe a good solution should possess the following
characteristics: (1) low coordination and control
overheads via non-global checkpoints; (2) low message
management overheads in supporting non-global
checkpoints and restarts; and (3) flexibility in real-life
usage. Many existing checkpointing approaches failed
to meet at least one of the above requirements, which
could lead to poor performance when the system size is
large, rendering the approach impractical.

In this paper, we present a group-based
checkpointing system. To facilitate process group
formation, a light-weight MPI communication tracer is
proposed. The trace outputs are used to identify those
intensively communicating MPI processes which will
form a group. By allowing a group of processes as a
basic unit to checkpointing, global checkpoints and
restarts can be avoided. Within a group, checkpoints are
done in a coordinated manner. Consistency among the
groups is maintained by keeping logs of intergroup
messages. Under this approach, the checkpoint
coordination overhead is reduced through non-global
checkpoints; and only a smaller number of messages
are logged, thus reducing the overhead in message
transfers. We implemented the group-based checkpoint
system based on LAM/MPI [14]. Experiment results
with HPL [16] and NPB [17] show that the group-based
solution can reduce checkpoint overhead by over 80%
when compared with LAM/MPI which uses global,
coordinated checkpointing.

The remainder of the paper is organized as follows.
Section 2 describes the limitations of existing works.
Section 3 presents the proposed solution, whose
implementation details are in Section 4. Experiment

results and performance comparisons against existing
works are presented in Section 5. Several related works
are briefly discussed in Section 6. Finally, Section 7
concludes the paper.

2. Limitations of Existing Works

In this section we present our findings on the
limitations of two current MPI implementations with
checkpointing support: LAM/MPI and MPICH-VCL
[4].

2.1. Coordination cost in LAM/MPI

Figure 1 shows the sum of time spent by all
processes in coordinating one global checkpoint, when
running HPL with LAM/MPI. Coordination time is
estimated by excluding the time spent in creating the
actual checkpoint image. By timing each step of the
checkpoint process, it is found that in LAM/MPI, the
time spent in coordination work varies largely from
almost instantly up to a few seconds. Since the
application can not make any progress during the
checkpoint, this time is wasted. Besides the gradual
increase in duration, any unexpected delay in the
processes may greatly affect the overall performance,
as shown in the Figure when the number of processes is
equal to 40 and 60 respectively.

2.2. Blocking behavior in MPICH-VCL

MPICH-VCL, which follows Chandy and
Lamport’s non-blocking coordinated checkpointing
algorithm [3], exhibits blocking behavior when the
system is scaled up. The CG application from the NPB

0

200

400

600

800

1000

1200

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

 Number of Processes

A
gg

re
ga

te
 C

oo
rd

in
at

io
n

Ti
m

e
(s

)

Figure 1 Checkpoint coordination time in HPL with

LAM/MPI

suite exhibits non-stop message transfers throughout
the execution. In other words, the application can not
progress when there is no message. Figure 2 shows
partial MPI traces of CG, running with 32 and 128
processes using MPICH-VCL, with checkpoints taking
place every 30 seconds. Messages are shown as arrows
from the source to the destination process. The
checkpoint duration is shown as light grey blocks
overlaid on the diagram.

Figure 2a shows the trace with 32 processes. There
are portions in the light grey blocks that appear darker
because there are message transfers during the period,
i.e., the application was able to make progress. This is
due to the non-blocking checkpoint process. However,
light grey “gaps” in Figure 2b reveal that the execution
was actually paused when checkpointing 128
processes.

The problem gets worse when the system scales, as
shown in Figure 2b where 128 processing nodes were
used. Note that with 128 nodes the “gaps” nearly span
the whole checkpoint process in every checkpoint,
which is very different from the relatively smaller or
even the lack of “gaps” in the case of 32 nodes. The
case for 128 nodes also shows that the checkpoint
process actually spent away more than 50% of the total
execution time. Such overhead is unbearable.

3. Group-based Checkpoint/Restart

3.1. Design

The proposed group-based solution combines
coordinated checkpointing and message logging. The
amount of work done on messages is reduced by
grouping processes that communicate frequently. At
the same time, coordinated checkpointing within a
group tends to require less time in coordination than if
it is done globally.

Algorithm 1 describes the scheme of the
group-based checkpoint/restart. Checkpoints are
coordinated within each group. Among different
groups there is no coordination. Only inter-group
messages are logged by the sender asynchronously, and
intra-group messages need not to be logged. Message
logs are flushed to storage right before a checkpoint.
Therefore each successful checkpoint comes with a
correct set of message logs. When a message is sent to a
certain process, the volume of messages sent to that
process is recorded in terms of bytes. Volumes of
messages received are recorded similarly. This is to
determine the volume of messages to replay or skip
during a restart. For the first message sending to any

(a) 32 processes, showing Processes P0-P3

(b) 128 processes, showing Processes P0-P3

Figure 2 MPI Trace diagram for CG using
MPICH-VCL, with checkpoints every 30s

Algorithm 1 Group-based checkpoint/restart

Definitions:
 RX: volume of messages in bytes received from

Process X
 RRX: Recorded value of RX before the latest

checkpoint
 SX: volume of messages in bytes sent to Process X
 VP: piggybacked value of RRX from Process P

At process start:
 Read group definitions; Identify the process’s own

group and the group members
On sending a message to process P:

 If P is not within the group: Log message
asynchronously. If this is the first message sending
to P after a checkpoint, piggyback RRP to the
message

 Update SP
On receiving a message from process P:

 Update RP
 If there is a piggybacked value VP: Do garbage

collection of message logs for P according to VP
On receiving a group checkpoint request:

 Synchronize message logs
 For each of the out-of-group process Q, remember

RQ as RRQ
 Coordinate with other group members to create a

consistent checkpoint of the group
 Wait until all group members finish taking the

checkpoint
On restart:

 For each of the out-of-group process Q, request Q
to replay messages and determine amount of
messages to skip sending to Q by exchanging RX
and SX values

 Wait until all group members finish preparing the
restart

process after a checkpoint, the volume of messages
received from that process before the checkpoint is
piggybacked onto the message, such that garbage
collection of message logs can be done accordingly.

Under this approach, checkpoints and restarts can
be done in units of groups. Coordination cost is reduced
as there are fewer processes participating in a
coordinated checkpoint. The amount of messages
required to be logged is also reduced comparing with
pure message logging approaches. Figure 3 illustrates a
comparison of group-based checkpoint against a
typical coordinated checkpoint and a typical message
logging approach. In the next section, we discuss how
to partition processes into groups and how to select the
group members according to the inter-process
communication patterns.

3.2. Trace assisted group formation

A good suggestion for group formation can come
from analyzing MPI communication traces as
illustrated in Algorithm 2. Send records in the trace are
extracted, which have the format of (source,
destination, size). Next, those records having the same
unordered source/destination pair are found, the total
number of messages and the total message size are
calculated, and they are stored as a list of tuples of the
form (process ranks, count, size). As we would like to
give higher priority to process groups that
communicate more, the list is sorted by size, then by
count in descending order. Each tuple in this input list is
extracted, and its two process ranks are searched in the
tuples in the output list, to check if any merging with
the existing groups can be done. Merging groups
requires that they have at least one common process.
Groups will not be merged if it would exceed the
maximum group size defined. If no such group can be
found, the tuple is inserted to the output list,
representing a new group of two processes. The
merging continues until the input list is exhausted. The
resultant groups may not be of equal sizes and may not
reach the given maximum group size. This is normal
behavior since unrelated groups without any message
transfers should not be merged into a group.

We set an upper bound on the group size to enforce
process grouping and avoid global checkpoint
coordination in the first place. The default value is the
square root of the number of processors. Indeed, the
parameter can be adjusted according to the hardware
environment. For example, when high speed networks
are used, a larger maximum group size may be chosen

Figure 3 Group-based checkpoint vs. coordinated

checkpoint vs. message logging

Algorithm 2 Group Formation

to reduce the amount of message logs, so that
overheads due to message latency can be reduced to
retain the benefits of using a high speed network. It is
also possible to coordinate checkpoints of a larger
group efficiently using a faster network. In slower
networks, having large groups may not be a good
approach as there would be more in-transit messages to
be cleared than having a smaller group, and
synchronization work would be less efficient.

4. Implementation

Figure 4 presents a system diagram and describes
the workflow to perform group-based checkpointing.
To prepare a group definition, the MPI tracer library is
linked with the application, and is executed to prepare a
set of MPI trace. The trace can be visualized as a
diagram, or to be analyzed to produce a group
definition file. Subsequent executions may then make
use of the same group definition file, and the MPI tracer
library would not be needed anymore. mpirun is
responsible to receive checkpoint requests from the
system or the user, and to propagate the requests to MPI
processes.

Implementation of group-based checkpoint is done
on top of LAM/MPI by enhancing its original CRTCP,
CRLAM and CRMPI SSI modules which provide most
of the checkpointing functionalities [14]. The mpirun
utility is also modified to read a checkpoint target file
which specifies which group(s) to checkpoint, and
spawn one child for each group to propagate the
checkpoint requests. All coordination work and barriers
are limited within the group. One key step in the
coordination work is to receive all pending messages
from the group members. When a group finishes its
checkpoint, it resumes normal execution regardless of
other groups’ progress in their checkpoint. After all the
groups have finished their checkpoint, mpirun finally
checkpoints itself. During a restart, after re-creating
process spaces and updating LAM/MPI internal
structures, each pair of out-of-group processes
exchange the volumes of messages sent/received, and
messages are then replayed or skipped accordingly.
After this step all processes return to their normal
execution.

Figure 4 System diagram and workflow

Algorithm inputs:
 send operations from the MPI trace, identified by

(SRC, DST,Z), where SRC, DST and Z stand for
source, destination and message size respectively

 maximum group size G
 total number of processes n

Define data structures:
 Tuples L=(P, N, S), where P consists of processes to

be in a group, N is the total number of the messages,
and S is the total size of the N messages. Each tuple
represents a set of processes that communicates.

 L,M,T as lists of tuples
Define operations on tuples Li = (Pi, Ni, Si), list M:

 Li + Lj =),,(jijiji SSNNPP ++∪
 numP(Li): returns number of processes in Pi
 insert(Li, M): insert Li to M
 find(P, M): returns the reference of the first tuple

R=(PR, NR, SR) in M that P belongs to PR
 delete(Mi M): remove Mi from M
 length(M): returns number of tuples in M

Preprocessing:
 For each trace record ti = (SRC, DST, Z):

Create tuple Ti =),1,(ZDSTSRC ∪ ; insert(Ti, T)
 For all tuples T0, T1, …, Ti in T having the same set of

process ranks:
insert(T0+T1+…+Ti, L) ; delete T0, T1, …, Ti from
T ; repeat until T is empty

 Sort L descendingly by S, then by N, finally by P
 Note that each tuple Li in L contains exactly 2

processes. Therefore Li can be represented by
),,(21 SNPP ∪ . Let there are l tuples in L

Main loop: For each tuple Li =),,(21 SNPP ∪ in L,
i=0,1,…l

 R1 find(P1, M) ; R2 find(P2, M)
 if R1=NULL & R2=NULL: insert(Li, M)
 if only R2 is NULL & numP(R1 + Li) ≤ G:

R1 R1 + Li
 if only R1 is NULL & numP(R2 + Li) ≤ G:

R2 R2 + Li
 if both R1 and R2 is not NULL & R1 = R2:

R1 R1 + Li
 if both R1 and R2 is not NULL & R1 ≠ R2 & numP(R1

+ R2) ≤ G:
R1 R1 + R2 + Li ; delete(R2,M)

Algorithm output:
 M. Process ranks from each tuple of M form a group

5. Experiment Results

The system used in the following experiments is the
HKU Gideon 300 Cluster. Each of the computing nodes
is equipped with single Pentium 4 2.0 GHz processor,
512MB of physical memory, connected with Fast
Ethernet networks. The computing nodes run on Linux
kernel version 2.4.22. Up to 128 nodes were used in the
experiments, where each node executes at most one
MPI process. Each experiment was repeated five times
to obtain an averaged result. LAM/MPI version 7.1.3b
is used to implement the group-based checkpoint
system, with BLCR [5] version 0.4.2 as the underlying
system level checkpointer. Unless otherwise stated,
checkpoint images and message logs are stored on the
local hard disk. Experiments were carried out on two
applications: High Performance Linpack (HPL) version
1.0a and NAS Parallel Benchmarks (NPB) version 2.4.

5.1. Experiments with HPL

The experiments with HPL are done with problem
size (N) 20000 and block size (NB) 120. 16 to 128
processes are used, in 8-process increments. One
process grid (P×Q) setting is chosen for each scale. P is
fixed at 8 for the experiments. Process mapping is in
row-major order.

The MPI trace analysis results matched with the
P×Q setting of the executions, that there would be Q
groups with size P, with the process ranks in a
round-robin fashion. This is a good example that the
group formations can match with the application
behavior. Table 1 shows an example for 32 processes
(8×4). At 60 seconds after starting the program, all
groups are signaled to take one checkpoint. After the
program finishes it is immediately restarted from the
only checkpoint, to measure the time needed to resume
normal operations.

Three grouping methods are used and compared
with the original LAM/MPI coordinated checkpoint,
and we use the following notations:

 GP: Group formation decided by obtaining and
analyzing MPI traces

 GP1: One process per group, i.e., uncoordinated
checkpoint with message log

 GP4: Four groups with sequential process ranks;
which represents an ad-hoc group formation

 NORM: One group only, equivalent to the
original LAM/MPI global coordinated
checkpoint

90

120

150

180

210

240

270

300

330

360

390

16 32 48 64 80 96 112 128
Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(s
)

GP
GP1

GP4
NORM

(a) Execution time

-10

-8

-6

-4

-2

0

2

4

6

8

10

16 32 48 64 80 96 112 128
Number of Processes

Ti
m

e
di

ffe
re

nc
e

fro
m

 N
O

RM
 (s

)

GP GP1

GP4 NORM

(b) Difference from NORM (lower is better)
Figure 5 Execution time with one checkpoint at

t=60s

Checkpoint time is measured per process, from the
receipt of checkpoint signal until the process resumes
normal execution. After all the processes finish the
checkpoint, the mpirun process would do a
checkpoint for itself. This period is not timed because it
does not affect the normal execution anymore. Restart
time is measured similarly, from the recreation of the
process to its return to normal execution. Figure 5 to
Figure 10 show the experiment results with HPL.

Figure 5a shows the execution time of HPL from
start to finish, with one checkpoint at the 60th second of
the execution. Despite the adverse effect of message
logging with group-based checkpoints in GP, GP1 and

Table 1 Group formation for HPL, 32 processes
(P×Q=8×4)

Group #
(Q groups)

Process ranks
(P processes)

1 0, 4, 8, 12, 16, 20, 24, 28
2 1, 5, 9, 13, 17, 21, 25, 29
3 2, 6, 10, 14, 18, 22, 26, 30
4 3, 7, 11, 15, 19, 23, 27, 31

GP4, they perform as well as NORM. The graph for
NORM is fluctuating, indicating that there had been
some variable delay in the checkpoint process and the
delay is reflected in the total execution time. This did
not happen in GP, GP1 and GP4. For comparison,
Figure 5b shows their difference in the time with
respect to NORM. GP actually outperforms NORM,
because the saving in checkpoint time is more than
enough to compensate for the slowdown due to logging
messages. The performance edge in GP over NORM
steadily increases when the system is scaled up,
indicating that GP is more scalable than NORM.

Figure 6 shows the sum of time spent in every
process during checkpoint and restart. This represents
the total CPU time of the system spent in such
operations. Figure 6a shows checkpoint time. As
expected, GP1 performed the best since there was
absolutely no coordination. GP, which represents a
good grouping method, showed similar performance to
GP1. This is because in GP processes that work closely
are grouped together, and the processes would have
similar progress. Therefore, when coordinating the
processes, waiting time is minimal and there are fewer

in-transit messages to be cleared. In addition, a small
group of eight processes has negligible waiting time in
barriers during the process. In contrary, in NORM,
checkpoint time is relatively high, and is steadily
increasing when scaled. It is also vulnerable to
unexpected delays in checkpoints, observed as spikes
in the graph. It is important to note that, even with a
rather ad-hoc grouping method, as represented by GP4,
the performance is considered better than NORM. With
a good grouping method, group-based checkpoints
could perform as efficiently as uncoordinated
checkpoints. GP spent almost the same time in
checkpoints with 16 to 128 processors, and is expected
to have a similar behavior when further scaled.

Figure 6b shows the time needed in preparing a
restart. Globally coordinated checkpoint is always the
most efficient one, since there is no need to resend any
messages. Processes may start executing shortly after
the checkpoint images are loaded. Although being the
fastest to checkpoint, GP1 is the slowest and the most
unpredictable one in restarts, which is caused by
resending variable amounts of messages to all other
processes. Also, any slight delay in one process might
greatly delay the whole progress in a restart. This is
shown as sharp spikes in the diagram. The risk of delay
becomes higher when the system is scaled. GP
performs only slightly worse than NORM because only
a small amount of messages have to be resent, to a
small set of processes. In GP, processes do not need to
consider message replays within their group, resulting
in a faster operation in this stage. GP is as scalable as
NORM.

 Figure 7 shows the total amount of data to be
resent and Figure 8 shows the actual number of resend
operations to complete a restart. As shown in the Figure,
GP1 is the least scalable and the figures vary more than
in GP and GP4. This is because of the uncoordinated
checkpoints of GP1. GP, however, is able to achieve
good scalability via a good formation. GP4 scales

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128
Number of Processes

Ag
gr

eg
at

e
Ch

ec
kp

oi
nt

 T
im

e(
s)

GP
GP1

GP4
NORM

(a) Checkpoint

0

100

200

300

400

500

600

16 32 48 64 80 96 112 128
Number of Processes

A
gg

re
ga

te
 R

es
ta

rt
Ti

m
e(

s)

GP
GP1
GP4
NORM

(b) Restart

Figure 6 Summed checkpoint and restart time

Amount of data to resend

0

2000

4000

6000

8000

10000

12000

16 32 48 64 80 96 112 128
#Processes

To
ta

l s
iz

e
(K

B
)

GP
GP1
GP4

Figure 7 Amount of data to resend

steadily like GP because in GP4, processes are always
partitioned in 4 groups, such that the probability to
resend messages would not vary a lot.

Figure 9 shows the average time spent on each stage
of checkpoint, with different grouping methods, using
16 and 128 processes. With the same system scale, time
spent in the actual checkpoint (“Checkpoint”) always
remains the same as the duration is dictated by the
memory usage of the application. Grouping method
affects the time spent on coordination. On a small scale
of 16 processes, NORM spent roughly the same time in
actual checkpoint as in coordination (“Coordination”).
When the system is scaled to 128 processes, memory
usage is reduced as the problem is divided into smaller
pieces, resulting in a faster Checkpoint stage. However
the cost in coordinating the checkpoint in NORM
increases so much that it becomes the dominating factor.
The actual checkpoint takes only a fraction of the total.
With a good grouping method, as demonstrated in GP,
the overhead is kept at the minimal.

Figure 10 shows the results of a different testing
scenario. Instead of doing only one checkpoint, the
application is checkpointed at fixed intervals until the
application finishes. The problem size N is set to 56000
to lengthen the execution time. The problem is run with
128 processes. A checkpoint interval of zero represents
no checkpoint is ever made. From the figure, two
important observations are made. Firstly, when no
checkpoint is made GP is inevitably less efficient than
NORM due to message logging. However the loss
could be compensated when there are more
checkpoints. GP caught up with NORM in terms of
execution time when both GP and NORM performed
four checkpoints, with a 180-second checkpoint
interval. GP would outperform NORM when there are
sufficient checkpoints, as shown in 60- and 120-second
intervals.

Secondly, given its better performance, GP allows
more checkpoints to be done, while still being more
efficient than NORM in terms of total execution time.
As a result the average amount of work between
checkpoints can be reduced. This means if there are any
restarts, the expected work loss is also reduced. As a
conclusion, the proposed solution is suitable for
large-scale, long-running applications.

Number of resend operations

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128
#Processes

 R

es
en

d
op

er
at

io
ns

GP
GP1
GP4

Figure 8 Number of resend operations

0

1

2

3

4

5

6

7

GP GP1 GP4 NORM GP GP1 GP4 NORM

16 Processes 128 Processes

Number of Processes & Mode

Ti
m

e
(s

)

Finalize
Checkpoint
Coordination
Lock MPI

Figure 9 Checkpoint time breakdown

10

6
4

2
0

6
4

2
0

10

850

900

950

1000

1050

60 120 180 300
Checkpoint interval (s)

Ex
ec

ut
io

n
tim

e
(s

)

0

5

10

15

20

25

30

60 120 180 300 0

Nu
m

be
r o

f c
he

ck
po

in
ts

GP #CKPT NORM #CKPT

GP Time NORM Time

Figure 10 Effect of multiple checkpoints

CG Class C

0

50

100

150

200

250

16 32 48 64 80 96 112 128
Number of Processes

Ag
gr

eg
at

e
Ch

ec
kp

oi
nt

 T
im

e(
s)

GP
GP1
GP4
NORM

(a) Checkpoint

CG Class C

0

50

100

150

200

250

16 32 48 64 80 96 112 128
Number of Processes

A
gg

re
ga

te
 R

es
ta

rt
 T

im
e(

s)

GP
GP1
GP4
NORM

(b) Restart

Figure 11 CG: Summed checkpoint and restart time

5.2. Experiments with NPB

A similar set of experiments is done using NPB,
using the applications CG and SP. Problem sizes are of
Class C. Due to the different restrictions on the number
of processes, 16, 32, 64 and 128 processes are used for
CG, for SP, 64, 81, 100 and 121 processes are used. GP4
is only tested on CG as it is not appropriate for SP’s
system size. MPI traces are obtained and analyzed for
each case. Figure 11 and Figure 12 show the summed
checkpoint and restart times for CG and SP respectively.
Similar to the results with HPL, checkpoint time in GP
is much better than NORM and is comparable to GP1.
During restarts GP is as efficient as NORM, and less
varying than GP1.

5.3. Checkpoint on remote storage and
comparison with MPICH-VCL

MPICH-VCL uses non-blocking coordinated
checkpointing as opposed to the blocking approach in

LAM/MPI. Also, MPICH-VCL stores the checkpoint
images at a remote checkpoint server rather than the
local disk. In the following experiments, 4 isolated
computing nodes act as the checkpoint servers for
MPICH-VCL. LAM/MPI is also configured to store
checkpoint images at these servers via NFS.
Experiments are done using CG, Class C from 16 to 128
processes. Checkpoints are triggered every 120
seconds in MPICH-VCL, GP is then forced to take the
same number of checkpoints by using a different
checkpoint interval, to ensure fairness in the
comparison. This is due to the difference in execution
time, that GP would take fewer checkpoints with 120
second intervals. The experiment is repeated 5 times
to take averaged results.

Figure 13 shows the total execution time and the
number of checkpoints completed during the execution,
when using remote storage for checkpoint images. GP
shows a clear edge over VCL as the system scales up.

Figure 14 shows the average time required per
checkpoint, again GP is more efficient than VCL
throughout the experiment. Following the trend
MPICH-VCL may perform much less efficiently than
GP when the system is further scaled.

SP Class C

0

50

100

150

200

250

48 64 80 96 112 128 144
Number of Processes

A
gg

re
ga

te
 C

he
ck

po
in

t T
im

e(
s)

GP

GP1

NORM

(a) Checkpoint

SP Class C

0

50

100

150

200

250

300

350

400

48 64 80 96 112 128 144
Number of Processes

Ag
gr

eg
at

e
Re

st
ar

t T
im

e(
s)

GP

GP1
NORM

(b) Restart

Figure 12 SP: Summed checkpoint and restart time

3
2 2 2

3
2 2 2

0

180

360

540

720

900

16 32 64 128
Number of Processes

Ex
ec

ut
io

n
tim

e
(s

)

0

5

10

15

20

25

30

16 32 64 128

N
um

be
r o

f c
he

ck
po

in
ts

GP #CKPT VCL #CKPT

GP Time VCL Time

Figure 13 Effect of scale

0

10

20

30

40

50

60

8 24 40 56 72 88 104 120 136

Number of Processes

Ch
ec

kp
oi

nt
 ti

m
e

(s
)

GP VCL

Figure 14 Average time per checkpoint

6. Related Works

LAM/MPI and MPICH are two widely used MPI
implementations. LAM/MPI has blocking coordinated
checkpointing support built-in. MPICH however does
not support checkpointing by itself. As a result,
MPICH-V projects [2] evolved to provide fault tolerant
support to MPICH. As described in previous sections,
LAM/MPI and MPICH-VCL suffer from scalability
problems.

A recently released protocol, MPICH-PCL [4],
which follows a blocking approach, is expected to have
a similar behavior to LAM/MPI when applied to
large-scale systems. Moreover, the developers of the
MPICH-V family are aware that their protocols may
add significant message overheads [2] to the original
MPICH. Therefore, MPICH-V may not be efficient for
large-scale systems where there would be a lot of
message transfers.

There are several projects that apply the concept of
process groups. Process groups may be formed

according to the architecture of the system. For
example, MPICH-V3 [8] is being designed for grid
environments that consist of multiple clusters. Within a
cluster, checkpoints can be done independently using
MPICH-VCL, and consistency among the clusters is
maintained by message logs. For a closely connected
cluster of clusters, also known as cluster federations,
the HC3I project [10] works in a similar fashion.
Checkpoints within one cluster is done coordinately,
and among the clusters, communication induced
checkpointing is used. The NCCU-MPI project [9],
designed for fat-node clusters, uses coordinated
checkpoints on multiple processes running within a
cluster node, and logs messages transferred between
the nodes. These works lack flexibility where the group
formation is fixed according to the system architecture.

There are also grouping approaches based on the
communication behaviors of the application being
checkpointed. Gopalan and Nagarajan [7] have
designed a dynamic scheme that partitions processes
into smaller, mutually disjoint process groups.
Individual processes or groups of processes are merged
into a single group when one sends or receives a
message to/from the other. Coordinated checkpoints are
done within a group, complemented by message logs.
With this grouping method, however, all processes may
eventually form as a single group when there is a
sequence of messages linking up all the processes.

The proposed solution is different from these works
in that group formations can be freely controlled by the
user, so that the checkpointing scheme could suit both
hardware and software characteristics. Moreover, as the
group formation can be freely controlled, it is possible,
for example, to group processor nodes that fail more
frequently, and select a shorter checkpoint interval, in
order to increase tolerance to failures by reducing the
amount of work loss due to restarts. The above listed
works do not support such feature.

7. Conclusion and Future Work

This paper has made the following contributions.
Firstly, the inadequacies of current checkpoint
techniques on message passing systems are identified.
The current techniques may not be sufficiently scalable
and flexible to be applied in large-scale message
passing systems. With the issues to be solved in mind, a
novel and practical solution using group-based
coordinated checkpointing and message logging is
proposed and implemented. Implementation is done
based on LAM/MPI, one of the widely adopted MPI
implementations, which allows most MPI applications
to acquire fault tolerance capabilities readily. The

proposed solution does not require global checkpoints
and restarts. Through experiments, the benefit of
reduced coordination time by using the group-based
approach is shown. The solution is efficient during both
checkpoints and restarts, and remains equally efficient
when the system scales. With the flexibility in forming
groups, the solution is suitable for different system
architectures, such as grids, cluster federations or
simple clusters. Comparing with the original
LAM/MPI implementation, the proposed solution is
able to perform more checkpoints within the execution,
with shorter or similar total execution times. This
increases the throughput of the system by reducing
work loss due to rollback recovery, in addition to the
reduction in coordination time. The proposed solution
also performs better than MPICH-VCL by having
better scalability. To assist optimal process group
formation, a light weight MPI communication tracer is
designed and implemented, where the trace output can
be analyzed to reveal the communication behavior of
the application and to suggest a group formation to be
applied in checkpointing.

The performance of a group-based solution relies
on the group formation. While one method is given in
this paper, there may be better group forming
algorithms that would need further research. For
example, the change in communication pattern in
different stages of the application may lead to a change
in group formation. Moreover, the traces would also
give a hint to select a fixed optimal checkpoint interval,
or to place checkpoints at exact points of the execution.

References

[1] Lorenzo Alvisi, Sriram Rao, Syed Amir Husain,
Asanka Mel de and E.N. (Mootaz) Elnozahy. An
Analysis of Communication-Induced Checkpointing, in
FTCS '99: Proceedings of the Twenty-Ninth Annual
International Symposium on Fault-Tolerant
Computing, IEEE Computer Society, pp. 242-249,
1999

[2] Aurélien Bouteiller, Thomas Hérault, Géraud
Krawezik, Pierre Lemarinier and Franck Cappello.
MPICH-V: a Multiprotocol Fault Tolerant MPI,
International Journal of High Performance Computing
and Applications, vol.20 no.3:319-333, 2006

[3] K. Mani Chandy and Leslie Lamport. Distributed
Snapshots: Determining Global States of Distributed
Systems, ACM Transactions on Computer Systems,
vol.3 no.1:63-75, 1985

[4] Camille Coti, Thomas Hérault, Pierre Lemarinier,
Laurence Pilard, Ala Rezmerita, Eric Rodriguez and

Franck Cappello. Blocking vs Non-Blocking
Coordinated Checkpointing for Large-Scale Fault
Tolerant MPI, in proceedings of The IEEE/ACM
SC2006 Conference, 2006

[5] Jason Duell, Paul H. Hargrove and Eric Roman. The
Design and Implementation of Berkeley Lab's Linux
Checkpoint/Restart, publication LBNL-54941,
Berkeley Lab Technical Report, 2002

[6] E.N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min
Wang and David B. Johnson. A survey of
rollback-recovery protocols in message-passing
systems, ACM Computing Surveys, vol.34
no.3:375-408, 2002

[7] N.P. Gopalan and K. Nagarajan. Self-refined Fault
Tolerance in HPC Using Dynamic Dependent Process
Groups, in Distributed Computing - IWDC 2005, pp.
153-158, 2005

[8] Pierre Lemarinier, Aurélien Bouteiller and Franck
Cappello. MPICH-V3: Toward a High Performance
Fault Tolerant MPI for Cluster of Clusters Grid, in
Poster Section, High Performance Networking and
Computing (SC2003), Phoenix, USA, 2003

[9] Wei-Jih Li and Jyh-Jong Tsay. Checkpointing
Message-Passing Interface(MPI) Parallel Programs,
in Proceedings of Pacific Rim International
Symposium on Fault-Tolerant Systems, 1997, IEEE
Computer Society, pp. 147-152, 1997

[10] Sébastien Monnet, Christine Morin and Ramamurthy
Badrinath. Hybrid checkpointing for parallel
applications in cluster federations, in IEEE
International Symposium on Cluster Computing and
the Grid, 2004, pp. 773-782, 2004

[11] Robert H.B. Netzer and Jian Xu. Necessary and
Sufficient Conditions for Consistent Global Snapshots,
IEEE Transactions on Parallel and Distributed
Systems, vol.6 no.2:165-169, 1995

[12] Mamoru Ohara, Masayuki Arai, Satoshi Fukumoto
and Kazuhiko Iwasaki. Finding a Recovery Line in
Uncoordinated Checkpointing, in ICDCSW '04:
Proceedings of the 24th International Conference on
Distributed Computing Systems Workshops - W7: EC
(ICDCSW'04), IEEE Computer Society, pp. 628-633,
2004

[13] A.J. Oliner, Ramendra K. Sahoo, José E.
Moreira and M. Gupta. Performance Implications of
Periodic Checkpointing on Large-Scale Cluster
Systems, in IPDPS '05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS'05) - Workshop 18, IEEE
Computer Society, 2005

[14] Sriram Sankaran, Jeffrey M. Squyres, Brian
Barrett, Andrew Lumsdaine, Jason Duell, Paul H.
Hargrove and Eric Roman. The LAM/MPI
Checkpoint/Restart Framework: System-Initiated
Checkpointing, International Journal of High
Performance Computing Applications, vol.19
no.4:479-493, 2005

[15] Robert E. Strom and Shaula A. Yemini. Optimistic
recovery in distributed systems, ACM Transactions on
Computer Systems, vol.3 no.3:204-226, 1985

[16] High Performance Linpack:
http://www.netlib.org/benchmark/hpl/

[17] NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

