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Abstract 
 
JESSICA stands for "Java-Enabled Single System Image Computing Architecture". It is a 
distributed Java Virtual Machine designed to provide a high-performance parallel execution 
environment for multithreaded Java applications on clusters. JESSICA achieves single system 
image by hiding all the distributed aspects of cluster computing with a global object space for 
the user's Java program, thus makes the user do not need to care which node any Java thread of 
the program is running on. Because the physical location of thread execution is transparent to 
the Java program, a thread migration mechanism was built within JESSICA to enable dynamic 
load balancing at runtime.   
         In this paper, we present JESSICA2, which is a new distributed Java Virtual Machine 
developed based on our previous JESSICA system. JESSICA2 implemented a cluster-aware 
Java execution engine modified from the latest Kaffe JVM 1.0.6, which allows Java thread to be 
migrated when it runs in Just-in-Time compiler (JIT) mode. We replace the DSM-based global 
object space of JESSICA with a more efficient object-oriented solution, which is tightly coupled 
with the JESSICA2 thread migration system in the JVM layer. This makes the new thread 
migration mechanism able to distribute the Java threads among cluster nodes without using 
DSM to share the Java thread execution context. In addition, the new global object space 
implementation is featured by its non-blocking object access support that can effectively avoid 
the common blocking nature in traditional DSM. Several micro-benchmarks and Java 
applications have been tested on JESSICA2. Significant performance improvement was 
observed. 
 



1.  Introduction 
  
A distributed Java Virtual Machine (DJVM) is able to execute multithreaded Java applications 
on parallel or distributed platforms, while providing the Single System Image (SSI) [1] illusion 
to the Java threads. DJVM has been identified as an ideal platform for the execution of parallel 
or distributed applications [2,3,5,6,15].  
 
Existing prototypes of DJVMs fall into two catalogs. One approach fully relies on the common 
cluster infrastructure such as Distributed Share Memory (DSM) system to support the parallel 
execution of Java threads on clusters. The original JVM needs only minor changes to turn it into 
a DJVM. Java/DSM [3], Hyperion [5], Jackal [15] and our previous project JESSICA [2] are 
examples of such type. This approach simplifies the design and implementation of DJVM as all 
distributed Java threads can transparently access objects on the common object space created by 
the underlying DSM. Besides, thread synchronization and object consistency are managed by 
the DSM’s locking/unlocking mechanisms and data consistency protocols. However, such a 
layered design has put constrains on the DJVM to develop further optimizing techniques to 
support efficient object sharing among distributed Java threads, mainly due to the mismatching 
of memory models between Java and the underlying DSM [19].  
 
The other type of DJVM modifies JVM in order to enable its distributed computing power, i.e. 
this type of DJVM is cluster-aware. The famous example is cJVM [6] developed by IBM 
Research & Development Labs in Haifa. This kind of approach needs careful considerations on 
different aspects of the DJVM such as distributed class loading, shared object placement and 
access, distributed thread management and synchronization, etc.. The major advantage of such 
approach is that it can make use of the Java semantics to optimize the execution of Java threads 
on cluster environments. For example, efficient shared object access, flexible class loading and 
thread management can be built inside the DJVM. However, to our best knowledge, the cJVM 
prototype was implemented by modifying Java interpreter. Such approach has the major 
performance weakness inheriting from the slow Java interpreter execution and may not be 
efficient enough for solving computation-intensive problems. 
 
On the other hand, as the physical boundaries between cluster nodes have disappeared among 
the distributed Java threads through the support of DJVM, there is a need of a thread migration 
mechanism built within the DJVM to enable dynamic load balancing by migrating Java threads 
between cluster nodes at runtime without programmers’ involvement. A DJVM having this 
thread migration feature can handle the thread distribution more flexibly than other means like 
the static thread allocation. The transparent migration mechanism also provides a fine-grained 
mechanism to distribute the computation among the cluster nodes to help optimize the resource 
utilization in the cluster. 
 
Among various DJVMs, JESSICA [2] is the only existing DJVM that can support Java thread 
migration. JESSICA can execute multithreaded Java applications on top of clusters without any 
modification of Java application source codes or bytecodes. JESSICA was built on top of a 
page-based DSM Treadmark [7] to provide an SSI view to Java applications. A thread 
migration mechanism called Delta Execution was implemented based on Kaffe JVM 0.9.1 [8] to 
support the preemptive migration of Java threads [4]. However, JESSICA can only migrate 
thread while executing in the interpretation mode. 
 
The JESSICA2 is our new DJVM that goes far beyond the previous JESSICA and tries to 
improve the capabilities of DJVM in many aspects. At this stage of research, JESSICA2 aims at 
achieving the following goals: 
 

1. High performance. Our DJVM aims to provide a high-performance computing 
platform for running multithreaded Java programs. Thus, the DJVM should be able to 



execute Java applications in JIT compiler mode to gain the better performance than 
executing in interpretation mode. Moreover, it should be able to leverage the collective 
computing power of clusters for the execution of the multithreaded Java programs as 
compared to the single-node JVM. 

 
2. Transparency. The multithreaded Java program can be run on the DJVM without any 

modification. The cluster environment is totally transparent to the Java programs. The 
threads created by the Java program will neither know nor need to know the location it 
is running on during its execution. Any need to modify the existing Java application 
source programs will violate the transparency requirement and discourage the use of 
proposed DJVM. 

 
3. Efficient Thread Migration. Our DJVM will provide a mechanism to support the 

dynamic distribution of Java threads among the nodes of clusters at runtime. The 
feature can efficiently handle the workload imbalance problem while running 
multithreaded Java applications on clusters.  

 
Our prototype uses the latest Kaffe JVM 1.0.6 [8] and runs in a Linux cluster. We introduce a 
new cluster-aware Java execution engine, JITEE, which supports the execution of distributed 
Java threads in JIT complier mode. This results in a major improvement in performance than the 
old interpreter-based implementation. New thread migration mechanism is implemented in 
JITEE to distribute the Java threads among cluster nodes without using DSM to share the Java 
thread execution context. Rather the migrated Java thread execution context is carefully 
captured at the bytecode boundary and it is then translated into a machine-independent text 
format and can be restored by a remote node. A new global object space (GOS) layer using 
portable object format for exchanging object data is implemented to support the access of 
shared objects between the distributed Java threads. 
 
The rest part of the paper is organized as followed. Section 2 presents the overall architecture of 
JESSICA2. We discuss the details of Java thread migration mechanism and the shared object 
access in section 3 and section 4 respectively. Section 5 shows the results of our prototype 
system. The related works are discussed in Section 6 and a short conclusion is given in Section 
7. 
 
2.  JESSICA2 Architecture 
 
Figure 1 shows the overall architecture of JESSICA2. JESSICA2 runs on a cluster environment 
and it consists of a collection of modified JVMs that run on different cluster nodes. We 
distinguish a node that starts the Java program as the master node and the JVM running on it as 
the master JVM. The main thread starts execution on the master JVM and terminates on the 
same JVM. All the other nodes in the cluster are the worker nodes running a worker JVM to 
participate in the execution of a Java application. The load monitor is an independent process 
that runs on any node of the cluster. The load monitor is responsible for monitoring the system 
load of the cluster and scheduling Java thread migration. In JESSICA2, all the nodes can serve 
both as a migration source and a migration target. The Java threads in the application can 
migrate from one node to another node upon receiving requests from the load monitor.  
 
Each modified JVM on the cluster node uses the modified Java bytecode execution engine, 
JITEE, to execute the threads. JITEE is aware of the cluster environment and it is the core of the 
JESSICA2 for achieving a single system illusion to the running threads. The Java thread 
migration mechanism is built inside JITEE to support the mobility of Java threads at the 
bytecode boundary. The details of this mechanism will be discussed in section 3. 
 



The global object space layer is embedded inside the JVM to enable the shared objects access 
among the Java threads running on different nodes of the cluster. Two main kinds of operations 
are included: the data access and thread synchronization operations. The data access operations 
correspond to the bytecode instructions that access the class static data 
(GETSTATIC/PUTSTATIC), object fields (GETFIELD/PUTFIELD), and the array 
components (XALOAD/XASTORE). The thread synchronization operations implement the 
Java thread synchronization primitives such as lock(), unlock(), wait(), notify() and notifall() on 
remote Java objects. The details of the design and implementation will be discussed in section 4.  
 
A daemon thread called host manager is running inside the JVM to manage the cluster nodes 
and provides basic communication supports for GOS and the JITEE. The host mangers in 
different JVMs communicate with each other through TCP connections.  
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Figure 1.  An Overview of JESSICA2 System Architecture 
 
 
3. Transparent Java Thread Migration in JIT Compiler Mode 
 
3.1 Overview 
The JVM specification [9] defines various runtime data structures that are used during execution 
of a Java program which together form the execution context of a Java thread. The data 
structures include: the heap, the method area, and JVM stack.  
 
In our new design, we have abandoned the use of existing infrastructures like a page-based 
DSM because of the performance and portability reasons. Rather, we implement the GOS to 
store only the shared Java objects in the heap. Under the new environment without a DSM, we 
should apply different strategies to different types of Java thread context.  
 
As the global heap for the DJVM will be realized by the embedded GOS, this relaxes the 
complication by shipping only the Java object references (together with its host id to form a 
global id) without actually moving the object data to the remote node during the Java thread 
migration stage. The GOS will handle these object data movements once the migrated thread 
restarts its execution on the remote node and need to access the objects. 
 



For method area, we need some special treatments on the class loading to preserve the 
correctness of rebinding the class structures on the remote machine. Class loading in Java is a 
complicated issue in DJVM. [6], we need to classify the properties of different steps during the 
class loading. In our DJVM, we follow the similar class loading of common DJVM prototypes 
such as cJVM and Hyperion JVM, by partially loading each class independently on each JVM 
but preserve a single copy of static data for non-system classes.  
 
The remaining problem is the JVM stack for Java threads. It is the key to supporting thread 
migration in Java. The thread migration mechanism involves two main operations, i.e., 
capturing and restoring JVM stacks of a Java thread. We use JITEE to generate efficient native 
codes for managing the thread execution context at runtime and extend the JVM thread system 
to support stack capturing and restoring. To be portable, the thread context captured is translated 
into a machine-independent text format and is able to be restored by the target JVM through its 
host manager.  
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Figure 2. Transparent Java Thread Migration Process  
 

 
Figure 2 shows the control flow of the Java thread migration mechanism. The migration journey 
starts from the request sending from the load monitor through TCP connection to the 
overloaded JVM. Upon receiving the migration request, the thread scheduler in the execution 
engine will analyze the stack of the running threads. The stack analysis function will scan the 
stack of each running thread, and estimate the cost of the migration for each thread. In our 
current prototype implementation, we use a simple heuristic function to evaluate the cost based 
on the number of frames and number of Java object references in the stack frame. The thread 
with lowest cost will be chosen as the candidate. The candidate thread will be suspended and the 
thread stack will be captured which will then be translated into a machine-independent text 
format. The portable stack frames will be shipped to the remote host manager of the target 
node. Upon receiving such frames, the host manager in the target JVM will call the migration 



manager to parse the frames into the intermediate format after resolving the class and variable 
types. A new native thread will be created and associated with the migrated Java thread object. 
This thread will be given an argument pointing to the intermediate frames and bootstrap the 
thread execution.  
 
3.2 Stack capturing 
 
The JIT compiler makes the execution context of Java thread more complicated to capture 
compared to the interpreter, although the definition of the execution context of a Java thread is 
the same for both interpreters and JIT compilers. We identified the following issues to be solved 
within JIT compilers: 
 

(1) In JIT mode, the thread runs its native codes generated by the JIT compiler. The PC 
register in an interpreter will point to the Java bytecode of the corresponding method 
while in a JIT compiler it points to the native codes instead. We need to capture the 
Java thread context at the boundary of bytecodes instead of native codes so that the PC 
is the pointer to the bytecode. But when a thread is chosen by the thread scheduler as 
the candidate to migrate, it is most likely running at some point of native codes that is 
not in the bytecode boundary. We should be able to "slide" the execution to the point of 
bytecode boundary.  

 
(2) As JVM is a stack-oriented machine, one of the important tasks of a JIT compiler is to 

allocate registers for Java variables in the register-based machines [10,11]. As a result, 
the local variables or stack variables in a method may be loaded into specific registers 
during the execution of native codes generated by a JIT compiler. Moreover, the 
subsequent operations on the variable may take place in the allocated registers, which 
never happens in the case of an interpreter. The problem has the same characteristics as 
the optimized code debugger. But it is impractical for us to store heavy data structures 
to support full debugging of the bytecodes in the execution engine. We should be able 
to tackle the register information in JIT mode. 

 
(3) As the stack variables are dynamically pushed into or popped from the thread stack, the 

types of specific stack slots cannot be determined in advance. To encode the variable in 
a machine-independent format, it is required that the types of the variables are known at 
the time of thread migration. In [12], it is proposed to use a separated type stack 
operated synchronously for interpreter during thread execution. Although such method 
can be used in the case of JIT compilers, it doubles the operation time to access the 
stack variable. New efficient methods suitable for processing stack variables in JIT 
compiler mode are needed.  

 
(4) Lastly, the JVM stack in an interpreter is defined explicitly in the internal data 

structures of a JVM. But for a JIT compiler, the stack is implicitly managed by the 
native codes generated. Moreover, one single running stack for a Java thread is often 
shared among the Java methods, the native Java methods, and the internal JVM 
functions (including the JIT compiler). Therefore, an efficient management of the JVM 
stack in JIT mode should be called for. 

 
To address the first two problems, we limit the migration to take place at some specific points. 
During the native codes generation for Java methods in the JIT compiler, we insert codes that 
spill the machine registers to the memory slots of the variables and check the migration request 
at such points. The candidate threads to migrate, when running to such points will find out that 
they are requested to migrate, and will call the appropriate functions to do the stack capturing 
and migration. The resulting effect is like that the thread slides to the safe point before 
migration.  



 
However, it needs careful plan to insert such checkpoints. More checkpoints will increase the 
migration response time. In addition, it will expand the native code size and slow down the 
program execution. In our design, we choose two types of points as the migration checkpoints in 
the native codes: (1) the start of an invocation to a method of application classes. (2) the start of 
a basic block [16] that pointed by a back edge. The reason for first choice is mandatory as the 
migration request may happen in the called method in which case the memory slots of the 
variables of previous stack frames must have the latest values. The reasons for the second 
choice are: firstly, we want the size of register spilling codes to be minimized because there are 
only rather limited global registers to spill at the start of a basic block. Secondly a basic block 
pointed by a back edge often leads to a loop in the program. Therefore, it is able to stop the 
running threads at a proper time, e.g., before entering a long loop. Also note that the 
checkpoints are not inserted in the classes in Java standard libraries. 
 
To tackle the third problem, we choose to do the type spilling at the migration checkpoints 
discussed above. The type information of stack variables at such points will be gathered at the 
time of bytecode verifying before compiling the Java methods. We use one single type to 
encode the reference type of stack variable as we can deduce the real type of Java object from 
the object reference. We choose one encoding for each of primitive types except that sub-
integer types like byte are treated as integer. Therefore, we can compress one type into 4-bit 
data. Eight compressed types will be bound in a word, and an instruction to store this 32-bit 
machine word will be generated to spill the information to appropriate location in the current 
method frame. For typical Java methods, only a few instructions are needed to spill the type 
information of stack variables in a method, which results in better performance improvement 
than the synchronous type stack method. 
 
The fourth problem is solved by generating native codes that link the Java thread stack 
dynamically upon method invocations. The execution stack of a Java thread is interleaved with 
Java method frame and the internal JVM functions frames we call C frames.  In our thread 
migration, we choose the consecutive Java frames to be migrated to the remote machine. Upon 
completion of such Java frames, the control will return back to the source machine to complete 
the C frame execution.  
 
3.3 Stack restoring 
 
The stack restoring needs to recover the machine registers in the migration target node. Figure 3 
shows the procedures of restoring a thread stack. The steps are shown with the numbers before 
them as the order.  
 
The first step is to parse the text frames into the target memory data structures. Incorrect format 
will be rejected during this step. In our implementation, a parser for the stack frames written in 
YACC program is used. The next step is the Java method compilation for each stack frame. As 
the execution engine only automatically invokes the JIT compiler upon method invocations, we 
need to call the compiler manually as the frame has already been called on migration source 
node. During this compilation, extra information about the register allocation at the restoring 
point will be extracted. For those methods that have already been compiled, a lightweight partial 
compilation function will be called to get the register allocation information.  
 
The third step is just to manipulate the machine call stack so that when all the migrated frames 
are finished, the control can be returned to the completion handler. The fourth step will setup the 
Java stack frames according to the machine architecture. During the stack frame setup, for each 
Java frame, a small code stub to recover the register based on the register allocation information 
extracted in step 2 at the restoring point will be inserted just before control is returned to the 
current frame. In step 5, we set the right stack point and jump to the entry point the register 



recovering code stub of first Java frame and start the thread execution. When control returns 
from last Java frame, the completion handler will pack the return results and call the migration 
manager function in the host manager to send back the data to the migration source node of the 
Java thread. 
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Figure 3. Java Thread Execution Restoring in JESSICA2.  
 

 
4. Global Object Space 
 

As we mentioned before, our previous project JESSICA uses a page-based DSM as the global 
heap. However, the page-based DSM can’t be tightly coupled with JESSICA's thread system. 
For example, the page-based DSM uses the hardware page fault mechanism to activate the 
remote object access. When a page fault happens to fetch the remote data, the whole DSM 
system will block all the threads on the current node. Such case will result in great performance 
loss. On the other hand, the paged-based DSM can’t be tightly coupled with Java language. This 
is because Java is an object-oriented programming language. The access unit in a Java program 
is an object or more precisely, an object field. A paged-based DSM will inevitably suffer from 
false sharing when multiple irrelevant objects are allocated in the same memory page.  
 
To support the access of shared object between the JVMs, we built a new GOS layer using 
portable object format for exchanging object data. This layer is embedded in the JVM and 
provides a single heap illusion to the Java programs. 
 
4.1 Memory model and object access 

 
The JVM specification [9] defines the Java Memory Model (JMM) to constrain the memory 
behavior of Java threads. The JMM has been criticized [13] and the new JMM is still under 



peer review [20]. Based on the common understanding of the JMM, multithreaded Java 
programs assume that there is a single heap visible to all the threads. The heap stores all the 
master copies of objects. Each thread has a local working memory to keep the data of objects in 
the heap that it must access. In a single-node JVM implementation, this working area can be 
regarded as the machine registers. When the thread starts execution, it operates on the data in its 
local working memory. Java threads use monitor to synchronize the concurrent thread execution 
in a critical section. When entering a monitor, the thread must flush its working memory to the 
heap to ensure that Java thread can access the latest object data in the critical region. When 
exiting the monitor, the modifications of objects inside the working memory must be reflected 
in the heap. 
 
In JESSICA2, we follow the above understanding of JMM to implement our GOS layer as the 
global heap. Each JVM in the DJVM will contribute a portion of its heap, the master heap area, 
to the global heap area as shown in Figure 4. Another portion of heap, the cache heap area, in a 
JVM's heap is used for storing cached remote objects. For all the threads inside one JVM, the 
access to objects in master heap area is just the same as the simple-node JVM implementation, 
i.e., all the objects in the area are the master copies and can be loaded directly into the thread's 
working memory. The access to the objects in cache heap area will be handled by the GOS 
layer. The cache heap area is slightly different to thread working memory in the JMM 
definition. However, by making this area to be per-thread data structure, it can be viewed as an 
extension to the local machine registers and therefore behaves just the same as the definition of 
JMM.  
 
Upon entering a monitor, the working memory of the running thread will be flushed. The 
modifications of objects will be sent to the nodes where the master copies reside and the status 
of the object will be set invalid. Later access to invalidate cache object will need to request from 
the master copy. Upon exiting a monitor, the modifications of objects will also be sent to the 
master copy site. 
 
To provide quick access to an object, we didn't use an opaque handle to represent an object. 
Instead, an additional pointer pointing to the global definition of the object is added to the 
header of an object and it is used to distinguish the master copy and the cached copy. An object 
with null global definition pointer stands for a master copy. A simple check instruction on this 
pointer field in the native codes, generated by the JIT compiler, yields the type of object 
immediately. With the pointer, it is faster to determine the global object address than the 
searching in a centralized object table. 
 
The quick flushing of the per-thread working memory is done through a per-thread hash table. 
We use per-thread cache instead of letting all the local threads share a whole cache. The 
advantage of former can be explained in the following points: 
 

1. It is closest to the definition of JMM by viewing the per-thread cache area as the 
extension of machine registers. 

2. The access to the per-thread cache is free of contention. As thus, the per-thread cache 
need not be guarded by locks. 

3. Using the per-thread caching, when there are multiple Java threads executing at the 
same JVM, one thread will not invalidate other threads' fresh cache copies. Therefore,  
it won’t interfere other threads’ execution. 

4. The size of per-thread structure will be smaller and it is faster to scan the whole data 
structure at the time of flushing. 

 
In JESSICA2 when an object is created in a thread, the JVM that runs this thread will be 
considered as the home of the object. The object will be allocated in the global heap area. The 
later exposure of the object to other threads executing in other JVMs will require a translation of 
this object reference into a global address pair <host id, native address>. The remote threads 



when seeing this reference for the first time will allocate a cache copy of this object in its cache 
object area and associates a pointer to a global definition of this object. For array objects, the 
dimension and the element type of the array are also transferred. 
 
We use portable format to transfer our object data. All field data in an object together are 
transferred with their unique identifications. The unique field identification is in a way similar to 
the class constant pool index and it is more portable than using the memory offset. The 
primitive types data use little-endian encoding and the object reference uses the <host id, native 
address> as the global identifier during the data exchange.  
 
To hide the communication latency, we use the threaded-IO interface inside the JESSICA2 to 
transfer the object data. When one thread is blocked in sending object data, the thread will yield 
the CPU and let other thread in the local JVM continue the execution.  
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Figure 4.  The Internal Architecture of the Global Object Space  

 

4.2 Thread Synchronization 

The thread synchronization in the global object space implements in a distributed manner the 
Java synchronization primitives including lock(), unlock(), wait(), notify() and notifyAll(). As 
Java synchronization takes place on a Java object, we fix the JVM that owns the master copy to 
be the synchronization handler of this object. The JVM will be the home of the lock. The 
threads in the home JVM will do the synchronization in the normal way on the object. The 
threads in the remote JVM, when trying to perform synchronization on a cache object, will send 
the synchronization request to the home JVM. The home JVM will place the request of remote 
threads in the proper queue of the synchronized object and return the synchronization result to 
the remote thread.  
 
 
4.3 Garbage Collection 

At the current stage, we use conservative strategies to handle the garbage collection. We don't 
employ global garbage collection to clean up un-used objects in the global heap. Instead we 
have each JVM do the garbage collection in its own heap. In a local JVM heap, the objects in 
the cache heap area will not be garbage collected. Also the objects in the master heap area that 
has been exposed to remote nodes will not be scanned by the original garbage collector. The rest 
of the objects in the master heap area will be garbage collected in the normal way. 
 



In our assumption, the number of objects shared by different threads will be quite limited 
compared to the normal objects that are not thread-escaped.  Therefore, by using our garbage 
collection strategies, we won't greatly affect the memory saving resulted from garbage 
collection. And the advantage of our strategies is that we don't need to introduce global 
synchronization among the JVMs to do the garbage collection, which otherwise will slow down 
the whole system. 
 
5.  Performance Results 
 

Our DJVM has been implemented based on Kaffe JVM 1.0.6 on 540MHz Pentium-II clusters 
running Linux 2.2.14 kernel connected by Fast Ethernet.  
 
5.1  Microbenchmarks on Java Thread Migration 
We perform microbenchmarks to measure the cost of the transparent Java thread migration by 
timing the migration process through i386 real time-stamp counter. The cost will be divided into 
three parts. The first part is the constant cost to create the native thread. In JESSICA2, we use 
Kaffe-1.0.6 green thread system. It takes about 432 us to create a new native thread.  
 
The second part of the cost is related to the length of the frames. This part includes the stack 
capturing, frame parsing, class and method resolution and the frame setup. Table 1 shows the 
measurements to these operations for different size frames. 
 

Time (in us) Stack 
capturing 

Frame 
parsing 

Class and method 
resolution 

Frame 
setup 

1 frame 
(12 variables, length=475 bytes) 232 166.89 3,431 9.6 

2 frames 
(17 variables, length=482 bytes) 437 328 13,747 13 

11 frames 
(92 variables, length=3049 bytes) 12,993 1,383 227,587 49 

 
Table 1. Timing Breakdowns on JESSICA2 Thread Migration Operations  

 
The third part of the cost is caused by the network communication to transfer the frames. In 
JESSICA2, we use TCP connection to access the remote object and in our measurements. It 
takes totally about 5ms to setup a TCP connection, send a 1KB frames, and receive an ACK 
message. 
 
5.2  JESSICA2 versus Kaffe 1.0.6  
 
The migration mechanism will place the checkpointing instructions in the native codes 
generated. However, this kind of native code instrument occurs only on the methods of 
application classes. According to our measurements, the increase in code size is less than 1%. 
However, the object checking has increased the total native code size by nearly 50% for typical 
applications. The object checking uses two machine instructions, i.e. CMP and JNE in i386, to 
determine whether the home of the object is in local node. However, these branch instructions 
also cause some registers to spill. For local objects the control flow will follow the static branch 
prediction algorithm in Pentium II [18].  
 
We compared the performance of original Kaffe JVM and JESSICA2 using Java Grande Forum 
Benchmark Suite Thread Version 1.0 [17]. During the tests, the JIT compiler mode is enabled. 
The first three programs test the performance of several low-level operations such as thread 



fork/join, barriers and synchronized methods/blocks by creating multiple threads within a 
specified time interval. The remaining programs carry out specific operations frequently used in 
Grande applications. In the last 5 test programs, only 1 thread is created. For the purpose of 
comparison, we also include the results of all test programs running under the Kaffe 1.0.6  
interpreter mode. Table 2 shows the results.  
 
 

Time (In Seconds) Kaffe 1.0.6  JIT JESSICA2 Slowdown Kaffe 1.0.6 
interpreter 

JGFBarrierBench 22.58 26.79 18.64% 77.1 
JGFForkJoinBench 6.91 7.2 4.20% 29.95 
JGFSyncBench 71.65 52.18 -27.17% 50.39 
JGFCryptBenchSizeA (1 thread) 9.85 11.98 21.62% 129.44 
JGFLUFactBenchSizeA (1 thread) 9.29 10.97 18.08% 79.60 
JGFSORBenchSizeA (1 thread) 46.01 36.52 -20.63% 413.85 
JGFSeriesBenchSizeA (1 thread) 36.91 36.38 -1.44% 208.47 
JGFSparseMatmultBenchSizeA (1 thread) 26.17 31.92 21.97% 352.29 

 
Table 2. Single Node Performance Benchmark using Java Grande Forum Benchmark 

Suite - Thread Version 1.0.   
 

From the above table, we can see that the worst slowdown is the JGFCryptBenchSizeA 
program, which performs IDEA (International Data Encryption Algorithm) encryption and 
decryption on an array of 3,000,000 bytes. Due to the large number of iterations on the checking 
array object, the slowdown has reached 21.62%. In some cases, such as the 
JGFSORBenchSizeA and JGFSyncBench (see those with negative slowdown), JESSICA2 may 
even outperform Kaffe in JIT compiler mode. This is due to the changes of our new lock native 
codes to the original Kaffe locks and there are lots of synchronization operations in these two 
programs even when there is no contention for the locks with one thread running. For all 
programs except the JGFSyncBench, the original Kaffe running in the interpreter mode 
performs much slower than the JESSICA2 and original Kaffe running in JIT compiler mode. 
 
5.3  Application Benchmark 

 
In this section, we report the performance of three multithreaded Java applications on 
JESSICA2. These include CPI, nBody and SOR programs. We use explicit synchronized 
method to synchronize the computation steps of the tested programs. The program CPI 
calculates the approximation of π (PI) by evaluating the integral. Each thread calculates the area 
under different intervals and sum up all the results together to get the approximate value of π. 
The nBody follows the algorithm of Barnes & Hut to simulate the motion of particles in a 2D 
dimension due to gravitational forces over a fixed amount of time steps. SOR does red-black 
successive over-relaxation on a 2-D matrix for a number of iterations.  
 
Figure 5 compares the performance between JESSICA and JESSICA2 based on the execution 
time of CPI program. We run CPI program with 50,000,000 iterations. In the tests, the number 
of Java threads created is the same as the number of cluster nodes used during the test. All the 
threads are originally created and running on the master JVM. Later, only one thread is left in 
the master JVM and the rest are migrated to the worker JVMs, one thread per worker JVM. The 
thread migration takes place when iteration number is approximate to 2,000,000. From the 
figure, we can see that running in the interpretation mode (JESSICA) is far slower than running 
in the JIT compiler mode (JESSICA2).  
 



CPI(50,000,000iterations)

0
50000

100000
150000
200000
250000

2 4 8

Node number

Ti
m

e(
m

s)

JESSICA
JESSICA2

 
Figure 5. Performance Comparison of JESSICA and JESSICA2 based on  a CPI Program 
 
 
Figure 6 shows the raw execution time of running nBody and SOR respectively. We run nBody 
with 640 particles in 10 iterations and SOR with 1024x1024 matrix in 20 iterations. We didn't 
include the data of JESSICA because the performance of JESSICA is far slower than 
JESSICA2 and with large problem size, JESSICA is not able to run using the Treadmark DSM. 
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Figure 6. Performance of nBody and SOR under JESSICA2  
 

Figure 7 shows the speedup of CPI, nBody and SOR by comparing the execution time between 
JESSICA2 and Kaffe 1.0.6 under JIT compiler mode. From the figure, we can see nearly ideal 
speedup in JESSICA2 considering the fact that all the threads run in the master JVM for 4% of 
the time at the very beginning. For multithreaded programs with little communication between 
threads like CPI, the performance improvement is due to the lower cost of migration and 
enhanced computation power of a JITEE. For nBody program, the speedup is only 1.5 for 8 
nodes as the program suffers from many communication overheads between the worker threads 
and the master thread that is responsible for calculating the Barnes-Hut Tree. The SOR program 
achieves the worst speedup among the three programs. The resulting speedup is less than 1 for 
even 8 nodes. It is because the large array data has to be transferred between the master thread 
and the worker threads in every synchronization step. In such programs like nBody and SOR, 
communication part dominates the total execution time in JESSICA2 because the computation 
in JIT compiler mode in relatively fast. Further optimization on the GOS layer based on Java 
semantics can be exploited to achieve better speedup. Several optimization techniques, such as 
object pre-caching, object escape analysis, have been considered to be included in JESSICA2 in 
the future.  
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Figure 7.  Speedup Measurement of Three Java Applications 

 
 
6.  Related Works  
 
The research on DJVM has been a promising area in recent years. Many prototypes are been 
developed to support running multithreaded Java applications on clusters to achieve the Single 
System Image illusion at the JVM level.  
 
cJVM[6] is a cluster-aware JVM that provides SSI of a traditional JVM running on cluster 
environments. cJVM was implemented by modifying the interpreter loop based on Sun JDK1.2 
interpreter on NT clusters. cJVM distributes the Java threads on clusters at the time of thread 
creation and support the remote object access by a smart proxy model. For a remote Java object 
reference, a proxy of the object will be created. Later access to the object will be directed to the 
proxy and the proxy will use a technique called method shipping to ship the current method to 
the node where the master copy of the object resides based on the analysis on different object 
access. 
 
Java/DSM[3] is a DJVM that runs on a cluster of heterogeneous computers based on an 
underlying Treadmark page-based DSM. The design was based on the JDK 1.0.2 JVM. The 
DSM is used to realize the global heap and class repository for Java program. Java/DSM relies 
on the underlying DSM to maintain the consistency of shared data. However Java/DSM 
requires the threads in the Java program be modified to specify the location to run. This violates 
the transparency or SSI requirement of DJVM.  
 
Hyperion [5] provides a running support for multithreaded Java applications upon an object-
based DSM. Hyperion takes a static compiling approach by statically compiling the 
multithreaded Java programs to C programs. The C programs are then compiled by the C 
compiler and are linked with the PM2 run-time library into a parallel native application. In a 
strict sense the approach of Hyperion didn't realize a real DJVM, for it requires all classes be 
available before execution thus loses the flexible of a DJVM to dynamically load a class on 
demand. 
 
There are other prototypes to practice the DJVM that follow the approach of using a DSM like 
our previous project JESSICA [2] and Kaffemik [14]. And there are other DJVMs that use the 
static compiling approach like Jackal [15]. 
 
7. Conclusions 
 



JESSICA2 is our new DJVM that use transparent Java thread migration mechanism to run 
multithreaded Java applications on clusters. We have successfully implemented the efficient 
transparent Java thread migration mechanism in JESSICA2 which can be performed in the JIT 
compiler mode. The mechanism provides us a flexible way for distributing threads among 
cluster nodes to balance the workload of clusters. The performance improvement over the old 
JESSICA is significant due to the introduction of JITEE in JESSICA2.  
 
To support shared object access in JESSICA2, we implemented a global object space (GOS) 
layer without using a page-based DSM.  The consistency protocol adopted in our GOS is close 
to the definition of Java memory model. Meanwhile, it is embedded within the JVM. Such 
design makes GOS able to work efficiently with the JESSICA2 thread system. It is found that 
the non-blocking I/O support of GOS makes JESSICA2 possible to avoid the whole JVM to be 
blocked while a thread is issuing a remote object access.  From all various benchmark tests, we 
conclude that JESSICA2 is a promising DJVM design which has a good potential to achieve a 
high-performance parallel execution environment for multithreaded Java applications on a 
parallel or distributed environment.  
 
At the current stage, JESSICA2 still suffers from excessive communication overheads for some 
applications with high degree of object sharing.  Our future work will focus on the optimization 
of the GOS.  Runtime shared object detection together with a good object pre-fetching 
technique could be a possible solution. Besides, there are good opportunities for us to develop 
more intelligent load balancing strategies as JESSICA2’s JITEE is able to detect various 
runtime thread information.  
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