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Abstract

There is now a strong interest in high-performance exe-
cution of multithreaded Java programs in a cluster. Previ-
ous efforts to provide for such executions have either used
static compilation tools that can transform multithreaded
Java programs into parallel versions, or interpreter-based
cluster-aware JVMs that offer the needed support. They
failed however to be fully compliant with the Java lan-
guage specification or to achieve high performance due
to their weaknesses in supporting thread distribution and
global object sharing. We present our research experience
in the design and implementation a JIT-compiler-assisted
distributed Java Virtual Machine. In our system, we make
use of a JIT compiler to realize and optimize dynamic thread
migration and global object sharing in a distributed envi-
ronment.

1. Introduction

The Java programming language [11] supports concur-
rent programming with multithreading. It realizes a shared
memory programming model where Java threads access the
created objects in a heap without explicit data partitioning
and message passing. Java’s concurrent features make it a
potential language for parallel computing. Although Java
has for a long time been criticized for its slow execution, re-
cent advances in better Java class libraries and Just-in-Time
(JIT) compilation techniques have greatly boosted the per-
formance of Java. Some results indicate that Java can de-
liver a performance in the 65–90% range of the best Fortran
performance for a variety of benchmarks [4] and can com-
pete with the performance of C++ [17].

In recent years, there is increased interest in using Java
for high-performance computing. An attractive direction is
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to extend the Java Virtual Machine (JVM) to be “cluster-
aware” so that a group of JVMs running on distributed clus-
ter nodes can work together as a single, more powerful JVM
to support true parallel execution of a multithreaded Java
application. With the cluster-aware JVM, the Java threads
created within one program can run on different cluster
nodes to achieve a higher degree of execution parallelism.
Similar to a desktop JVM, the distributed JVM system pro-
vides all the virtual machine services to Java programs, and
should be fully compliant with the Java language specifica-
tion. We refer to such a distributed system is a Distributed
JVM (DJVM).

The outstanding merit of the DJVM approach is that the
existing multithreaded Java programs running on a DJVM
can fully utilize the available resources in all participating
nodes. The DJVM automatically schedules Java threads on
different nodes to execute in parallel. Unlike the stand-alone
JVM which is limited by all the available resources in a sin-
gle server, the DJVM running on a cluster potentially has
unlimited resources. In the latest (Nov. 2003) TOP 500 su-
percomputer list [23], cluster-based systems occupy 7 out
of the top 10 places. People can now easily build a high-
performance cluster having hundreds of machines within a
few days [22]. A DJVM would be a great software addi-
tion to these clusters.

The design of a DJVM needs to consider the following
key issues: how to manage the Java threads, how to store the
data (i.e., the objects), and how to process the bytecode in a
distributed environment.

The thread scheduler of the JVM picks a thread to exe-
cute and performs the switch of thread context accordingly.
In a DJVM, the task is much more complex, which involves
the decision to place threads in different nodes. Most exist-
ing DJVMs [3] and related static compiler systems [25, 2]
adopt the simple approach of doing the placement only ini-
tially when a thread is created. A newly created thread can
be placed in a remote node. The result could be a good
one for cases where all threads embody balanced workload.
However it is not so good for many other applications where



there is imbalanced workload among the threads. In these
applications, a thread’s workload is not known until some
stage during runtime and could be quite varied from stage
to stage. In this situation, it would be ideal to provide sup-
port for threads to migrate from node to node during run-
time in order to achieve better load balancing.

The heap is the shared memory space for Java threads to
store created objects. In a distributed environment, threads
are running on different nodes, and they need to access ob-
jects created by themselves or by other threads during ex-
ecution. A distributed shared heap is therefore necessary
in the design of a DJVM. A natural question to ask is
whether an off-the-shelf software Distributed Shared Mem-
ory (DSM) system would satisfy the requirement or do we
need a new distributed heap design.

There exist a number of DJVMs [18, 30] that are directly
built on top of an unmodified software DSM. For these sys-
tems, there is the issue of for achieving good performance
because there tends to be a mismatch between the mem-
ory model of Java and that of the underlying DSM. The
Java Memory Model (JMM) cannot be easily fit into one
of consistency models that are supported by existing DSM
systems. The JMM is probably closest to the Home-based
Lazy Release Consistency (HLRC) model but with several
differences, and it is currently evolving [20]. The mismatch
in memory consistency between the chosen DSM and the
JMM will cause the DJVM built this way to be inefficient or
incomplete in supporting the required semantics. Moreover,
the runtime information at the JVM level such as object type
information cannot be easily channelled to the DSM. In-
deed, it is difficult to extend an off-the-shelf DSM to support
other desirable services such a single-system image (SSI)
view of I/O objects. In our design, we opt for a customized
built-in distributed global heap that realizes the JMM. Be-
cause it is tightly coupled with the DJVM kernel, we can
make use of the runtime information inside the DJVM to
reduce object access overheads.

To achieve high performance and to support dynamic
thread migration, we set out to incorporate the Just-in-Time
(JIT) compiler option in the design of the DJVM. With
JIT compilation, a bytecode method is translated into the
equivalent native code that can be executed directly on
the underlying machine. In order to implement the thread
migration feature in a DJVM that supports JIT compila-
tion, the JIT compiler must be made cluster-aware so local
machine-level entities can be converted to global data struc-
tures accessible by distributed VM components. For exam-
ple, thread states in native machine form must be captured
and represented in an intermediate form that can be inter-
preted by the destination JVM before the migration. These
inevitably will add extra overhead to the JIT compiler. The
challenge is to design a lightweight thread state capturing
and restoration mechanism so that the overhead would not

offset the benefits of thread migration.
In the paper, we describe our DJVM design, called JES-

SICA2. Our design is novel in the sense that it supports ex-
ecution of runtime-migratable threads in JIT mode, and ef-
ficient global object sharing in the distributed environment.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the general architecture of JESSICA2.
Section 3 describes the implementation of thread migra-
tion based on JIT compilation. Section 4 discusses the im-
plementation of distributed shared object support for the
DJVM. Section 5 gives the experimental results with our
prototype system. Section 6 discusses the related work. Sec-
tion 7 concludes the paper and alludes to some possible fu-
ture work.

2. JESSICA2 system overview

Figure 1 shows the overall architecture of our JESSICA2
DJVM system. The system runs in a cluster environment
and comprises a collection of modified JVMs that run in dif-
ferent cluster nodes and communicate with each other using
TCP connections.

We call a node that starts the Java program themaster
nodeand the JVM running on it themaster JVM. All the
other nodes in the cluster areworker nodes, each running a
worker JVM to participate in the execution of a Java appli-
cation. The worker JVMs can dynamically join the execu-
tion group. The Java threads in the application can migrate
from node to node.
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Figure 1. The system architecture.

To create a single system image, the system provides
a global space spanning all the nodes for the objects, a
method area that is available to all nodes, and support for
the transfer of thread stacks needed for thread mobility. In
JESSICA2, there is aglobal object space(GOS) that “vir-
tualizes” a single Java object heap across multiple cluster



nodes to facilitate transparent shared object access by the
master JVM and other worker JVMs. The GOS takes care
of all the memory consistency issues, such as object fault-
ing, addressing, replication policy, and those related to ob-
ject transmission [27, 26]. Therefore during thread migra-
tion, we can migrate the objects in the heap by shipping
only the Java object references without actually moving the
object data to the remote node.

To globalize the method area, we load each class into ev-
ery JVM. The correctness of rebinding the class structure
in the remote node is guaranteed through preserving a sin-
gle copy of the static data of the class concerned.

Our system does not rely on a shared distributed file sys-
tem such as NFS; nor does it need to be restricted to a sin-
gle IP for all the nodes in the running cluster. The system
has built-in I/O redirection functionalities to create the sin-
gle system image view for file and networking I/O opera-
tions.

A Java thread can be dynamically scheduled by the
thread scheduler to migrate to another node during run-
time in order to achieve a balanced system load through-
out. Being transparent, the migration operation is completed
without explicit migration instructions to be inserted in the
source program.

JITEE stands for JIT compiler based execution engine.
It is the core of the system. It extends the JIT compiler to
support cluster-wide computations, such as thread migra-
tion and global object access.

3. JIT-compiler-assisted dynamic thread mi-
gration

Dynamic thread migration has long been used as a load
balancing tool for optimizing the resource usage in dis-
tributed environments [10]. Such systems usually use the
raw thread context(RTC) as the communication interface
between the source node and target node. The RTC usu-
ally includes the virtual memory space, the thread execu-
tion stack and hardware machine registers.

Existing solutions for Java thread migration mainly use
thebytecode-oriented thread context(BTC) as the interface.
The BTC consists of the identification of the Java thread,
followed by a sequence of frames. Each frame contains the
class name, the method signature and the activation record
of the method. The activation record consists of the byte-
code program counter (PC), the JVM operand stack pointer,
operand stack variables, and the local variables encoded in a
JVM-independent format. There are three main approaches
in existing systems: extending a JVM interpreter [18], static
bytecode instrumentation [21], and using the JVM Debug-
ger Interface (JVMDI) [13].

To extend a JVM interpreter seems to be the most obvi-
ous approach since the interpreter has the complete picture

and control of the BTC. However, modifying a JVM inter-
preter to deal with the BTC adds to the already rather slow
execution by the interpreter.

Static bytecode instrumentation can be used to extract
limited thread stack information, but the price to pay for
is a significant amount of additional high-level bytecodes
in all the Java class files. This additional amount could re-
sult in large space overhead. For example, in JavaGoX [21]
and Brakes [24] which use static bytecode instrumentation,
about 50% additional space overhead can be observed in
running the simple recursive Fibonacci method.

In a JIT-enabled JVM, the JVM stack of a Java thread
becomes a native stack and no longer remains bytecode-
oriented. As such, JVMDI appears to be a convenient so-
lution. The earlier JVMDI implementations did not support
JIT compilers and only the latest JDK from Sun [13] is able
to support full-speed debugging using deoptimization tech-
niques that were introduced in the Self compiler [12]. How-
ever, JVMDI needs huge data structures and incurs large
time overhead in supporting the general debugging func-
tions. Moreover, the JVMDI-based approach needs to have
the Java applications compiled with debugging information
using specific Java compilers such asjavacof the Sun JDK,
which will not work for Java applications distributed in
bytecode format but without debugging information. Fur-
thermore, not all existing JVMs have realized the JVMDI
defined in the Sun JDK.

In contrast to the aforementioned approaches, we solve
the transformation of the RTC into the BTC directly inside
the JIT compiler. Our solution is based on two main func-
tions,stack capturingandstack restoration(see Figure 2).
Stack capturing is to take a snapshot of the RTC of a run-
ning Java thread and transforms the snapshot into an equiv-
alent BTC. Stack restoration is to re-establish the RTC us-
ing the BTC. Such a process via an intermediate BTC takes
advantage of the portability of the BTC.

The general idea of our approach is to use the JIT com-
piler to instrument the native code so that they become help-
ful in the transformation of the RTC into BTC. The native
code will “spill” the most recent information of variables in
the stack at various points, i.e., the latest values will be writ-
ten to memory from registers. When the migration request
arrives, the thread scheduler can perform on-stack scanning
to derive the BTC from the RTC instead of using a stand-
alone process to collect the context like what the JVMDI
does. For this part of the work, we emphasize simple and ef-
ficient solutions that solve the Java thread migration prob-
lem without introducing large auxiliary data structures and
costly or unnecessary transform functions.

We choose the high-level bytecode-oriented thread con-
text as the execution trace to maintain. The context includes
a sequence of Java thread frames. Each frame contains the
method id, the bytecode Program Counter (PC), the stack
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Figure 2. The thread stack transformation.

pointer for the JVM operand stack, the local variables and
the JVM stack operands. The above items will be synchro-
nized periodically during thread executions at certain pro-
gram locations called migration checkpoints. Using the JIT
compiler, we are able to perform optimizations to reduce
the number of such checkpoints [28].

Figure 3 shows the work flow of the JIT compiler in our
system for generating migration checkpointing code to sup-
port the thread capturing operation. During the compilation
phase, the JIT compiler will try to choose the appro-
priate migration points upon bytecode verification. A
migration point will be marked before at the head of a ba-
sic block pointed to by a back edge in the control graph and
at the boundary of the following bytecode instructions: IN-
VOKESTATIC, INVOKESPECIAL, INVOKEVIRTUAL
and INVOKEINTERFACE. During the bytecode trans-
lation phase, the migration points will be translated
into a number of native instructions for spilling vari-
ables and their types in the thread stack.

To support thread context restoration, we introduce a
technique called “dynamic register patching” to rebuild reg-
ister context just before the control returns to the restored
points. Figure 4 illustrates the dynamic register patching on
i386 architecture. Shaded areas represent the native codes.
“Ret Addr” is the return address of the current function call
and “%ebp” is the i386 frame pointer. The dynamic reg-
ister patching module will generate a small code stub us-
ing the register-variable mapping information at the restored
point of each method invocation. The thread execution will
switch to the code stub entry point for each method invo-
cation. The last instruction to be executed in the code stub
will be a branching instruction to jump to the restored point
of the method. To make our solution efficient, we allocate
the code stub inside the thread stack so that when the stub

Bytecode verifier

Bytecode translation

Code generation

Intermediate Code

invoke

1. Add migration checking
2. Add object checking
3. Add type & register spilling

Native Code

Linking & 
Constant Resolution

cmp obj[offset],0
jz ...

cmp mflag,0
jz ...

mov 0x110182, slot
...

Global Object Access

Migration point 
selection

Figure 3. The work flow of the JIT compiler.

jumps to the restored point, the code stub will be automat-
ically freed to avoid memory fragmentation caused by the
small-size code stub.
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{
...
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...
}
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Figure 4. One example of dynamic register
patching on i386 architecture.

4. Global object sharing

The JIT compiler also compiles bytecode instructions for
object access such as GETFIELD, PUTFIELD, AALOAD,
AASTORE, etc., into appropriate interface functions for
managing the shared objects. The functions for managing
the consistency of shared objects are grouped in a module in
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the DJVM kernel. We call it theglobal object space(GOS)
support.

Figure 5 shows the main data structure of the GOS. We
added a cache pointer in the original object header to dis-
tinguish between a cached object and a master object. For a
cached object, the cache pointer will point to a shared cache
header for all local threads that need to cache the data from
the home of the object. Unlike some implementations such
as [2] that use a single cache copy for all the Java threads,
we use different cache copies for different local threads.
First, it is closer to the JMM. Second, it will prevent dif-
ferent threads from interfering each other’s cache copies.
For example, in the case of sharing a cache copy by all lo-
cal threads, if a thread enters a lock and tries to flush all the
cache data, data that are still valid for other threads may get
flushed. Third, such decision can lead to finer-grain caching,
as is done for huge array object. Each thread can cache a
portion of one huge array used, and the first cache object
will be used as the representative of the object in the local
host. The address of the first cache copy can be stored in-
side other objects in the local host like a master object.

Many state-of-the-art optimizing caching protocols are
adopted in our GOS design [26]. We employ an adaptive
object “home” migration protocol to address the problem of
frequent write accesses to an object remotely, and a time-
stamp-based fetching protocol to prevent redundant fetch-
ing of remote objects. For an object,O, the node that holds
its master copy is called thehomeof the object, denoted
by HOME(O). Adaptive object home migration means
that we dynamically changeHOME(O) to another node
to avoid the communication cost incurred in having to flush
the object and to re-fetch the object as required by the JMM
[16]. This can result in substantial message reduction dur-
ing the execution of Java threads in the DJVM.

Besides, we also embedded into the design several op-
timizations such as object pushing and fast software state
checking by exploiting the JVM runtime information and

JIT compiler techniques in the implementation of the GOS.
Object pushing is a kind of pre-fetching technique that
makes use of the connectivity of Java objects. Based on the
internal field definition of an object, we can aggregate the
communication messages to transfer several objects in one
single message. The pre-fetching level is limited by the the
message size in the implementation. Fast software check-
ing is to use the JIT compiler to generate native code for
object state checking instead of simply directing it to an in-
terface function.

5. Performance result

JESSICA2 is implemented using the Kaffe open JVM
(version 1.0.6) [29] as a base. We use a Linux cluster con-
nected by Fast Ethernet as the testbed. The cluster consists
of 2GHz Pentium IV processor running kernel 2.4.18-3.
Each machine has 512MB memory.

5.1. Thread migration overheads

We first tested the space and time overheads charged to
the execution of Java threads by the JIT compiler after en-
abling the migration mechanism. Then we measured the la-
tency of a single migration operation.

The time overheads are mainly due to checking at the mi-
gration points; and the space overheads are mainly due to
the instrumented native code. We did not require the bench-
marks to be multithreaded in the test since the dynamic
native code instrumentation will function also in single-
threaded Java applications.

We used SPECjvm98 [9] benchmark in the test. Table 1
shows the test results. The space overheads are in terms of
the average size of native code per bytecode instruction, i.e.,
the blowup of the native code compiled from the Java byte-
code.

From the table we can see that the average time overhead
charged to the execution of Java thread with thread migra-
tion is about 2.21% and the space overhead due to the gen-
erated native code is 15.68%. Both the time and space over-
heads are much smaller than the reported results from other
static bytecode instrumentation approaches. For example,
JavaGoX [21] reported that for four benchmark programs
(Fibo, qsort, nqueen and compress in SPECjvm98), the ad-
ditional time overhead ranges from 14% to 56%, while the
additional space cost ranges from 30% to 220%.

We also measured the overall latency of a migration
operation using different multithreaded Java applications.
These applications include a latency test (LT) program,π
calculation (CPI), All-pair Shortest Path (ASP), N-Body
simulation and Successive Over-Relaxation (SOR). The la-
tency measured includes the time from the point of stack
capturing to the time when the thread has finished its stack



Benchmarks Time (seconds) Space (native code / bytecode)
No migration Migration No Migration Migration

compress 11.31 11.39(+0.71%) 6.89 7.58(+10.01%)
jess 30.48 30.96(+1.57%) 6.82 8.34(+22.29%)
raytrace 24.47 24.68(+0.86%) 7.47 8.49(+13.65%)
db 35.49 36.69(+3.38%) 7.01 7.63(+8.84%)
javac 38.66 40.96(+5.95%) 6.74 8.72(+29.38%)
mpegaudio 28.07 29.28(+4.31%) 7.97 8.53(+7.03%)
mtrt 24.91 25.05(+0.56%) 7.47 8.49(+13.65%)
jack 37.78 37.90(+0.32%) 6.95 8.38(+20.58%)
Average (+2.21%) (+15.68%)

Table 1. The execution overheads using SPECjvm98 benchmarks.

restoration in the remote node and has sent back the ac-
knowledgement. Table 2 shows the overall migration la-
tency of LT, CPI, ASP, N-Body and SOR. CPI only needs
2.68 ms to migrate and restore thread execution because it
only needs to load one single frame and one Java class dur-
ing the restoration. LT and ASP need about 5 ms to migrate
a thread context consisting of one single frame and restore
the context. Although they only have one single frame to re-
store, they both need to load two classes inside their frame
contexts. For SOR which migrates two frames, the time is
about 8.5 ms. For N-Body, which needs to load four classes
in 8 frames, it takes about 10.8 ms.

In addition, the breakdown of the latency test program
LT is shown. LT accepts a parameter for the number of
nested function calls, so that we can migrate different num-
bers of Java frames in different tests using the same pro-
gram. Using LT, we give a fine-grain view of the vari-
ous steps inside the migration mechanism. These steps in-
clude stack capturing, frame parsing, cloning a thread, par-
tial compilation to retrieve the register mapping, and the
restoration of the frames.

Table 3 shows the migration time breakdown of LT. The
first three rows show the information about the bytecode
context migrated, including the frame number, the number
of variables of all the frames, and the size of the frame con-
text in JVM-independent format. The last five rows show
the breakdown of each major step in the migration mecha-
nism with different frame numbers between 1 and 10. The
capturing time, frame parsing time, compilation time and
stack building time are linear functions of the size of the
frame.

5.2. GOS optimization evaluation

We also evaluated the effect of GOS optimization tech-
niques in reducing the communication messages. We used
the multithreaded Java programs including the Travel Sales-
man Problem (TSP) program, the N-Body simulation pro-

gram, and the ASP program.

We used 8 nodes in the test. The problem size for TSP is
14 cities. In N-Body we used 512 objects. And for ASP we
used a graph of 512 vertices. Figure 6 shows normalized re-
sult of message reduction after applying the adaptive object
home migration protocol (H), object pushing (P) and time
stamp based object fetching (T), respectively.

Figure 6. GOS optimization results.

For TSP, the object pushing and time stamp based tech-
nique reduced the number of messages by about 10% and
the adaptive object home migration did not reduce the num-
ber. The reason is that in TSP, only limited objects such
as the shortest path array are updated during the execution.
In N-Body, object pushing introduces a significant reduc-
tion in number of messages because it needs to create new
objects in rebuilding the Barnes & Hut tree. For ASP, the
adaptive object home migration protocol reduced the num-
ber of messages to 13.50% because it needed to update a
large number of objects during each iteration in calculat-
ing the shortest path.



Program (frame #) LT (1) CPI (1) ASP(1) N-Body(8) SOR(2)
Latency (ms) 4.997 2.680 4.678 10.803 8.467

Table 2. Overall migration latency of different Java applications. The number in parentheses is the
number of frames.

Frame# 1 2 4 6 8 10
Variable# 4 15 37 59 81 103
Size (bytes) 201 417 849 1281 1713 2145

Capture (us) 202 266 410 495 605 730
Parse (us) 235 253 447 526 611 724
Create (us) 360 360 360 360 360 360
Compile (us) 478 575 847 1,169 1,451 1,720
Build (us) 7 11 14 16 21 28
Total (us) 1,282 1,465 2,078 2,566 3,048 3,562

Table 3. Migration breakdown of latency test (LT) program for different frame sizes.

5.3. Application speedup

In this section, we present the speedup of four
mulithreaded applications.

We ran TSP with 14 cities, Raytracer with a 150x150
scene containing 64 spheres, and N-Body with 640 parti-
cles in 10 iterations. We give the speedups of CPI, TSP,
Raytracer and N-Body in Figure 7 based on comparing the
execution time of JESSICA2 and that of Kaffe 1.0.6 (in a
single-node) under JIT compiler mode. From the figure, we
can see nearly linear speedup in JESSICA2 for CPI, despite
the fact that all the threads needed to run in the master JVM
for 4% of the overall time at the very beginning. For the
TSP and Raytracer, the speedup curves show about 50% to
60% of efficiency. Compared to the CPI program, the num-
ber of messages exchanged between nodes in TSP has been
increased because the migrated threads have to access the
shared job queue and to update the best route during the
parallel execution, which will result in flushing of work-
ing memory in the worker threads. In Raytracer the number
of messages is small, as it only needs to transfer the scene
data to the worker thread in the initial phase. The slowdown
comes from the object checking in the modified JVM as the
application accesses the object fields extensively in the in-
ner loop to render the scene. But for the N-Body program,
the speedup is only 1.5 for 8 nodes. The poor speedup is
expected, which is due to the frequent communications be-
tween the worker threads and the master thread in comput-
ing the Barnes-Hut Tree.
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Figure 7. Speedup Measurement of Java ap-
plications

6. Related work

Parallel programming on a parallel computer such as a
cluster is far from an easy task. Compared with sequen-
tial programming, parallel programming raises new issues
such as data sharing, synchronization, and load balancing.
Several programming paradigms exist for parallel comput-
ing, namely,data parallel, message passing, and shared
memory. A substantial amount of effort, either using a pure
runtime system or a combination of compiler and runtime
system, has been spent in supporting these programming
paradigms during the past two decades [15, 7, 14, 6, 5, 1].
Our effort was motivated by recent work on distributed
JVM, particularly cJVM [3] and JESSICA [18]. Several
design issues encountered in our GOS and thread migra-



tion are also related to software DSM systems and classical
thread/process migration research. These techniques are ex-
ploited in our JESSICA2 system in the context of JIT com-
pilation.

6.1. Software Distributed Shared Memory

Software-based Distributed Shared Memory (DSM) has
been a subject for intensive study for a decade or more.
Orca [5] is an object-based DSM that uses a combination
of compile-time and runtime techniques to determine the
placement of objects. Our GOS differs from Orca in that
we provide the shared object abstraction supports entirely
at runtime through the JVM JIT compiler.

TreadMarks is a page-based DSM [1] that adopts lazy re-
lease consistency protocols and allows multiple concurrent
writers writing to the same page. Treadmarks uses hard-
ware page-faulting support, and therefore it can eliminate
the overheads of software checking on object status. One
of the drawbacks, however, is that page-based DSM tend
to have problems of false sharing if directly applied to an
object-based language such as Java.

6.2. Computation migration

Computation migration has also been studied for many
years. Process migration can be regarded the ancestor of
thread migration. The paper [19] reviews the field of pro-
cess migration up to 1999. It provides a detailed analysis on
the benefits and drawbacks of process migration. The sys-
tems that are mentioned in the paper range from user-level
migration systems to kernel-level migration ones. In con-
trast to existing computation migration techniques, we try to
solve the computation migration problem from a new per-
spective by bringing in JIT compilation into the solution.

There have been systems developed to support thread mi-
gration. Arachne [10] is one of them. It provides a portable
user-level programming library that supports thread migra-
tion over a heterogeneous cluster. However, the thread mi-
gration there is not transparent to the user as it requires that
programs be written using a special thread library or API.
Cilk [6] is a system that is very similar to our system in sup-
porting C-based thread migration for C. It allows the pro-
grammer to explicitly and aggressively create new threads
to maximize the concurrency. Cilk’s runtime system then
takes the responsibility to schedule the threads to achieve
load balance and improved performance.

There are related systems in the mobile computing area
that support the mobility of Java threads. For example, Jav-
aGoX [21] and and Brakes [24] both use a static preproces-
sor to instrument Java bytecodes to support the migration of
Java threads. These systems do not address the distributed
shared object issues.

6.3. Distributed JVMs

Nearly all DJVMs are based on a set of cooperative
JVMs running on different cluster nodes. Among them, the
cJVM [3] prototype was implemented by modifying the Sun
JDK1.2 interpreter. cJVM does not support thread migra-
tion. It distributes the Java threads at the time of thread cre-
ation.

There are other DSM-based DJVM prototypes, including
JESSICA [18] and Java/DSM [30]. Both systems are based
on the Java interpreter. JESSICA supports thread migration
by modifying the Java interpreter. Java/DSM lacks support
for the location transparency of Java threads. It needs pro-
grammers’ manual coding to place the threads in different
cluster nodes.

Jackal [25] and Hyperion [2] adopt static compilation
approaches to compile the Java source code directly into
native parallel code. The parallel code is linked to some
object-based DSM library package. Such a static compi-
lation approach, however, will usually disable some useful
features of Java such as dynamic class loading. As a result,
the output parallel code is not fully compliant with the Java
language specification.

7. Conclusion and future work

In the JESSICA2 project, we combine thread migration
and distributed shared object to build a high-performance
single-system image cluster middleware. The implementa-
tion is at the JVM level, and the system can transparently
execute multithreaded Java applications in parallel without
any modification. The novelty is in the application of a JIT
compiler to combine and optimize the above two features.
The following components of the original single-node JVM
have been modified or extended: the JIT compiler, the class
loader, the heap and the I/O class libraries. Our experimen-
tal results confirm that it is feasible to deliver high perfor-
mance for multithreaded execution using Java through the
support of a Distributed JVM in a cluster environment.

Possible future work will try to deploy other more ad-
vanced JIT compilers to further optimize the thread migra-
tion mechanism and distributed object sharing. It is possi-
ble that with some advanced compilation analysis technique
such as escape analysis [8], the object checking overhead
can be much reduced. For the realization of the complete
SSI ideal for all Java applications including GUI applica-
tions, more supports will be needed in areas including Java
I/O libraries (such as the AWT or the Swing library). Also,
in a large cluster environment, the master node could eas-
ily turn into a bottleneck for I/O requests; new techniques
for duplicating the master node can be explored.
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