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The efficiency of Software Distributed Shared Memory (DSM) is often limited by the 

excessive amount of network communication in maintaining the memory consistency of the 
system. Two of the most popular software solutions to reduce redundant data traffic are 
relaxed memory consistency models and traffic-thrifty coherence protocols. In this paper, we 
propose the migrating-home protocol for a relaxed memory consistency model, the scope 
consistency model. The protocol allows the processor storing the most up-to-date copy of a 
page to change from one processor to another, so as to adapt to the memory access patterns 
of DSM applications. The new protocol has been implemented in a DSM system running on 
a 16-node Pentium III 450MHz PC cluster. We analyzed not only the execution time of the 
benchmark programs, but also the communication and page fault patterns via a new analysis 
approach. It is shown that our DSM system reduces the amount of network communication 
and handles page faults more efficiently. The benchmark results provide concrete evidence 
for the substantial performance improvement obtained by our system.  
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1. INTRODUCTION 
 

Software Distributed Shared Memory (DSM) offers the abstraction of a globally 
shared memory across physically distributed computing nodes (Figure 1). It exempts 
programmers from handling explicit data communication in parallel programs, making it 
an attractive parallel programming paradigm on a cluster of PCs or workstations. Early 
DSM systems, however, often failed to perform satisfactorily, as they tended to 
communicate excessive amount of data among machines because of the need to maintain 
memory consistency. 

                                                           
∗ The content of this research has been presented in the 1999 and 2000 International Conference on Parallel 
and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA. 
+ This research is supported in part by the Hong Kong RGC Grant HKU-7030/01E and an AOE grant from the 
HKSAR Government. 
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There are several software approaches to alleviate this network bottleneck. One of 
them relies on the use of memory consistency models, which are rules specifying how the 
memory system will appear to the programmers in terms of its semantics. The first DSM 
systems, IVY [2], adopted the strict sequential consistency (SC) [1]. Because of SC’s 
ineff iciencies, later systems turned to the relaxed models. For example, the Munin DSM 
system [3] used the eager release consistency (ERC) model; TreadMarks [4] employed 
lazy release consistency (LRC) [5], which is weaker (i.e., more relaxed) than ERC. 
Midway [6] used the entry consistency (EC) model [7], which is even weaker and appears 
to be more eff icient than LRC. Unfortunately, the programming interface associated with 
EC is not easy to use, as it requires explicit binding between synchronization variables 
(locks) and shared memory variables. Scope consistency (ScC) [8] has thus been 
proposed, aiming at good programmabilit y and high performance. 

 
 
 

 
 
 
 
 
 
 
 
Figure 1. The distributed shared memory abstraction: Each processor sees a shared address space, 
delineated by the dashed outline, rather than a collection of distributed address spaces. 
 

Apart from the use of relaxed memory consistency models, we can improve DSM 
performance through an eff icient coherence protocol, which defines rules for a correct 
implementation of the underlying memory consistency model. For instance, the home-
based protocol is more eff icient than the homeless protocol [9] in implementing ScC. 

In this paper, we introduce a coherence protocol called the migrating-home 
protocol. Using this protocol, the location storing the most up-to-date copy of each page 
in the shared memory can be changed from one processor to another depending on the 
need. The protocol allows better adaptation to the memory access patterns of DSM 
applications to be achieved. This is demonstrated through a reduction in the execution 
time of DSM applications. We also apply a new approach to analyze the communication 
and page fault patterns of a number of DSM programs. It is shown that with the use of the 
migrating-home protocol, the amount of data traff ic in the network can be reduced. Page 
faults can be handled more eff iciently as well , as more page faults can be served locally 
without communication with other processors. 

For the rest of this paper, Section 2 overviews ScC and the two existing coherence 
protocols and aspects of their implementation. Section 3 discusses the migrating-home 
protocol in detail . Section 4 describes the implementation of the protocol and the testing 
environment. The performance results and their analysis are provided in Section 5. 
Section 6 discusses the new approach of page fault analysis and the results. Section 7 
presents the related work. Finally, we conclude this paper in Section 8. 
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2. BACKGROUND 
 
In this section, we shall briefly overview scope consistency (ScC), together with a 

discussion of the home-based and homeless protocols for implementing ScC to place the 
ground of our research. 

 
2.1 Scope Consistency (ScC) 
 

Scope consistency (ScC) achieves high performance and good programmability 
through the use of the scope concept, which reduces the amount of data propagation 
among processors, and fits naturally to the lock mechanism. 

In ScC, a scope is a limited view of memory with respect to which memory 
references are performed. Updates made within a scope are guaranteed to be visible only 
within the same scope. For example, in Figure 2, all critical sections guarded by the same 
lock comprise a scope. The locks in a program thus determine the scopes implicitly, 
making the scope concept easy to understand. In addition, barriers define a global scope, 
which covers the entire program. Thus at a barrier, all the updates on the shared objects 
made by every processor will be propagated to the others. 

A scope is said to be opened at an acquire operation (lock acquire or leaving a 
barrier), and is closed at a release (lock release or approaching a barrier). Having all 
these concepts, ScC is defined as follows: 

When processor Q opens a scope that is previously closed by another processor P, 
the updates made within the same scope in P is propagated to Q. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  An example illustrating the scope consistency (ScC). 
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This means the updates made outside the same scope will not be propagated at the 
time of the acquire. An example demonstrating this fact is shown in Figure 2. 

In this program, only the update of z by P0 is propagated to P1 at the acquire of the 
lock, since only z is updated within the same scope. In comparison, the updates of all x, y 
and z are propagated under LRC. Therefore ScC reduces the amount of data 
communication within the cluster, and becomes more efficient than LRC. But the 
programming interface is exactly the same as that for release consistency. There is no 
explicit binding as needed by EC. Hence ScC retains good programmability as well. 
 
2.2 Home-Based vs. Homeless Coherence Protocols 
 

The memory consistency models discussed above define the policies on the behavior 
of the shared memory abstraction as viewed by the users. However, we still need to 
define the mechanisms, i.e., the data structures and algorithms used in implementing the 
models. This leads to the existence of coherence protocols. We shall discuss two different 
categories of coherence protocols, namely the home-based and the homeless protocols. 

In page-based DSM, a machine may access a shared memory area not in its main 
memory. This results in a page fault. To serve the page fault, a copy of the memory page 
causing the fault with the most up-to-date contents must be brought in from the remote, so 
that the access can continue without error. There are different ways to get the page from 
remote. In home-based protocols such as the one adopted by JIAJIA V1.1 [10], each 
page in the shared memory space is assigned a processor to store the most up-to-date 
copy of a page. This processor, fixed at application initialization time, is known as the 
home of the page. All the updates on a page will be propagated to the home processor in 
the form of diffs [4] when the processor making the update performs a synchronization 
operation. Later, when a processor accesses the page, it generates a page fault and the 
page request will be forwarded to the home of the page. The home processor replies by 
sending a clean copy of the page that causes the fault. Figure 3(a) shows how the home-
based protocol serves a page fault. 

On the other hand, a homeless protocol such as the one used in TreadMarks does not 
possess the concept of home. No processor is responsible for holding the most up-to-date 
copy of a page. In order to serve a page fault, the faulting processor has to contact all the 
peers that have recently updated that page. All these processors handle the request by 
sending the updates made on the page in the form of diffs to the faulting processor. The 
faulting processor then applies these updates in order as specified by the timestamps 
attached, so that the clean copy of the page can be obtained. Figure 3(b) shows the events 
for serving a page fault in a homeless protocol. 

Research [11] shows that the home-based protocol is more efficient than the 
homeless protocol by sending fewer messages in the network. In particular, it reduces the 
communication overhead in serving a page fault by requesting only one processor for a 
copy of the page. Moreover, home-based protocols are easier to implement than homeless 
protocols, since there is no need to implement timestamps in home-based protocols to 
deal with the order of the updates, as homeless protocols do. 
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 (a) Under the Homeless Protocol 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Under the Home-Based Protocol 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Comparison of the homeless protocol and the home-based protocol. (a) In the homeless 
protocol, the page fault request in P3 has to be served by communicating with multiple processors 
(P1 and P2). (b) In the home-based protocol, the page updates are propagated to the home 
processor of the page (P0) at the release operation of P1 and P2. The following page fault in P3 is 
served only by communicating with the home processor P0. 
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3. THE MIGRATING-HOME PROTOCOL 
 
This section studies the proposed migrating-home protocol [12], in which the 

location of the home processor is changeable among the processors during application 
execution. 
 
3.1 The Migrating-Home Concept 
 

The fixed-home concept introduced in the home-based protocol, though helps in 
improving the performance over its homeless counterpart, may not adapt well to the 
access patterns of applications. In particular, if the home processor is not involved in 
accessing the page, a message containing the page updates (diffs in our example) is 
always sent from the processor updating the page to the home processor at 
synchronization time. In return, an acknowledgement known as diff grant is sent from the 
home of the page to the processor making the update. This idea is further explained using 
a simple example in Figure 4(a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) An example for the home-based protocol, (b) Under the migrating-home concept, the 
twin, diff and diff grant are saved. 
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This pair of messages can be saved if we grant the home to the current page 
requester (like P0 in our example) when the original home (P2) serves the page fault. 
This is done by setting a flag in the message when P2 sends back the copy of the page to 
P0. We say that the home is migrated from P2 to P0. This means that the copy of page X 
obtained by P0 will be regarded as the master copy of the page and its contents are most 
up-to-date. Therefore, the diff and diff grant messages need not be sent when P0 issues 
the lock release operation after the write, as shown in Figure 4(b). Moreover, the twin 
operation (which is a memory copy operation) needs not be performed at P0 either, since 
P0 is the home and contains the master copy at the time of the write. It can thus directly 
write to the copy of the page it gets. 

This example brings about the migrating-home concept, which can be described by 
the following statement: 

When a processor requests a page from its current home processor, the requester 
can become the new home.  

Figure 5(a) shows this concept again graphically. In the diagram, the circular token 
denotes the home of page X. It is moved from the original home processor P2 to the new 
home processor P0 when the latter makes a page request.  

However, other processors may not be aware of this home migration. For example, 
P1 may request page X after the home change. It may get the outdated copy if it requests 
the page from the previous home P2. To avoid this, P0 needs to send a migration notice 
to all the other nodes at a release operation (such as lock release or reaching a barrier), as 
shown in Figure 5(b). The migration notice tells the processors that the home of a page 
has been changed. As we shall see next, the migration notices are short and they replace 
many of the lengthy diffs. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The migrating-home concept: (a) When page X is requested, the home is migrated 
together with the transmission of the page copy. (b) At lock release, the new home sends migration 
notices to all peers, stating the new home location of page X. 
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A migration notice is used to inform other processors about the home change of a 
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short, and minimizes the amount of data communication through the network. 
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In DSM applications, it is usual that more than one page will have their home 
migrated to a processor within a critical section. Sending the migration notices of each 
page one by one can cause an excessive amount of time spent in the communication 
startup. As the sending of migration notices is delayed until a release operation takes 
place at the new home, we can make use of the short-length feature of migration notices 
by concatenating multiple notices together to form a single message. 

 
3.3 Dealing with False Sharing 
 

In the previous discussion of the migrating-home protocol and migration notices, we 
have not yet dealt with the case when false sharing occurs. That is, when two or more 
processors write to different locations of the same page before synchronization takes 
place. We have encountered such a situation in the example shown in Figure 3. One of 
the most popular ways in dealing with false sharing is the diffing technique [4]. In the 
migrating-home protocol, diffing is also used in solving the false sharing problem, with 
certain rules added to maintain memory consistency of the DSM system. 

To show how the migrating-home protocol deals with false sharing, we look at an 
example in Figure 6, where P0 and P1 both ask for a page X before any one of them 
synchronizes. In this false-sharing situation, the migrating-home protocol still grants the 
first requester P0 as the new home. The late requester P1 will receive a copy of the page 
from the previous home P2 and the ID of the new home processor, so that P1 can send 
the diff to the new home when it synchronizes. The copy of the page obtained by the late 
requester P1 is still clean, as long as P1 does not access the variables updated by P0 
(such as x0) before P0 synchronizes. In fact, P1 is not supposed to access x0, since the 
behavior is undefined under the definition of LRC or ScC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Illustrating how the migrating-home protocol deals with false sharing. Here x0 and x1 are 
two variables in page X. 
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Later, when P1 approaches the synchronization point, it calculates and sends the diff 
to the new home. The diff grant is then replied as an acknowledgment. Finally, the new 
home P0 synchronizes and sends the migration notice to the other processors. The 
previous home P2 replies the migration notice by telling P0 that P1 has a copy of X too. 
This helps P0 to determine whether its copy of page X has got the most updated contents. 
If it has, the page can be migrated to other processors upon further request. 

It looks as if the reply of the migration notice made by P2 is redundant since P1 has 
sent the diff to P0. However, P0 may synchronize before P1. Thus the reply is needed to 
guarantee that the new home P0 knows whether the page content is clean. 

To summarize the migrating-home protocol with false sharing support, the home of 
a page can be migrated to the page requester if and only if: 

• The processor being requested the page is the current home of the page, and 
• The contents of the entire page are already clean (i.e., most up-to-date). 
 

4. IMPLEMENTATION AND TESTING 
 
The migrating-home protocol discussed in Section 3 has been implemented on the 

JUMP software DSM system. A number of benchmark applications are ported to test its 
performance. In this section, we discuss the implementation of JUMP, as well as the 
environment used in our testing in detail. 

 
4.1 Implementation of JUMP 
 

JUMP, which stands for JIAJIA Using Migrating-Home Protocol, is a software 
DSM system modified from JIAJIA V1.1 [10] with the implementation of the migrating-
home protocol. JUMP is a user-level, page-based DSM system appearing in the form of a 
runtime library. It is built on the UNIX operating system, and makes use of the UNIX 
virtual memory manager and system calls to achieve the shared memory abstraction. It 
adopts the scope consistency as the memory model, and false sharing is handled by the 
diffing technique. The same system structure of JUMP consists of a communication 
subsystem, a memory management subsystem and a synchronization subsystem. The 
communication subsystem deals with data communication among nodes in the system, 
while the memory management subsystem handles memory consistency issues. The 
migrating-home protocol implemented by JUMP forms a unique and crucial component 
in the memory subsystem. The synchronization subsystem of JUMP works closely with 
the other two subsystems, and it provides locks and barriers as synchronization facilities.  

 
4.2 Performance Testing 
 

We evaluated the performance of JUMP by executing a suite of six benchmark 
applications. The performance of JUMP and JIAJIA V1.1 is compared to find out if the 
migrating-home protocol can improve the DSM performance over the home-based 
protocol.  

The test was performed on a commodity cluster built using 16 Pentium III 450MHz 
PCs. They are connected using Fast Ethernet through a 24-port 100-based switch. Each 



Benny Wang-Leung Cheung, Cho-Li Wang and Francis Chi-Moon Lau 

 

10 

machine has 128MB main memory, and runs a copy of the Linux Kernel 2.2.14 as the 
operating system. 

Table 1. Description of the six benchmark applications. 

Name Arg. Description 

MM n, p Matrix Multiplication of two n × n matrices using p processors 

ME n, p Merge Sort on n integers in p sorted lists using p processors 

RX n, p Radix Sort of n 32-bit integers using p processors 

LU n, p LU-factorization of an n × n matrix using p processors, with the 
results verified for correctness 

BK n, p Bucket Sort of n integers using p processors with 256 × p buckets 

SOR n, p Red-Black Successive Over Relaxation on two n × n matrices using 
p processors, with the main loop iterating for 20 times 

 
The six benchmark applications, as shown in Table 1, are described as follows: 

(1) MM: MM is an application which multiplies two n × n matrices (namely Q and S) 
using p processors, storing the results in a third resulting matrix R. All the matrix 
elements are initialized as shared memory. However, at the initialization, while the values 
of the elements in S are assigned in a row major fashion, the values of the elements in Q 
are initialized in a column-major fashion. This means that the two matrices are in fact QT 
and S. The source matrices Q and S are divided into p parts, and each processor only 
accesses one part of Q and S to calculate a subtotal value of each element in the resulting 
matrix R. The subtotal values calculated from each of the p processors are stored 
temporarily in local memory, and are summed up together to form the resulting matrix R 
at the final stage. 

(2) ME: ME performs the merge sort on n integers using p processors. The n integers, 
appeared as p sorted arrays, are held by the p processors at the starting phase. At each 
stage, two arrays held by adjacent processors are merged together as one sorted array by 
one of the processors. Hence the merging is done in log p stages. Notice that in this 
program, using more processors will slow down the execution, since an extra stage of 
merging will be introduced when the number of processors doubles. 

(3) RX: RX performs radix sort on n 32-bit integers generated by p processors. As each 
32-bit number to be sorted can be expressed using 8 hexadecimal digits, the sorting is 
divided into 8 stages, with one of the digits (4 bits) being sorted at each stage. Each 
processor uses p buckets allocated in the shared memory to sort the numbers, and 
distribute them between stages. 

(4) LU: LU is a program which factorizes an n × n matrix M using p processors by a 
technique known as LU-factorization. Each element in the matrix is initialized as a 
double-precision floating point number, and the whole matrix is allocated in the shared 
memory space. The factorization process is divided into n stages. In each stage s (1 ≤ s ≤ 
n), the value of the elements in M will be updated according to the formulae: 
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Msj ←  Msj / Mss for (j > s), and 
Mij ←  Mij − Msj × Mis for (i > s and j > s) 

Each processor is responsible to compute the intermediate values for certain rows of 
elements in the matrix M. The values will be written back to the matrix. After all n stages, 
the matrix M will be completely factorized. Finally, the processor P0 is responsible for 
verifying if the result of M is correct. 

(5) BK: BK performs bucket sort on n integers. Each of the p processors involved in the 
execution handles 256 buckets for sorting and data distribution. After data distribution 
takes place, each bucket holds the numbers within a certain range. The numbers in each 
bucket are then sorted by bubble sort. This gives the sorted result of the numbers when 
the buckets are accessed with a particular sequence. 

(6) SOR: The full name of SOR is known as the red-black successive over-relaxation 
application. Our program is performed on two n × n matrices, one known as the red 
matrix, and the other called the black matrix. At each stage of the program, the values of 
the elements in each of the two matrices are updated according to the values of the 
elements in the other matrix. This routine is performed for 20 iterations. 

 

5. PERFORMANCE RESULTS 
 
This section reports the results of the performance testing as described in the 

previous section. We shall compare the performance between and  JIAJIA V1.1 by 
analyzing the execution time, number of messages, and volume of data communicated.  

 
5.1 Execution Time Analysis 

The execution time of the benchmark suite under JUMP and JIAJIA V1.1 on the 
Linux cluster is shown in Figure 7 using logarithmic-10 scale. We also compare the 
execution time under the two systems by dividing the execution time of an application 
under JIAJIA V1.1 by the execution time of the same application under JUMP, with the 
same n and p values. We call the result obtained performance ratio, and is presented in 
the line chart in Figure 7. A performance ratio over 1 means JUMP has an improvement 
in performance over JIAJIA. 

From the graphs, JUMP performs better than JIAJIA V1.1 for most of the 
applications. Since the protocol is the only difference between the two systems, this 
shows that in general, the migrating-home protocol in JUMP is more efficient than its 
home-based protocol in JIAJIA. However, the degree of performance improvement varies 
with applications. This is discussed in more detail as follows. 

(1) MM: JUMP has a small performance improvement over JIAJIA V1.1 in running the 
MM application. Most of the data points only exhibit a small improvement of about 5-
10%, which is relatively small when compared to other applications. This is because in 
MM, each processor spends a long time computing the local matrix. This intense 
computation dominates the total execution time of the MM program, especially when the 
number of processors is small and the problem size is large. However, the local matrix 
computation is not affected much by the protocol used. Therefore, the heavy computation 
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component reduces the effect of protocol used on the performance of the matrix 
multiplication program. 

However, for small problems with the n/p ratio smaller than 16, the MM application 
runs even slower under the migrating-home protocol. This is because for small problems, 
each processor writes to one or two pages in each critical section. At the release, the 
migration notices of these pages need to be sent to all the other processors, but there are 
only one or two migration notices in each of these messages. The migrating-home 
protocol is unable to take advantage of the feature of concatenating multiple migration 
notices together in a single message. Hence the extra communication startup cost 
becomes considerably high. 

(2) ME: Unlike MM, the migrating-home protocol has a much better improvement in the 
performance of the merge sort program, in which JUMP exhibits a 33-234% performance 
improvement over JIAJIA. This is because the ME program is more communication-
intensive than MM. Also, in each stage of the merging, half of the shared memory pages 
are accessed by their home node under migrating-home protocol, hence reducing the 
communication and page fault overhead. Moreover, the performance improvement of ME 
under JUMP tends to increase with more processors and a larger problem size.  

We also notice that ME runs more slowly under both JIAJIA and JUMP with more 
processors. This is because ME makes one more stage of merging when the number of 
machines is doubled, resulting in extra execution time. 

(3) RX: JUMP exhibits a small performance improvement not exceeding 16.3% over 
JIAJIA V1.1 in the execution of the RX program. For most problem sizes with p = 2 or 4, 
JUMP is able to execute RX faster than JIAJIA. However, when the number of 
processors increases to 8 or 16, JUMP suffers from a small performance degradation of 
about 5-10% in general. This can be accounted for by the extra number of page faults 
generated, as described in Section 6.2. 

(4) LU: The LU factorization benchmark shows the largest fluctuation in the perform-
ance improvement of JUMP over JIAJIA. For small problem sizes (n = 64 and 128), 
JUMP suffers from degradation in performance when compared with JIAJIA. However, 
when the problem size n increases to 256 or more, the performance improvement of 
JUMP becomes positive and is increasing drastically. At n = 1024, JUMP even completes 
the LU application more than 10 times faster than JIAJIA with 8 or 16 processors, which 
is the largest improvement encountered in the testing. This observation is in fact caused 
by a drastic reduction in the amount of communication traffic made within the network 
during program execution. Further communication analysis in the next part shows that the 
migrating-home protocol in JUMP is able to reduce more than 95% of the network 
communication in LU for large problems. 

(5) BK: For the bucket sort program, the migrating-home protocol in JUMP exhibits a 
modest performance improvement over JIAJIA V1.1 not exceeding 30%. Except for the 
data point with n = 256K and p = 16, where JUMP experiences a very small performance 
degradation, bucket sort benefits the migrating-home protocol with all problem size and 
processor combinations tested. The reason for the performance degradation at the 
smallest n/p ratio case is similar to that in MM: Not enough migration notices are 
available to concatenate as a single message. The extra overhead in sending the migration 
notices cannot be hidden. 
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Figure 7. Graphs showing the execution time of applications under JUMP (bar chart), and also the 
comparison of the execution time of each benchmark application under JUMP and JIAJIA V1.1 
(line chart) in terms of the performance ratio (time under JIAJIA V1.1 / time under JUMP). 
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 (6) SOR: The SOR application experiences the best performance gain under JUMP in 
general among the six applications used. Most of the tests in SOR perform twice as fast 
when JUMP replaces JIAJIA V1.1. This is because most shared memory pages in SOR 
are accessed solely by a single process throughout the execution. Under the migrating-
home protocol, the accessing processor must have cached such pages, and it must become 
the home of those pages after the first access, making further accesses local and thus 
reducing communication and page fault overhead. Moreover, like the general trend 
shown in most applications, a higher performance ratio is obtained when the problem size 
is increased. 

 
5.2 Communication Overhead 

To understand how the migrating-home protocol improves the efficiency in the 
execution of DSM applications, we shall investigate the amount of communication made 
by JUMP during the execution of the benchmark programs. We compare both the number 
of messages and the communication volume (that is, the total amount of bytes 
transmitted) within the cluster by JUMP and JIAJIA V1.1. The results are expressed as 
message ratio and communication volume ratio of JUMP over JIAJIA for each 
benchmark, and are shown as graphs in Figure 8 and Figure 9 respectively. 

From the data, it can be seen that for MM and RX, JUMP sends more distinct 
messages than JIAJIA V1.1 for the same application over the same problem size. This is 
shown by a message ratio larger than 1. This means the migrating-home protocol 
generates more messages to be transmitted in the cluster than the home-based protocol in 
these two benchmark applications. The observation is not surprising due to the broadcast 
nature of migration notices in the migrating-home protocol. The only exception is the RX 
benchmark with n = 4M and p = 2 or 4, at which JUMP sends fewer messages. 

For ME and LU, JUMP also sends more messages than JIAJIA V1.1 for small 
problem sizes. However, this is no longer true when the problem size grows larger. For 
example, JUMP is able to send no more than 43.9% of the total number of messages 
needed to be sent by JIAJIA in the execution of ME with n = 4M. For LU with n = 1024, 
JUMP even sends 1/6 of the total number of messages sent by JIAJIA to complete the 
task. There are two main reasons. First, migration notices for multiple pages can be 
concatenated as a single message under such a large problem size, so that the extra 
number of messages generated can be kept to a minimum. And second, the migrating-
home protocol adapts well to the memory access patterns of ME and LU, leading to a 
massive drop in the number of remote page requests and page grant messages generated. 

We also observe a general trend that the message ratio of JUMP over JIAJIA 
decreases with the increase in problem size. This can be explained by the fact that large 
problems use more pages in shared memory. Hence there is a larger potential for larger 
problems to take advantage of the short migration notices by concatenating them together 
as a single message, as discussed in Section 3. 

Next, we also compare the communication volume generated in the network by 
JUMP and JIAJIA. We observe that JUMP sends fewer bytes than JIAJIA V1.1 over 
most of the applications. This matches the aim of the migrating-home protocol in 
reducing the data volume communicating within the network. The short migration notices 
replace the lengthy diffs generated under the home-based protocol in most cases, and 
hence the protocol succeeds in transmitting fewer bytes within the cluster. 
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Figure 8. Graphs showing the number of messages sent under JUMP (bar chart), and also the 
comparison of the number of messages sent under JUMP and JIAJIA V1.1 (line chart), expressed 
by the ratio (number of messages sent under JUMP / number of messages sent under JIAJIA V1.1). 
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Figure 9. Graphs showing the total data traffic sent under JUMP (bar chart), and also the 
comparison of the total data traffic sent under JUMP and JIAJIA V1.1 (line chart), expressed by 
the ratio (total data traffic sent under JUMP / total data traffic sent under JIAJIA V1.1). 
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We also find that the reduction in communication volume produced by JUMP over 
JIAJIA V1.1 becomes more and more significant when the problem size increases. Using 
the ME application with 16 processors as an example, when sorting 2M integers, JUMP 
sends about 33.3% of the communication volume transmitted by JIAJIA. But when 4M 
integers are sorted, JUMP only sends 28.5% of the data traffic that is transmitted by 
JIAJIA through the network. In the extreme case, JUMP can save 97% of bytes that 
JIAJIA needs to send in the execution of LU with n = 1024. This observation, together 
with the trend that JUMP tends to send less messages than JIAJIA for large problems, 
suggest that the migrating-home protocol favors the execution of large applications. 

We have observed that the migrating-home protocol in JUMP may send more 
messages than the home-based protocol in JIAJIA, depending on the application and the 
problem size, but the communication volume generated by JUMP is less than JIAJIA. 
These two factors have a contrasting effect on the actual time spent in communication. 
This is because the time needed for a message to be sent from a processor to another 
through the network can be decomposed into two parts: a constant startup cost, and a 
transmission cost directly proportional to the number of bytes sent. From the execution 
time of the benchmarks, it can be concluded that the reduction in the amount of bytes 
communicated has a more dominating effect than the increase in the number of messages 
sent. Moreover, the extra number of messages sent under JUMP tends to be short 
messages, most of them being migration notices. Hence JUMP is expected to perform 
even better in systems with low-latency communication support, since the communication 
latency, which is the dominant factor in sending short messages, can be reduced under 
low-latency communication support. 

 

6. PAGE FAULT ANALYSIS 
 
In analyzing the performance of a DSM system, apart from the execution time and 

communication analysis, the number of page faults encountered, together with the way 
they are dealt with by the system can also provide useful evidence. This section takes a 
look at the different types of page fault that can occur under a DSM system. 

 
6.1 Different Types of Page Faults 

In JUMP or JIAJIA, a page fault arises when a shared memory page being accessed 
(read or written) is not within the local memory or is marked dirty. A page fault can also 
occur when an attempt is made to write on a page which is write-protected. Page faults 
with different causes are treated differently by the DSM system. We classify them into 
three main categories PF1, PF2 and PF3 as follows. 

PF1: A PF1 fault is a page fault that can be served by the local processor, which is the 
home of the page. It arises only due to the violation in access permission, that is, when we 
write on a page which has been write-protected. The solution is just to disable the write 
protection on the page. No remote processors have to be contacted to serve the fault, and 
no messages have to be sent through the network. An example is shown in Figure 10. 
Note that in most cases, PF1 faults are only required due to book-keeping purpose by the 
DSM system. For example, the system needs to trap the first write of a page within the 
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critical section guarded by a lock, so that this information can be recorded and sent to 
later acquirers of the same lock, in order to invalidate the dirty copies of the page. 

PF2: A PF2 fault is a page fault that can also be served by the local processor. However, 
unlike PF1, the local processor is not the home of the page. The processor is still able to 
serve the fault because it has cached a clean copy of the page in its local memory. Hence 
there is no need to contact the remote home processor for getting a copy of the page. 
However, the local processor is not the home of the page, no matter the migrating-home 
protocol or the home-based protocol is used. Therefore, it is inevitable that the faulting 
processor has to send a diff message to the remote home processor when it issues a 
release operation, as shown in Figure 11. The sending of the diff message takes time, and 
hence PF2 faults have to take longer time to serve than PF1 faults in an indirect sense. 

 
 

 
 
 
 
 
 
 
 
 

Figure 10. Serving the PF1 page fault. No remote processors are involved. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 11. Serving the PF2 page fault. P0 has cached a copy of page X. 
 
PF3: The third type of page fault is one which has to be served by the remote processor. 
A page request message has to be sent to the current home processor of the page, and 
upon receiving the request, the home processor replies with a copy of the required page. 
If the migrating-home protocol is used, information about the home migration is also 
appended in the replying message. It can be sure that PF3 page faults take the longest 
time to be served, since it involves a pair of messages communicating between two 
processors. However, there are still four possibilities which can happen after the page 
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fault. The characteristics of the 4 sub-categories of PF3 faults are summarized in Table 2, 
and are discussed in detail below. 

Table 2. Comparison among the four sub-categories of the PF3 page faults. 
 

Page Fault Type PF3A PF3B PF3C PF3D 

Occur on Read 
�

 �  
�

 
�

 

Occur on Write 
�

 
�

 �  �  

Occur in Home-Based Protocol (JIAJIA) �  
�

 
�

 �  

Occur in Migrating-Home Protocol (JUMP) 
�

 
�

 �  
�

 

Requests Page from Remote 
�

 
�

 
�

 
�

 

Involves Home Migration 
�

 �  �  
�

 

Involves Diff and Diff Grant 
�

 
�

 �  
�  (1) 

Note: (1) The Diff produced under PF3D faults are empty diffs, with no page update 
information if the page is not written before a release operation occurs. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Two possibilities of the PF3 page fault. (a) PF3A: If the home is migrated to the page 
requester when serving the fault, no diff is sent. (b) PF3B: Home is not granted to page requester, 
causing the diff and diff grant at release time. 
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Figure 13. The other two possibilities of the PF3 page fault. (a) PF3C: A read fault does not cause 
a diff to be sent at synchronization under the home-based protocol. (b) PF3D: Under the migrating-
home protocol, if the home is not granted to the faulting processor, an empty diff has to be sent at 
the release time. 
 

PF3A: If a processor generates a page fault and requests a page, and the home is 
migrated to the faulting processor during the page fault is being served, there is no need 
for the new home to further send out diff messages at the time a release operation is 
issued even it writes on this page. This situation can only happen in the migrating-home 
protocol (Figure 12(a)). 

PF3B: If the home is not migrated when the write fault is being served, as the faulting 
processor is not the home of the page, it has to send a diff message containing the updates 
of the page to the remote home processor of the page when it issues a release. The 
scenario is shown in Figure 12(b). Notice that PF3B can happen in both the migrating-
home protocol and the home-based protocol, but for the migrating-home protocol, it only 
happens when false sharing exists, and the home is not migrated when the page is granted 
from the remote. Otherwise, the faulting processor should have been granted the home as 
the page fault is served. 
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PF3C and PF3D: The third and fourth possibility arises when home migration does not 
take place, and the page fault is a read fault. Under the home-based protocol, no diff is 
sent since there is no update on the page. This is shown in Figure 13(a). Under the 
migrating-home protocol, we treat a read fault in the same way as a write fault. This can 
eliminate the need to send the page fault request message and page grant message in case 
the page will be written later. However, if the processor getting the page is not granted 
the home of the page, and it does not write the page before synchronization, then at 
synchronization time, an empty diff will be sent to the home processor of the page. An 
empty diff does not contain any page update information, it only signals the home 
processor of a page that the empty diff sender has finished accessing a copy of the page. 
The scenario is depicted in Figure 13(b). Since the cost of this type of page faults is 
different under the two protocols, in order to differentiate them, we shall call the remote 
read fault under the home-based protocol PF3C, while the remote read fault under the 
migrating-home protocol is named PF3D. 

Among the three types of page faults, it is easy to spot that the PF1 fault bears the 
least cost in terms of the number of messages sent and also the time taken to serve the 
fault. Both PF2 and PF3 take longer time to serve, but it is difficult to compare the cost of 
the two. The reason is three-folded. Firstly, although PF2 faults can be served locally, it 
has to generate a diff message (and hence a diff grant too) in the network. In comparison, 
a PF3 fault, regardless of the sub-category it belongs to, always generate at least a pair of 
messages (the page request and page grant). Secondly, for PF2 faults, the copy of the 
page cached may reside in the disk rather than in the main memory due to the virtual 
memory management of the underlying operating system. As the disk access time may be 
even slower than the network speed, PF2 faults may take a much longer time to get 
served. Finally, there are four possibilities that can occur for a PF3 fault, as shown in 
Figures 12 and 13. This further complicates the overhead comparison with PF2 faults. 
However, one thing can be sure is that if we can change some of the PF2 or PF3 faults to 
PF1 faults, the time needed to deal with the page faults and its related activities will be 
reduced. The performance in executing the DSM applications can hence be improved. 
We shall investigate if the migrating-home protocol is capable of reducing the cost 
associated by the page faults. 

 
6.2 Page Fault Breakdown 

Figure 14 shows the comparison of the number of page faults generated in every 
application under JUMP and JIAJIA. To further analyze the number of each type of page 
faults generated under the two protocols, Table 3 lists the breakdown of various types of 
page faults for each benchmark program under JUMP and JIAJIA using 16 processors. 

From the graph, we see that in most cases, JUMP generates more page faults than 
JIAJIA in executing the same benchmark application over the same problem size. When 
2 processors are used, JUMP causes a maximum of 29.4% more page faults than JIAJIA 
V1.1. As p increases to 4, this difference narrows down as JUMP only generates at most 
16.2% more page faults than JIAJIA. This value further decreases to about 6.9% and 
5.5% when 8 and 16 processors are employed respectively. The trend indicates that the 
number of page faults generated in JIAJIA increases faster than that generated in JUMP 
as more processors are used in executing the DSM applications. 
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(d) LU Factorization (LU)
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(e) Bucket Sort (BK)
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(f) Succ Over-Relax (SOR)
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Figure 14. Graphs showing the total number of page faults under JUMP (bar chart), and also the 
comparison of the total number of page faults under JUMP and JIAJIA V1.1 (line chart), expressed 
by the ratio (number of page faults under JUMP / number of page faults under JIAJIA V1.1). 
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Table 3.  Page fault breakdown for each application under JUMP and JIAJIA V1.1 
using 16 processors. 

 

Appl. Size Page Fault Breakdown under JUMP Page Fault Breakdown under JIAJIA 

Name n PF1 PF2 3A 3B 3D PF1 PF2 3B 3C 

MM 64 75 163 239 35 22 16 225 21 258 

 128 256 0 315 0 0 16 240 30 255 

 256 964 0 1320 0 0 64 900 180 1074 

 512 3856 0 5280 0 0 256 3600 720 4290 

 1024 15424 0 21120 0 0 1024 14400 2881 17235 

ME 256K 1040 0 752 0 0 80 960 240 480 

 512K 2080 0 1504 0 0 160 1920 480 960 

 1M 4160 0 3008 0 0 320 3840 960 1920 

 2M 8320 0 6016 0 0 640 6280 3320 5614 

 4M 16640 0 12032 0 0 1280 8921 10279 13805 

RX 256K 2398 0 3546 0 0 188 2403 483 2692 

 512K 4200 0 5701 0 0 320 4079 714 4475 

 1M 7826 0 10022 0 0 573 7439 1200 8047 

 2M 15070 0 18674 0 0 1085 14182 2154 15223 

 4M 29533 0 35992 0 0 2121 27618 4081 29723 

LU 64 308 1570 1905 72 608 110 1908 7 2522 

 128 2471 4709 6716 636 1567 511 7620 30 9195 

 256 20558 10701 18184 416 3495 2049 30600 120 34038 

 512 130849 0 2035 0 6997 8209 122640 480 7545 

 1024 916354 0 7423 0 21338 57266 859088 3700 1751935 

BK 256K 8505 0 4375 0 0 4388 4121 259 4108 

 512K 8794 0 4853 0 0 4423 4376 497 4332 

 1M 9375 0 5807 0 0 4488 4888 976 4782 

 2M 10520 0 7734 0 0 4622 5902 1940 5682 

 4M 10204 0 20198 0 0 1280 8921 10534 9095 

SOR 512 9164 568 2858 56 0 714 10191 541 1720 

 768 21828 579 3854 38 9 1596 22172 1140 1880 

 1024 39396 557 5487 54 12 2732 38992 1982 2280 

 1536 90212 548 9076 62 11 6092 87032 4384 2840 

 2048 161533 531 13627 55 10 10796 154212 7748 3381 

 
Although more page faults are generated under JUMP than JIAJIA in general, as we 

shall see later, most of the page faults are PF1 faults. Hence they are in fact generated for 
DSM book-keeping purposes rather than real page misses, and hence they need less time 
to get served. 
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To explain the extra page faults introduced by the migrating-home protocol, we look 
at the example in Figures 15 and 16. Suppose P0 is the original home of page X. Under 
the migrating-home protocol used in JUMP, after page X is migrated to some other 
processors for more than once, P0 wants to read the same page as well. It then generates 
another page fault, and the home is migrated back. This scenario is shown in Figure 15. 
However, under the home-based protocol with the same access pattern, the home stays 
unchanged in P0 throughout the program execution and P0 can read without generating 
the extra page fault, as shown in Figure 16. When more processors are involved, the 
chance for the original home processor to access the page again is in general smaller due 
to two possible reasons. First, the page can be accessed in turn by more processors, 
making the same processor to access the same page less frequently, as in the case of MM. 
Second, with the increase of processors, there is a higher chance for the page to be 
initially allocated to a processor which does not access the page. This is true in both 
JUMP and JIAJIA, where the home allocation of a page takes an arbitrary round-robin 
fashion. If the home processor of a page does not access the page, the saving of a page 
fault in favor of the home-based protocol cannot happen. The RX program experiences 
this type of access. In either situation, the percentage of extra page faults invoked 
decreases when more processors are used. However, the actual number of extra page 
faults is still on the increase in RX. This explains why JUMP executes RX with a slightly 
poorer performance than JIAJIA in the 8 and 16-processor cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Demonstrating the extra page fault generated by the migrating-home protocol. Under 
the migrating-home protocol, P0 causes a remote page fault when it reads x0.  
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Figure 16. Demonstrating the extra page fault generated by the migrating-home protocol. For the 
home-based protocol, the remote PF3 page fault does not occur since it already contains the most 
up-to-date copy of the page X. 
 

When we study the page fault breakdown statistics in Table 3, it is found that the 
migrating-home protocol in JUMP is able to generate less PF2 faults by converting them 
into PF1 ones. This conclusion is derived from the data, as for most applications, the sum 
of the PF1 and PF2 faults generated by JIAJIA in an application is equal or very close to 
the number of PF1 faults generated by JUMP for the same application. As a PF2 fault 
causes a diff later in the execution while a PF1 fault does not, the migrating-home 
protocol is able to perform more efficiently. Furthermore, the number of PF2 page faults 
accounts for a considerable proportion of the total number of page faults occurred in 
JIAJIA. For example, when 16 processors are used, 26-88% of all the page faults 
generated in JIAJIA are PF2 faults. By converting them into a less time-costly form, 
JUMP reduces the need to send lengthy diffs through the network and hence improves the 
overall performance of the applications significantly. 

Another observation is that although both JUMP and JIAJIA generate remote PF3 
faults during application execution, the page faults bear different natures. The PF3 faults 
introduced by JIAJIA are either PF3B or PF3C faults. The PF3B fault requires a diff to 
be made and sent to the remote home processor, and can become the potential 
performance bottleneck of the DSM, particularly when the diff is lengthy. However, for 
the case of JUMP, most of the remote PF3 faults made are mainly PF3A ones. For each 
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of these page faults, the home of the requested page has been migrated to the faulting 
processor. This implies that no diffs will be generated, and less time can be spent for 
serving the page faults, thus improving DSM application performance. 

In summary, although the migrating-home protocol in JUMP may produce more 
page faults than the home-based protocol used by JIAJIA during program execution, most 
of the page faults need shorter time to be served. Fewer diffs are generated as well. The 
time saved in serving the page faults compensates the extra page faults generated. Hence 
the migrating-home protocol is able to improve the overall efficiency of the DSM system. 
 

7. RELATED WORK 
 

TreadMarks [4] makes use of the homeless protocol discussed in Section 2 to 
implement the lazy release consistency model. The popularity of the system has triggered 
various studies on its design and implementation. Coherence protocol has become one of 
the major fields of research in DSM.  

Iftode [13] has studied the homeless protocol in TreadMarks. He criticized that a 
page requester may have to gather diffs from different processors upon a page fault can 
be a potential performance bottleneck. Hence he proposed a new cache coherence 
protocol known as the Automatic Update Release Consistency (AURC) for implementing 
lazy release consistency on the SHRIMP multicomputer [14] by making use of the 
automatic update hardware mechanism provided by the machine. AURC can gain a better 
performance than the homeless protocol. In AURC, a home processor is selected to store 
the master copy of every page. The automatic update mappings provided by SHRIMP are 
set such that writes to the other copies of the page are automatically propagated to the 
home processor immediately. The home copy of the page is hence always kept up-to-
date, while the other copies will be updated by fetching the home copy on demand. This 
scheme enhances the performance in two ways: First, the update is done by hardware and 
does not cause any software overhead. Second, communication is needed between the 
page requester and the home processor of the page only. 

Although AURC is dedicated to the SHRIMP multicomputer, which possesses a 
specialized automatic update hardware, the idea of a home for each shared memory page 
inspires later research efforts. The most remarkable one is the home-based lazy release 
protocol (HLRC) proposed by Zhou and Iftode [11], which is a protocol implementing 
lazy release consistency using the home-based approach, with no specialized hardware 
support needed. We have discussed the underlying concept adopted by HLRC when the 
home-based protocol is introduced in Section 2.2. Zhou and Iftode also showed in their 
paper that the home-based protocol is more efficient than the homeless approach. 

The idea of HLRC was also adopted by the first few versions of JIAJIA [10] (before 
V2.1). However, instead of implementing the lazy release consistency model, JIAJIA 
used the home-based approach to realize the scope consistency model. This results in a 
more efficient implementation, since scope consistency produces less data propagation 
than lazy release consistency at lock acquire or barrier synchronization [8]. 

Later versions of JIAJIA also adopt the concept of home migration of shared 
memory pages, in order to achieve better adaptation to the memory access patterns of 
DSM applications. One of them is the home migration protocol implemented by JIAJIA 
V2.1 [15]. This protocol shares the same objective with the migrating-home protocol 



Migrating-Home Protocol for Software Distributed Shared Memory 
27 

 

proposed in this research, but its implementation is rather different. Instead of migrating 
the home of a page eagerly in serving a page fault, JIAJIA V2.1 migrates the home of a 
page if and only if that page has been written by only one processor between two barriers. 
The home is migrated to that only writer when the second barrier synchronization takes 
place. This method attempts to embed the migration notices within the barrier message, 
so that no extra messages are incurred. However, the main drawback is that this stricter 
rule for home migration does not apply when two or more processors write to the same 
page within two barriers. It does not work on applications that use locks either. 

We also tested the performance of JIAJIA V2.1 and compared it with that of JUMP, 
using the same testing environment mentioned in Section 5. The results are summarized 
in [16], and it shows that JUMP outperforms JIAJIA V2.1 in all applications except RX, 
in which JUMP loses by 2.0-22.9%. Thus the migrating-home protocol in JUMP is more 
efficient than the home migration protocol in JIAJIA V2.1 in general. 

 

8. CONCLUSIONS 
 
This paper has proposed the migrating-home protocol, in which the home of a page 

in the shared memory can be migrated to another processor when the processor accesses 
the page. It reduces the amount of data communication among machines needed to 
maintain memory consistency. We have demonstrated that the protocol as has been 
incorporated in the JUMP DSM system is practical. Performance testing and analysis 
show that the migrating-home protocol adapts better to the memory access patterns of 
most DSM applications than the traditional home-based protocol. This leads to an 
improvement in the performance of JUMP in five out of six applications tested. Further 
analysis shows that the migrating-home protocol is able to convert some of the remote 
page faults to local ones, hence reducing the time in serving page faults. Moreover, as the 
home of each page can be migrated to a processor that accesses the page, many of the 
page updates need not be sent to the home processor, hence reducing data traffic. In the 
best case as seen in the test, JUMP can save more than 97% of the total data traffic 
through the network during program execution. The performance obtained has motivated 
us to port the JUMP DSM system as a support layer for the Global Object Space (GOS) 
in the JESSICA project [17]. 
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