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ABSTRACT 
In recent years, we have observed an increasing prevalence of small 
devices equipped with wireless network connection. Computing is no 
longer a discrete activity bound to the desktop. Current software targeted 
for these devices however is limited by the devices' computing power and 
small memory, which in turn restricts the functionality and complexity of 
the applications that the device can provide. As a result, the current 
software system is not flexible and adaptive enough to satisfy the high 
demand due to increased user population and sophistication in pervasive 
environments. To attack the problem, we propose a component-based 
software architecture that supports dynamic mobile code binding and 
loading. An application is made up of several small and mobile code 
components – called facets. Whenever a specific function is needed 
during the execution of an application, a facet that implements that 
function is selected and brought in from the network, executed and then 
discarded. As a result, small devices are able to run applications of any 
sophistication. Moreover, the selection of facets depends on the 
computing resources in the device, network conditions, and various 
environmental contexts. This makes our system more flexible and 
adaptive, and capable to enhance user mobility in a pervasive computing 
environment. 
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INTRODUCTION 
Computing has been an ever-changing paradigm since the beginning of 
its creation. With the millennium, there is an advent of a new computing 
environment. Computing is no longer limited to a “computer” per se. 
You see more and more different types of devices, such as personal 
digital assistants (PDAs) and mobile phones, taking advantage of 
wireless networks to connect to the Internet to provide services to the 
user.  

A wealth of effort is going into the development of intelligent 
appliances and information appliances. More people are using mobile 
devices to access information or perhaps even just to communicate with 
each other. There is, no doubt, a trend towards more and more networked 
small devices with wireless access present in living and working spaces. 
The future, thus, will see great emphasis on pervasive computing (Neff,  
2001 ; Pervasive Computing, 1999).  

Pervasive computing can be summarized by 3 A’s – having access 
to computing and information Anywhere, Anytime and from Any device. 
The pervasive computing environment can be characterized by: 

• Heterogeneity:  Computing will be carried out on a wide 
spectrum of client devices, each with different configurations 
and functionalities. 

• Prevalence of “small” devices:  Many devices will be small, not 
only in size but also in computing power, memory size, etc. 

• Limited network capabilities:  Most of the devices would have 
some form of connection. However, even with the new 
networking standards such as GPRS, Bluetooth, 802.11x, etc., 
the bandwidth is still relatively limited compared to wired 
network technologies. Besides, the connections are usually 
unstable. 

• High mobility:  Users can carry devices from one place to 
another without stopping the services. 

• User-oriented:  Services would be tailored for the user rather 
than a specific device, or specific location.  

• Highly dynamic environment:  An environment in which users 
and devices keep moving in and out of a volatile network. 

  The whole environment can be seen as a huge ad-hoc distributed 
system, with a multitude of small devices moving from one place to 
another and cooperating with each other. With this new environment, 
new approaches have to be used to build applications. Current 
approaches to building distributed applications have been found to be 
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flawed in a pervasive environment (Grimm et al., 2001). The pervasive 
computing environment poses new requirements on the infrastructure. 
These requirements are: 

• Adaptation to diversity:  The infrastructure should provide the 
ability for applications to adapt their functionality according to 
the device requirements, networks, etc.  

• Increasing interaction with peers:  Many of these devices will 
form ad-hoc networks among themselves in order to exchange 
information and to co-ordinate in order to provide services to 
the user.  

• Flexible computation model:  In a pervasive computing 
environment, there are various ways of accessing different 
types of data according to different users' needs. A 
combination of code and data mobility should thus be enabled 
to construct a flexible computation model. 

Our project aims to build a user-oriented infrastructure designed 
specially with the needs of the future in mind. Our goals include:  

• Client-dependent adaptability:  Such a changing environment 
necessitates applications to be dynamic – to dynamically 
change according to user’s device configuration. 

• User and device mobility:  Users should be able to continue 
their work independent of their location or the device they are 
using.  

• Peer-to-peer co-operative computing:  With increased 
interaction between peer users, direct communication links 
within user peer groups can be established to support 
computations without any central control. 

 
To achieve the above goals, a combination of software development 

techniques and infrastructural entities have to be used. The traditional 
software architecture for application development has to be changed. 
Instead of being huge monolithic chunks, software should be made up of 
smaller components. In addition, the network should have some 
intelligence to enable adaptability and provide for user-oriented services. 
Also, mobile code systems have to be incorporated in the software 
architecture, which utilize a combination of data and code mobility in 
order to achieve a flexible computation model.  
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SYSTEM OVERVIEW 
Our system (http://www.csis.hku.hk/~clwang/projects/sparkle.html) 
utilizes a combination of software techniques and infrastructural entities 
to achieve the above goals. An overview of the proposed infrastructure is 
shown in Figure 1. 

 

 
 

Figure 1: Overview of the overall system 
 
Traditionally, applications are built as monolithic blocks. The 

problem is that they become too big to fit into small devices which have 
limited resources. Thus, a device’s functionality is restricted by its 
configuration. Furthermore, such an approach does not allow for 
adaptability. Developers have to write programs tailored for each of their 
targeted client devices.  

Some existing solutions (http://www.sun.com/software/sunone/; 
http://www.microsoft.com/net/) have adopted the web-services approach. 
Software is hosted on a server, and client devices access these services 
through the Internet. This requires transfer of data to the server to carry 
out computing. It falls short in cases in which the data should not be 
moved or is too large to be transferred over a slow network. This model 
requires a somewhat stable Internet connection which may not be always 
possible in a dynamic environment. Also, this model does not allow 
direct peer-to-peer communications.  

Our approach is to use a dynamic component composition. 
Applications are built from small components. These components are 
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downloaded when needed from the network at run-time and then cached 
for future use or thrown away after use. Thus, applications are 
dynamically composed at run-time from components. The advantage is 
that since every component is small, and can be thrown away, 
functionality in a device is not restricted by its limitations in 
configuration. Also, since the components are brought in at run-time, it 
allows applications to dynamically adapt to the client device. If there are 
two components of the same functionality, the component which is more 
suitable for the client device is brought in. Moreover, since functionality 
is brought in at run-time, it is not restricted to a particular device. If the 
user decides to move from one device to another, the same functionalities 
can be brought into the new device. 

Components in our system are called facets1. Facets are hosted on 
facet servers. Clients request for facets from proxy servers. Proxy servers 
will return a suitable facet to the client, taking into account the resource 
requirements of the device and user preferences. There are execution 
servers around to provide a “computational grid” for devices to delegate 
execution of facets to. The client devices interact with each other in 
various ways. A client may get some data from a peer, or it may ask a 
peer to execute a facet for it. A client may also decide to move to another 
device, transferring its execution state and its data. 

 
Facets 
Facets are the units of composition with two essential features: (1) each 
facet carries out a single functionality and (2) a facet has no persistent 
state.  

Functionality can be seen as a contract with clearly specified 
inputs, outputs, pre-conditions and post-conditions. Facets can be 
seen as components which implement these functionalities. They take 
in inputs and give the desired outputs, according to the terms of the 
contract.  

Having a single functionality makes the components smaller, and 
also simplifies run-time composition. Since a facet has no persistent 
state, there are no dependencies between two calls to a facet. This 
makes the component throwable after use. Whatever is not needed can 
be thrown away, freeing up resources and memory for facets which 
                                                           

1 The components were named “facets” because they are similar to facets of a 
diamond.  Many small facets put together make up a dazzling diamond.  In the same way, 
even though each facet may be small, when put together, they can create a very powerful 
application. 
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are currently running and to allow for other facets to be brought in. In 
addtion, clients are free to use other facets with the same functionality 
on the next call. 

Facets may call upon the services of other facets to fulfill their 
contracts. Facet dependencies are the functionalities that a particular 
facet depends on. Two facets may have completely different 
implementations and yet achieve the same functionality. As long as 
they stick to the same contract, the facets are called compatible. 

At runtime, a client will send a facet request which contains a 
facet specification to the network which includes the required 
functionality, runtime information and other requirements. The 
network will return a facet which matches that specification to the 
client. It is possible that each time, a different facet is returned for the 
same specification. Which facet is actually called can only be 
determined at run-time. The pictorial representation of facets actually 
executed at run-time is called the facet calling graph.  

Active Facets are facets which are under execution at a given 
time, i.e. they are under use. Once a facet finishes its execution, it 
becomes inactive. Facets that are inactive can be discarded. 

 
 
Figure 2: (a), (b) Dependency graphs of facet A and X’. (c), (d) Possible calling 

graphs for facet A 
 
Facets are made up of two parts: 

1. Shadow:  A description of properties of the component including 
vendor, version, the functionality it fulfills, its dependencies and 
its resource requirements. It is used by the network infrastructure 
to locate the appropriate facet for the requesting device. 

2. Code Segment:  This is the body of the executable code, which 
implements the functionality. It follows the contract of the 
functionality. 
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Containers 
Facets contain code segments and have a programming interface with which 
they communicate with each other. However, they cannot directly interact 
with the user. Containers act as bridge between the user and facets. A 
container contains routines for the user interface and a list of facet 
specifications. When a user carries out a certain action, it will give the 
corresponding specification to the client system to retrieve the first facet, 
which is usually called the “root facet”.  

Since facets have no persistent state, some state data is stored in the 
container, for example, the execution status of the facet and some shared 
data. They must be moved if execution is migrated to another device.  

 
CLIENT SYSTEM 
The client system plays a significant role in the whole architecture. Since it 
will be installed on the various clients, it has to be small enough to fit into 
devices with limited resources. It has to be able to support state capturing 
and migration mechanisms for supporting various types of mobility. Above 
all, it has to provide a dynamic execution environment to facets to come in, 
execute, and then be discarded.  

 
Structure of the Client System 
Since there are a variety of small devices with different OSes and execution 
supports, and the facets have to be executable on these various devices, the 
client system is developed on a virtual machine. This would guarantee 
portability of the facets among the heterogeneous devices.  

A virtual machine is installed on top of the device operating system, 
over which the client system is implemented. The client system will accept 
facet specifications. It will then contact the network to request for the facets. 
Once it receives a facet, either from a server or a peer, it will load the facet 
and make it ready for use and return the ready-to-use facet to the caller. 
Once the facet is no longer in use, it is responsible for throwing away the 
facet.   

The client system also handles all the background housekeeping, such 
as locating proxies and peers on the network, keeping track of the resources 
being used, and handling mobility. 

 
Anatomy of the Client System 
The core system consists of several modules, which interact with each other 
to provide the necessary functionality. They are briefly described as follows: 
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• Central Manager:  The central entity which co-ordinates the 
activities of the various modules of the client system. It 
interfaces with the applications, containers and facets. It accepts 
requests for facets from the user-level, and delegates the 
appropriate tasks to the modules and returns a loaded instance of 
the facet. It also overlooks the main housekeeping of the client 
system. 

• Discovery Manager:  In an environment where the client devices 
are mobile, mechanisms are needed to locate nearby entities such 
as peers, proxies, etc. The discovery manager employs protocols 
to find devices in proximity to the client. 

• Network Handler:  The client device may employ different 
protocols and mechanisms to communicate with different 
entities, such as peers and proxies. The network handler deals 
with all the details of communication. It is responsible for 
making the connection and sending and receiving messages 
among the entities. 

• Facet Loader:  Facets are brought from the network into the 
client system. The facet loader loads and binds the incoming 
facets at runtime making them ready to use for the client 
program. It is also responsible for unloading facets that are not 
currently needed. 

• Facet Cache:  Some of the frequently used facets are cached 
instead being discarded. The facet then can be locally retrieved, 
instead of retrieving it from the network, improving the 
performance of the system. The facets in the cache can also be 
provided for use to peers. If a peer requests a facet and it is 
available in the cache, it can be sent to the peer.  

• Lightweight Mobile Code Subsystem (LMCS):  The LMCS is 
responsible for the mobility supports of the client system. More 
discussion of it is in the next section. 

• Resource Manager:  The Resource Manager ensures that there 
are sufficient resources for running the current application. It 
keeps track of the run-time resource usage of the client. It is also 
responsible for determining whether facets should be unloaded 
or removed from the cache. If it appears that there are not 
sufficient resources to run the next facet, it may contact the 
LMCS to delegate the execution of that facet.  
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INTELLIGENT PROXIES 
In a pervasive computing environment, there could exist a large variety of 
components for different device configurations. It is not possible for 
developers to create components that are suitable for all devices due to the 
large variety of components for different device configurations. Therefore, 
the responsibility to find and return a component suitable for the device 
configuration should not rest on the users. The network itself has to have 
some intelligence in returning a suitable component for the client. However, 
returning a component suitable for the device configuration is still not 
enough in a pervasive computing environment which puts users in the center 
as the focus. The network should be able to tailor-make its response 
according to the particular user needs and preferences. The response should 
also be efficient irrespective of user movements to support the highly mobile 
nature of users. Thus, an intelligent proxy server is required, which will 
accept clients’ requests, and respond to them efficiently according to the 
available run-time information, such as the device memory availability, as 
well as any user needs or preferences, no matter where they move to. 

Traditional web proxies are not suitable for pervasive computing. They 
serve only as plain caching devices with the hope that what is in the cache 
will be used again in the near future and thus improving the access latency. 
They do not have the intelligence to locate a resource which will be most 
suitable for a client, and most of them do not consider the abstraction of a 
user. Recent proxies designed for pervasive computing (e.g. transcoding 
proxies (Bharadvaj et al., 1999 ; Maheshwari et al., 2002), QoS proxies 
(Nahrstedt et al., 2001), have considered the client device’s configuration. 
Some of them have also considered the preferences or needs for individual 
user. However, these proxies exploit the past request pattern of the 
individual user in order to pre-fetch the components for them. Efficient 
mobility support, which is important in pervasive computing, is also 
missing. 

In our infrastructure, we propose a design for intelligent proxy 
servers that can act as matching and caching devices to find suitable 
facets for the clients. They have to achieve the following goals: 

• Adaptability and customization:  By allowing clients to specify 
queries instead of exact locations of resources, it is possible to 
choose a more suitable facet for the client. The proxies have to 
take into account details such as the client device configuration, 
current run-time state and user needs and preferences; and return 
a facet which is best suited for the particular device and user. 
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• Efficiency and mobility support:  When a user is moving around, 
he may move from one proxy’s area to another. The user should 
still be able to continue his work without any major disruption. 
Mobility support is therefore needed to give users a sense of 
“service mobility”. 

 
Figure 3: Overview of the client system 

 
Features of intelligent proxy server 
Below are some of the features of the intelligent proxy server: 

• Dynamic service composition:  Although the dependencies of the 
facets are pre-determined, the actual facets to be used are 
decided upon at run-time by intelligent proxies after receiving 
the request.  

• Facet matching:  Requirements specified in a request are a subset 
of certain facet shadows. In order to return a suitable facet for the 
client, subset matching is needed to match the requirements with 
the facet shadows. However, this kind of matching requires the 



 211

corresponding items to have the same value and is not powerful 
enough for our purpose. Range matching is also needed for some 
items, such as memory required, version number, etc. 

• Facet pre-fetching for mobility support:  In order to support 
mobility, intelligent proxy servers need to cooperate with each 
other so that user information, such as past request pattern, 
preferences, etc., can be moved to a new proxy as soon as the 
client moves into another area. In this way, facets needing to 
resume and continue the execution can be pre-fetched in 
advance. 

• Each proxy server needs to maintain some prediction graphs, 
which are predictions of the calling graphs and built dynamically 
as facets are requested. By assuming that the order of the 
dependencies listed in the facet shadow follows the sequential 
calling order if the code is executed, facets to be pre-fetched are 
determined by a simple traversal of the corresponding prediction 
graph. 

• For pre-fetching, a simple mechanism to look ahead on a certain 
number of facets is used. The proxy servers analyze the 
corresponding prediction graph for facets to be pre-fetched. It 
tries to pre-fetch the next facet that is most likely to be called by 
the facet being requested. The pre-fetched facet is then used for 
further analysis. The dependency graphs of the pre-fetched facets 
are used to supplement the prediction graph. This process 
continues until a certain number of new facets have been pre-
fetched. 

 
Design of intelligent proxy server 

Each intelligent proxy server has four basic managers that work closely 
with each other: the matching manager finds a facet that best matches the 
client’s specified requirements by utilizing the facet shadows; the pre-
fetching manager pre-fetches facets into its local cache; the searching 
manager searches facets from other network entities; and the mobility 
manager is responsible for mobility support. 

Figure 4 shows a typical client/proxy server interaction model, 
describing how a request is handled by an intelligent proxy server. 

Besides normal interaction with the client, the intelligent proxy 
server also interacts with the facet servers periodically for any facet 
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updates. This is done through the updating engine initiated by the 
searching manager. 
 

 
 

Figure 4: Typical interaction model of the proxy server 
 

To implement mobility, client contacts the new proxy server 
when it enters another area. The intelligent proxy server then contacts 
some nearby intelligent proxies to identify the old proxy, and gets the 
corresponding user information, such as the past request pattern and 
the prediction graph, from it to continue pre-fetching the facets. After 
that, the new proxy analyzes the prediction graph to get the active 
facets, and sends a request to the request handler (which in turn 
delegates the responsibilities to other managers) for pre-fetching 
facets that might be used later. 

Another possible mode of mobility is that user moves from one 
device to another. In that case, upon detecting the incoming client, the 
mobility manager would perform the same procedure as described 
above, but facets would be pre-fetched according to the new device’s 
configuration. 
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LIGHTWEIGHT MOBILE CODE SYSTEM 
As mentioned earlier, many applications in the pervasive computing 
environment will be user-focused. Users will access all sorts of information; 
applications will require a lot of user-data to tailor-make their services to 
meet the users’ need. A lot of data will be moving through the infrastructure. 
However, there may be cases in which data cannot be moved, either because 
of security or privacy issues or perhaps it is just too large to move through a 
volatile low-bandwidth network. Since the data cannot move, we may need 
to employ some form of code mobility to carry out the needed computation. 

Many times the devices would need to communicate with each other to 
provide their services. This is especially the case with intelligent appliances. 
They interact with each other directly and may form decentralized self-
organizing networks among themselves. This scenario is not only limited to 
intelligent appliances. Other devices may want to share data without 
intervention from a central server. Thus peer-to-peer cooperative computing 
becomes an essential technology in a pervasive environment.  

Another feature of the pervasive computing environment is user 
mobility – the ability for a user to continue a task as he changes his location 
or device. Traditionally, a client-server approach is used to achieve user 
mobility. A central server is used to store the information about the 
execution status of the task. When the user moves to another device, the 
execution status is recovered from the server. In an environment where there 
is limited connectivity, such an approach may not be feasible. It may be 
desirable for the corresponding code and execution status to be directly 
migrated to the destination node, without going through any central server. 

There is no doubt that a flexible computation model is needed. Data 
and code mobility are believed to be the keys to enable it. We achieve that 
by incorporating the lightweight mobile code system (LMCS) into clients. 
With the LMCS, clients can adopt code mobility techniques to achieve their 
tasks. 

The LMCS is adapted from mobile agent systems. We use lightweight 
mobile agents (LMAs) which are only responsible for migration. During 
migration, facet descriptions are plugged into an LMA and sent to the target. 
On reaching the target, the required facet is fetched and executed. This facet 
may call other facets, which are dynamically downloaded from the network, 
to carry out its function. The advantage of such a design over the traditional 
mobile agent is that an LMA can be very small. While traditional mobile 
agent has to carry the whole code with it when it migrates, an LMA only 
contains some minimal descriptions about its execution status. This 
effectively reduces the bandwidth requirement for agent migration. 
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In addition, such an LMA system is more flexible and dynamic. Other 
than the ability to travel on the LMCSs of different devices, an LMA itself 
has no functionality. It can be made to do different things by plugging 
different facets into it. For traditional mobile agents, this is not possible 
because once an agent has been coded, its “mission” remains the same, and 
their mission has to be determined at the time of agent creation. For LMAs, 
their mission can be plugged in as required at run-time, thus making the 
whole system more flexible. 

As mentioned earlier, only the description of the facet is carried with 
the LMA and migrated to the target. The facet is then dynamically 
downloaded to the target. The proxies in the network ensure that the facet 
that is downloaded is the one that is best suited for the target. In other words, 
the migration automatically adapts to the target device. Such a scenario 
would be impossible with traditional mobile agents. They carry fixed code 
with them, and thus would only be suited for a uniform configuration of 
devices.  

Most importantly, the LMCS and LMAs support peer-to-peer access in 
an elegant way with their inherent code-mobility features. Peers send 
request-response messages to each other. The difference between the 
conventional approach and the LMCS is that the former uses passive 
messages, whereas the latter uses an active entity (i.e., the LMA) for 
transmitting information between two end nodes. The conventional approach 
assumes the presence of some computing entity on the peer nodes analyzing 
and forwarding the incoming requests. On the other hand, like other mobile 
agent approaches, an LMA would actively find out what it needs on the peer 
node. If the peer node does not have what it needs, it would actively hop 
over to the next site according to its own itinerary. No external bodies other 
than the owner of the agent can dictate where the LMA goes to under normal 
conditions. 

There are two important requirements in designing the LMCS. It 
should be small in size so as to satisfy the resource constraints of 
mobile devices. It should also support strong mobility, with which the 
execution status on the computational stack can be migrated to the 
remote site. With strong mobility support, states, data and codes now 
can move freely, thereby giving more flexibility to the computation 
model. 

There are three core components in the design of mobility 
support: the container keeps the specification of the root facet as well 
as various execution states; the LMA migrates the container to the 
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remote site following an itinerary; and the LMCS coordinates all 
migration activities.  

 
Figure 5: A typical interaction model in our mobility system 

 
Figure 5 shows a typical scenario of facet execution and 

migration. When the container starts to run, the UI routine would be 
activated to bring up the corresponding user interface, and the user 
can interact with and execute a facet through that interface (1,2). 
When user issues a facet execution request through the interface, the 
central manager of the client system would fetch and load a copy of 
facet from its local cache or an nearby proxy according to the 
specification in the container (3,4). The facet would then be executed, 
during which some shared data states are saved into the container (5). 
Two possibilities of migration may now occur: either some migration 
routines inside the facets are triggered (proactive migration) (6), or 
the LMCS forces it to happen upon receiving migration request from 
the central manager  (reactive migration) (7). In both cases, some 
migration information (e.g., the migration itinerary or destination) 
would be put into an LMA responsible for the migration (9). At the 
same time, the LMCS would ask the execution platform (e.g., a JVM) 
to pack up and put the relevant information of execution status in the 
container (8). Once the LMCS detects that all the information is 
ready, it would send the LMA, together with the container, to the 
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destination site (10). On arrival at the destination site, similar but 
reverse operations would be carried out to recover the execution. 

 
IMPLEMENTATION 
Client System 
We have built a simple prototype to illustrate the dynamic flow of 
facets. Our implementation is built on TransVirtual’s KaffeVM on 
Compaq iPaq PDAs. We decided to use KaffeVM rather than J2ME 
(Java 2 MicroEdition) because KaffeVM has support for reflection 
and serialization. 

The prototype was built on Compaq iPAQ H3800 with Intel 
StrongARM processor (206MHz), 64 MB SDRAM and 16MB Flash 
RAM. It was installed with CRL/OHH Bootloader v2.16.19, Familiar 
Linux v.0.5, Pocket Linux 1.0 with Kaffe Virtual Machine 1.06 (JIT) 
and pppd version 2.4.0b4. 

The iPAQ was connected via the serial cradle to a Linux PC. A 
PPP connection was established over the serial line with the 
maximum bit rate of 115200bps. A web server has been set up on the 
Linux PC to act as the proxy server with very limited capabilities. 

The Flash RAM is used to store permanent data. Familiar Linux 
and Pocket Linux took up 12MB which left us with 4MB of static 
memory for our system. The client system at present has a static size 
of 56KB. The JVM took 2.9MB of run-time memory, which is 
provided by SDRAM. 

A facet is implemented as a JAR file. The shadow is an XML file 
in the JAR. The code segment is a package of class files with one of 
the classes being the main class of the facet.  

Some preliminary testing has been carried out on the prototype. 
The latency to receive the facet after sending the request is somewhat 
constant, around 6.3 seconds. The time it takes to load a facet depends 
on the class size. For a 100KB facet, the average loading time is 
around 0.8 seconds. For a facet of 500KB, the loading time can go up 
to 1.5 seconds. We believe the performance can be much improved; 
work is underway to determine the bottlenecks.  

To discard a facet, not only the objects have to be thrown away, 
but also the code of the facet loaded into the VM, i.e., the class code. 
The garbage collector usually collects objects which are of no further 
use; special techniques need to be employed for it to collect the class. 
We currently are considering two methods. One way is to use 
different user class loaders for each of the facets loaded in the system. 
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Another method is to use weak references. We are investigating the 
advantages and disadvantages of using both methods. 

 
Intelligent Proxies 
A simple prototype is being implemented as a proof-of-concept. Java 
is used for the implementation. The proxy server receives SOAP 
messages from clients, each containing an XML document outlining 
the facet requirements; and replies with a SOAP response containing 
the required facet. 

The matching manager is being implemented based on XSet 
(http://www.cs.berkeley.edu/~ravenben/xset/), which is an XML 
database and query engine developed by the University of California 
that supports subset matching and range queries. We are modifying it 
to support facets instead of XML documents. For pre-fetching, a 
simple two-facet lookahead pre-fetching mechanism is being 
implemented. Its performance will be analyzed to see if more facets 
need to be pre-fetched.  

 
Lightweight Mobile Code System 
We use Java to implement the mobile code system. There are several 
advanages in making such a choice: it is platform-independent, which 
addresses the problem of running codes on heterogeneous devices; it 
has a built-in code-loading feature and provides codebase supports, 
which readily supports the mobility of code; and it also has the object 
serialization feature, which makes the transfer of data between two 
systems easy and convenient. However, using Java as an 
implementation language has a major drawback: the Java security 
policy forbids the dynamic inspection of the execution stack. In other 
words, strong mobilty of agents cannot be directly supported. Some 
special mechanisms to capture execution states are therefore needed.  

Among several ways of capturing execution state in Java, we 
chose the source code instrumentation method. It adds in some 
migration instructions into the facets’ source code before compilation. 
Compared to other approaches, this approach is much easier and is 
more well-suited to the pervasive computing world: it consumes less 
runtime resources when compared to the bytecode level 
instrumentation approach at class-loading time, and portability of 
code is also retained since the JVM is not modified. 

One possible candidate for the source code instrumentation tool 
is JavaGo (http://web.yl.is.s.u-tokyo.ac.jp/amo), which is 
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implemented by the AMO project group in Tokyo University. Its 
stated code size blow-up factor is about 20%, which is reasonable and 
affordable by some resource-limited devices. However, an additional 
pre-processor has to be added to it to suit our needs. 

 
Applications 
An image processing application was built in order to demonstrate the 
feasibility of building a normal application using the facet model 
(figure 6). The application consists of 15 facets, each providing a 
different functionality, out of which 10 were root facets (the grey 
ovals). The root facets essentially provide the functionality to open, to 
blur, to find edges and to flip images. The other facets provide 
functionalities such as matrix convolvers and converters. Further 
details can be found in a recent paper (Belaramani, et al., 2003). 
Another application we built was the Othello chess game (Kwan, et 
al., 2003). The game featured 95 facets supporting 19 different 
functionalities. There were 5 facets to each functionality, which 
provided the choices needed to demonstrate the functionality 
adaptation ability of the system. 
 

 
Figure 6: Screenshots and Structures of the Image Processing Application 

 
RELATED WORK 
Various projects for supporting component-based pervasive 
computing are discussed below.  

Sun’s Jini (http://www.sun.com/jini/) provides protocols to allow 
services to join a network, discover what services are available in this 
network and dynamically access it through the use of Java RMI stub 
and its lookup service. However, Jini does not address the 
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management of component-based applications and inter-component 
dependence. It only provides static look-up (exact matching) of 
services and does not consider the run-time resource constraints for 
small clients. Also, the large memory requirements imposed by Jini 
makes it not viable for most mobile devices. In addition, Jini 
announces service using UDP multicast by default, which may be 
suitable only in LAN-based application, but may not be applicable for 
large-scale deployment such as the Internet. 

Berkeley Ninja (http://ninja.cs.berkeley.edu/) is a framework for 
dynamically composable wide-area services based on strongly typed 
reusable components. Ninja follows a dataflow-computing model. A 
group of dispersed services are identified and chained to form a path 
based on some resource demands. Client users are then able to obtain 
the required service by flowing data through the path. Ninja does not 
fully address code mobility. Mobile code is used only to instantiate 
the path. Also, all its reusable service components are not migratable. 
On the contrary, our design enables the dynamic loading of codes to 
client devices without moving client data for remote processing, 
unless the client is unable to handle large computations locally.  

University of Washington’s One.World Project (Grimm et al.,  
2001) provides an integrated framework for building pervasive 
applications. One.World allows dynamic decomposition of 
applications into components and it separates the functionalities and 
data. We adopted the same approach on the separation of the 
functionalities and data. However, our facet is a Java-based 
component as we believe Java programming language is most 
platform-independent and is more portable and less complex in terms 
of engineering effort. Similar to the Ninja project, One.world did not 
address code mobility. A client-server model is adopted for obtaining 
Web services.  

Illinois’s 2K (Kon et al., 2000) is a component-based operating 
system using CORBA as the communication mechanism. 2K supports 
dynamic resource management and automatic configuration in 
distributed environments. Also, 2K uses a prerequisite parser and 
resolver to fetch components and builds the run-time dependency 
graph. As the location of each service component is specified in the 
prerequisite specification, there is no need to do any dynamic 
matching, such as range queries or subset matching queries as in our 
intelligent proxy server.  
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Rochester Institute of Technology’s Anhinga 
(http://www.cs.rit.edu/~anhinga/) is a distributed computing 
infrastructure designed specifically to support many-to-many 
distributed applications running on small mobile wireless devices. It 
addresses the lack of peer-to-peer support in wireless environment. It 
is built based on lightweight versions of Java and Jini. It uses a 
special M2MP protocol, which is a network protocol based on 
broadcast messages and uses Bluetooth for peer-to-peer 
communication. Such a broadcast approach may be difficult to scale 
up to fit the Internet and may even be wasteful in communication 
bandwidth. Instead, our design addresses the issue by sending out 
active LMAs following a pre-specified itinerary, thereby avoiding 
message broadcasting. 
 
CONCLUSION 
There is a trend towards a pervasive computing environment for 
everyone. Such an environment poses new requirements to software 
architechture design. The proposed infrastructure utilizes a 
combination of three methods to fulfill these requirements: firstly, a 
component-based development model; the components, known as 
facets in our system, are dynamically composed at run-time; secondly, 
intelligent network proxies that provide for efficiency, adaptability 
and mobility support; and lastly, lightweight mobile code systems to 
be installed in client devices to operate a flexible computation model. 
With this infrastructure, it is possible to perform computing and 
information access anytime, anywhere, from any device, and possibly 
for any application. 
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