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Abstract—To echieve single system image (SS) for cluster
computing is a challenging task since SSI isa form of complete
transparency that requires the integration and unification of
all types of resources in a cluster. In this paper, we propose a
new Java computing platform with the @ncept of Single
Thread Space, which is a true parallel computing environment
for performing a multi-threaded Java goplication on a cluster
environment. Threads running within this gace would share
all the resources that each thread has created or allocated and
they view the underlying cluster as a single computing system.
We realize the single thread space based on a middleware
developed at a virtual machine level, which allows application
program to create as many threads as needed. The middleware
can automatically distribute the executing threads across the
cluster to exploit the maximal parallelism and to gptimize the
overall resource utilization. The implementation is compatible
with the standard JVM and does not need any low-level or
platform-spedfic supports. Thus it is portable acrossdifferent
hardware platforms.

Index terms—Cluster computing, single system image,
dynamic load balancing, thread migration, Java Virtual
Machine, JESSICA.

. INTRODUCTION

A cluster of computers is afederation of computers linked
by an interconredion network where the computers run
integration software to support collaborative mmputations
[2,4,9,13]. The integration software provides an abstradion
layer that hides the physicad bourdaries between madines
and makes the duster appea as a single @mmputer to
applicaions - asingle system image (S9).

SSI represents a complete form of transparency which is
to encgpsulate system resources distributed aaoss the
cluster in alayer of abstraction, such that components above
the layer will see the encapsulated resources as a single,
unified entity. By integrating distributed cluster resources
and providing a unified naming scheme, the single system
illuson can be adieved for different types of cluster
applicaions.

For example, there ae various job dspatch systems for
cluster. Using a global job scheduler, a user job can be
submitted from any node to request any number of host
nodes to execute it. Concurrent job scheduling is possible
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either in batch, interadive, or paralel modes. The SSI can
also be adieved in the accssof 1/O devices in the duster
[15]. A uniform device naming can be alopted so that user
applications at different machinesis able to view and access
al the devices conneded to the duster as they accessthe
locd devices, even the devices are physicdly attached to a
node different from the one on which the application is
running. Severa distributed operating systems support the
concept of a global process space where dl processes
creaed in the duster share auniform processidentificaion
scheme. A process on any node can be aeaed on (eg.,
through a Unix fork) or communicate with any other
processs (e.g., through signals, pipes, €tc.) on any remote
nodes.

In this paper, we propose etablishing a single-system-
image illusion over a duster as a means to bridge duster
computing and Java's multi-threaded programming model.
The SSl illusion is redized through the provision of asingle
thread space, which is a global exeaution environment for
running threads that extends aaoss the ettire duster. It
supports parallel exeaution of multi-threaded applications.
A multi-threaded Java gplicaion on any node can crede
threads to run at difference nodes. All the threads dare a
uniform thread identificaion scheme. In addition, threads
runnng within this gace oud fredy move between
machines during its exeaution. They see the underlying
cluster as a singe @mputing system with multiple
procesrs, a single memory space for objed alocaions,
and locdion-transparent system resources.

The singe thread space illusion is established at the
middleware level in the form of a distributed Java Virtual
Madine (JVM). This approach does not require awy
modification to the underlying operating system or to the
Java gplicaions running on top. It guarantees portability
over various popular operating systems and compatibility
with existing Java applications.

The mncept of singe thread space was redized in our
JESSICA system. JESSICA stands for “Java-Enabled
Single-System-Image  Computing Architecure". It is a
middleware that hides the distributed nature of a cluster and
provides multi-threaded Java gplicaions with the illusion
of asinge multi-processor computer. With the single thread
spacesupport, applicaion programmers can crede & many
threads as needed as in asingle exeaution environment, and
rely on JESSICA to automaticdly redistribute them across
the cluster to exploit the maximal paralelism and to
optimize the overall resource utilization. JESSCA supports
preamptive thread migration which alows a thread to fredy
move between madiines during its exeaution, and dobal



objea sharing through the help of a distributed shared-
memory subsystem. JESSCA implements location-
transparency through a message-redirection mechanism.
The result is aparallel exeaution environment where threads
are aitomaticdly redistributed aaoss the duster for
adhieving the maximal possble paralelism. A JESSICA
prototype that runs on a Linux cluster has been implemented
and considerable speedups have been obtained for all the
experimental appli cations tested.

The rest of the paper is organized as follows. Sedion 2
presents the mncept of single thread space. Sedion 3
discusses the design and implementation of the single thread
space Sedion 4 evauates the performance of our proto-
type. Sedion 5 surveys other works related to our work. We
conclude by summarizing our experiencesin Sedion 6.

II.  SINGLE THREAD SPACE

In recent yeas, the multi-threaded programming model
has grown increasingly popular because of the availability
of SMPs and the wide sprealing of the Web-based
applicaions such as the Web browsers and Web servers[6].
However, due to the limited scdability of SMP architecure,
it hinders the development of a large-scde gplication that
neal scdable amputing power. An ided solution is to use
the duster as an new exeadtion environment for the multi-
threaded application, where the application program can
crege @& many threads as possble and these threads are
able to map to different processors in the duster for true
parallel exeaution. In addition, threads could fredy move
between madhines during its exeaution to achieve fault
tolerance or load balancing.

We define the single thread space as a duster computing
environment for performing multi-threaded application that
can extend its exeaution aadossthe entire duster. Threals
runring within this gpacewould share dl the resources that
eat thread hes creded or alocaed and they see the
underlying cluster as a single computing system with
multiple processors — single system image. Figure 1 shows
the @ncept of singe thread space that provides a single
system illusion amongall the threads creaed by a process.
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Fig. 1. Single thread spaceprovides an SS illusion over a duster.

In order to move athread to a different processor, it is
necessary for the transferred thread to corredly access al
related resources and let al the threads dare a uniform
thread identification scheme. Data locd to the threa (i.e,,
stadk and thread locd heg) may be mpied to the
destination. However, since the aldreses on the target
machine may be different from the original addresses,
internal data references may no longer be valid. A system
with thread migration requires integration solution that
allows al threads to share dl the resources (such as files,
communicaion channels, data objeds, etc.) as if they are
not migrated. In addition, a thread may access data shared
by multiple threads sich as g/nchronization objeds. After
the migration, it is necessary for all the threads to locate the
objed and provide synchronizgion medhanism (e.g.,
signals, semaphores) to allow corred access

A. Our Design

In our design, the singe thread space illusion is
established at the user level in the form of a middleware that
enables the exeaution of multiple Java threads among
cluster nodes. A single global thread space is constructed
through the services of three important subsystems (1) the
Delta Execution subsystem for supporting preemptive
thread migration, (2) the Master-Jave Redirection
subsystem for supporting location-transparent operations,
and (3) a distributed shared-memory (DSM) subsystem that
credes a global objea spacefor supparting remote objed
access Figure 2 shows an overview of the design of the
single thread space achitedure.

We dassfy a cluster node s either a console or a worker
node. The mnsole node of an applicaion is the node in
which the @plication is first instantiated, i.e, the
application's home. Worker nodes are the other nodes that
house one or more migrated threads creaed by the
application.
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Fig. 2. Single threal spaceis supported by three subsystems that
are provided by a set of cooperative VMs.



These worker nodes play a subordinate role to the mnsole
node by serving requests direded from the console. The
core design d single thread spaceis based on a master-
slave approach for thread migration, where the @operation
between the master thread running on the console node and
the dlave thread running on the worker node together
produce the required transparency. With this master-save
design we ae &le to implement transparent network
communicaion and file operations, distributed thread
synchronization and remote exception.

The single thread space extends the parallelism of aJVM
that spans over a duster without changing the semantics of
runtime interadions between objeds, therefore making all
existing multi-threaded Java programs able to run on the
cluster. Three main subsystems to suppat singe thread
space ae discussd in the following sedions.

B. Thread Migration: Delta Execution

Thread migration is usually established as a medanism
for achieving dynamic load sharing. However, such a fine-
grain migration (as compared with process migration) has
not been uwsed due to the high thread and messaging
overheads[7].

Delta execution [5] is a preamptive thread migration
mechanism for supparting transparent thread-to-processor
mapping within the single thread space Delta exeaution
aims at providing a high-level and portable implementation
for Java thread migration that completely hides al the low-
level or system-dependent details. Because the whole
medchanism is implemented within the virtual macdine level,
migration is therefore transparent to Java gplicaions and
no migration-spedfic code needs to be alded to the
applicaions.

In general, the exeaution context of a Javathread consists
of both madhine-independent and machine-dependent sub-
contexts. Machine-independent sub-context refers to the
migratable state information that can be expressed in terms
of the high-level exeaution state of a VM, such as data
stored in the virtual madine's registers. Machine-dependent
sub-context is the nonmigratable state information that is
pat of the low-level exeation state of a JIVM
implementation, such as the hardware return address gored
in the exeaution stadk of an internal function invoked that
implementsthei add bytemde instruction. Asillustrated in
figure 3, a thread's execution context consists of sets of
madchine-independent sub-contexts, also known as delta sets,
which interleave with the sets of madine-dependent sub-
contexts. In our design, migration ganularity is per-
bytecde-instruction where athread can be preempted and
migrated once eadttion of the aurrent bytecode is
completed. The delta exeaution mechanism identifies and
separates the machine-dependent sub-contexts from the
machine-independent sub-contexts in the exeaution context
of amigrating thread.
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In delta exeaution, when a thread runrning on the cmnsole
node migrates, it does not adually padk up itself and move
to the destination worker node. Instea, it is split into two
cooperating entities, with one runring a the origina
console node, caled the master; and the other running at the
destination nade, called the dave. The dave threa is in
fad creded at the destination node anew and acts as the
migrated image to continue the exeaution of the original
thread. The master thread remaining at the console node is
actually the original migrating thread, which is now reduced
and be responsible to perform any locaion dependent
operations like 1/0 on behalf of the dave thread, plus other
message forwarding between the dave and the rest of the
system. The master and dave pair is responsible to cary
out the interadions between the mnsole and the worker
nodes in order to maintain migration transparency. Active
exeaution of the migrated threal is e as a sequence of
exeautions, using the machine-dependent and the machine-
independent sub-contexts, which switch badk and forth
between the mnsole and the worker node.

As illustrated in figure 3, since the migrated thread only
incrementally advances its exeaution by a delta amount
every time when control is switched to it, we therefore cdl
this mecdhanism delta exeaution. Because of the master-slave
design, the mechanism provides an oppatunity for the
implementation to isolate machine-dependent contexts from
madine-independent contexts and process them in a
manageale way. With the suppat of delta exeadtion in a
single thread space it is posshble to dynamicdly relocate the
threads in order to adchieve dynamic load balancing. After
migrating a thread from the @nsole node to a worker node,
it is possible for the migrated thread to move to yet another
worker node or to retred bad to the cnsole node.

When a migrated thread runring in a worker node is
required to further migrate, it will first retrea bad to the
console. Another worker node will be seleded to migrate
the thread to. The reason for this approadh, as opposed to
one that migrates the thread to the new worker node
diredly, is becaise if a migrated thread is alowed to
diredly migrate to another worker node without first
retreaing bad to the mnsole, residue dependency required



for maintaining migration transparency will be left there
with the first worker. Messages forwarded from the mnsole
will have to go throughthis first worker node before they
can read the new home of the migrated thread. This would
result in ore more level of rediredion. If further migrations
are made, there will be more levels of rediredion through
residue dependencies left behind in many worker nodes the
thread has ever visted. Such a dan of residue
dependencies would be difficult to manage. We therefore
opted for the goproach of first migrating the thread bad to
the onsole before performing another migration, and
because of that, residue dependency in the first worker node
will be removed together with the leaving thread.

C. Global Object Space

After thread migration, the migrated thread should be
accessbhle by the same name ad mechanisms as if
migration never occurred. The same gplies to all resources
used by the Java threals creaed in a program, such as the
shared objeds. The global object space (GOS) provides
location-independent objed access. It is yet an SSI layer
creded for al distributed threads to view a single and
unified shared oljed spaceto ease the implementation of
the single thread space

In ead nade of the duster there is a distributed object
manager (DOM) responsible for managing the locd
memory resources as well as cooperating with DOMs
runring on other nodes to creae aglobally accessble objed
space This is achieved by implementing the DOMs on top
of a distributed shared-memory (DSM) subsystem. With the
help of the DSM subsystem, discrete memory regions
belonging to various cluster nodes are unified to form a
single and contiguous memory space for global objed
sharing. As a result, objeds remain to be accesble by a
thread even after the thread has migrated to ancther node in
the duster. The locaion where an objed resides is
transparent to athrea.

The global objed spaceis for the containment of al Java
objeds only. Other internal state of aJVM runtime is gored
locdly in the corresponding UNIX process stadk and local-
heg memory. Contents of objeds that are locaed in a
remote node ae cated by the DSM subsystem, and GOS
relies on the cade wherent protocol provided by the DSM
subsystem to maintain the consistency of the cached data.

The global objed space is established by alocéing a
large dunk of shared memory from the DSM. GOS
employs a decentrali zed approadc for memory management,
where the DOM running on ead node is responsible for
managing its own share of the global shared memory.
Objea allocation requests made by the threadsin anode ae
aways satisfied locdly — the DOM will alocae the
required space from its dare, instead of forwarding the
request bad to console. Because it is possible to have two
or more nodes updating the same objed at the same time,
the mutual exclusion control primitives provided by the
DSM subsystem are used to ensure objed consistency.

Distributed garbage wllection is built on top of the DSM
layer to locae dl the unused oljeds and to reclaim their
space In current GOS, a distributed mark-and-sweep
garbage mlledion mechanismisinstalled [3].

D. Transparent Redirection

In this section, we discuss various rediredion
mechanisms developed in the single thread spaceto support
post-migration  services, including the cooperative
semaphore, remote thread signaling, remote exception, and
location-transparent 1/0.

The digtinctive feaure of multi-threaded Java computing
is that threads can share resources and execute concurrently
in order to multiplex computations, or even
communications. In such a multi-threaded runtime
environment, a mechanism for providing mutual exclusion
is necessary for ensuring coordinated accessto the shared
resources. The Java programming language uses
semaphores at the virtual machine level to implement
mutual exclusion control. A semaphore is asociated with
every shared oljed so that application programs can avoid
any race condition by waiting on the assciated semaphore
before updating a shared oljed. In the single thread space
to acdiieve dficient thread synchronization and data
integrity, a distributed semaphore and remote thread
signaling should be supported. Besides, we need to support
location-transparent 1/0 so that al opened files and
network communication channels following a migration will
remain functional.

We aopted a master-dave goproach to achieve the above
functions. After a thread has been migrated, the master
thread remaining at the @nsole represents the original
thread. All the thread-level synchronization interadions,
such as wait()/notify() and mutex | ock()/unl ock()
between the dave and ather threads will go through the
master. Rediredions of servicerequests and responses make
the master appea to ather threals as the only thread they
are interading with. On the dave side, all 1/0 and thread
synchronizaion operations are redireded back to the
console. With this design, we ae able to creae aglobal
thread spacethat has the same semantics and maintains the
same relationships between objeds in the exeaution
environment as the ase without thread migration.
Consequently, such an exeaution environment as observed
by arunning thread is the same & that of a standard JVM.

A decatraized approach is used to implement
distributed semaphore. In each cluster node, a Thread
Manager (TM) is creaed and it is responsible for thread
credion, scheduling, and termination. TMs gupport
distributed synchronization of migrated threads by having
the runtime system to forward semaphore operations back to
the mnsole TM. All the semaphore operations are
performed in the cnsole node by the master thread, and so
the same semaphore semantics is enforced as if there is no
migration. We cadled this cooperative semaphore.



Java threals rely on simple wait-notify signals for inter-
thread communicdions. By a design similar to that for
cooperative semaphores, we have designed a remote thread
signaling mechanism where the master is responsible for
transparently forwarding any wait and notify signals
between its dave and the other threads running in the
console node. With the woperative semaphore and the
remote signaling mecdhanisms installed, we ae @le to
implement the distributed thread synchronization
medchanism in a decentrali zed manner.

The Java programming language suppats a language
exception construct where amethod can include ablock of
code, cdled the catch block, for handling any spedfied
exceptions that may be generated as the method exeautes.
The idea of language exception is that when the aurrent
method exeaution has generated an anticipated error, the
exeaution can be @orted and the context be rewind bad to
a point where the program has pre-defined a spedfic catch
block to ded with the eror. As a result, to implement
language exception, the method invocation sequence of a
thread's exeaution context is anned from the tail towards
the head to locae the neaest cdled method which has
implemented the crresponding cach block to handle the
exception.  When this method is located, the exeaution
context of the aurrent thread is rewind up to this method so
that exeaution can continue from the cach block.

Notice that when a thread is migrated, only the tail-most
delta set is #nt to the worker node for the dave thread to
exeaute. Now if this dave threal generates a remote
exception, it is possble that the worker node is unable to
locate the cach block from the delta set that can handle the
remote exception. Thisis because the method that contains
the cdch block for this remote exception is gill located at
the mnsole node. Hence, instead of generating an uncaught
exception error at the worker node, the system will discard
the dave thread and forward the exception badk to the
master thread at the mnsole, where the searching for the
right cach block to handle the exception will continue.
Once the cach block has been located, the wrresponding
delta set that contains this catch block will be sent to the
worker node and a new slave thread can be instantiated to
continue exeaution of the cdch block to handle the remote
exception.

In our design, locaion-transparent 1/0O support is also
adhieved hy redireding 1/0 operations bad to the console
node and letting the master there to perform the operations
on behalf of the slave. The rediredion code is implemented
within the j ava. i o and the j ava. net classlibraries for file
and socket 1/O rediredion respedively. Their interface
definitions are kept unchanged so that other classes relying
on them do not need to be modified. Implementation details
arediscussd in Sedion Il .D. The objed-oriented nature of
our design hes helped simplify the implementation of 1/O
redirection, since dasshierarchies of both the j ava. i o and
thej ava. net libraries are sufficiently well organized. There
are base dasses locaed towards the top d the hierarchies
that are responsible for performing the raw 1/O operations
through the underlying operating system. All of their child

classes that spedalize in I/O operations for spedfic data
types inherit the functionality diredly from the base dasses.
These spedalized classs therefore can simply invoke the
inherited methods to access the raw 1/O channels. As a
result, when the base dasssin the hierarchies are extended
to suppart the required 1/0 rediredion, the rest of the child
clases can inherit the fedure immediately without any
further modification.

1. SYSTEM ARCHITECTURE AND IMPLEMENTATION

We have redized the single thread spacein the JESSICA
system which was running on a Linux PC cluster. The
experimental platform consists of 8 Linux PCs connected to
a 100Mbps Fast Ethernet switch. Each PC is equipped with
a 300MHz Intel Celeron procesr and 128MB main
memory, and isrunning Linux Kernel 2.2.1.

A. The Building Components

The implementation of the JESSICA system isin the form
of a distributed virtual machine and there will be aJVM
daamon processrunning on ead node of the duster. These
daamon processes exeaute & user-level processes on top o
the UNIX operating system. A JESICA daemon is
compased of the following four components:

» Bytecode Execution Engine (BEE): It is responsible for
binding an adive thread and exeauting its method code.
Parallel exeaution of a multi-threaded application is
redized by having multiple BEEs running on multiple
machines to exeaute multiple threads smultaneously.

 Digtributed Object Manager (DOM): It is responsible
for managing the memory resources in its loca node
and to cooperate with other DOMSs on the other nodes
to creae agloba objed space The physicd locaions
of objeds are transparent to the threads within the
global objed space

e Thread Manager (TM): It is responsible for thread
credion, scheduling, and termination in the local node.
During the murse of migration, it coordinates with
TMs on the other nodes to marshal, ship, and
demarshal the exeaution contexts of migrating threads.
TMs suppat distributed synchronization of migrated
threads by forwarding semaphore operations bad to
the console TM.

e Migration Manager (MM): It is responsible for
colleding load information of the locd node and
exchanging those information with MMs running in
other nodesin order to implement a migration policy.
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Fig. 4. Interadion between system comporentsin JESSCA

Figue 4 illustrates the interadions between the four
system components of a JESSICA daemon. When the code
which BEE is exeauting needs to creae anew adive thread,
BEE requests DOM to alocae anew threal oljed from the
global objed space after which BEE will exeaute the
constructor code to instantiate the new objed. Next, BEE
sends a request to TM to adivate the thread. TM will bind
the thread to a new execution context and insert it into the
thread scheduling subsystem. Later on when the threa is
scheduled to run, TM binds it to BEE for exeauting the
thread's gart() method. During it's exeaution, BEE can
crege new objeds and will make sure that objeds are
updated consistently in the global objed spacethroughthe
new() and DSM mutual exclusion control primitives
provided by DOM. It can also let the thread communicete or
synchronize with aher threads by using the thread
wait ()/notify() and mutex | ock()/unl ock() primitives
provided by TM. Whenever necessary, DOM will perform
garbage olledion to redaim unused oljeds. It asks TM to
provide the runtime stadks of all the adive threads and starts
tracing from these stadksto locate any unreferenced objeds.

The arrent implementation of JESSCA is based on
verson 0.9.1 o the Kaffe virtual madcine [8] and uses
version 1.0.3.2 of the TreadMarks DSM padkage [1]. We
had to make some mgor modficaions to the Kaffe
implementation in order to support the SSI feaures. For
example, in order to fadlitate the extradion of a thread's
exeaution context, the method invocation medhanism in
Kaffe's BEE was changed so that it would allocae the
method stadk from the locd heg instead of from the
processruntime stack. The set of bytecode instructions that
are responsible for method invocation were dso adjusted in
order to support the delta exeaution mechanism. In addition,
DOM has been incorporated into the memory management
subsystem for creding the global objed space All the
bytecode instructions that access the global objed space
have been augmented to use the mutual exclusion control
primitives provided by the DSM whenever necessary.
Moreover, the thread subsystem has been extended to
become the TM for supporting thread migration,
cooperative semaphore, and the remote signaling
mechanism. Finaly, MM responsible for enforcing a load
balancing pdlicy has aso been incorporated into the system.
MM obtains load information from the processfile system
</ proc> of ead node and interads with aher MM s of other
cluster nodes to make migration dedsion. All
communicdions between the JESJCA daeamons are

through the BSD socket interface provided by the Linux
operating system.

B. Preemptive Thread Migration

The steps below are taken when the aurrent thread
running on the @nsole tries to migrate to another worker
node:

1)TM at the console node freezes the migrating thread
and extrads the execution context in the form of a
sequence of machine dependent and independent sub-
contexts from the locd BEE.

2)MM then identifies a destination worker node for the
thread to migrate to, and to notify the corresponding
MM at the destination node to prepare for the
migration.

3)After recaving the migration notificaion, the
destination MM requests the locd TM to create anew
thread instance to represent the migrated thread. This
newly creaed thread instance is known as the save
thread.

4)The original thread at the console detaches itself from
the locd BEE and olains its exeaution context. It is
now known as the master thread which isresponsible to
control the exeaution of the dave thread that is creaed
at the destination worker node.

5)After the instantiation, the dave thread at the
destination creaes a dedicated communicaion channel
with the master at the mnsole. This dedicaed channel
is used for sending control information and message
redirection between the master and the slave.

6)Finally the dave thread at the destination node sends a
ready message to the master to signify that it is realy to
resume eeadtion. The master thread at the mnsole
then sends the first delta set to the slave for exeaution.

7)The dave thread resumes its exeaution by using the
delta set that it recaeved. After finishing exeaution of
the given delta set, it sends a ‘more’ signal to the
master and ask for the next delta set to exeaute. The
master thread at the mnsole &ter recaving this ‘more
signal, will complete the exeaution o the following
machine-dependent sub-context that is not migratable,
and send the slave the next delta set to exeaute.

8)The last step is repeded until the whole sequence of
machine-dependent and independent exeaution sub-
contexts is exhausted. This also implies the original
thread has completed the exeaution of its primary
java.lang. Thread. start () method a the euivalent.
At this point, the master will notify the slave with an
‘end’ signal signifying that the execution has been
completed, so that both threads will eventualy
terminate themselves.

Note that the 7th step of the aove scheme is the criticad
step for the system to maintain migration transparency, it is
in this 4ep where redirections take place  While the dave
thread is exeauting the delta set at the destination nade, the



master thread is aso responsible to monitor the
communicaion channel and seeif there ae any messages of
redirection requests ent from the dave thread. These
messages can be network channel read/write operations or
mutex | ock()/ unl ock() operations where the master has to
perform on behalf of the dave bad at the console node, so
as to maintain the network and locdion transparency. In
addition, the master is aso responsible to redirect any
asynchronous signals ending from other running threads on
the console node, so that the original thread appeasto other
threads as if it was dill running onthe console node and the
migration has never took place

C. Dynamic Load Balancing

The aurrent implementation relies on MM s running in all
the worker nodes to provide load information aaoss the
cluster for making migration dedsion. Load information is
obtained from the process file system </ pr oc> of ead node.
MM at the console node queries its counterparts running in
ead worker node for load information every second. The
percentage of time that a node spends in user mode between
successve queries is the primary load information used in
migration dedsion. If MM at the console discovers that the
percentage of time that a node is gending in user mode
between successve queries is one-fifth or lessof that of the
console, it will go through the list of adively running
threads to seled a non-daemon thread to migrate to this
uncerloaded nade. Priority will be given to arunning thread
whose exeaution state does not contain any madine-
dependent sub-context. The MM may aso trigger a
redistribution of migrated threads if it comes aaoss a
worker node that is heavily loaded. A worker node is
considered heavily loaded if the percentage of its user-mode
time is more than double that of the wnsole. When this
happens, MM will send a message to the identified worker
node which will then seled one of its adively running slave
threads to retrea badk to the console. If an underloaded
node is found later on, the retreaed thread could be
migrated again.

D. Transparent Redirection

The 1/O redirection code is implemented within the
java.io andthejava. net classlibraries for file and socket
I/O rediredion respedively. Their interface definitions are
kept unchanged so that other classes relying on them do not
need to be modified. To improve performance, a buffer
cade dlocated from the DSM is used to buffer 1/0 data for
ead opened file or socket. When a slave thread performs a
read() operation on an opened file, it chedks whether the
requested data has been loaded into the shared buffer
aready. If so, the data is retrieved from the buffer diredly.
Otherwise, the dave threa redireds the operation bad to
the console. The master thread will issue ar ead() operation
to the underlying qoerating system to fill up the buffer.

Eventually, the dave threal is notified and the requested
data can then be obtained from the shared buffer.

The implementation of cooperative semaphores ties
closgly to TM for handling blocking and resuming of adive
threads. A cooperative semaphore is creaed the first time a
mutex | ock() is applied to the objed. If the lock operation
isinitiated by a dave thread, the crresponding cooperative
semaphore will be aeded by its master thread at the
console. A cooperative semaphore maintains a @unt and a
gueue of blocking threads that try to perform a mutex
I ock() on the crresponding Java objed. If the wurt is
zao, a thread can immediately lock the objed and
increment the wunt; otherwise the thread is sheduled out
by TM and appended to the queue. A thread unlocking the
objed later will deaement the murt. When the munt
reades zero, the first blocked thread from the queue will be
scheduled to run by TM. Note that the mechanism just
described applies to master threads as well as normal
threads that have not been migrated; for a migrated slave
threads, the mutex 1 ock() and unl ock() operations are
redirected bad to the mnsole & described below.

A running thread will be blocked and forced to leave the
ready queueif

— it tries to lock a semaphore which is currently held by
another thread,

— it tries to perform an 1/O operation in bocking mode
and the I/O channdl is nat realy, or

— it explicitly performs a wait () operation on a given
objea O.

A blocked thread t will be rescheduled badk to the ready
gueue when

— the semaphore that t has previously requested is
unlocked by another thread and it is now t 's turn to
lock the semaphore,

— the I/O channel that t previoudly tried to operate on is
now realy, or

— another thread has issied a notify operation on an
objed which t has previously waited upon.

We take alvantage of the property that a thread will block
when trying to read from an 1/O channel where data have
not yet arrived. When a slave thread tries to lock a
semaphore s, instead of diredly operating on s, it sends a
message to its master, asking the master to lock s on its
behalf. After that the slave thread will be blocked waiting
for the master's reply. At the console node, when the master
thread receves the semaphore lock request for s from its
dave, it will try to lock the semaphore s. When eventually
the master has successully locked the semaphore s, it will
then send a success messge back to its dave so that the
dave can cortinuve its exealttion, as if the dave has
succesqully locked the semaphore itself. Similarly, when
the dave threal later tries to unlock s, it again sends a
message to the master asking it to unlock s on its behalf.
After the master has recaved the message and unlocked the
semaphore, TM at the mnsole can then reschedule some



other thread that has previously issued alock request for the
semaphore.

IVV. PERFORMANCE EVALUATION

In this sdion, we report performance results of the
JESSICA system throughthe tests of various programs. We
focus on the analyses of overheads incurred in basic
operations, such as remote objed access cooperative
semaphore, migration latency, and the st of delta
exeadtion. Detals related to the performance results of
various applications can be foundin [18].

A. Remote Object Access Overhead

We evaluate the dficiency of the global objed space
layer by analyzing the overheads that are incurred in remote
objed accesses and distributed thread synchronization. In
general, there ae three types of memory acess in
JESSICA:

* Local stack data access. The variable invaved islocd
to a method a a block of code. It is alocaed from the
Java method stadk rather than from the global objed
space ad accessed through the DSM.

» Local object data access: The variable invaved is a
field of alocd objed. The field variable is allocaed
from the DSM and the data @ncerned resides in the
same machine & the thread that is making the acces
The bytemde exeadtion engine uses the GETFIELD
and the PUTFIELD instructions to access the objed
field. This kind of access is indired as the memory
location of the datafield hasto be computed first by the
byteade exeaution engine.

* Remote object data access: This is smilar to locd
objed data acaess except the thread that is making the
access is locaed in a node different from where the
objed datais stored.

To study the performance differences of various types of
memory access, we have performed a series of experiments
to measure the time required to update some seleded
elements of a very large aray that spans 4096 shared
memory pages with dfferent stride distance The ratio of
accessoverhea isfound to be:

remoteobjedt data  locd objed data  locd stack

data

accesstime:: accesstime: accesstime
= 2322 : 23 : 1

In other words, the overhead of remote objed acess is
about 100 times that of locd access The differenceis due
to the transmission of DSM pages from remote nodes
through the network. Note that this is a worst-case result as
the update will cause the whole 4KB page of data to be
moved o the page di ff to be alculated and shifted in the
subsequent remote object accesses. The 23 times difference

between the accestime for locd objed accessand that for
locd method stak access is becaise of the overhead
produced by the DSM-lock and unlock operations, as
performed by the i astore instruction, athough no diffs
will bereceved in thislocd case. Note that it is posshble to
have two or more threads to update the same objead at the
same time, the DSM's lock and unlock primitives are used
for data consistency control.

B. Cooperative Semaphore Overhead

We compare the time for a migrated thread to perform
cooperative semaphore operations with one without
migration. Consider when a dave threal tries to aayuire a
cooperative semaphore, it sends a semaphore aquire
message to its master which spends TO time. The messge
will trigger a SI G O signal when it arrives at the mnsole.
With the help of aSI G Ohandler, JESSICA will then ndify
the TM that some data is ready for the master thread to
read. As a result, the master threal is rescheduled bad to
the ready queue. Notice that the master thread may not be
able to resume exeaution immediately because there may be
other threads currently waiting in the ready queuein front of
it.

Assume that after T1 time, it is the master's turn to
exeaute, and the master aaquires the semaphore which
spends T2 time. After the semaphore is aaquired, the master
sends a success message to the save, prompting the dave
thread to resume (al together T3 + T4) its exeaution. T3 is
the time to send the message to the dave, and T4 is the
delay until the dlave thread is rescheduled after the message
has arrived. It can be estimated that the total time for adave
thread to aayuire a @operative semaphore is equal to TO +
T1+ T2+ T3+ T4, whilethat for alocd thread to aayuire a
semaphore is simply T2. In other words, the extra overhead
inthiscaseisTO+T1+ T3+ T4.

We have mnducted a series of experiments to measure
the time taken for a migrated thread to aaquire a free
cooperative semaphore remotely and the time taken for a
locd thread to aauire afree semaphore locdly. A free
semaphore is a semaphore that is not currently held by
anyore and so a thread can aqquire it immediately. In this
case, the value for T2 will be the smallest. By our design,
both the master and the dave thread are the only adive
threads running in their respedive nodes; therefore the time
to wait before resuming exeaution, i.e,, T1 and T4, would
be zeo. It is found that the time it took to acquire aremote
cooperative semaphore for a dave thread this way is about
261 microseamnds. For the cae of a locd, non-migrated
thread, the time is approximately 7.78 microseconds.
Hence the ratio of the time required to aayuire a free
semaphore remotely to that for the locd case is about 34:1.
By similar arrangement, we were ale to determine the time
for releasing a semaphore both remotely and locdly. The
result shows the times are about the same: it took about 258
microsecnds to remotely release a ©operative semaphore
and 7.81 microseconds to release alocd one.



It can be seen that a major portion of the cooperative
semaphore overhead comes from the need to send control
messages between nodes and from the operating system
invoking the SI G O handler. A point to note is that the
overheads measured here are minimum values. In general, it
will take some time for a thread to resume execution after it
is rescheduled since there could be other threads, with either
the same or higher scheduling priorities, already running in
the same node. Moreover, a semaphore may not aways be
available immediately when a thread tries to acquire it.
Hence, T1 and T2 could be larger.

C. Migration Latency

The migration latency is the time between the moment the
migrating thread is frozen by the console and the moment it
is restarted later as a dave thread at the worker node. The
migration latencies, i.e., TO + T1, for different sizes of the
delta sets are measured, where:

* TO is the time taken to notify the destination node and
to have the destination node prepare itself for the
migration. The value of TO is relatively constant.

* T1isthetimetaken to marshal adeltaset at the console
node, to send the marshaled data across the network,
and eventually to de-marshal the received data at the
destination node. The value of T1 is therefore
proportional to the size of the transferring delta set.

When the size of the delta set is zero, the migration
latency is about 27.91 milliseconds. TO includes the time
taken to execute thej ava. | ang. Qbj ect . cl one() method in
the worker node as well as the time for sending handshake
messages between the console and the worker node. The
purpose of the cl one() method is to create an image of the
migrating thread at the destination node, which will then
become the dave thread. The default implementation of the
cl one() method in JESSICA is to perform a mencpy() to
duplicate the thread object byte-by-byte.

A further breakdown of this TO value reveals that the time
required to invoke the clone() method is about 6.76
milliseconds. This includes the time to set up a TCP
connection between the master and the migrated dave
thread and that for sending the handshake messages. Now
consider the case when a thread is migrated just before it
starts executing the first instruction; the size of the smallest
possible delta set, which contains no local variable or stack
data, is 208 bytes. The minimum migration latency is
measured to be about 29.79 milliseconds. Further analyses
of the delta execution overhead were studied in the next
section.

D. Cost of Delta Execution

We have devised atest program based on a Del t aE class
to study the effect of machine-dependent code on thread
migration and the cost of delta execution. There are two

methods f () and g() defined in class Del t aE. The native
method f () would print the level of recursion to st dout
before returning. The function aut oM grat e() is a specia
native function which will cause the Migration Manager to
migrate the current thread to aworker node.

When an instance of DeltaE is instantiated, the thread
will recursively invoke method g() and method f () until i
reaches zero, where i represents the number of recursion.
autoM grate() will then cause the Detal E thread to be
migrated to a worker node. At this point the execution
context of the thread should contain a chain of delta sets
interleaved by sets of machine-dependent sub-contexts. By
the time the migrated thread resumes its execution at the
worker node, it will continue from the point of return of
aut oM grat e(), which isaso the point of return of method
g(). From this point onwards, the effect of delta execution
will cause the execution control to bounce back and forth
between the console and the worker node. At the console
node the current level of recursion will be printed to st dout
as a set of machine-dependent sub-context is executed,
while at the worker node the control will complete the
execution of method g() as the next delta set is shipped
there.

In our experiment the number of recursion was set to 100
and it took 2037 milliseconds to execute the test program.
The time spent was mainly on the shipping of delta sets as
well as the bouncing of execution control between the
console and the worker node for 100 times. In the case
where migration was disabled, the time spent to execute the
test program was found to be 18 milliseconds. Hence, the
round-trip overhead for each bouncing of control between
the console and the worker node due to delta execution is
about 20.19 milliseconds, which is considerably efficient.

V. RELATED WORKS

In this section, we shall briefly discuss some other works
related to thread migration, and the redlization of a single
system image.

cJVM [11] is a cluster-enabled implementation of a Java
Virtual Machine that provides a single-system image of a
traditional JVM while executing on a cluster. cIVM
supports distributed access to objects using a master-proxy
model. The node where an object is created contains the
master copy, while proxies are used to other nodes to access
the object. Smart-proxy is employed to allow multiple proxy
implementations for a given class while using the most
efficient implementation on a per instance basis. A single
system image is maintained in some degree that applications
are unable to distinguish between accessing the master of an
object or its proxy. This is achieved by the use of a
distributed heap, which also givesthe application anillusion
that the system is using a monolithic heap like traditional
JVM does. Instead of thread migration like JESSICA,
remote objects are accessed transparently through the
method shipping technique, in which the proxy redirects the
flow of execution to the node where the master copy of the



objed is locaed. Load balancing can be atieved in cIVM
through remote thread credion, which distributes newly
creded threads acwmrding to a pluggable load balancing
routine. It determines the best node on which the new
instance of the runreble dassis creaed. Becaise of the
method shipping technique, load dstribution aadoss the
cluster is therefore largely dependent on the placement of
distributed oljeds aaossthe duster.

JavaParty [14] is built on top o Java RMI which extends
Java & minimally and transparently as passble with a pre-
procesor and a run-time system for distributed parallel
programming in heterogeneous environment. JavaParty
provides a singe system image by using a shared address
spaceto support locaion-transparent remote acces Since
JavaParty regards threads as objeds of a thread class,
remote threals can be aeaed as objeds of a remote thread
class and migration of threads is aso possble. Therefore,
programmers need not ded with the mapping d remote
objeds or threads to spedfic nodes of the network. In objed
migration, if a remote objed that implements an instance
part is moving to a different host, a proxy isleft behind. If a
method call arrives at the proxy, a MovedException is
thrown bad to the cdler. With the exception, the cdler is
informed about the new location of the moved oljed. The
JavaParty compiler and runttime system deds with the
locdity and communication optimizaion. The runtime
system offers distribution strategies, which are used when
new objeds are aeded. It can adso schedue objed
migration by moving an objed to the pasition of the cler
or to the locaion of a different remote object. JavaParty
introduces the new class identifier remote for parallel
exeadution of Java threads. Program code modificaions are
needed to turn a multi-threaded Java program into a
distributed JavaParty program by identifying the dasses and
threads that should be spread aaoss the distributed
environment.

Solaris MC [12] provides the same ABI/API as Solaris,
runring Solaris applications without modificaions. Solaris
MC provides a global process space for global process
management, so that the locaion of a processis transparent
to the user. Processes living within this global process pace
can be uniquely identified and have their physicd locaions
hidden. The global process pace supports remote aedion
of proceses and operating-system-related messages are
transparently redireded to the node where the processes
reside. This global processspaceis analogous to the singe
thread spaceof JESSCA. While threads living in the single
thread space of JESSICA can fredy migrate node to node
within the cluster, processs in the global process gace of
Solaris MC cannot. Process migration in Solaris MC is
intended only for planned shutdown of nodes to acdieve
high fault-tolerance Both Solaris MC and JESSICA
provide migration transparency by redireding location-
dependent operations and messages.

The objedive of JavalDSM [10] is to suppat
heterogeneous parallel computing that hides users from the
difference in architedure and data format for different
machines. The use of the DSM system transparently

handes message passing cktails such as data replication,
remote interface design and reference marshalling.
Java/lDSM alows a multithreaded Java program written for
a single machine to run on a parallel platform with fewer
changes than a system using Java RMI. Java/lDSM provides
a shared memory space for objed allocaion which is
similar to the global objed spacein JESSICA. However, the
singe-system-image offered by Java/DSM isincomplete, as
athread'slocation is not transparent to the programmer, and
thread migration is not supported.

VI. CONCLUSIONS

To adiieve SSI for cluster computing is a dallenging
task since SSI is a form of complete transparency that
requires the integration and unificaion o al types of
resourcesin a duster.

The single thread space @proach is our solution to
adhieve single system image. With the support of singe
thread space the whole duster is encgpsulated into a single
computing system from the view of a multi-threaded Java
application. All Java threals creaed in a user program can
be exeauted at any node in the duster and the threads need
not be avare of their physicd locaion. With the support of
preamptive thread migration (delta execaution), a Java thread
can be preempted and migrated to another node & any time
during its exeaution. Based on this thread migration
technique, paralel exeaution of a Java gplicaion can be
adhieved by simply credaing as many threads as neealed.
Threads are auttomaticdly redistributed acossthe duster to
exploit red parallelism. The global objed space provides
locdion-independent objed access. The proposed
redirection mechanism alows any locaion-dependent
resources to be transparently accessble by a migrated
thread. Althoughit is true that the master-save design for
supporting migration transparency can make the console
node apotential bottlenedk, the centralized design allows
control state to be maintained at a single location which
reduces implementation complexity.

The implementation of JESSICA is at the middleware
level and is compatible with the standard JVM. The
implementation does not need any low-level or platform-
spedfic supports. Thus it is portable acoss different
hardware platforms. Our experiments have shown that the
major overheads had come from remote objed accesses
made by the migrated threads as well as distributed thread
synchronizaion. Work is underway to replacethe arrent
DSM by a more dficient DSM which adapts better to the
accesspatterns[16].

Overdll, establishingan SSl illusion using the middleware
approach to support paralel exeaution of multi-threaded
Java programs in a duster environment is feaible and
beneficia. The singe thread space approac hes proved to
be a simple, flexible, and patable solution for redizing the
goa of singe system image. In our future work [19], we
plan to pat the W3C's Jigsaw Web server on JESSICA,
where a ¢uster of four 4-way SMP servers with Gigabit



Ethernet network [20] will be employed to suppat the
exeaution. Additional SSI features sich as the idea of a
global network subsystem and more dficient network data
redirection as supparted in Solaris MC can be enployed to
let JESSCA adieve the ultimate goal of SS — complete
transparency.
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