
PAT: A Postmortem Object Access Pattern Analysis and Visualization Tool∗

Weijian Fang Cho-Li Wang Wenzhang Zhu
Francis C.M. Lau

Department of Computer Science and Information Systems
The University of Hong Kong

{wjfang+clwang+wzzhu+fcmlau}@csis.hku.hk

Abstract

Applying a cache coherence protocol capable of adapt-
ing to memory access patterns is a viable approach to
improving the performance of software distributed shared
memory. In this paper, we present an approach of post-
mortem memory access pattern analysis and visualization,
which has been applied to our design of a global object
space for a distributed Java Virtual Machine. The tool not
only can enhance our understanding of the access patterns
inherent in an application but can also help us to evalu-
ate the effectiveness of an adaptive protocol used in the de-
sign of the global object space.

1. Introduction

The development of efficient cache coherence protocol
for software DSM [1] for today’s high-performance paral-
lel computers is a nontrivial task as a good protocol needs
to be able to take full advantage of the computer system’s
deep memory hierarchy and to adapt quickly to the dynam-
ically changing memory access patterns in a networked en-
vironment.

In the past, much effort has been spent on improving the
performance of DSM systems using adaptive cache coher-
ence protocols [5, 14, 3, 2, 13, 8]. It was claimed that these
advanced protocols have the ability to detect or predict the
memory access patterns, and are capable to switch between
different schemes for maintaining cache coherence with-
out compiler’s involvement. The adaptability of those pro-
tocols was considered from a macroscopic view, and rea-
soned based on the application’s algorithm. For example, a
common report would present the overall reduction in ex-
ecution time or communication overheads after the adapta-
tion is enabled. This somehow cannot reflect the true effec-

∗ This research is supported by Hong Kong RGC grant HKU-7030/01E
and HKU Large Equipment Grant 01021001.

tiveness of adaptive protocols. From such figures, we do not
know if the runtime optimization has been applied at the ap-
propriate moments, or if there are still some other memory
access patterns that were not accounted for.

To better understand an adaptive protocol’s efficiency,
a memory access profiling and visualization tool can help
the designer to compare memory access and communica-
tion patterns of different algorithms and gain insight into
the application’s behavior such as potential bottlenecks re-
sulting from memory accesses.

In this paper, a visualization tool called PAT (Pattern
Analysis Tool) is proposed that can be used to analyze
memory access patterns in object-oriented software DSM
systems. PAT adopts a lightweight mechanism to record
various kinds of memory access events (e.g., synchroniza-
tion operations) associated with runtime objects. Users can
play back these events and perform postmortem object-level
analysis following an application’s execution.

PAT is useful in two aspects. For the protocol design-
ers, such a tool can expose the inherent memory access pat-
terns inside a benchmark application, and thus enable eval-
uation of the effectiveness of the adaptive protocol in re-
ducing the number of network-related memory operations
and the protocol’s pattern detection mechanism. It can re-
veal how frequent a particular memory access pattern ap-
pears in an application, and how well a particular adapta-
tion can optimize a target memory access pattern.

On the other hand, it can help the application developer
in planning out the initial data layout and runtime data re-
location. Since DSM systems tend to hide the communica-
tion details from application developers, performance tun-
ing is rather difficult if not impossible. With PAT, the paral-
lel application developer is able to discover the performance
bottleneck in the application by observing the application’s
memory access behavior. He may then redesign the algo-
rithm to avoid some heavy-weight memory access patterns.

We demonstrate the potential power of PAT by apply-
ing it to the development of adaptive cache coherence pro-
tocol for the global object space (GOS) support in a dis-

tributed Java Virtual Machine (JVM) [8] that runs on a
cluster. The GOS provides the illusion of a single Java ob-
ject heap spanning multiple cluster nodes to facilitate trans-
parent object accesses issued by Java threads in different
nodes. As a DSM service in an object-oriented system, our
GOS is marked by its adaptability to object-level access pat-
terns.

PAT comprises three components: the object access trace
generator (OATG) that is plugged into the distributed JVM,
the access pattern analysis engine (APAE), and the pattern
visualization component (PVC).

PAT gathers object access information at runtime. Im-
proper runtime logging could introduce intolerable over-
head and interruption to the application being traced, which
makes the logging unaccepted. For example, the recorded
memory access behavior could be quite different from that
without logging due to the interruption caused by heavy-
weight logging. To tackle this problem, OATG was de-
signed to be lightweight. It leverages the Java memory
model and the just-in-time compiler in distributed JVM
to minimize the logging overhead. It activates the record-
ing only on distributed shared objects. Logs are stored in
a memory structure and flushed to the local disk at syn-
chronization points or when the buffer is full. The just-in-
time compiler is used to instrument only the user-interested
methods; all the other methods execute at full speed.

APAE is used to discover knowledge concerning patterns
from the raw access information collected by OATG. After
an application’s execution, the global (of all the processes)
and complete (the entire lifetime of the application) access
information can be compiled, based on which an analysis of
the object access patterns is carried out precisely and thor-
oughly.

APAE uses a pattern-centric representation to visualize
object access patterns. It can display the global and com-
plete access information in a macroscopic view. In addition,
for objects of interest to the user, it can associate access pat-
terns with the source code lines that create the correspond-
ing objects—referred to as allocation sites. The object ac-
cess patterns can be further mapped to low-level object ac-
cess events.

The rest of this paper is organized as follows. Section 2
gives the background of this research and an overview
of PAT. Section 3 presents the lightweight runtime object
access trace generation mechanism in PAT for collecting
memory access information. Section 4 discusses our design
to precisely and thoroughly analyze object access patterns
given the object access trace. Section 5 presents the pattern-
centric visualization part of PAT. Section 6 discusses the re-
lated work. Section 7 summarizes our work and gives a pos-
sible agenda for future work.

2. Background

In this section, we discuss an object-oriented software
DSM, called the global object space (GOS) [8]. The GOS
has been used to support transparent object access in a dis-
tributed Java Virtual Machine (JVM) running on a cluster.
We will also give an overview of PAT.

2.1. Global Object Space

The Java programming language [4] supports concurrent
programming with multiple threads, which makes it a po-
tential language for parallel computing. A distributed JVM
appears as a middleware that presents a single system image
of the cluster to Java applications. With a distributed JVM,
the Java threads created within one program can be run on
different cluster nodes to achieve a higher degree of execu-
tion parallelism.

In a distributed JVM, the shared memory nature of Java
threads calls for a global object space (GOS) that “virtual-
izes” a single Java object heap spanning the entire cluster
to facilitate transparent object access. The GOS is indeed
a DSM service in an object-oriented system. The mem-
ory consistency semantics of the GOS are defined based on
the Java memory model (Chapter 8 of the JVM specifica-
tion [11]), in a fashion that is similar to lazy release consis-
tency [10].

In our previous work [8], we proposed a new global ob-
ject space design for the distributed JVM. In the design, we
use an object-based adaptive cache coherence protocol to
implement the Java memory model.

2.2. Memory Access Operations Classification

Figure 1 shows all the memory access operations in the
GOS. We divide Java objects in the GOS into two cate-
gories: distributed-shared objects and node-local objects.
Distributed-shared objects are reachable from at least two
threads in different cluster nodes in the distributed JVM,
while node-local objects are reachable from only one cluster
node. Distributed-shared objects can be distinguished from
node-local objects (by default) at runtime [8].

Since we use a home-based multiple writer cache co-
herence protocol to implement Java memory model that
resembles lazy release consistency, the access events of
a distributed-shared object comprise those on non-home
nodes and those on the home node. On non-home nodes,
after acquiring a lock, the first read should fault in the ob-
ject from its home. All the subsequent reads or writes can be
performed on the local copy. Before acquiring or releasing
a lock, the locally performed writes should be identified us-
ing twin and diff techniques and sent to the home node. We

Memory Access Operations in
distributed JVM

On node-local objects On distributed-shared objects

Synchronization:
lock, unlock, wait, notify

Read Write

Remote read:
object faulting-
in from the
home node

Read on
cached
copy

Write on
cached
copy

Remote write:
diff propaga-
tion to the
home node

Synchroniza-
tion: lock,
unlock, wait,
notify

Synchronized
method

Read/write issued
on non-home nodes

Home read:
home read
fault

Other read
on home
copy

Other write
on home
copy

Home write:
home write
fault

Read/Write issued
on the home node

Figure 1. Memory access operations in GOS

call the object faulting-in remote read, and the diff propa-
gation remote write.

On the home node, the access state of the home copy will
be set to invalid on acquiring a lock and to read-only on re-
leasing a lock. Home read fault and home write fault will be
trapped. For both types of fault, the GOS does nothing more
than to set the object to the proper access state. We call the
home read fault home read, and the home write fault home
write.

All the synchronization operations performed on a
distributed-shared object, such as lock, unlock, wait, and
notify, influence the object access pattern, and are thus con-
sidered access events too. The synchronized method may
be migrated to the object’s home node by the GOS as a
whole, and is also treated as an access event.

All these memory access events can make up of vari-
ous memory access patterns. In our previous work [8], we
propose an access pattern space to enumerate various pat-
terns. According to the number of writers, we identify three
cases:

• Multiple writers: the object is written by multi-
ple nodes.

• Single writer: the object is written by a single node.

• Read only: no node writes to the object.

According to our experience, the single-writer pattern is
significant in many scientific applications. So our GOS in-

corporates an object home migration optimization that im-
proves the performance of the single-writer pattern by set-
ting the sole writing node to be the home node, which has
been proven to be very useful.

2.3. Overview of PAT Architecture

Figure 2 shows the architecture of PAT. PAT com-
prises three components: the object access trace genera-
tor (OATG), the access pattern analysis engine (APAE),
and the pattern visualization component (PVC).

We make use of some source code of the logging facil-
ity in MPE (Multi-Processing Environment of MPICH) [6]
for collecting the access logs. However, our logging facility
does not require MPI support during logging. It is imple-
mented as a library and linked against the distributed JVM.
At runtime, each process of the distributed JVM indepen-
dently generates its own log. The log records are firstly put
into the local memory and then dumped to the local disk at
synchronization points or when the memory buffer is full.
After the multi-threaded Java program exits, an MPI pro-
gram will merge all those local logs into one log file accord-
ing to the time stamps. We rely on the Network Time Pro-
tocol (NTP) [12] to synchronize the computer times on dif-
ferent cluster nodes. The time offset between cluster nodes
can be adjusted to less than one millisecond. On merging
the node local logs, the time stamps will be further tuned by
calculating the current time offset. APAE will do the pattern
analysis and PVC will provide a visualization of the mem-
ory access behavior and object level access patterns of the
application. Some details of these three components will be
presented in the ensuing sections.

3. Lightweight Runtime Access Trace Gener-
ation

PAT uses several techniques to achieve the lightweight
runtime logging of memory access information.

Firstly, it relies on the Java memory model to carefully
choose the memory access events to be logged. In figure 1,
only those access types in bold font are logged.

In the GOS, we focus on distributed-shared objects
since only they will incur communication overhead. Con-
sequently, we are only interested in the access patterns pre-
sented by the distributed-shared objects. On non-home
nodes, the object faulting-in and diff propagation can repre-
sent the reads and writes on the cached copy, respectively.
Similarly, the home read fault and home write fault can rep-
resent all the reads and writes happening in the home node,
respectively. All these remote and home reads/writes, to-
gether with synchronization operations on object and
synchronized methods, constitute the object’s access be-
havior.

Map pattern to
access events

log DJVM
Node

log DJVM
Node

log DJVM
Node

log DJVM
Node

log DJVM
Node

log DJVM
Node

log DJVM
Node

log DJVM
Node

Lifetime
Pattern

Analyzer

Global Phase
Pattern

Analyzer

Producer-
consumer
Analyzer

Other
Pattern

Analyzer

Pattern Analysis Engine

Pattern

Window

Timeline
Window

Source Code

Window

Access Pattern
Visualization

Map pattern to
allocation site

Merged Object Access Events Log

Runtime Operations Postmortem Operations

Figure 2. PAT Architecture

All these interested access operations will go through the
cache coherence protocol. So we instrument the protocol to
intercept and log them.

PAT leverages the just-in-time compiler in a distributed
JVM to dynamically instrument translated Java method
code to log interesting events. Usually we are interested not
only in those access events themselves, but also the relation-
ship between them and other program states. For example,
we may want to know how the object access behavior looks
like inside a Java method. Or we may want to log a particu-
lar method that implements barrier synchronization among
all threads to observe the object access events against the
barrier synchronization.

PAT allows the user to provide a list of interested Java
method signatures1 to the distributed JVM. During just-
in-time compilation, the signature of the to-be-translated
method will be compared against the user provided list. If
there is a match, the just-in-time compiler will insert the log
code at both the start and the end of the method. In doing
so, the user is able to choose his interested method events to
log. All the other methods are left untouched and operate at
full speed. If the just-in-time compiler is not used, we have
to do the instrumentation for each method in advance since
each method could potentially be a user-interested event.
The overall slowdown could be significant.

Table 1 reports the logging overhead in two multi-
threaded Java applications, ASP and SOR. ASP com-

1 The format of Java method signature is defined in the JVM specifica-
tion.

Time Time Slowdown Log file
w/o log w/ log size

ASP 6.754 6.865 1.64% 33,030,144
SOR 20.421 20.704 1.39% 16,908,288

Table 1. Log overhead (The time is in seconds
and the log file size is in bytes.)

putes the shortest paths between any pair of nodes in a
graph of 512 nodes using a parallel version of Floyd’s algo-
rithm. SOR performs red-black successive over-relaxation
on a 2-D matrix (2048 x 2048) for 30 iterations. Both of
them run on 8 cluster nodes. In the table, the second col-
umn shows the application’s execution time when the log-
ging is disabled, and the third column shows the time when
the logging is enabled. From the table, we can see that al-
though the generated log size is quite large, the slow-
down caused by the logging is still insignificant due to our
lightweight logging mechanism.

4. Access Pattern Analysis

We observe the diversity of object access patterns and the
complexity to detect them. Therefore, we propose an exten-
sible design for the pattern analysis engine.

There can be many independent modules sequentially
reading in the same log in the analysis engine. Each mod-
ule is responsible for detecting one or several related ac-

cess patterns. The access pattern analysis results from all
the modules are fed into the pattern visualization compo-
nent, which will be discussed in the next section. It is ex-
tensible in the sense that we can plug in new modules to de-
tect any precisely defined access patterns. Currently there
are two analysis modules already in place: the lifetime pat-
tern analyzer and the global phase pattern analyzer.

The lifetime pattern analyzer detects object access pat-
tern that is fixed in the whole lifetime for each distributed
shared object. It will check whether an object presents read-
only, single-writer, or multiple-writers pattern in its whole
lifetime.

The global phase pattern analyzer works for those appli-
cations adopting an phase parallel paradigm (Section 12.1.1
of [9]). In this paradigm, every thread does some computa-
tion before arriving at a barrier. After all the threads arrive
at the barrier, they can continue to the next computation
phase. Two consecutive barriers define a global synchro-
nization phase agreed by all threads. This is a very common
paradigm in parallel programming. Both ASP and SOR be-
long to this paradigm. The global phase pattern analyzer
will check whether an object presents read-only, single-
writer, or multiple-writers pattern in each global synchro-
nization phase. The barrier, as a synchronized Java method,
will be logged as a special event at runtime. If the applica-
tion does not present phase parallel paradigm, i.e. no barrier
events are found in the log, the global phase pattern analyzer
simply ignores the log. The advantage of the global phase
pattern analyzer over the lifetime pattern analyzer is that
pattern changes among different phases can be detected.
Detecting read-only, single-writer, and multiple-writers pat-
terns in the log is simply done by counting the number of
writers among all the accesses on the targeting object dur-
ing the lifetime or each phase.

Detecting the producer-consumer pattern is also straight-
forward. By definition, the producer-consumer pattern,
which is also known as single-assignment, obeys the prece-
dence constraint that the write must happen before the read.
In the producer-consumer pattern, after the object is cre-
ated, it is written and read only once, and then turned into
garbage. In order to detect the producer-consumer pat-
tern, we need to check whether the objects are only re-
motely read once by each thread. Note that the write
on the objects could happen before the objects become
distributed-shared, and thus has not been logged. In the pat-
tern detection, the difference between producer-consumer
and read-only is that the producer-consumer pattern con-
tains only one read while the read-only pattern contains
multiple reads.

If the applications do not follow the phase paral-
lel paradigm, i.e., they use lock and unlock instead of
barrier synchronization to establish only partial order-
ing between the accesses from different threads, accumu-

lator and assignment access patterns are more likely to
happen. In an accumulator access pattern, the object is up-
dated by multiple threads concurrently, and therefore all
the updating should happen in a critical section. In an as-
signment pattern, the object accesses obey the precedence
constraint. The assignment pattern is used to safely trans-
fer a value from one thread to another thread. The
producer-consumer pattern is a special case of the assign-
ment pattern. In the current status of PAT, an accumulator
and an assignment pattern analyzer have not been im-
plemented yet. A further consideration is to incorporate
data race detection into this analyzer. If an object is ac-
cessed by multiple threads without proper synchronization,
and at least one thread is a writer, it is a data race situa-
tion that probably indicates a program bug.

5. Access Pattern Visualization

PAT uses a pattern-centric presentation to provide visual-
ization of access patterns. There are three components in the
presentation, a time lines window displaying the low-level
access events, an access pattern analysis result window re-
vealing the object access patterns, and a Java source code
window displaying the application’s source code. The time
lines window also reflects the overall access operations in-
curred in the execution.

The time lines window, as shown in figure 3, provides a
complete execution picture for SOR on 8 cluster nodes. The
x-axis represents the time. In the y-axis direction, there are
8 time lines in the figure, representing 8 threads, one thread
on each node in this experiment. The rectangles on the time
lines show some states, e.g., barrier synchronization in this
case. The arrows show the object access events. Those in
gray are writes and those in white are reads. Furthermore,
the arrows started in one thread’s time line and ended in
another thread’s time line represent the remote reads (ob-
ject faulting-ins) or the remote writes (diff propagations).
They are issued by the threads represented by the arrows’
starting time lines. The corresponding home nodes are the
nodes represented by the arrows’ ending time lines. The ar-
rows overlapping with the time lines are the home reads or
home writes. We can click any arrow to see the detail infor-
mation about that object access, e.g. the class name, size,
and ID of that object. The time lines can be zoomed out to
get an overall picture of the accesses behavior, or zoomed in
to examine some particular object accesses. We implement
the time lines window by modifying Jumpshot in MPE [6].

Moreover, clicking the “Pattern Analysis” button in the
time lines window will trigger the pop-up of the object ac-
cess pattern analysis result window, as shown in figure 4. As
SOR is a barrier synchronized application, the global phase
pattern analyzer can provide the pattern analysis result for
each object. The objects are firstly sorted by their allocation

Read

Write

Figure 3. The time lines window

sites where they are created in the source code. Each allo-
cation site may create many objects at runtime. For each
object, its access pattern at each phase is displayed. As ob-
served from the analysis result, most objects in SOR present
the single-writer access pattern. For example, in figure 4, the
object being observed presents the read-only and the single-
writer pattern in alternate phases.

The window of pattern analysis result is in the center of
the visualization. Inside this window, we can choose any ob-
ject to highlight its accesses in the time lines window. Thus
we provide a convenient association between high level ac-
cess pattern knowledge and the low-level access event de-
tails. Since the objects are sorted by their allocation sites
in the pattern analysis result window, we can map any ob-
ject to its actual allocation site in the application’s source
code by clicking it, as shown in figure 4. Note that the high-
lighted line in the source code window is the actual position
for the highlighted allocation site in the pattern analysis re-
sult window. Thus we provide a convenient association be-
tween the object access pattern and the object’s correspond-
ing allocation site in the source code.

In such a design, our visualization tool not only help
us, the GOS designer, to visually evaluate the effectiveness
of the adaptive protocol being applied, but also the multi-
threaded Java application programmer to better understand
the access behavior inherent in the program.

As a further demonstration, figure 5 shows the effect of
object home migration on SOR. Figure 5 (a) is the time

Figure 4. The window of object access pat-
tern analysis result (the bigger one) and the
window of the application’s source code (the
smaller one)

(a) Without home migration

(b) With home migration

Before Home
Migration

 Home migrating After Home migration

Figure 5. The effect of object home migration on SOR

line window without home migration. There are four global
phases, each taking approximately the same amount of time.
Figure 5 (b) is the time line window with home migra-
tion enabled. Three global phases are marked in the figure:
“Before Home Migration”, “Home Migrating”, and “Af-
ter Home Migration”. As we already know, most objects
in SOR presents the single-writer pattern and their original
homes are not the sole writing nodes. Since our GOS adopts
a home-based cache coherence protocol, before home mi-
gration takes effect, we observe that a lot of remote reads
and writes are sent to their home node, node 0. Our GOS is
able to automatically detect such single-writer patterns and
perform object home migration by setting the object’s home
to be the sole writing node at runtime. During the home mi-
grating phase, we observe that although the reads (white ar-
rows) are still sent to the original home node, the writes
(gray arrows) are performed locally. It means the home has
already been migrated to the local node at that moment. We

can also observe that the phase after home migration takes
much less time than the phase before home migration since
most remote reads and writes are eliminated by object home
migration. As can be observed, the effect of home migration
is to change remote read/write to home read/write.

6. Related Work

StormWatch [7] is a profiling tool that visualizes the
execution of DSM systems and links it to the program’s
source code. StormWatch provides three linked graphic
views: trace, communication and source. The trace and
the communication view combined together correspond to
the time lines window in our visualization part, which re-
flects the low level access events in the execution. The ma-
jor difference between our tool and StormWatch is that
StormWatch only focuses on the low level access events,
which may not provide straightforward and intuitive infor-

mation to the users. However, our pattern analysis and vi-
sualization system provides a pattern-centric view. The ac-
cess pattern knowledge, as high level information, will def-
initely be more helpful to the users.

Xu et al. described a profiling approach for DSM sys-
tems in [15]. It can detect and visualize some cache block
level access patterns. However, as an online tool, it suffers
from the memory and time constraints in a thorough run-
time analysis. For example, it can only show lifetime access
pattern that a certain cache block presents in the whole ex-
ecution time. The pattern change cannot be expressed be-
cause the memory consumption is expensive if each pattern
change per cache block is recorded. This is neither flexible
nor precise. On the contrary, our approach is postmortem,
and thus does not has such a drawback. We can invest as
much effort as affordable to precisely and thoroughly ana-
lyze the access patterns after we have the runtime trace.

7. Conclusion and Future Work

This paper describes a visualization tool for analyzing
memory access patterns in object-oriented software DSM
systems. It features a lightweight runtime solution for object
access trace generation, an extensible pattern analysis en-
gine, and an access pattern centric presentation for the visu-
alization. This profiling and visualization tool can help the
adaptive protocol designer and parallel program designer to
observe runtime memory access and communication pat-
terns arising from their algorithms, and therefore gain in-
sights into the application’s behavior.

From our preliminary experience, the design of our tool
seems to satisfy our original goal. Firstly, it helps explain
the benefits of adaptive cache coherence protocols in our
GOS for distributed JVM visuallly and straightforwardly.
Secondly, it helps us understand the application’s memory
access behavior by mapping the object access patterns to the
corresponding allocation sites in the source code.

This paper presents a preliminary result of our work. In
the future, we will extend the pattern analysis engine to de-
tect more patterns, e.g., producer-consumer, accumulator,
and assignment patterns. A more intuitive pattern visualiza-
tion method is in the making to replace the current view in
the window of object access pattern analysis result. We are
also investigating the most convenient way to port our ob-
ject access pattern analysis and visualization tool to other
DSM systems, in particular, object-based DSM systems.

References

[1] Distributed Shared Memory Homepage.
http://www.ics.uci.edu/˜javid/dsm.html.

[2] C. Amza, A. Cox, S. Dwarkadas, L.-J. Jin, K. Rajamani,
and W. Zwaenepoel. Adaptive Protocols for Software Dis-
tributed Shared Memory. In Proceedings of IEEE, Special

Issue on Distributed Shared Memory, volume 87, pages 467–
475, March 1999.

[3] H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langen-
doen, T. Ruhl, and M. F. Kaashoek. Performance Evalua-
tion of the Orca Shared Object System. ACM Transactions
on Computer Systems, 16(1), Feberury 1998.

[4] G. Bracha, J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Specification, Second Edition. Addison Wesley, 2000.

[5] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques
for Reducing Consistency-Related Communication in Dis-
tributed Shared-Memory Systems. ACM Transactions on
Computer Systems, 13(3):205–243, 1995.

[6] A. Chan, W. Gropp, and E. Lusk. User’s Guide for MPE:
Extensions for MPI Programs.

[7] T. M. Chilimbi, T. Ball, S. G. Eick, and J. R. . Larus.
StormWatch: A Tool for Visualizing Memory System Pro-
tocols. In Supercomputing ’95, December 1995.

[8] W. Fang, C.-L. Wang, and F. C. Lau. On the Design of Global
Object Space for Efficient Multi-threading Java Computing
on Clusters. to appear in Special Issue on Parallel and Dis-
tributed Scientific and Engineering Computing in the Paral-
lel Computing Journal.

[9] K. Hwang and Z. Xu. Scalable Parallel Computing.
McGraw-Hill, 1998.

[10] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
Proc. of the 19th Annual Int’l Symp. on Computer Architec-
ture (ISCA’92), pages 13–21, 1992.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication, Second Edition. Addison Wesley, 1999.

[12] D. L. Mills. RFC 1305 - Network Time Protocol (Version 3)
Specification, Implementation, March 1992.

[13] L. R. Monnerat and R. Bianchini. Efficiently Adapting to
Sharing Patterns in Software DSMs. In the 4th IEEE Inter-
national Symposium on High-Performance Computer Archi-
tecture, Feb 1998.

[14] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: A High
Level Machine-Independent Language for Parallel Program-
ming. Computer, 26(6):28–38, 1993.

[15] Z. Xu, J. R. Larus, and B. P. Miller. Shared Memory Perfor-
mance Profiling. In Principles Practice of Parallel Program-
ming, pages 240–251, 1997.

