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A pervasive computing environment can be full of numerous embedded heterogeneous 

computing devices. This study proposes using ontology to enable effective communication and 

information sharing between devices to achieve invisible computing. Ontology provides a formal, 

explicit specification of a shared conceptualization of a domain. It facilitates knowledge sharing 

in open and dynamic distributed systems. Using ontology, devices can understand the messages 

without prior knowledge about the format or content of the messages. It also allows devices not 

originally designed to work together to interoperate. A global ontology for all applications and 

devices is impossible and inflexible for knowledge sharing in pervasive computing environments, 

and different ontologies for the same domain may require ontology mapping mechanisms to 

bridge their knowledge gaps. 

Because of limited memory, mobile and wearable devices embedded in the pervasive 

computing environment can only afford to store partial ontology that extracts the frequently used 

concepts defined in the ontology. This implies that only partial information is available, which 

makes traditional ontology mappings not suitable in the pervasive computing environment.  

This study proposes an online partial ontology mapping mechanism to meet the new 

challenges in ontology mapping in pervasive computing environments. Our proposed design takes 

similarities of the names, properties and relationships of concepts into consideration during 

mapping. It outperforms the previous source- and instance-based approaches in matching 

accuracy. It can also use history records to store the relevant information about particular 

instances instead of all information on all instances, which is more space efficient than traditional 

instance-based ontology mapping. Partial ontologies are cached to provide the missing knowledge 

during mapping. 

An abstract of exactly 262 words 

 



Effective Partial Ontology Mapping 

in 

Pervasive Computing Environment 

by 

Kong Choi Yu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temporary Binding for Examination Purpose 

 

A thesis submitted in partial fulfillment of the requirement for 

the Degree of Master of Philosophy 

at The University of Hong Kong. 

 

November 2004



- i - 

 

Declaration 

 

I declare that this thesis represents my own work, except where due acknowledgement is 

made, and that it has not been previously included in a thesis, dissertation or report 

submitted to this University or to any other institution for a degree, diploma or other 

qualifications. 

 

 

 

 

 

Signed:  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 

 



- ii - 

 

Acknowledge 

 
I would like to express my deepest thanks to my supervisors Dr. Francis Chi Moon Lau 

and Dr. Cho-Li Wang for their valuable support and guidance for my research. I must also thank 

my family for their understanding and support for my study.   

 

 



- iii - 

 

Table of Content 
 

Declaration........................................................................................................................... i 

Acknowledge ...................................................................................................................... ii 

List of Figures ..................................................................................................................... v 

List of Tables ...................................................................................................................... v 

Introduction....................................................................................................................... 1 

Background and Literature Review................................................................................ 4 

Smart Space .................................................................................................................... 4 

Knowledge Representation ............................................................................................. 5 

Service Requesting and Discovery ............................................................................. 5 

Smart Spaces............................................................................................................... 8 

Ontology ................................................................................................................... 10 

Ontology Mapping ........................................................................................................ 14 

Similarity Functions...................................................................................................... 16 

Proposed Design .............................................................................................................. 20 

Research Challenges..................................................................................................... 20 

Online mapping......................................................................................................... 20 

Efficiency.................................................................................................................. 21 

Space limitation ........................................................................................................ 21 

Knowledge propagation ............................................................................................ 21 

Scenarios....................................................................................................................... 22 

Scenario 1.................................................................................................................. 22 

Scenario 2.................................................................................................................. 22 

Scenario 3.................................................................................................................. 23 

Overview ....................................................................................................................... 24 

Terminology and Notation ............................................................................................ 27 

Mapping Process Overview .......................................................................................... 29 

Pre-fetch........................................................................................................................ 32 

Similarity Calculation................................................................................................... 34 

Property Similarity, ps .............................................................................................. 35 

Relationship Similarity ............................................................................................. 36 

Calculation of ( )21 ,CCP ........................................................................................... 37 

Comparison between Two Ontologies O1 & O2............................................................ 38 

Result Recording........................................................................................................... 40 

Categorization ........................................................................................................... 40 



- iv - 

 

Replacement.............................................................................................................. 42 

Caching......................................................................................................................... 43 

Mechanism................................................................................................................ 43 

Replacement.............................................................................................................. 44 

Evaluation........................................................................................................................ 45 

Evaluation Parameters ................................................................................................. 45 

Tools.............................................................................................................................. 46 

Source Ontologies......................................................................................................... 47 

Implementation Details ................................................................................................. 49 

Results ........................................................................................................................... 50 

Experiment 1............................................................................................................. 50 

Experiment 2............................................................................................................. 50 

Experiment 3............................................................................................................. 51 

Experiment 4............................................................................................................. 52 

Conclusion ................................................................................................................ 52 

Contributions and Conclusion ....................................................................................... 54 

Future Works .................................................................................................................. 56 

Bibliography .................................................................................................................... 58 

 



- v - 

 

List of Figures 

Figure 1 Workflow of Jini................................................................................................... 6 

Figure 2 Architectur of UPnP ............................................................................................. 6 

Figure 3 Architecture of Web Service ................................................................................ 8 

Figure 4 Semantic Network for an Intelligent Environment .............................................. 9 

Figure 5 Interactions between Patch Panel and devices in an Interactive workspace ........ 9 

Figure 6 KIF-Logic Representaion of Ontology............................................................... 11 

Figure 8 Semantic Network .............................................................................................. 12 

Figure 9 RDF .................................................................................................................... 12 

Figure 10 Semantic Web architecture............................................................................... 13 

Figure 11 Ontology Mapping............................................................................................ 14 

Figure 12 Decision tree for diamond classificaiton .......................................................... 17 

Figure 13 K-nearest neighbour ......................................................................................... 17 

Figure 14 Architecture overview ...................................................................................... 24 

Figure 15 Architecture of a smart space ........................................................................... 26 

Figure 16 OWL wine ontology......................................................................................... 28 

Figure 17 Ontology instance of wine ontology................................................................. 28 

Figure 18 Configuration file ............................................................................................. 49 

 

 

List of Tables 

Table 1 Terminology Table .............................................................................................. 27 

Table 2 Notation table....................................................................................................... 29 

Table 3 Mapping results categorized by date, time and activities .................................... 41 

Table 4 Mapping records in smart space monitor............................................................. 41 

Table 5 General terms ontologies in time domain ............................................................ 48 

Table 6 General terms ontologies in publication domain ................................................. 48 

Table 7 Specilized terms ontologies in football domain................................................... 48 

Table 8 Pervasive computing ontologies .......................................................................... 49 

Table 9 Results for experiment 1 ...................................................................................... 50 

Table 10 Results for experiment 2 .................................................................................... 51 

Table 11Results for experiment 3 ..................................................................................... 52 



Effective Partial Ontology Mapping in Pervasive Computing Environment Introduction 
 

- P. 1 - 

 

INTRODUCTION 

Pervasive computing is an environment saturates with computing and communication 

capabilities, yet so gracefully integrated with users that it becomes a “technology that disappears” 

[Satyanarayanan, 2001]. Satyanarayanan identified three main types of challenges in the design 

and implementation problems raised in pervasive computing environment [Satyanarayanan, 2001]. 

The first type is related to hardware and system designs, such as high-level energy management, 

client thickness, balancing proactivity and transparency. The second type is security issues like 

privacy and trust. The last type is about generating and exchanging information in pervasive 

computing paradigm, like user’s intent (or preferences) and context information (state of 

environment), to achieve cyber foraging and adaptation strategy.  

From the great variety of computing devices in pervasive computing environment, to list 

a few: handheld and mobile computers, smart and wearable devices, sensors and surrogates, etc. a 

language is needed to provide a common representation of information across them.  

Nowadays, eXtensible Makeup Language (XML) [XML] is widely used for representing 

information interchange between applications through Internet. XML provides a set of semantics 

to represent data and allows data content to have arbitrary structure. It is human readable, flexible, 

easy to use and create; however, it does not define the meaning of the tags. The same XML tag 

can have different meanings in different data structure. On the other hand, different XML tags 

can have the same meaning. For example, an XML describing email structure contains a 

“SendTo” tag while another email structure in XML contains a tag named “Recipient”. It is 

obvious to human that “SendTo” and “Recipient” have the same meaning, but for computers that 

do not understand English, “SendTo” and “Recipient” are meaning totally different as they have 

different syntax.  

To solve the above problem, communicating parties can either use the same set of XML 

tags or manually handle the ambiguities on the meanings of XML tags before communications 

are taken place. Both these solutions are only possible when there are a few and static parties. 

Global XML tag is certainly not feasible. Due to the dynamic nature of pervasive computing 

environment: users move from place to place to get their tasks done and hence negotiations 

beforehand is impossible as well. Another language to represent the meanings of the XML tags is 

needed such that they can be interpreted by the computers is essential in pervasive computing 

environment. Ontology, hence, is being adopted. 



Effective Partial Ontology Mapping in Pervasive Computing Environment Introduction 
 

- P. 2 - 

 

Ontology represents the semantics of different concepts. It provides a formal, explicit 

specification of a shared conceptualization of a domain that can be communicated between 

people and heterogeneous and widely spread application systems [Gruber]. It is a formal explicit 

description of concepts (also called classes) in a domain of discourse, properties of each concept 

describing various features and attributes of the concept (also called slot), together with 

restrictions on concepts [Noy & McGunness, 2001]. Once computers can understand the 

information being exchanged, they can make decisions and responses intelligently, so they can 

communicate with neither prior knowledge about the format nor the content of the message. This 

enables knowledge sharing in open and dynamic distributed systems. Devices and agents do not 

need to be designed to work together can interoperate.  

However, using ontology to represent information partially solve the problem of 

numerous and dynamic communications in pervasive computing environment. We require 

systems to provide instant knowledge reasoning for efficiently mapping between user queries and 

domain knowledge. Considering an analogy in human society, two people from different 

countries cannot communicate in an efficient manner if they simply look up for the meaning of 

words in dictionary during the communication. Effective communication requires them to have 

the knowledge of each other’s background and customs. In computing environment, we need to 

bridge the knowledge gaps between different devices when two devices communicate. This is 

especially important in pervasive computing environment because we cannot provide a global 

meaning for a concept.  

Ontology mapping helps for bridging knowledge gaps. Given two ontologies O1 and O2, 

mapping one ontology onto another means that for each entity (concept, relation or instance) in 

Ontology O1, a corresponding entity, which has the same intended meaning, in Ontology O2 is 

found [Su, 2002]. Ontology mapping is significantly important in pervasive computing 

environment because devices are moving from place to place and they will come across different 

domains. 

This study aims to find an effective way to bridge the knowledge gap between the 

devices. Four new challenges have been identified: (1) online mapping, (2) efficiency in mapping, 

(3) space limitation of devices and (4) knowledge propagation to support user mobility.  

This thesis is divided into five sections. The next section provides background and the 

literature review about pervasive computing, ontology and ontology mapping. Section 3 presents 

the overview of the proposed design and technical details of each component. Section 4 evaluates 

the proposed design. The factors that are evaluated, the tools used, the implementation details and 
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results are included in Section 4. Conclusion is made in the last section together with a discussion 

of future work. 
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BACKGROUND AND LITERATURE REVIEW 

This study aims to provide effective internal and external communications within and 

across smart spaces. Smart spaces are computing spaces envisioning pervasive computing. Their 

related researches are firstly introduced in this chapter as the background. Effective internal 

communications refer to the presence of a standard language for services and resources lookup. 

The possibilities of adopting the information representation used in existing services discovery 

protocols and smart space researches are investigated. The widely accepted representation 

language is called ontology. The details of ontology and the reasons why it is suitable in smart 

spaces are studied.  

Effective external communications require bridging knowledge bridges across different 

smart spaces. Ontology mapping tools and similarity functions are discussed in later part of this 

chapter. 

SMART SPACE 

A smart space is a logically boundary for different computing spaces in pervasive 

computing environment. For example, a meeting room, an office and a university campus are 

smart spaces. A smart space is embedded with heterogeneous computer devices that have various 

sizes and computation powers. There are many different terminologies refer to smart spaces, for 

example, intelligent environment [Oxygen], interactive space [Interactive Workspace], etc. In this 

research, we choose the term “smart space”.  

Project Oxygen [Oxygen] proposed Agent-based Intelligent Environments (AIRE) 

[AIRE]. AIRE embed with different devices like cameras, microphones, lighting, door locks, etc. 

To let users to communicate with computing devices in the same ways as they are communicating 

with people, knowledge is shared between users and computers. A prototype intelligent 

environment called Intelligent Room [Brooks, 1997] is built. Stanford Interactive Workspaces 

[Johanson et al., 2002] explores new possibilities for people to work in technology-rich meeting 

spaces that consists of computing and interacting devices on various scales. It has contributed 

with a great effort in solving problems in switching displays between different sizes of screens. 

iRoom is the prototype of Interactive workspaces. Microsoft Easyliving project [Brumitt et al., 

2000] explores the architecture and technologies for intelligent environments that contains many 
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different types of devices and support rich interactions with users. Easyliving aggregates diverse 

devices into a coherent user experience. 

It is believed that users are not stationary in one smart space. They move across different 

spaces. Existing smart spaces researches focus on the design of infrastructure and explore new 

technologies such as switching display from small to large screens, migrating tasks to more 

powerful devices and detecting the environment states using sensors. Their lackage about the 

interoperability between different smart spaces makes this study differentiates from them. Our 

design allows each smart space to have its own infrastructure such that tailor-make infrastructure 

can be designed to suit different needs.  

KNOWLEDGE REPRESENTATION 

Within a smart space, devices cooperate and users lookup computing services and 

resources. A representation is needed for exchanging information. The information representation 

strategies used in existing services discovery mechanisms and in pervasive computing researches 

are investigated. 

Service Requesting and Discovery 

1. Jini 

In traditional computing paradigm, users need to install device drivers before using 

hardware like printers and scanners. Jini [Arnold et al., 1999] aims to allow everybody in the 

network to access device services without installing drivers. Devices register their services in the 

nearby proxies by specifying their capabilities and service interfaces using Java. Services are 

looked up based on the device capability specifications. Services are invoked using Java Remote 

Method Invocation (RMI). The workflow of Jini is shown in Figure 1. Client devices must have a 

priori knowledge about the service interfaces before services lookup. There are some attempts to 

standardize service interfaces such that no priori knowledge is required. However, it is extremely 

difficult to achieve a real practical standard because it lasts long for all devices manufactures to 

negotiate a standard.  Moreover, a single device provides more than one services. For example, a 

mobile phone can also behave as a MP3, a digital camera, a radio and a personal digit assistant. It 

is hard to have a universal classification of the devices. 

Jini only grantees there exists a service matches the service interface specified in the 

request. Services are chosen by random if they have identical service interfaces. The goal of 

pervasive computing is not simply providing service to users. It aims to provide the service that 
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best suits the users’ needs. For example, a printer service that is nearest to the user is chosen. The 

knowledge representation in Jini only focuses on the implementation level of services lookup. It 

is, definitely, not desirable in pervasive computing environment.  

 

 

Figure 1 Workflow of Jini 

 

 

 

Figure 2 Architectur of UPnP 

 

2. UPnP 

UPnP (Universal Plug and Play) [UPnP] helps to allocate devices such that XML-based 

service requests can be received by the correct devices in the network. Devices use XML to 
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describe their services using a list of actions the each service responds to and a list of variables 

that model the state of the service at run time. Service specifications are broadcasted to service 

proxies for other devices to lookup and retrieve. Similar to Jini, UPnP lookup services by the 

implementation details i.e. requests are matched based on the exact matching of the service 

interfaces. There are no mechanisms to automate choosing a better service for users. The 

architecture of UPnP is shown in Figure 2.  

 

3. Web Services 

Web services [Austin et al, 2004] are software components resident in servers. They 

provide online services to users so that client devices can keep as small as possible. Users send 

service requests to servers and get the execution results in return. Web services suit in smart 

spaces because they help small-embedded devices like mobile devices, wearable devices and 

sensors, etc. to complete computation expensive tasks. Moreover, as services are executed in 

service severs, users can do their task regardless their location. Web services use Simple Object 

Access Protocol (SOAP), XML and Web Service Definition Language (WSDL) to define service 

requests and descriptions. Requests are transmitted in SOAP messages enveloped in XML. 

Descriptions that prescribe how application or systems interact with the web service are defined 

using WSDL. Web services looked up using Universal Description, Discovery and Integration 

(UDDI). The architecture of the web services [captured from Champion et al., 2002] is shown in 

Figure 3. 

In the introduction, the problems of representing knowledge using XML are addressed. 

XML tags defined using human language have potential ambiguity in their meanings. Human 

negotiation on the meanings of the tags is not scalable in distributed environment. An open 

standard for web services XML tags can partially solve the problem because it is inflexible for 

application and system design. Additions of new XML tags, deletions and modifications of 

existing XML tags affect the existing applications and systems. As a result, Ontology Web 

Language-based ontology for web service (OWL-S) [Martin et al., 2004] is proposed to allow 

automatic discovery, composition and invocation of web services. 
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Figure 3 Architecture of Web Service 

Smart Spaces 

1. Project Oxygen 

Project Oxygen [Oxygen] has a subsystem that supports accessing the users’ personal 

knowledge in the same natural way as people access information. “The subsystem stores 

information encountered by its users using an extensible data model that links arbitrary objects 

via arbitrarily named arcs. There are no restrictions on object types or names. Users and the 

system alike can aggregate useful information regardless of its form (text, speech, images, video). 

The arcs, which are also objects, represent relational (database-type) information as well as 

associative (hypertext-like) linkage. For example, objects and arcs in A's data model can 

represent B's knowledge of interest to A—and vice versa.” [Peters and Shrobe, 2003]. In simpler 

words, the subsystem uses ontology written in Resource Description Framework (RDF) to 

represent knowledge. Project Oxygen has developed Haystack [Quan et al., 2003] to let users to 

manage their information. The semantic network of an Intelligent Environment defined by Peters 

and Shrobe [Peter and Shrobe, 2003] is shown in Figure 4. 



Effective Partial Ontology Mapping in Pervasive Computing Environment Literature Review 
 

- P. 9 - 

 

 

Figure 4 Semantic Network for an Intelligent Environment 

 

 

Figure 5 Interactions between Patch Panel and devices in an Interactive workspace 

 

2. Interactive Workspaces 

Interactive spaces [Johanson et al., 2002] project focuses on the interaction between the 

human and the devices. Users communicate with devices by triggering event changes such as 

button presses. Each device expresses its state changes as Finite State Machine (FSM). Patch 

Panels [Ballagas et al, 2004] assigns a unique identifier for each event change. Patch Panels 

collects event changes and send them to the corresponding devices according to the unique 

identifier. The interaction between the Patch Panel and the devices in an Interactive workspace is 

shown in Figure 5. Interactive workspace only suits for environments with stationary devices 

because operations done during state changes are carried by more than one devices and they are 

defined by applications at design time. In order to allow users to interactive with dynamic devices 
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and enable devices to behave according to the changes in the environment, a more expressive 

language is required. 

 

3. Other Smart Spaces projects 

“Context Toolkit” [Dey, 1999] used similar approach as the one used in Interactive 

Workspace. An input event detected by the smart spaces changes the context-sensitive 

applications. One of the usages of “Context Toolkit” is keeping track of users who are still 

present in the smart space in location-based applications. Their working philosophy is that a user 

leaves the smart space will cause an event change. Open Agent Architecture (OAA) [Martin et al., 

1999] also based on action triggering on contextual information. EasyLiving [Brumitt et al., 2000] 

attempted to represent geometric information. However, a more expressive and formal language 

is required in order to unify the geometric information into a grander vision of knowledge. 

Ontology 

Among all the knowledge representation strategies, we think that using ontology is most 

suitable in pervasive computing environment. Ontology represents the semantics of different 

concepts. It provides a formal, explicit specification of a shared conceptualization of a domain 

that can be communicated between people and heterogeneous and widely spread application 

systems [Gruber]. It is a formal explicit description of concepts (also called classes) in a domain 

of discourse, properties of each concept describing various features and attributes of the concept 

(also called slot) and restrictions on concepts [Noy & McGunness, 2001]. Ontology has been 

represented in different forms and languages. The most widely accepted form is semantic network 

because it is language independent. Below are the different forms of ontologies present in the 

literature. The logic form of ontology is shown in Figure 6. Knowledge Interchange Format (KIF) 

[KIF] is an example of logic language for ontology. Figure 7 – Figure 9 (captured from 

[Horrocks]) are the graphical representations of ontology. The topic map form is shown in Figure 

7. Topic Map Constraint Language (TMCL) [TCML] is an example of topic map language. 

Semantic network is shown as Figure 8. A node in the network represents a concept. An arc 

connecting two nodes is their relationship. The label of the arc is the name of the relationship. 

Resource Description Framework (RDF) [RDF] is an XML-based language for ontology. Its 

graphical representaion is shown in Figure 9. 



Effective Partial Ontology Mapping in Pervasive Computing Environment Literature Review 
 

- P. 11 - 

 

 

Figure 6 KIF-Logic Representaion of Ontology 

 

 

 

 

 

 

Figure 7 Topic Map Representation of Ontology 



Effective Partial Ontology Mapping in Pervasive Computing Environment Literature Review 
 

- P. 12 - 

 

 

Figure 8 Semantic Network 

 

 

Figure 9 RDF 

 

Ontology was firstly introduced in the computer science literature for representation 

information in artificial intelligence and knowledge representation ([Davis et al, 1993], [Davis 

and Shrobe, 1983] and [Doyle and Patil, 1991]) because it represents machine-interpretable 

information that let machines to act intelligently. It is now a hot topic in semantic web researches 
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[Davies et al., 2003], [Fensel et al., 2003] and [Horrocks and Schneider, 2003]. Semantic web, 

entitled as the future we, aims to provide intelligent web searching by providing meanings to 

homepages instead of using machine un-understandable HTML tags. When a user types in the 

keywords about the information that he/she wants to search in the existing web search engines, 

keyword matching with the content of the homepages is performed. Since a word can have 

different meanings, the accuracies of web search engines vary. A well-known example is the 

word “Apple”. It is a kind of fruit and it is also a computer brand name. Semantic web proposed 

an additional semantic layer for the existing web to facilitate web searching. This layer uses 

ontology to represent information [Lee, 2000]. The proposed layer structure of the semantic web 

from Lee [Lee, 2000] is shown in Figure 10. 

 

 

Figure 10 Semantic Web architecture 

 

Semantic web searching is similar to service or resource lookup in pervasive computing 

environment because they aim to provide an intelligent matching. Hence, ontology has been 

adopted in projects such as Project Oxygen [Oxygen], CoBrA [Chen et al., 2003] and GAIA 

[Roman et al., 2002]. Oxygen is discussed in the previous sections. Ontology used in Oxygen is 

shown as semantic network in Figure 4. Context Broker Architecture (CoBrA) defines a set of 

Ontology Web Language (OWL) [OWL] ontologies to allow devices (or called agents in their 

term) to acquire, reason about and share context knowledge. GAIA is a middleware that enables 

embedded devices to aware of the context in smart spaces (Smart spaces are called “Active 

spaces” in their term). Similarly to CoBrA, it also defines a set of ontologies about the smart 
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spaces such as entity and context information. Ontologies are used in a very restricted way in 

Oxygen, CoBrA and GAIA because devices communicate using the pre-defined ontologies. 

Usage of ontologies across different smart spaces is not addressed. 

ONTOLOGY MAPPING 

A smart space is called a domain and information in a domain is defined as domain 

knowledge. Smart spaces have different domain knowledge because they represent information 

using different ways. When users and devices move across smart spaces, knowledge gaps exist 

because of the differences in domain knowledge. Just like Alice travels from her home country to 

another country and communicates with Bill who lives in that country. Alice and Bill have 

knowledge gaps because of differences in culture, education background, etc. Ontology mapping 

is the mechanism to bridge knowledge gaps. Ontology mapping is defined as: Given two 

ontologies O1 and O2, mapping one ontology onto another means that for each entity (concept, 

relation or instance) in Ontology O1, we try to find a corresponding entity, which has the same 

intended meaning, in Ontology O2 [Su, 2002]. Ontology mapping between ontology O1 and 

ontology O2 is shown in Figure 11. 

 
Figure 11 Ontology Mapping 

 

Ontology mapping has been widely researched in semantic web. Most ontology mapping 

tools developed are to find a one-to-one corresponding mapping between concepts in two 

ontologies [Doan et al., 2002], [McGuinness et al., 2000], [Mitra et al., 2000], [Noy & Musen, 

2000], [Stumme & Madche, 2001]. These mapping tools can be classified into two types: source-

based and instance-based. 
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Source-based mapping tools compare the similarity of the concepts based on the 

properties of the concepts and the structure of the ontology defined in the source ontologies. 

Examples of source-based mapping tools are PROMPT [Noy & Musen, 2000], Chimaera 

[McGuinness et al., 2000], and ONION [Mitra et al., 2000]. PROMPT and Chimaera merge two 

source ontologies into a new one. The merged ontology contains concepts from both sources. 

They compare similarity of concept names to generate a match list of concepts. Users decide 

which concepts should be mapped based on the match list. ONION results in a set of mappings 

(articulation rules using their terms) between two ontologies. It transforms source ontologies into 

graphs. The nodes and the edges are used to match two graphs. Nodes are matched based on their 

names and a set of user-defined synonyms words. PROMPT, Chimaera and ONION use 

similarity between concept names for mapping. They work well for ontologies having a 

specialized terminology like medical ontology where each concept is a disease and each disease 

has a unique name. Their matching accuracy decreases when mapping ontologies with more 

general terminologies. 

Instance-based ontology mapping tools compare the similarity of the concepts based on 

the source ontologies and their data instances. Examples of instance-based ontology mapping 

tools are FCA-Merge [Stumme & Madche, 2001] and GLUE [Doan et al., 2002]. FCA-Merge 

merges two source ontologies into a new ontology. FCA-Merge generates a pruned concept 

lattice by analyzing the frequencies of usage of concepts. Merging decisions are made based on 

the pruned concept lattice. FCA-Merge suits best the mapping of text documents: it requires a set 

of common instances for the mapping ontologies. For example, the instances are in the form of 

documents or homepages. GLUE gives a set of pairs of related concepts with some certainty 

factor associated with each pair. It analyzes the distributions of the concepts in data instances of 

the source ontologies and uses joint probability distribution to calculate the similarity between 

two concepts. GLUE, however, does not consider the structure of the ontologies (i.e., the 

relationships between concepts) during mapping. 

Our proposed design uses the source ontologies and their instances. It calculates the 

similarity based on the similarities of the concept names, similarities of properties of the concepts 

and their relationships. It works for many different types of ontologies since it can assign a 

different weighting to each similarity calculation. Compared with those mapping tools that find a 

one-to-one corresponding mapping of concepts between two ontologies, our mechanism is more 

efficient since it is a partial mapping of the source ontologies. Compared with traditional 

instance-based ontology mapping tools, our mechanism is more space efficient since it uses 

history records to store the information about the instances instead of storing all the instances. 
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SIMILARITY FUNCTIONS 

Mapping a concept in ontology O1 to a corresponding concept in ontology O2 is the key 

process in ontology mappings. Machine learning mechanism helps to classify a new data into an 

existing group of data. This is also applicable in ontology mapping in pervasive computing 

environment because ontology mapping can be viewed as to classify a concept in ontology O1 

into an existing grouping of concepts defining in ontology O2. There are many machine learning 

techniques: Laplace Estimation, Decision Tree [Breiman et al., 1984], [Quinlan, 1993], k-nearest 

neighbour [Duda and Hart, 1973] and Naïve Bayes’ rule [Mitchell, 1997]. 

 

1. Laplace Estimation 

Laplace Estimation is commonly used for matching words. It is used in PROMPT [Noy 

& Musen, 2000], Chimaera [McGuinness et al., 2000], and ONION [Mitra et al., 2000]. Laplace 

Estimation is defined as: 

( )
( )
( )j

ji

ji
cN

cwN
cwP

,
| =  

 

Laplace Estimation, denoted by ( )
ji cwP | , finds the number of times a word wi appears 

in the category cj. 

 

2. Decision Tree 

Decision Tree [Breiman et al., 1984], [Quinlan, 1993] classifies domain knowledge using 

tree structure. It is built before similarity comparison begins using a set of sample instances. A 

node in a decision tree is a discrete class. An edge between two nodes is the classification rule for 

the class (i.e. the content of the sample instance that led to the class). To determine a particular 

data belongs to which class, user needs to transverse down the decision tree based on the instance 

content. Decision Tree calculates similarities efficiently and is good for classification problems. 

Figure 12 shows a decision tree about the classification of diamonds. For example, an internal 

flawless (IF) class D five carats diamond is a good diamond. 
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Figure 12 Decision tree for diamond classificaiton 

 

3. K-nearest neighbour 

K-nearest neighbour [Duda and Hart, 1973] converts the features of all the concepts in an 

ontology into vectors. It constructs an n-dimensional lattice if there are n distinct features. Sample 

instances are located in the lattice based on their content. The class for a new data is determined 

by the distance between the new data and the k-nearest neighbours in the n-dimensional space. 

Figure 13 (captured from [Duda and Hart, 1973]) shows the k-nearest neighbour using 2 

dimensional spaces and k equals to 3. Xq belongs to class “●” as it has 2 “●”s and 1 “x” as its 

neighbour.  K-nearest neighbour is used in FCA-Merge [Stumme & Madche, 2001].  

 

 
Figure 13 K-nearest neighbour 
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4. Naïve Bayes’ rule 

Naïve Bayes’ rule [Mitchell, 1997] is a probability theorem that helps to determine the 

class jc given the features, d, of the new data. It is used in GLUE [Doan et al., 2002] 

( ) ( )
( )
( )dP

cP
cdPdcP

j

jj ×= ||  

 

The probabilities ( )jcdP | , ( )jcP  are obtained from the sample data. Naïve Bayes’ rule 

gives the same value of ( )dP  for all classes as it assumes that all features are independent. To 

illustrate the usage of Naïve Bayes’ rule, a fruit concept is used. A fruit has properties: color and 

shape. Naïve Bayes’ rule helps to determine what kind of fruit it is if a fruit has color orange and 

round in shape. Naïve Bayes classifier is the name for the Bayes’ rule applied in document 

classification. 

 

It is a long debate about which similarity function supervisors the others. However, there 

are still no winners because researchers evaluate similarity functions using different sample 

instance. We decided to adopt the one that is most suitable for pervasive computing environment 

in our design.  

Laplace Estimation is, definitely, not sufficient as ontology does not simply contain string 

descriptions. Restrictions on properties and relationships are not compared. Translating ontology 

to decision trees is difficult because it is hard to determine the root node. A root node implies that 

this concept is more important than other concepts in the tree which contradicts to all concepts are 

equally important in semantic network. K-nearest neighbour constructs an n-dimensional space 

for features of the concepts. It is effective to measure the similarity if all concepts share the same 

set of features such as in FCA-merging because the number of dimensions are fixed. There are 

too many dimensions in pervasive computing environment that it will be time-consuming to 

compute the vector location for an instance in pervasive computing environment. Scaling the 

feature dimension is another problem using k-nearest neighbour. Taking a color feature as an 

example, the methodology to locate a “red” and a “green” in the dimension is critical. If Laplace 

Estimation is used, the distance between “red” and “green” is simply their syntactical difference 

rather than their semantical difference. If the meanings of the words are used as the scale, a 

general mechanism for scaling all the dimensions is required. Naïve Bayes’ rule has the 

assumption that all features are independent. On the other hand, it is allowed to define sub-
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properties of a property in ontology. Naïve Bayes’ rule is also based on the string descriptions 

that does not taken the restrictions into consideration. 

A single similarity function does not fit the needs for the similarity measure in the 

pervasive computing environment. Our design proposes to use a combination of them. For string 

comparison like string type properties, Naïve Bayes’ rule and Laplace Estimation are adopted. 

For relationship similarity comparison, k-nearest neighbour is used. As a result, our design is able 

to compute similarity using the properties and relationships of concepts. 
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PROPOSED DESIGN 

RESEARCH CHALLENGES 

From the previous chapters, the importance of ontology mapping in pervasive computing 

environment is addressed. Four new challenges on ontology mapping in pervasive computing 

environment that differentiate it from other related literatures are identified. These challenges are 

(1) online mapping, (2) efficiency in mapping, (3) space limitation of devices and (4) knowledge 

propagation to support user mobility. 

Online mapping 

Existing ontology mapping tools discussed in the literature review aimed to provide 

offline ontology mapping. They help to map ontologies during ontology design phase, for 

example, merging two ontologies to create a new one so that existing ontologies can be reused. 

They believed that ontology design is time-consuming because a single ontology is designed 

thoroughly to capture all concepts in a domain by domain experts. Re-using existing ontologies 

helps to reduce design time. It is no doubt that reusing existing ontologies is necessary. However, 

it is hard to include the world’s knowledge about a domain in an ontology. It is also inflexible for 

application and system designs when global domain is used. Changes in an ontology will cause a 

series of changes in worldwide applications that discourages adding new concepts. New changes 

cannot be reflected in previously mapped ontologies unless they are being mapped again.  

The presence of smart spaces in pervasive computing environment allows us to logically 

group the knowledge inside it to form domain knowledge. Domain knowledge is represented in 

domain ontology. Communication is more effective if devices working closely to each other share 

the same domain language. Different smart spaces are allowed to have different domain 

knowledge. This is similar to the case that people in different countries have different mother 

languages.  

In real life, people travel from countries to countries. In pervasive computing 

environment, devices move across smart spaces. When a device moves from smart space A to 

smart space B, it comes across different domain knowledge. It is obvious that ontology mapping 

in smart space A and smart space B cannot be done at design time because such movement is 

difficult to predict at design time. Online ontology mapping, therefore, is proposed. Online 
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ontology mapping is defined as ontology mapping which is preformed at real-time instead of 

design time. 

Efficiency 

As our proposed ontology mapping is preformed at run-time, efficiency is important 

because proactive service requests may become out-dated services if large latency exists during 

analyzing service requests. For example, a compute screen provides personal advertisements 

when a user approaches. If it takes too long to analyze the user’s preferences, he/she walks pass 

the screen before the advertisements are displayed. Accuracy in mapping results is equally 

important. Otherwise, devices cannot fully realize users’ needs. There is trade-off between 

efficiency and accuracy. Our design should try to balance between these two. 

Space limitation 

Space limitation is related to the place where ontologies are store. Certainly, it is ideal 

that each device stores a local copy of the ontologies so that they can retrieve the concepts 

efficiently. In reality, memory limited mobile machines, wearable devices and sensors are unable 

to do so. Our proposed architecture, therefore, consists of resource-rich computer(s) called smart 

space monitor(s). It helps devices to obtain contextual information about the smart space and to 

allocate resources and functions. Complete ontologies are stored and mapping processes are 

performed at it. Frequently used part of an ontology named partial ontology is cached in devices. 

Bridging knowledge gaps means that partial ontologies are mapped to the complete ontologies 

stored in the smart space monitors in new smart space.  The challenge of such mapping is how to 

increase the mapping accuracy due to partial information is given. 

Knowledge propagation 

Users move across smart spaces and leave a lot of mapping results in different smart 

spaces. It will be useful for mapping if we can analyze and reuse these results so that a user’s 

knowledge can propagate to help another user. 
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SCENARIOS 

The following daily life scenarios are helped to realize the usage of online partial 

ontology mapping. 

Scenario 1 

Alice is traveling to another country on the plane. This is her first time to go outside her 

home country and she does not understand the language spoken in the destination country. As 

usually, she brings her smart phone that stores her personal details such as her identity and daily 

schedule. Alice gets off the plane and arrives the immigration building located in the airport. 

Once she steps in the building, the sensors immediately inform the smart space monitor about the 

arrival of Alice and the smart space monitor forwards the information to the immigration 

department computers. In this country, every tourist needs to fill in a declaration form with 

his/her personal information, the purpose of the travel, the place where he/she is going to stay and 

the departure day. Smart space monitor forwards the form to Alice’s smart space when it gets 

response from immigration department computers. The smart phone asks Alice whether her 

personal details are allowed to disclose when it receives the form. Alice clicks ‘OK’. As the 

terminologies used to represent the personal information in Alice’s smart phone are different 

from those required by the immigration departure, online ontology mapping is performed. When 

mappings completes, Alice’s smart phone automatically fills in the form. Besides, the smart 

phone retrieves Alice’s schedule and fills in the name of the hotel that Alice is going to stay and 

the departure day. After that, the form is sent back to the immigration department. The 

immigration department computers collect the form and verify whether Alice is legal to go inside 

the country. 

Scenario 2 

Following scenario 1, Alice arrives at the hotel. The method about how the sensors 

located in the hotel gets Alice’s personal information is described in Scenario 1. The hotel smart 

space monitor retrieves the reserved room location and tells Alice’s smart phone. Alice’s smart 

phone informs Alice about her room location. After a long journey, Alice’s smart phone notices 

that Alice is hungry and wants to have some snacks. Mostly likely, Alice would like to eat fish 

ball. In Alice’s home country, fish balls are popular snacks and there are fish ball machines 

everywhere. Alice’s smart phone looks up the fish ball machine in the hotel through the room’s 
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smart space monitor. The room’s smart space monitor does not know what fish ball is. Using 

Alice’s partial user ontology in the smart phone, the smart space monitor knows that fish ball is a 

kind of food which is made from fish and is spicy. The smart space monitor then try to locate the 

fish ball selling machine in the hotel by connecting to the hotel’s smart space monitor. Since this 

hotel does not have fish ball selling machine, the room’s smart space monitor advices Alice to 

order other foods by popping up the hotel restaurant menu in the display screen inside Alice’s 

room. 

Scenario 3 

Alice bought an electronic pet in the shopping arcade near the hotel. The shopkeeper 

helps Alice to load her partial user ontology into the pet so that it can understand more about 

Alice. For example, the electronic pet sings when Alice is unhappy. It clamps hands when Alice 

finishes playing piano. Online ontology mapping is performed to bridge the knowledge gap 

between the electronic pet (To be precise, it should be the software installed inside the electronic 

pet) and Alice’s partial user ontology during loading the user ontology. Once the electronic pet 

gets the context information about Alice, it reasons it and behaves accordingly. 
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OVERVIEW 

Figure 14 shows the architecture overview of our proposed design. A pervasive 

computing environment is composed by smart spaces. A smart space is a logical boundary for a 

computing and resources rich area. A smart space does not need to be distinct. It can be a large 

smart space consists of many smaller smart spaces or can overlap its boundary with another smart 

space. Users and devices can move freely across different smart spaces. Smart spaces can 

communicate with each other using the smart space monitors through network. 

 

 

Figure 14 Architecture overview 

 

Three types of ontologies and three types of mappings have been classified. The first type 

of ontology is domain ontology. Domain ontology is the ontology about the smart space, for 

example, the environment context, resources, activities done and people present in the smart 

space. Domain ontology is defined and managed by domain administrators. Smart space monitors 

are used to store the domain ontology. It also helps to coordinate the services and resources. 

There is only one domain ontology in each smart space. Application ontologies are the second 



Effective Partial Ontology Mapping in Pervasive Computing Environment Proposed Design 
 

- P. 25 - 

 

type ontology. They store the concepts used in applications like device configuration, application 

parameters and service descriptions. They are defined and managed by application developers or 

application vendors. A smart space can have various application ontologies being used. Complete 

applications ontologies are stored inside application servers managed by application vendors. It is 

believed that a vendor will try to re-use its application ontologies to reduce development and 

maintenance costs. At run-time, application ontologies are cached in smart space monitors. The 

total number of application ontologies worldwide should be limited. The last type of ontology is 

user ontologies. User ontologies consist the users’ knowledge such as user identity, social and 

mental status and user preferences. Complete user ontologies are resident somewhere in the 

Internet (For example, there can be tools that help users to define their user ontology and store 

them in servers. Or, users store their user ontology in their resource-rich machines). Devices store 

frequently used user concepts, named partial ontologies, in their local memory for fast access and 

efficient retrieval. Less frequently used concepts are retrieved through network and are cached in 

smart space monitor(s). They are numerous user ontologies in pervasive computing environment 

as each user can have his/her own ontology.  

Mappings are required between (1) application ontology and user ontology; (2) user 

ontology and domain ontology and (3) application ontology and domain ontology. When users 

specify to use a particular service, mappings between application ontology and user ontology are 

required. Using the scenario as example, Alice’s smart phone realizes that Alice is hungry and 

locates the fish ball selling machine for her in the hotel. Mapping between Alice’s partial user 

ontology and smart phone application ontology help to determine Alice is hungry. Alice’s smart 

phone locates the fish ball machine by mapping the description of the fish ball to the domain 

ontology. The last type of mapping happens when Alice tries to locate resources and devices in 

the hotel instead of using the proactive services provided by the smart phone. In our design, all 

three types of mappings are done at the smart space monitor. After mapping is completed, results 

are recorded and application and user ontologies are cached in smart space monitors.  

Figure 15 shows the internal architecture of a smart space. A smart space consists of 

users, devices, sensors, resources and smart space monitors. For illustration purpose, figure 15 

only shows one monitor. Smart space monitor stores domain ontology and caches application 

ontologies retrieved from application servers. It is responsible to coordinate devices and resources, 

lookup services and resources and perform ontology mappings. It also stores mapping results to 

achieve knowledge propagation.  

Among all the functionalities provided by a smart space monitor, we think that ontology 

mapping is the most fundamental one because effective communicates that help to avoid 
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ambiguity during information exchange are essential to coordinate resources and devices. 

Services lookup is based on the ability to keep track of the presences of the devices and services 

and the interpretation of the lookup queries. Again, ontology mapping is required to interpret the 

queries intelligently. As ontology mapping is the basic for all pervasive computing services we 

decided to focus on it such that a good and strong foundation is provided for the healthy growth 

and development of pervasive computing literature. 
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Figure 15 Architecture of a smart space 
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TERMINOLOGY AND NOTATION 

Before discussing the details, the terminologies and notations used are explained. Table 1 

shows the terminology table and table2 shows the notation table. 

 

Term Meaning 

Ontology Ontology is a formal specification of concepts in a 

domain closure. 

Source ontology Source ontology is an ontology represented by an 

ontology language. Ontology languages can be 

classified into logic-based and XML-based. Logic 

based languages such as Knowledge Information 

Interchange (KIF) [KIF] can be interpreted and 

reasoned by machines directly. It, however, is more 

difficult to write and not user-readable.  

XML-based languages require parsers to parse the 

information. It is easy to learn, write and read. XML-

based ontologies allow more flexible structure. 

Examples of XML-base languages are Resource 

Description Framework (RDF) [RDF], DAML 

[DAML+OIL] and Ontology Web Language (OWL) 

[OWL]. This research is based on the usage of XML-

based ontology languages. 

Instance Instances are the actual data information defined in 

the source ontology. Figure 16 shows a source 

ontology represented by OWL and Figure 17 shows 
an instance. 

Request instance Request instance is the service request instance. 

Concepts, relationships and properties Elements insides a source ontology are concepts, 

relationships and properties. To be simple, concepts 

are the XML tags used to define information. 

“Country”, “Social Status”, “Memory” are concepts. 

In languages like OWL, a concept is also called a 

class. Relationship is the semantic linking between 

two concepts for example, “is a” and “has” are 

relationships. Property (or called attribute) is the 

semantic description of a concept. Figure 16 shows an 

OWL ontology that defines concepts, relationship and 

property. 

Table 1 Terminology Table 
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Figure 16 OWL wine ontology 

 

 

 

 
Figure 17 Ontology instance of wine ontology 
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Notation Meaning 

O1 The source ontology used by the device or user for requesting resources or 

services. For application and user ontologies mapping, O1 refers to the user 

ontology. For user ontology and domain ontologies mapping, O1 refers to 

the user ontology. For application and domain ontologies mapping, O1 refers to 

the application domain. 

O2 The source ontology that describes the resources or services with which the 

smart space monitor stores or caches. For application and user ontologies 

mapping, O2 refers to the application ontology. For mappings involves domain 

ontology, O2 refers to the domain ontology. 

Un The set of instances of ontology On. 

In An instance of ontology On. 

Cn A concept presents in ontology On. 

wi Weighting. 

Sim(A,B) The similarity between element A and element B. 

Table 2 Notation table 

MAPPING PROCESS OVERVIEW 

In pervasive computing environment, efficient and accurate mappings for service 

requests are required to provide intelligent and proactive services. Three procedures have been 

designed for the mapping process: (1) pre-fetching; (2) similarity calculation and (3) recording 

results.  

Pre-fectching is designed to minimize the number of concepts to be mapped between two 

ontologies such that efficient online ontology mapping can be achieved. It is especially important 

for mapping large ontologies such as the domain ontology. Pre-fetching estimates the similarity 

between two concepts by looking at their names and filters highly possibly un-related concepts to 

save mapping efforts. Our philosophy is that concepts with totally different meanings in their 

names are unlikely to refer to the same thing. 

A concept definition in an ontology contains a concept’s name/identifier, its properties 

and  relationships with other concepts. Our design makes use of them in the similarity calculation 

process. K-nearest neighbour is used to calculate the semantic distance between concepts C1 and 

C2 by converting relationships in C1 into vector space. Each relationship in C1 is a dimension in 
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the vector space and C1 is located at the coordinate (1, 1, … , 1) where there are n “1”s if there 

are n relationship dimensions. Recall that the dynamic nature, the large number of dimensions 

and scaling for each dimension are the problems of using k-nearest neighbour in pervasive 

computing environment. We have overcome them by limiting the number of dimensions and 

having a dimension scale from 0 to 1. The number of dimensions are fixed to be the number of 

relationships in concept C1. K-nearest neighbour locates C2 in the vector lattice by calculating the 

similarity between each dimension and each relationship in C2. The similarity formula uses the 

names of the relationships and their related concepts for calculations and outputs a value between 

0 and 1 which limits the scale of the dimension.  The smaller the distance between the concepts 

C1 and concept C2 in the vector space, the larger their relationships similarity is. 

There are different types of properties: constraints (or called restrictions) and datatype 

properties. Constraints are the restrictions on the concepts such as the datatype range of a 

property or the maximum appearance of a concept in an instance. For example, a concept 

‘person’ should have maximum one ‘gender’ property. Datatype properties describe the property 

types of the data content. For instance, string type or integer type. In traditional ontology mapping 

tools, all data contents are converted into strings and the similarity between the properties equal 

to the similarity between the strings. String “123456” is similar to string “12345”. On the other 

hand, there is big difference between the values 123456 and 12345. Our design, therefore, 

recognizes the datatypes of the properites and handles them differently. For string datatype 

properties, we use Naïve Bayes’ rule to calculate the similarities. For integer datatype properties, 

mathematical calculations such as addition and subtractions are used. The similarity formula is 

automatically chosen by our proposed mechanism at execution time based on the datatype of the 

properties. 

The overall similarity calculation process is based on the Jaccard coefficient [Rijsbergen, 

1979]. Jaccard coefficient determines the ratio of the overlapping data between two sets of data. 

Jaccard coefficient is defined as: 
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Jaccard coefficient is a commonly used similarity measure which is based on the joint 

probability distribution. It is adopted in our design because data instances should be taken into 

consideration during mapping because our research goal is to provide a service and resource 

instance to the requester. In other words, we try to find an instance from ontology O1 that can best 

match an instance from ontology O2. It is useless if we can have a prefect matching between two 
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ontologies without finding a matched instance. Jaccard coefficient outputs similarity measure 

between zero and one. A “1” means the two concepts are identical and a “0” means the two 

concepts are totally different. ( )21,CCP , ( )21 ,CCP , ( )21 ~, CCP  and ( )21 ,~ CCP  in the 

formula are computed based on the definition of the concepts (i.e. the name, relationships and 

properties of the concept) and  their instances. It is easy to retrieve instances for the domain 

ontology because the smart space monitor coordinates all the instances distributed in the 

environment. Instances of application ontologies are also available in the smart space as there are 

limited application ontologies. Some of them must be present in the smart space. User ontologies 

are cached as partial ontologies in different devices. Users move across different smart space and 

partial user instances are distributed everywhere. It is time inefficient if our design locates these 

instances at run-time. Counters are used instead to keep trace of the appearance of the concepts in 

the partial user ontology instances. When the users stay long in the smart space and their partial 

user ontology are mapped frequently, our design can provide accuracy increasing mapping results. 

Moreover, instance data can keep private because its content is not stored in the monitor. 

After mapping is completed, smart space monitor stores the results such that knowledge 

propagation is supported. We analyze the mapping results and group them into different 

categories. Mapping results can be re-applied to the same category of users in the future. The 

categories are determined based on the environment context such as time and activities. Domain 

administrators are allowed to predict users’ behaviours and help to define rules for the 

categorization to fit the true needs of the users in the smart space. As space is limited, it is 

impossible to store infinite mapping results. Replacement mechanism is designed which is based 

on the usage frequency and the context information. 

Other techniques are used to enhance our matching mechanism. Complete user ontology 

is not always available as they are either disturbed in the pervasive computing environment or 

they are stored far away in the network. Devices cache frequently used partial ontologies for fast 

access and retrieval. Our design also caches the partial ontology after mapping. This helps to 

construct a more complete picture of the user ontology where the mappings of the different parts 

of the user ontology are frequent. A replacement mechanism is also designed. It is based on the 

presence of the concepts in the instances and the usage frequency.  
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PRE-FETCH 

To increase the efficiency of mapping a concept C1 in O1 to a concept C2 in O2, we filter 

out the highly unrelated concepts by examining the names of C1 and C2 and generate a set of 

possible candidates of Cn from O2. Many mechanisms are proposed to compare similarity 

between two strings, for example, longest common substring, longest common subsequence and 

hamming distance. These mechanisms are based on the syntactic meaning (i.e. the spellings) of 

the two strings. Using the email XML structures described in the introduction as example, 

concept “SendTo” and concept “Recipient” are not similar as their syntactic meanings are greatly 

difference. However, we know that “SendTo” and “Recipient” have similar meanings in English 

that reflects that semantic meanings of the concept names are more important than their syntactic 

meanings.  

To define the semantic meanings of the words, we propose to use the WordNet ontology 

[Halimi et al., 1998]. WordNet organizes English nouns, verbs, adjectives and adverbs as 

synonym sets. A synonym represents a lexical concept. Synonym sets are linked by relations. We 

introduce the term Semantic Distance as the smallest number of intermediate concepts to connect 

the meanings of two concepts. For example, “Send” is related to “Sendee” and the hyponym of 

“Recipient” is “Sendee” in the WordNet ontology. As a result, “SendTo” and “Recipient” are 

semantically related and their Semantic Distance (SendTo, Recipient) = 1 as there is one 

intermediate concept “sendee” that connects between “SendTo” and “Recipient”. 

To filter un-related concepts, we retrieve the semantic distance of their concept names 

which is smaller than or equal to the semantic distance threshold for each pair of concepts 

between C defined in O1 and C’ defined in O2,. 

( ) ThresholdC, C' ≤Distance Semantic  

 

For common similarity measures, similarity is ranged from 0 to 1. A “0” means the 

compared items are totally different and a “1” means they are identical. Our design follows this 

rule by normalizing each semantic distance that is smaller than the threshold as:  
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For the set of the first k concepts with the highest similarity degree (i.e. the k- 

highest
( )namename CCSim ', ) denoted by Sk-high, we form the possible candidates set to be compared 

with C by: 
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In ontology mapping, a concept in O1 may be split into two concepts. For instance, a 

concept “name” in ontology O1 may be split into two concepts, “first name” and “last name” in 

ontology O2. To handle the splitting problem, our proposed mechanism merges concepts with 

their neighborhood concepts, parent concepts and children concepts. Merging concepts C’1 and 

C’2 of the same ontology is done by merging their concept names, attributes and relationships. To 

resolve naming conflict of attributes and relationships, attributes and relationships are renamed as 

C’1.attribute name and C’2.attribute name and C’1.relationship name and C’2.relationship name 

respectively. Duplicated relationships are removed during merging. A relationship between C’1 

and C’2 is converted as attribute with the name of the relationship as the attribute name.  
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SIMILARITY CALCULATION 

Jaccard coefficient is defined as: 
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From the project GLUE [Doan et al., 2002], ( )21,CCP  is defined as equation (2) where 

U1 and U2 are the instance set of O1 and O2 respectively. N (U1
C1,C2

) is the number of instances of 

O1 that contain concept C1 and concept C2. N (U2
C1,C2) is the number of instances of O2 that 

contain concept C1 and concept C2, N (U1) and N (U2) are the number of instances of O1 and the 

number of instances of O2 respectively. 
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We adopt these formulae when computing similarity between concepts C1 and C2 so that 

instances are considered when mappings are performed. To calculate P(C1, C2), we should have 

two instance sets U1 and U2. As discussed in the above chapter, it is difficult for smart space 

monitors to locate the instances of partial user ontologies and to store the instances. As a result, 

we use history records to determine the instance sets U1 and U2.  

The smart space monitor counts the number of concepts appearing in each mapping 

instance. For example, an ontology OA contains concepts Ca, Cb, Cc and Cd and a request instance 

contains concepts Ca and Cb. After mapping, the total number of instances of OA and the numbers 

of instances that contain Ca and Cb are incremented by 1 while the numbers of instances that 

contain Cc and Cd remains unchanged. N(U1) and N(U2), therefore, are recorded. To get 

N(U1
C1,C2

), we have to estimate the number of instances of O1 that contain concept C1 and concept 

C2. The number of instances of that contain concept C1 in U1 can be found from the history 

records. The number of concepts that contain both concept C1 and concept C2 in U1 is estimated 

by calculating the similarity degree of the properties and relationships between concept C1 and 

concept C2. If the properties and relationships of the concepts are similar, it is likely that the 

instance of concept C1 is an instance of concept C2. For numerical property such as memory size, 

it is important that a mapping is found to another concept whose property contains also a 
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numerical value; otherwise, it is difficult to satisfy functionality requests like “memory size less 

than 10 kbytes”. Hence, weights are added when calculating property similarity.  

The proposed mechanism also matches instances content when comparing two concepts. 

When a concept of the request instance matches a concept of a resource instance or a function 

instance, it is likely that these concepts are matched. The smart space monitor uses all the present 

instances of O1 and O2 in its smart space to compare with the request instance. 

Before looking at the details of our ontology mapping mechanism, the Property 

Similarity and the Relationship Similarity are discussed. Property similarity calculates how 

similar of the properties of the two concepts are and relationship similarity calculates how similar 

of the relationships of the two concepts are. Property similarity and relationship similarity 

compares all the properties and relationships exist in concept C1 and C2. 

Property Similarity, ps 

There are three elements compose a property in ontology: name, datatype and cardinality. 

Name is the name of the property such as “colour” and “size”. Datatype is the type of the content 

data. For example, property “colour” is string type. “Size” is integer type. Cardinality refers to the 

restrictions of the properties such as the range of the datatype, the maximum value of the datatype 

and the number of appearances of the property in a concept. For example, the minimum 

cardinality of property “Size” = 0 means “Size” must be a positive integer. As there are many 

different types, we handle them separately.  

For numerical datatype like integer and real number, similarity of the data content of 

property instances p1 and p2 is the division of the data value. 

( )
2

1
21

 instance of value

instance of value
 of instance of instance

p

 p
p,pSim =  

 

For string datatype, similarity of the data content of property instances p1 and p2 is 

calculated using Naïve Bayes’ rule. Data content of property instance p2 is tokenized into words 

as {w1, w2, … , wn}. Similarity of data content can be calculated using the following equation: 

( ) ( )
( )

( )n
nn

wwwP

cP
pwwwPwwwpP

,...,,
|,...,,,...,,|

21

1
121211 ×=  
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As Naïve Bayes’ rule assumes each word is independent, ( )nwwwP ,...,, 21 can be omitted. 

And Naïve Bayes’ rule can be re-written as below where P(p1) is the usage frequency of the 

property p1 in the data instance set: 

( ) ( ) )|(,...,,|
1

1211 nwPpPwwwpP
n

i

in ∏
=

×=  

 

It is ideal that meaning of the strings can be considered. However, this requires English 

sentence interpreter that is out of scope of this research. If there exists good one in the future, it 

can be plugged into our design.  

To compare the similarity of user defined datatype structures is within the scope of a 

compiler design. For simplicity, the value of each element in the structure is concatenated as a 

long string. And then, it’s similarity is calculated as string datatype as described above. 

For each pair of property/attribute in C1 (denoted by PC1) and property/attribute in C2 

(denoted by PC2), compute their property similarity using equation (3). The similarity of the 

property names are calculated using their meanings which is similar to computing the concept 

name similarity. Property instance similarity is calculated by counting the number of instances of 

C2 whose property has similar content as the corresponding property of the instances of C1 and 

the formula is shown in equation (4). 

( )
( )
( )

similarity instanceproperty    
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(4) 

  

Relationship Similarity 

Relationship similarity is calculated using k-nearest neighbour. For each relationship 

between C1 and C2, similarity between relationship RC1 and RC2 is computed as below. Equation 

(5) is used to locate the concept C2 in the concept lattice of C1 in dimension RC1. Similarity of 
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relationship names are calculated using their meanings which is similar to compute concept name 

similarity. 

 

( )
( )

( )typeRtypeR*Simw

RR*Simw

nameRnameR*Simw

RRSim

CC

CC

CC
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213
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,

,
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+=
 

(5) 

 

The relationship similarity is calculated as the distance between the origin and the 

concept C2 in the concept lattice. The longer the distance from the origin means the closer to the 

concept C1. It is the distance between the origin instead of the distance between the concept C1 

because to make the formula consistent with the similarity calculations with less similar having 

smaller value and a equal totally identical having value “1”. 
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(6) 

 

Calculation of ( )21 ,CCP  

After knowing the property similarity and relationship similarity, we can use of them to 

compute the ( )21,CCP  defined in equation (2). The following shows the procedures.  

1. U1 is partitioned into two sets. One set contains concept C1 (denoted as U1
C1
) while the other 

set does not contain concept C1 (denoted as U1
~C1

) based on the history records. 

2. U2 is partitioned into two sets. One set contains concept C2 (denoted as U2
C2
) while the other 

set does not contain concept C2 (denoted as U2
~C2

) based on the history record. 

3. Estimate the similarity between O1 and O2 with equation (7) where the denominators N(O1) 

and N(O2) are the total numbers of concepts in O1 and O2 respectively. Total number of 

similar concepts can be computed at pre-fectching when calculating maximum concept name 

similarity between each concept in O1 and in O2. If the maximum concept name similarity is 

larger than the threshold, the total number of similar concepts is incremented. 
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4. N (U1
C1,C2

) is found. 
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5. Similarly, calculate N(U2
C1,C2), N(U2

C1,~C2) and N(U2
~C1,C2) in ( )21,CCP . 
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6. P(C1,C2), P(C1,~C2) and P(~C1,C2) are computed using equation (2). 

7. The similarity degree using equation (1) is computed. This similarity degree is called 

Instance Similarity Degree as we use instances to calculate. 

8. The relationship similarity degree for C1 and C2 is computed using equation (5). 

9. The similarity between concept C1 and concept C2 is finally computed using the below 

equation. 

( ) similarity iprelationshdegree similarity instance 2121 *w*w,CCSim +=  

 

COMPARISON BETWEEN TWO ONTOLOGIES O1 & O2 

The detailed formulae for calculating the similarities are introduced. The overall working 

mechanism is discussed in this section. Below is the methodology to compare two ontologies; 

OntologyMapping() is our mapping function and NewMapping() is a procedure call that is 

invoked when mapping is performed from scratch.  
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NewMapping(Ci)  

{ 

   Pre-fetch the candidate concepts for Ci. 

    

For each candidate Ck found, 

      Computer the Jaccard coefficient
( )
( )ki

ki

CCP

CCP

∪

∩
 for Ci and Ck 

    

If the highest similarity degree > threshold, 

      Mapping is found. 

   Else 

      Mapping is failed. 

} 

Ontology Mapping (Ontology O1, Ontology O2) 

{ 

   Search history mapping record. 

 

   If O1 and O2 have been mapped, 

      If O1 and O2 have the same last modified date (i.e. the same 

         version number) as the history record, 

          

         For each concept Ci in the request instance,  

            If Ci is mapped to a concept in O2 in the record, 

               Mapping is found. 

            Else  

               Invoke NewMapping(Ci). 

      Else 

         For each concept Ci in the request instance, 

            If Ci is mapping to a concept,Cp in O2 in the record, 

               Compute Jaccard coefficient 
( )
( )pi

pi

CCP

CCP

∪

∩
 for Ci and Ck 

 

 If similarity degree > threshold, 

                  Existing mapping is reused. 

               Else 

                  Invoke NewMapping(Ci). 

            Else 

                  Invoke NewMapping(Ci). 

   Else 

      For each concept Ci in the request instance, 

         Invoke NewMapping(Ci). 

    

   Update number of instances and concepts encountered. 

 

   For each new mapping found, 

      Add <concept in O1, concept in O2, similarity degree,instance 

           count> in history record. 

} 
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RESULT RECORDING 

From the similarity calculation, it has been mentioned that the matching records are 

stored in triple form: <concept in O1, concept in O2, similarity degree, instance count>. Mapping 

results can be reused directly if they are from application and domain ontology mappings because 

they are shared by numerous devices. It is obvious that domain ontology has large instance set 

because there is only one domain ontology in each smart space. All environment variables such as 

time, place, activities, temperature and lightings are instances of the domain ontology. An 

application ontology also has large set of instances because a limited number of application 

ontologies defines many applications. Similarly, 26 alphabets generate numerous English words. 

Application ontology designers, application developers and vendors, may share a common 

application ontology or each of them define their own or a hybrid between the two methods. 

Application ontology mapping results can be reused directly once the same application or 

applications sharing the same application ontology execute. It is difficult to directly reuse the 

mapping results involving user ontologies because each user has its own user ontology. There are 

so many user ontologies that it is rare to access the same user ontology mappings frequently in a 

smart space. In other words, there is always a mapping miss in retrieving history records when a 

new user enters a smart space. In order to reduce the miss rate in our design, mapping results also 

categorized based on the usage pattern of different users.   

Categorization 

Domain administrators are allowed to predict the users’ behaviors and help to define the 

rules for the categorization to fit the true needs of the users in the smart space. The default 

categorization uses date, time and activities as categorization criteria if no domain administration 

defined rules are found. We assumed that concepts date, time and activities are present in the 

domain ontology and they are further coarsely categorized. Time is catalogized into “Working 

days” (from Monday to Friday) and “Weekend” (from Saturday to Sunday). Time is catalogized 

into “Morning”, “Afternoon” and “Night”. The usage pattern is stored along with the mapping 

results. Table 3 visualizes the mapping results categorized by date, time and activities.  Table 4 

shows how mapping results are stored in our design. The columns “C1”, “C2”, “Similarity degree” 

and “Instance count” are the triple form described in the previous chapter. A smart space monitor 

has one and only one mapping table. Its size is limited by the domain administrations.  
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URI of O1 URI of O2 Date Time Activity 

http://xxx.com  http://yyy.com Working days Morning Watch morning news 

http://abc.com  http://def.com Weekend Afternoon Play computer game 

http://xyz.com  http://ijk.com  Weekend Night Watch concert 
Table 3 Mapping results categorized by date, time and activities 

 

URI of O1 URI of O2 C1 C2 Similarity degree Instance count 

http://xxx.com  http://yyy.com sendTo Recipient 0.7 12 

http://abc.com  http://def.com Name Name 1.0 40 

http://xyz.com  http://ijk.com  Email Mail 0.3 24 

Table 4 Mapping records in smart space monitor 

 

The working mechanism of how mapping records are used in explained. A new user 

enters the smart space with his/her partial user ontology stores in a device. He/She tries to locate a 

service that is described by Onew. The smart space monitor tries to map Onew to a service 

description defining in ontology O2. Before ontology mapping begins, previous mapping results 

are retrieved. From the records in column “URI of O1” in table 3, it is realized that Onew  is a new 

user ontology to the smart space because there is no previous mappings between Onew with any 

ontologies in the smart space. Then, the mapping records of O2 are found from column “URI of 

O2”. If a history record exists, a mapping record is chosen based on the current data, time and 

activity. If more than one records satisfy the date, time and activity, the ontology record with the 

source ontology O1 is chosen if it is being used currently and the user of O1 is nearest to the new 

user. Otherwise, it is chosen randomly by the smart space monitor. When a record is chosen, pre-

fetching and ontology mapping begin. Our design treats Onew as an updated version of the 

ontology stated in column “URI of O1”. The methodology about how updated ontology can be 

mapped using history record has been discussed in the overall algorithm in previous chapter.  

We use date, time and activities as criteria in categorization because we want to balance 

between the complexity and the accuracy. It is true that if more parameters are included in the 

categorization, we can get a history record that is closer to the definitions of the new partial user 

ontology. However, it may also cause the categorization to be too specific that there are no 

improvements on the high miss rate of finding mapping records. If there are too few parameters, 

even a mapping record is retrieved. It cannot provide a satisfactory similarity degree. In other 

words, the mapping records are useless for knowledge propagation to map ontologies. Overheads 

will be induced for finding a useless mapping record. Our design tries to include as many as 

parameters in the categorization such as date, time and activities to increase the probability for 

finding a useful mapping record. On the other hand, we provide a coarse-grain classification to 
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each parameter to avoid a specific categorization. If more than one ontology mapping records 

match with the environment context, our design locates the user whom is nearest to the new user 

and have requested for the same service recently. Our philosophy is based on the belief that 

people who are having the same activity and are near to each other have a high chance that they 

requires similar services. 

Another consideration for the categorization criteria is the availabilities of the criteria 

parameters. As our default categorization is used by all the smart space monitors, the parameters 

determining the category should be present in most smart spaces. After investigating the existing 

smart space researches, we found that concepts date, time and activities are always defined in a 

smart space. We, therefore, use them as our criteria for categorization. As we mentioned before, 

strict rules are not included for the categorization. Domain administrators are always allowed to 

modify them by adding specify parameters for categorization. At current stage, we do not provide 

any syntax for the rules. A simple configuration file stating the criteria concepts with their 

relative importance having value between 0 to 1 is used.  

Replacement 

A replacement strategy is designed to delete out-dated mapping results so that memories 

can be freed for new ones. Replacement is taken place when the smart space monitor realizes the 

record table is full. We base on three factors to decide the replacement. Firstly, it is the usage 

frequency of the ontology. Concepts from frequently used ontologies should not replaced 

although the concepts themselves are not used frequently because the similarity degrees of their 

mappings help to provide more accurate mappings for mapping their neighbour concepts with 

new concepts. As the ontology is used frequently, it is believed that such neighbour mappings 

occurs quite oven. Secondly, the usage frequency of the concepts affects the replacement 

mechanism. Records having low instance count mean they are rarely used in the smart space and 

the hit rate for retrieving history records is not affected if they are deleted. The environment 

context is the last factor. For example, the mapping context categorization table realizes that an 

activity has not performed in the previous 100 records. It can treat it as an out-dated activity and 

free all mapping results related to the out-dated activity. 

 

Another technique that is similar to resulting record is called caching. Caching stores 

partial user ontologies and constructs a complete picture for a user ontology such that even partial 

information are provided in partial ontologies, our design is able to provide accurate mappings. 

Details of the caching mechanism is presented in the next section. 
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CACHING 

Complete structure of the user ontology may not be available in the smart space monitor 

because they are either distributed in different devices or they are stored far away in the network. 

In order to construct a complete structure of the user ontology, our mapping mechanism caches 

the partial ontologies after mapping is completed. When a user performs frequent user ontology 

mappings, his/her partial user ontologies stored in the smart space helps devices in the smart 

space to provide better services to him/her because the devices know them better. Caching also 

improves mapping by providing the knowledge of the missing concepts.  

Mechanism 

Caching is taken place after the mapping results have been recorded. Application 

ontologies and partial user ontologies are cached. Domain ontology is stored in the smart space 

monitor. Application ontologies are retrieved from the application servers provided by application 

developers or vendors. Recently used application ontologies are cached in the smart space 

monitor in order to save retrieval time as application ontologies are expected to be large. The 

partial user ontology is merged with the existing parts cached in the smart space monitor. The 

size for caching the partial ontologies, which is similar to the size of the memories for recording 

results, is defined by domain administrators. Different users have assigned different amount of 

cache places for caching their user ontologies. Stationary users (i.e. users tends to stay long in the 

smart space) can have a large cache while guests and temporary users are allocated with a small 

cache. In default, users have equal amount of memories to cache their partial user ontologies. 

Domain administrators need to define caching rules if special handlings on the caching memories 

are required. 

The merging process is straightforward. If the version of the partial user ontology is the 

same as the version in the parts caching in the smart space monitor, merging begins. Concepts are 

merged with the existing parts except for the overlapped concepts that are not added. If the 

versions of the partial user ontologies are not the same, mapping is treated as an updated version 

of the user ontology and the mapping records will be cached separately. The older version results 

are not overridden because our design wants to be compatible with different versions of 

ontologies. If the older version is not longer in used, its mapping results will be eventually pruned 

out by the caching policy specified in the record storing section. Although the process for 

merging is straightforward, the complexity lies in the replacement mechanism because the smart 

space monitor does not have unlimited space for the ontology to grow and expand. 
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Replacement 

Replacement mechanism is required to handle the case when caching memories are full. 

Replacement in caching partial user ontologies also depends on the usage frequency of the user 

ontology, the usage frequency of a concept and the environment context. Details of the 

replacement mechanism can be referred to the one that is described in the result recording section.  
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EVALUATION 

Experiments are carried out to evaluate the effectiveness of our design. We compare our 

mapping results with the source-based and the instance-based ontology mapping tools. To 

stimulate the source-based ontology mapping tools, a string comparer based on the Laplace 

Estimation is implemented. For instance-based ontology mapping tools, we compare our results 

with the GLUE project [Doan et al., 2002].  

The nature of the existing ontology mapping tools is different from our matching 

mechanism. A fair comparison on the performance is difficult to carry out. Our mapping 

mechanism performs mappings for concepts appear in the request instance while existing 

ontology mapping tools perform mappings for all concepts. Our matching mechanism must be 

faster if the source ontologies are huge and only a small number of concepts are used in the 

request instance. Moreover, our design stores mapping history records and partial user ontologies. 

If a record hit is found during mapping, it will even fasten our mapping mechanism. GLUE [Doan 

et al., 2002] has stated that they can achieve good matching accuracy when there are around 30 - 

50 instances for the source ontologies. We, therefore, provide a large instance set for GLUE.  

As it is difficult to perform fair comparisons, our experiments should be carefully 

designed. The factors that we are considered to be evaluated are listed in the following section. 

The implementation details of our matching mechanism are going to be discussed after that. As 

source ontologies are very important in our experiments, they are going to be introduced. 

Evaluation results are going to be present in the last part of this chapter. 

EVALUATION PARAMETERS 

Our objective is to design an effective partial ontology mapping for pervasive computing 

environment. The effectiveness can be measured by the speed, the memory consumption and the 

accuracy of the mapping results of the proposed matching mechanism. The speed of the algorithm 

is measured by the time used to complete the ontology mapping. We use seconds to measure the 

speed of the algorithm. Memory consumption means the memory usage requires storing the 

source ontologies, the instances and the history records. To measure the accuracy of mappings 

between two source ontologies, manually mappings are required. A mapping result is defined as 

the mapping from concept C1 in ontology O1 to concept C2 in ontology O2. The manual mapping 
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results are supposed to be the most precise mappings for all the concepts. The number of mapping 

results manually found is denoted by ( ) mechanism matchingN . If a mapping result found by our 

mapping mechanism matches with the one found manually, the mapping result is defined as 

correct. If a mapping result found by our mapping mechanism does not match with the one found 

manually, the mapping result is treated as incorrect mapping. The number of correct mappings 

found by our matching mechanism is denoted by ( )mechanism matching  manual N ∩ . Mapping 

accuracy is defined as the ratio of the number of correct mappings to the number of mappings 

found by our design. In our experiment, mapping accuracy is measured in percentage. The 

formula below shows the percentage of mapping accuracy.  

( )
( )

%100
 mechanism matchingN

mechanism matching  manual N
 accuracy  Mapping ×

∩
=  

 

TOOLS 

Different tools that help to construct ontologies and develop ontology-related applications 

have been designed in the ontology literature. For ontology and instances construction, ontology 

editors can be used. Different ontology editors support different ontology languages. For ontology 

storage and query, query tools have been designed. Some query tools are embedded in ontology 

editors while some are in the form of APIs. Ontology validators checks whether there exist syntax 

errors and conflicts in the ontologies. They are used after ontology has been constructed. 

Ontology-related applications can process ontology information by parsing the ontology using 

ontology parsers. Queries can be handled by applications through the query APIs. 

There are various ontology languages like RDF [RDF], KIF [Gensereth and Fikes, 1992], 

SHOE [Hefline and Hendler, 2000] and OWL [OWL]. Myriam and Patricia have stated the 

differences between different ontology languages [Ribière and Charlton, 2000]. “XML-based 

languages like RDF seems to be interesting because it allows to share ontologies on the web by 

using URI and namespace but it is not expressive enough. RDF-based languages like 

DAML+OIL are interesting because of the rich expressiveness to represent concepts and their 

relationships and also most common used axioms. The drawback of this language is just the 

readability of this language.”. Ontology Web Language (OWL) ontologies can share on the web 

by using URI and namespace because its vocabularies are extension of Resource Description 

Language (RDF). But OWL has expressive power as it is designed based on DAML+OIL 
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[DAML+OIL]. OWL becomes a W3C recommendation in February 2004 [McGuinness and 

Harmelen, 2003]. OWL provides three sublanguages OWL Lite, OWL DL and OWL Full. Each 

sublanguage has increasing expressive power. The differences between these three sublanguages 

are: “OWL Lite supports primarily needing of a classification hierarchy and simple constraint 

features. OWL DL was designed to support the existing Description Logic business segment and 

has desirable computational properties for reasoning systems. OWL Full has maximum 

expressiveness but it is unlikely that any reasoning software will be able to support every feature 

of OWL Full.” [McGuinness and Harmelen, 2003]. In our implementation, OWL DL is chosen as 

it is a standard proposed by W3C which means it is widely accepted. It uses URI for storing and 

retrieving ontologies which is also suitable for pervasive computing environment as ontologies 

are distributed all over smart spaces. 

Ontology editors help to create new ontologies and instances. Over 50 ontology editors 

have been designed. Michael has made comparisons between different ontology editors [Denny, 

2002]. BBN OWL Validator [BBN OWL Validator] and OWL Ontology Validator [Manchester 

OWL Validator] from University of Manchester are tools for checking OWL ontologies. Survey 

about ontology storage and querying can be found at [Magkanaraki et al., 2002]. General 

comparisons of different kinds ontology tools can be found at [Asunción Gómez-Pérez et al., 

2002]. Other resources for ontology implementation can be found at [OWL Implementations]. 

In existing ontology mapping tools, experimental ontologies are generated from scratch 

for evaluation. The advantage of using own designed source ontologies is that time can be saved 

for translation from one ontology language to another language and ontologies can be interpreted 

by the mapping tools directly. Translation was necessary in the past because there was no 

standard for ontology language. Ontology Web Language (OWL) has been proposed to W3C at 

December 2003 as a standard language for ontology. At present, OWL has been widely accepted 

in the literature. OWL provides a clear documentation about its syntax. There will be increasing 

number of OWL ontologies being constructed. These encourage us to use existing OWL 

ontologies for our experiments such that the practical mapping ability of our mechanism can be 

reflected.  

SOURCE ONTOLOGIES 

Four sets of ontologies are used in our experiments. East set contains two ontologies. The 

first and second sets of ontologies contain general daily terms. The third set of ontologies 

contains specialized terms. The last set contains pervasive computing environment terms. These 
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sets of ontologies are chosen to show that our matching mechanism suits all kinds of ontologies. 

All of the ontologies used for evaluation are existing ontologies that can be found in the Web. 

Some of them are defined using OWL while others use languages like DAML. Conversions are 

required for ontologies not written in OWL. We use time domain and publication domain for 

general terms ontologies, football terminologies for specialized terms and service descriptions 

ontologies used in pervasive computing environment. The OWL ontology for web services 

(OWL-S) [Martin et al., 2004] is included in the experiment as the last set of ontologies. Table 5  

- Table 8 show the detailed information about the ontologies used.  

 

 Time.daml Time-Entry.owl 

Concepts 3 16 

Properties and 

relationships 

4 47 

Language DAML OWL 

URI http://www.ai.sri.com/daml/ontologies

/sri-basic/1-0/Time.daml 

http://www.isi.edu/~pan/damltime/tim

e-entry.owl 

Table 5 General terms ontologies in time domain 

 

 SWRC.daml 

(Semantic Web Research Community 

Ontology) 

Publication-ont.daml 

Concepts 56 18 

Properties and 

relationships 

143 33 

Language DAML DAML 

URI http://ontobroker.semanticweb.org/ont

ologies/swrc-onto-2001-12-11.daml  

http://www.daml.ri.cmu.edu/ont/home

work/cmu-ri-publications-ont.daml 
Table 6 General terms ontologies in publication domain 

 

 Soccer.daml FootballAgents.owl, 

FootballObjects.owl, 

FootballState.owl 

Concepts 199 93 

Properties and 

relationships 

32 54 

Language DAML OWL 

URI http://www.lgi2p.ema.fr/~ranwezs/ont

ologies/soccerV2.0.daml 

http://elikonas.ced.tuc.gr/ontologies/fo

otball  

Table 7 Specilized terms ontologies in football domain 
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 Services.owl  

Profile.owl  

(From OWL-S) 

WSDL-ont.daml 

Concepts 14 25 

Properties and 

relationships 

28 27 

Language OWL DAML 

URI http://www.daml.org/services/owl-

s/1.1/   

http://onto.cs.yale.edu:8080/ontologies

/wsdl-ont.daml  
Table 8 Pervasive computing ontologies 

IMPLEMENTATION DETAILS 

The matching mechanism has been implemented using Java (Java SDK v.1.4.2) language 

and Jena API v2.1 [Jena]. Jena is a Java framework for semantic web. It consists of an OWL API 

for reading and writing OWL ontologies.  

A normal desktop computer is used as the simulator of the smart space monitor. It 

executes the matching mechanism, storing domain ontology and caching mapping results and 

partial ontologies. The matching mechanism takes two source ontologies, the instances of the two 

ontologies and the request instance as inputs. The source ontologies are in the form of URIs. For 

domain ontology, a file URI is used to stimulate it as a local copy stores in the smart space 

monitor. For applications ontologies and partial user ontologies, the URIs store the place where 

they are stored. Partial user ontology captures part of the concepts in the original user ontology. 

The complete user ontology is stored in the URI specified in the partial user ontology. We define 

the weightings and thresholds in the configuration file. Figure 18 shows the sample configuration 

file. The concepts presented in the request instance are matched with the second ontology. The 

first ontology defines the concepts used in the request instance. A matching table with the 

concepts in the request instance and the concepts in the second ontology are outputted. 

 
Figure 18 Configuration file 
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RESULTS 

Four experiments are carried out using four sets of ontologies. Instance-based ontology 

mapping requires 30-50 instances to train its learner. The learners are used as the reference of 

degree of similarity between two concepts. Each experiment provides 35 instances for instance-

based ontology mappings to have accuracy results. The time for training the learners in the 

instance-based ontology mapping is counted. We provide 10 instances for each source ontology 

for our matching mechanism to stimulate that smart space monitor has allocated 10 instances in 

the smart space. Historical instance counts are initialized to 0. In other words, the smart space 

monitor does not have any historical mapping. In later part, we are going to discuss the results 

with historical records. 

Experiment 1 

For ontologies in time domain, it is rather small. Request instance used all the concepts in 

the ontology. Therefore, a full mapping for request ontology is required. Source-based ontology 

mapping results all incorrect mappings because the concepts with the same name do not have the 

semantic meanings in the other ontology. Instance-based ontology mapping and our proposed 

matching mechanism have 100% accuracy. However, our proposed matching mechanism has a 

greater similarity degree for each pair of mapped concept. Similarity degree is the confidence of 

the mapping result. This shows that our matching mechanism maps better than the instance-based 

ontology mapping. Instance-based ontology mapping depends on the string description 

constructed by concatenate the relationships and properties of the concepts. In the time domain 

ontology, concepts in the second ontology have much more relationships than the concepts in the 

first ontology. The string descriptions in the second ontology are much longer than the 

descriptions in the first ontology which causes a low similarity degree. 

For the efficiency, source-based ontology mapping is the fastest because few concepts are 

involved in the experiment. It is the slowest for the instance-based mapping to because it takes 

long for training the learners as there are 30-50 instances need to be processed. Our matching 

mechanism has a reasonable response time. Table 9 summarizes the results of the first experiment. 

 Source-based Instance-based Our design 

Accuracy 0% 100% 100% 

Speed 1s 9s 5s 

Table 9 Results for experiment 1 

Experiment 2 
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Semantic Web Research Community (SWRC) ontology is a medium size ontology that 

contains more than 50 concepts and over 100 relationships and properties. We create a request 

instance that contains 30% of the original instance (i.e. 15 concepts are in the request instance). 

For source-based ontology mapping, it gives 53% accuracy. Instance-based ontology mapping is 

66% correct. Our matching mechanism achieves the highest accuracy because we consider the 

semantic meanings for the names of the concepts and we generate candidate concepts by merging 

a concept’s parents, children and neighbours in the pre-fetching. This helps to include the right 

candidates during pre-fetching. While other mechanisms provide one-to-one corresponding 

mappings, we have intelligence to merge concepts. If partial ontology that contains only the 15 

concepts of the SWRC ontology that is the same set of concepts as the request instance, our 

matching accuracy retains 80% accurate because SWRC ontology is highly connected and 

concepts have few properties. With partial ontology, the definitions of the request concepts are 

not affected. Our matching mechanism still has knowledge about the properties and relationships 

of the request concepts. We do not know the properties and the relationships of its neighbour only. 

As SWRC is highly connected and has few properties for each concept, the information loss 

about the neighbours is minimized. Hence, we retain the same accuracy but with lower similarity 

degrees for the mapping results.  

Source-based ontology mapping is still the fastest. Only 3 seconds are required to 

complete the matching process. Our matching mechanism and the instance-based ontology are 

slower because the SWRC ontology is large. A long processing time needs to extract information 

from the instances. Table 10 summarizes the results of the second experiment. 

 Source-based Instance-based Our design 

Accuracy 53% 66% 80% 

Speed 3s 34s 19s 

Table 10 Results for experiment 2 

Experiment 3 

In the third experiment, the two ontologies are huge. Both are more that 100 concepts in 

average. Request instance contains about half of the concepts (i.e. 50 concepts) in the source 

ontology. All algorithms achieve very promising accuracy. It is above 80%. However, the 

efficiency of our design and the instance-based ontology mapping are discouraging because we 

need more than two minutes to finish the mapping. Source-based ontology mapping obtains a 

good accuracy because the terms are unique in the domain. There are rare cases for a scorer 

concept having two terms. 

 Source-based Instance-based Our design 
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Accuracy >80% >80% >80% 

Speed 24s 183s 127s 
Table 11Results for experiment 3 

Experiment 4 

The two source ontologies in this experiment have little overlapping in their domain. 

OWL-S ontologies describes the overall picture of the web services which WSDL ontology 

focuses on the terminologies inside a WSDL document. These ontologies should be work 

together in order to capture all the terms used in the web service domain. We expect that all 

mapping results have low similarity degrees. Similarity degree less than 0.2 (1 is maximum) is 

treated as a correct mapping for not finding an appropriate mapping between two concepts. 

Request instance contains 50% of the concepts in the OWL-S ontologies (i.e. 7 concepts). 

Source-based ontology mapping achieves 60% accuracy as the two ontologies are from different 

domain and their concept names are different. Instance-based ontology mapping and our design is 

70% correct.  

Source-based ontology mapping uses 2 seconds to complete the mapping. Instance-based 

ontology mapping and our design are slower. Our design is much faster than the instance-based 

ontology mapping because during the pre-fetching, more unrelated concepts have been pruned 

out.  

 Source-based Instance-based Our design 

Accuracy 60% 70% 70% 

Speed 2s 22s 14s 

 

Conclusion 

Our mapping mechanism has achieved an average 82.5% accuracy that is nearly double 

more accurate than source-based ontology mapping. Although it is only 4% more accurate than 

the instance based ontology mapping, it is more than 50% faster. It is observed that our design 

requires more than double the time to execute than source-based ontology mapping, especially in 

experiment three. Optimization has been studied to make execution faster. The bottleneck for the 

mechanism is at parsing the ontologies. In the above experiments, source ontologies are retrieved 

by URIs. There is a large latency for the ontology parser to get the source ontology from the 

network and parse all the necessary concepts in the ontologies. The larger the source ontologies, 

the slower are the parsing. We have attempted to find a better parser. However, only Jena can 

support most of the features proposed by OWL. As source-based ontology mapping simply 

requires parsing the concept names, Jena can execute at a reasonable speed even thought the 
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ontology is large. For instance-based ontology mapping and our design, the properties, structures 

and the instances are parsed which causes a large overhead when extracting information from 

large ontologies. It is recommended that the number of instances to be processed should be 

minimized and avoids from defining concept with many relationships and properties. The most 

effective solution is that a more efficient ontology parser should be designed. 

The run-time memory usage mainly depends on the size of the source ontologies. During 

ontology parsing, Jena stores all parsed concepts in memory. For large ontologies such as the set 

used in experiment 3, memory usage is significantly large. As all mapping mechanisms require 

Jean to parse the ontologies, the memory usages for all the mechanism are not promising. For 

experiment 3, more than 300 mega-bytes memories have been used during run-time. And in 

average, 75% of the run-time memory is used for parsing ontologies. The memory usage of 

source-based ontology is minimum because its calculation is simple. We used about 15% less 

memories than source-based ontology mapping because 30-50 instances are stored to train the 

learners.    

In order to show the effect of the historical mappings in our matching mechanism, we re-

execute experiment 1 to 4 by using the previous mapping results we have generated. The average 

time for retrieving the ontology is 4 seconds. It is believed that if we do have some history 

records in our smart space monitor, it helps to improving our mapping mechanism further. And it 

is likely the case in the pervasive computing environment as devices keep requesting services and 

resources.  
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CONTRIBUTIONS AND CONCLUSION 

Ontology mappings are essential and important in pervasive computing environment. It is 

impossible for ontologies to be shared by all users because it is difficult to capture all the 

necessary concepts. It is also impossible for ontologies to be mapped and merged at design stage 

so that it discourages ontology updates. Devices in pervasive computing environment have 

limited space for storing huge user ontologies, which can only afford the storage of the most 

frequently used concepts. Partial online ontology mapping, which ontology mapping is performed 

on partial user ontologies at execution time, is needed in pervasive computing environment. As 

ontology mappings are performed online, they should be efficient, space saving and accurate. 

Knowledge propagation should be allowed so that users can have a faster access for the services 

based on the usage patterns of the previous users.  

An effective partial ontology mapping for pervasive computing environment is proposed 

in this thesis. This research is based on the presences of smart spaces in pervasive computing 

environment. Existing smart spaces researches focus on the infrastructure of the smart space. 

New hardware and sensors are designed to detect the environment context, new speech and other 

interactive recognition are proposed so that users can interact more conveniently with the devices 

embedded in the smart space. However, all existing researches focus on their own proposed smart 

space. There is no address about what will happen if the devices and applications that work 

perfectly in the smart space are moved outside the smart space. Our research fills in this gap by 

providing online partial ontology mapping. Existing online ontology mapping tools provide off-

line ontology mappings. They try to find a one-to-one corresponding between all the concepts 

defined in the source ontologies. Their similarity formulae only compute similarity using either 

the instances or the source ontologies, but not both. Our design is a hybrid between them. We use 

both the source ontologies and the instances for our mapping. A combination of similarity 

formulae is adopted. Jaccard coefficient is used to taken the distribution of the instance data in 

consideration. Naïve Bayes’ rule is used to calculate the similarity of the string description. K-

nearest neighbour function is adopted to compute the similarity between the relationships of two 

concepts. When comparing two strings, existing mapping tools compares the syntactic similarity 

between two strings. Some of them have tried to attempt to add a similarity word tables so that 

words with similar meanings can be identified. Our string similarity measure uses the semantic 

meaning of the words. We adopt a well-known word ontology: WordNet in our design. The 

semantic distance between two words is the similarity between the meanings of the words. Pre-
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fetching and history records are used to improve the efficient of our mapping mechanism. 

Caching history records and user ontologies can improve the mapping accuracy although partial 

ontologies are given.  

Four experiments have been carried out to evaluate our matching mechanism. Our 

matching mechanism is about double more accurate than traditional source-based ontology 

mapping and uses 50% of the time used by traditional instance-based ontology mapping. From 

the evaluation, it shows clearly that our design can meet the research objective – an effective 

ontology mapping for pervasive computing environment. 
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FUTURE WORKS 

As pervasive computing environment keeps on evolution, modifications and 

enhancements of existing works should not stop. Some future works have been identified to 

enhance our partial mapping mechanism. Syntax for classification of mapping records is needed. 

Recall that mapping results are stored in smart space monitors and they are classified based on the 

current date, time and activities. Domain administrators can freely add new rules for the 

classification. Simple syntax such as weightings is supported at the current stage. An advanced 

language is needed so that more complicated factors and calculations can be used for 

classification. The categorization language should be easy to learn, human readable and machine 

interpreted. Using ontology can satisfy these requirements and seems to be a good choice. 

However, more detailed studies are required. 

A smart space monitor aims to match request instances to services and resources so that 

better services are provided to users. Our design only focusing on ontology mapping requires an 

intelligent matching mechanism to provide a full picture of the design of a smart space monitor.  

In the current design of our work, we have a smart space monitor to coordinate the 

devices and the resources. Mappings and results storing are executed in the smart space. It is 

believed that peer-to-peer mapping is also required when the smart space monitor is busy or 

absence. Peer-to-peer ontology mapping requires a lightweight mechanism that is flexible to suits 

in different devices. Memory and energy usage should be minimal so that small devices are able 

to perform ontology mapping. To make peer-to-peer mapping to be possible, new ontology 

development tools are required. For example, lightweight and efficient ontology parsers, query 

tools that can efficiently locate ontologies instances are needed.  

Another alternative for peer-to-peer ontology mappings is to distribute similarity 

calculations to different devices embedded in the smart space. Similarity calculations during 

ontology mappings can be distributed to idle machines such that machines are better utilized. 

Distribution of calculation tasks can also help to improve the efficiency of our mapping 

mechanism. Recall that when parsing ontologies, Jena uses time and memories not proportional 

to the size of the ontologies. If source ontologies are partitioned and distributed to different 

devices to perform mapping, it can effectively reduce the time used for ontology parsing. And as 

our mapping mechanism is purely calculations, the overhead for communications between 

different devices is little.  
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Advanced syntax for categorization, intelligent matching and peer-to-peer ontology 

mappings are the suggested future works. It is believed that there exist many other possible 

enhancements for applications and systems in pervasive computing environment. With the great 

efforts from the researchers, pervasive computing environment is going to be reality in the very 

near future.  
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