
Generalized Planted (l,d)-Motif Problemwith Negative Set?Henry C.M. Leung and Franis Y.L. ChinDepartment of Computer Siene,The University of Hong Kong,Pofulam, Hong Kongfmleung2,hing�s.hku.hkAbstrat. Finding similar patterns (motifs) in a set of sequenes is animportant problem in Computational Moleular Biology. Pevzner andSze [18℄ de�ned the planted (l,d)-motif problem as trying to �nd a length-l pattern that ours in eah input sequene with at most d substitutions.When d is large, this problem is diÆult to solve beause the input se-quenes do not ontain enough information on the motif. In this paper,we propose a generalized planted (l,d)-motif problem whih onsiders asinput an additional set of sequenes without any substring similar tothe motif (negative set) as extra information. We analyze the e�ets ofthis negative set on the �nding of motifs, and de�ne a set of unsolvableproblems and another set of most diÆult problems, known as \hal-lenging generalized problems". We develop an algorithm alled VANSbased on voting and other novel tehniques, whih an solve the (9,3),(11,4),(15,6) and (20,8)-motif problems whih were unsolvable before aswell as hallenging problems of the planted (l,d)-motif problem suh as(9,2), (11,3), (15,5) and (20,7)-motif problems.1 IntrodutionA genome is a sequene onsisting of four symbols `A', `C', `G' and `T'. Alongthe genome are substrings, alled genes, whih are blueprints of proteins. In or-der to deode a gene (gene expression) to produe the orresponding protein, amoleule alled a transription fator binds to a short region (6 - 20 base pairs),alled the binding site, in the promoter region of the gene. One kind of transrip-tion fator an bind to the binding sites of several genes to ause these genes tooexpress. These binding sites, whih should have similar lengths and patterns,an be represented by a pattern alled motif. The motif disovering problem [14,18℄ is prediting the motif given a set of oexpressed genes, i.e., when given aset of sequenes T , eah of whih ontains at least one binding site. Pevzner andSze [18℄ gave a preise de�nition of this problem.Planted (l,d)-Motif Problem: Suppose there is a �xed but unknown string? This researh is supported in part by an RGC grant HKU 7135/04E



M (the motif) of length l. Given t length-n sequenes, eah of whih ontainsa planted d-variant of M , we want to determine M without a priori knowledgeof the positions of the planted d-variants. A d-variant (or simply variant) is astring derivable from M with at most d symbol substitutions.Many algorithms [1, 3{5, 8{13, 15{19℄ have been developed to solve this prob-lem and have predited some motifs suessfully. However, this problem modelwill fail to �nd a solution when d is large, beause there will be many length-lstrings having at least one variant in eah input sequene and no algorithm islikely to distinguish the motif from these strings. Buhler and Tompa [4℄ foundthe maximum d suh that a planted (l,d)-motif problem is still solvable by alu-lating the expeted number Et(l; d) of length-l strings with at least one variantin eah input sequene. When Et(l; d) is small, say Et(l; d) � 1, the problem istheoretially solvable. When Et(l; d) is large, no algorithm is likely to disoverMwithout extra information. For example, when t = 20 and n = 600, the planted(9,3), (11,4), (15,6) and (20,8)-motif problems are unsolvable as the values ofEt(l; d) for these problems are huge (2:5� 105, 3:3� 106, 1:8� 108 and 3:1� 104respetively).In biologial experiments, besides getting a set of sequenes bound by thetransription fator, we may have as a by-produt another set of sequenes Fwhih are not bound by the transription fator [2, 6, 7, 20℄. We may assumesequenes in F ontain no d-variant of the motif M . Based on this extra infor-mation, we an modify the planted (l,d)-motif problem as follows.Generalized Planted (l,d)-Motif Problem: Suppose there is a �xed butunknown string M (the motif) of length l. Given t length-n sequenes, eah ofwhih ontains a planted d-variant of M , and f length-n sequenes whih on-tains no d-variant of M , we want to determine M without a priori knowledge ofthe positions of the planted d-variants.Note that when f = 0, the generalized planted (l,d)-motif problem (or sim-ply generalized (l,d)-problem) is redued to the planted (l,d)-motif problem (orsimply (l,d)-problem). The extra information provided by F might make someof the previously unsolvable problems based only on information in T , e.g. (9,3),(11,4), (15,6) and (20,8)-motif problems, solvable.In this paper, we analyze the information provided by set T and set F (Se-tion 2) and how they are related (Setion 3). We de�ne a new set of unsolvableand also another set of \hallenging" generalized (l,d)-problems (most diÆultsolvable problems). In Setion 4, we develop an algorithm alled VANS (VotingAlgorithm with Negative Set) to solve this generalized (l,d)-problem under dif-ferent situations by employing, in additional to voting, other simple but noveltehniques, suh as �ltering, projetion with merging and loal searh. In par-tiular, VANS an solve those hallenging (l,d)-problem, suh as (9,2), (11,3),(15,5) and (20,7)-problems, when F is empty. Experimental results (Setion 5)



show that VANS an solve all theoretially solvable generalized (l,d)-problemswhen d � 20 and works well on some real data.2 Calulation the Expeted Value Eb(l; d)Let T be the set of t length-n input sequenes, eah of whih ontains a variantof M and let F be the set of f length-n input sequenes with no variant of M .Assume the ourrene probabilities of `A', `C', `G' and `T' are equal. Buhlerand Tompa [4℄ studied the limitation of the (l,d)-problem by alulating theexpeted number Et(l; d) of length-l strings with at least one d-variant in eahsequene in T . Their alulation is desribed as follows.Given a length-l string P and a length-l substring � in the input sequene,the probability that P and � are at most d symbol substitution apart isp(l; d) = dXi=0 Cli �34�i�14�l�iThe probability that a length-l string P has at least one d-variant in eah se-quene in T is �1� (1� p(l; d))n�l+1�tConsider the 4l possible length-l strings, the expeted number of length-l stringswith at least one d-variant in eah sequene in T is approximatelyEt(l; d) = 4l �1� (1� p(l; d))n�l+1�t (1)When Et(l; d) is muh larger than 1, that means there are many random length-lstrings whih have the same harateristis as motif M on T , i.e. have at leastone d-variant in eah sequene in T . Under this situation, no algorithm andistinguish the motif M from this set of random length-l strings. On the otherhand if Et(l; d) is smaller than 1, the smaller the value of Et(l; d), the moreplausible that the found pattern is M and not an artifat. Thus Et(l; d) an beused to estimate the amount of information ontained in the set of sequenesT ; the larger is Et(l; d), the less is the information and vie versa. Given theparameters t, n and l, we an �nd the range of d suh that the (l,d)-problem isunsolvable, i.e. with Et(l; d) muh larger than 1, e.g. (9;� 3), (11;� 4), (15;� 6)and (20;� 8)-problems.Similarly, we an estimate the amount of information ontained in F by theexpeted number Ef (l; d) of length-l strings with no variant in any sequenes inF , and also the amount of information of both T and F by the expeted numberEb(l; d) of length-l strings with at least one variant in eah sequene in T andno variant in the sequenes of F . If Eb(l; d) is smaller than 1, the generalized(l,d)-problem is theoretially solvable, otherwise, it is unsolvable.The probability that a length-l string P has no variant in F is�(1� p(l; d))n�l+1�f
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Fig. 1. Expeted number of strings against d for di�erent motif length l.Consider the 4l possible length-l strings, we haveEf (l; d) = 4l �(1� p(l; d))n�l+1�f (2)Eb(l; d) = 4l �1� (1� p(l; d))n�l+1�t �(1� p(l; d))n�l+1�f (3)Figure 1 shows the values of Et(l; d), Ef (l; d) and Eb(l; d) for di�erent valuesof l and d when t = f = 20 and n = 600. We have the following observationswhih math with our intuition.1. The (l,d)-problem is easier to solve for a smaller d beause T has more infor-mation for smaller d. Thus Et(l; d) inreases with d. By the same argument,F has more information for larger d, thus Ef (l; d) dereases with d.2. The value of Eb(l; d) is always less than Et(l; d) and Ef (l; d). Eb(l; d) �Et(l; d) when d is small and Eb(l; d) � Ef (l; d) when d is large. Eb(l; d) ispeaked or the amount of information is the least for some d, 0 < d < l. Itan be shown that Eb(l; d) is maximum when p(l; d) = pthres, wherepthres = 1� e ln f�ln (t+f)n�l+1
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Fig. 2. The value of p(l; d) against d for di�erent motif length l.Figure 2 shows the value of p(l; d) against d and pthres = 0:0012 when t = f =20 and n = 600. The intersetions between pthres and eah urve representthose problems with the least amount of information, e.g. the generalized(9,2), (15,5), (20,8), (26,12) and (30,14)-problems whih math the resultsgiven in Figure 1.3. As a result, some previously unsolvable (l,d)-problems, e.g. the (9,3), (11,4)and (15,6)-problem, beome solvable after adding the set F . In fat, all(l,d)-problems with 0 � d � l and l � 20 are solvable. However, whenl inreases, there are still some generalized (l,d)-problems having a largevalue of Eb(l; d) (e.g. the generalized (26,12), (30,14) and (30,15)-problems)whih means they are theoretially unsolvable.Buhler and Tompa [4℄ de�ned those solvable (l,d)-problems with the largest das \hallenging problems" (i.e. if the (l,d)-problem is a hallenging problem, the(l,d+ 1)-problem should be unsolvable). Similarly, we an de�ne a set of \hal-lenging problems" for the generalized planted (l,d)-motif problems. A generalizedplanted (l,d)-motif problems is hallenging if it is solvable and either (l,d�1) or(l,d+ 1) is unsolvable. For example, the generalized (26,11),(26,13),(30,13) and(30,16)-problems are \hallenging problems".3 Trade o� between t and fAlthough sequenes in both T and F ontain information of the motif, theamounts of information in these two sets vary with the values of n and p(l; d).One question we want to know is \If we redue the number of sequenes in Tby �t, how many sequenes should we add to F so that the input data retainsthe same amount of information?" This question an be answered by omparing



Table 1. Trade o� between t and f when n = 600.lR 9 11 15 201 44.16 1118 4:22 � 105 5:35 � 1082 0.7547 35.41 1:39 � 104 1:48 � 1073 0.0004 0.9763 680.6 6:37 � 1054 4:27 � 10�15 0.0026 40.36 3:74 � 104d 5 0 5:44 � 10�11 2.119 27606 0 0 0.0362 237.67 0 0 3:54 � 10�6 21.468 0 0 4:23 � 10�17 1.5989 0 0 0 0.0463the value of Eb(l; d) before and after hanging the number of input sequenes.The amount of information is retained if and only if the new value of Eb(l; d) isno larger than the original value.4l �1� (1� p(l; d))n�l+1�t �(1� p(l; d))n�l+1�f4l (1� (1� p(l; d))n�l+1)t��t ((1� p(l; d))n�l+1)f+�f � 1�t log �1� (1� p(l; d))n�l+1���f log �(1� p(l; d))n�l+1� � 1�f � R�twhere R = log (1�(1�p(l;d))n�l+1)log ((1�p(l;d))n�l+1)Sine a random sequene ontaining d-variants of the motifM is independentof another random sequene ontaining a d-variants of M , the information ofM ontained in eah input sequene is independent of the input size t and f .Therefore, the value of R is independent of the number of sequenes t and f inthe data set as shown in the above equation.Table 1 shows the values of R for di�erent values of l and d when n = 600.For example, when l = 20 and d = 8, if we remove one sequene from T , weshould add at least d1:598e = 2 sequenes in F to retain the same amount ofinformation in the input data. When d is large, the probability that a randomsequene ontains a d-variant of the motif M is large while the probability thata random sequene ontains no d-variant of the motif M is small, therefore theamount of information in eah sequene in T is muh less than that in eahsequene in F . If we remove a sequene in T , even no sequene is added to F ,the total amount of information in the data set remains almost the same(e.g.l = 9, d = 9). On the other hand, when d is small, the amount of information ineah sequene in T is muh more than that in eah sequene in F . If we removea sequene in T , many sequenes should be added to F in order to retain thesame amount of information (e.g. l = 20, d = 1).



4 Voting Algorithm with Negative Set (VANS)Our Voting Algorithm with Negative Set (VANS) is based on a simple idea thatif a substring � is a planted d-variant of the motif M , M is also a d-variantof �. In order to �nd the motif, eah length-l substring in T and F gives onevote to its d-variant. The motif M would reeive at least one vote from eahsequene in T and no vote from any length-l substring in F . Although the ideaused in the Voting algorithms [5℄ is simple and enumerative, they are so far thefastest algorithms than the other methods based on brute-fore [3, 10, 17℄, �ndingthe maximum lique [15, 18℄ and heuristi searh [1, 4, 8, 9, 11{13℄ for solving the(l,d)-problem without F . The running times of the brute-fore and the liquesearh algorithms (O(ntl4l) and O((nt)t+2:376) respetively) are muh longerthan that of the Voting algorithms (O(ntCld4d)). The brute-fore algorithms anonly solve the (l,d)-problems with l � 11 and the lique searh algorithms antakle those problem with small d. Thus, they have diÆulties to deal with thosehallenging (11,3), (15, 5) and (20,7)-problems. Heuristi algorithms an solvethe (l,d)-problems for larger l, say l � 20, but they do not guarantee �ndingthe motifs all the time. The Voting algorithms, [5℄ on the other hand, an solvenot only the hallenging (9,2), (11,3), (15,5) and (20,7)-motif problems, but also(30,11) and (40,15)-problems.As indiated in Figure 1, the generalized (l,d)-problem an be solved for smalld and large d when Eb(l; d) is muh less than 1. Moreover, sine we have shownin Setions 2 and 3, the amount of information in the generalized (l,d)-problem ismainly derived from T when d is small and from F when d is large, our algorithmVANS will �rst identify a set of andidate motifs by voting from T when d issmall and from F when d is large. VANS will then �lter out the false andidatemotifs by F or T aordingly. Based on the value of d, VANS applies di�erentstrategies to solve the generalized (l,d)-problem.4.1 Voting by sequenes in TSine eah length-l substring � has Cil 3i variants with exatly i substitutions, �hasPdi=0 Cii3i variants. By onsidering eah length-l substring in eah sequenein T , the voting proess by T takesO nt dXi=0(Cli3i)! = O �ntCld4d� timeThe andidate motifs are those variants (length-l strings) whih reeive at leastone vote from eah sequene in T . It is shown in [5℄ that this simple algorithman solve the hallenging (9,2), (11,3), (15,5) and (20,7)-motif problems in timeless than a few minutes. The �ltering proess removes those andidate motifshaving variants in F and this �ltering step takes O(nlf) time for eah andidatemotif. Sine the expeted number of length-l strings with at least one variant ineah sequene in T is Et(l; d), the expeted running time isO �ntCld4d + nlfEt(l; d)�



Table 2. Values of d at whih voting by T works when t = f = 20 and n = 600.l 9 11 15 20 26 30d � 2 � 3 � 5 � 7 � 10 � 13Et(l; d) � 1:6 � 4:7 � 2:8 � 1:4� 10�8 � 2:1� 10�11 � 0:22This approah works well on T when d or Et(l; d) is small. Table 2 shows thevalues of d for whih this approah works well.4.2 Voting by sequenes in FWhen d inreases, both 4d and Et(l; d) inrease exponentially suh that therunning time of the voting proess beomes unaeptable. Sine the amount ofinformation in F is muh more than the amount of information in T when d islarge, we should fous on F instead of T .As motif M has no variant in F , M should not be a variant of any length-lsubstring in F . If eah length-l substring in F gives one vote to its variants, wean �nd a set of andidate motifs whih get no vote from any substring in F . Theexpeted number of andidate motifs getting zero vote is Ef (l; d). The �lteringproess removes those andidate motifs whih have a variant in eah sequene inT . When d is large, Ef (l; d) � Eb(l; d) is small, therefore the expeted runningtime of the �ltering proess (O(nltEf (l; d))) should be small too. However, therunning time of the voting proess by sequenes in F , i.e.O nf dXi=0(Cli3i)! = O �nfCld4d�might be prohibitively long for large d.Our approah is to redue this generalized (l,d)-problem to a smaller gen-eralized (l0,d0)-problem with l0 < l, d0 < d and d0 small enough to be solvable.Let us onsider a generalized (l,d)-problem. Sine M has no d-variant in F , thelength-l0 pre�x ofM and the length-l0 suÆx ofM should not have any ds-variantin F either, where ds = d� (l � l0). Letd0 = minl�d�l0�lfdsjEf (l0; ds) � 1gFor example, the generalized (20,11)-problem an be redued to the generalized(14,5)-problem where Ef (14; 5) = 0:0027. Sine Ef (l0; d0) is small and solvable,the redued generalized (l0, d0)-problem is muh easier to solve beause d0 ismuh smaller. The set of length-l0 andidate motifs should ontain any length-l0substrings of any length-l andidate motifs for the generalized (l,d)-problem, inpartiular, the length-l0 pre�x and length-l0 suÆx of motif M . If the length-(2l0 � l) suÆx of a length-l0 andidate motif is the same as the length-(2l0 � l)pre�x of another length-l0 andidate motif, we an ombine them to form a



Table 3. Values of d for whih voting by F works when t = f = 20 and n = 600.l 9 11 15 20 26 30d � 3 � 4 � 6 � 11 � 16 � 20d0 1 2 4 5 6 6length-l andidate motif. It an be shown that any length-l andidate motiffor the generalized (l,d)-problem an be formed by ombining two andidatelength-l0 motifs of the generalized (l0; d0)-problem. Thus the expeted numberof length-l andidate motifs by merging two andidate (l0; d0)-motifs is at most[Ef (l0; d0) + (l � l0)℄2 and the expeted running time isO �nfCl0d04d0 + nlt[Ef (l0; d0) + (l � l0)℄2�Again this Voting algorithm based on a redued size generalized (l0,d0)-problemworks very well for large d as long as d0 is reasonably small. Table 3 shows thevalues of d for whih this approah works.4.3 Loal searhThe voting tehnique disussed in Setion 4.1 and 4.2 works �ne for all d whenl � 15. However, when l > 15, there are ases that this voting tehnique will fail.In partiular when d is not too small or too large, we annot solve the generalized(l,d)-problems by voting from T or from F . For example, the generalized (20,9)-problem annot be solved by voting diretly from sequenes in T or diretly fromsequenes in F beause of the long running time (209 49 � 4:4 � 1010 is a bignumber). On the other hand, we annot redue the generalized (20,9)-problemto another smaller generalized (l0,d0)-problem with a small value of Ef (l0; d0).In order to solve these problems, a loal searhing method is proposed. Themotif M has no d-variant in F and this information in F should be more usefulthan the information in T for �nding M by loal searh. Assume we have alength-l seed string S. For eah length-l neighboring string N , i.e. 1-variant ofS, we �nd the number of d-variants of N ourring in set F . We replae stringS by the neighboring string N if N has the least number of d-variants in F andhas less d-variants than S in F . We repeat this proess several times. If seed Sand motif M are within a few symbol substitutions, we may hopefully re�ne Sto M .The seeds an be generated randomly or seleted by voting from T and F .The probabilities that S an be re�ned to M after k iterations when S andM di�er by k symbols for some generalized (l,d)-motif problems were shown inTable 4. It is evident from Table 4 that there is a high probability that we an�nd motif M from seed S when S and M di�er by no more than 5 symbols.



Table 4. Probabilities for re�ning the seeds suessfully. k is the number of symbolsubstitutions between seed S and motif M .k (20,8) (20,9) (20,10)1 0.9895 1 12 0.9784 0.9707 0.93943 0.9563 0.9282 0.86524 0.9074 0.8603 0.75885 0.8483 0.4554 06 0 0 0Table 5. VANS' Experimental results on simulated data.running ltime 9 11 15 202 0.4s 2s 201s 9.4s3 tends to 0s 9s 240s 10.6s4 tends to 0s 1s 382s 11.2sd 5 0.2s 3s 113.6s 27.1s6 - 4s 17m 107.1s7 - - 9s 111.4s8 - - 47s 3.4hr9 - - - 80m10 - - - 8.6m11 - - - 7.7m12 - - - -5 Experimental ResultsWe have implemented VANS in C++ and tested it on a omputer with P4 2.4GHz CPU and 4GB memory on the simulated and real data. For the simulateddata, we piked a length-l motif M randomly and also generated 20 length-600sequenes in F randomly with the 0.25 ourrene probability of 'A', 'C', 'G'and 'T' at eah position. Eah of these sequenes in F would be regeneratedif it had a variant of M . Similarly we generated 20 length-600 sequenes in Tand planted a variant of M at a random position in eah of these sequenes.For eah pair of l and d values, we ran 50 test ases and heked whether ourprogram ould disover the motif. Our program disovered the motif in all asesand the average running time is shown in Table 5. Some simulated data is missed(e.g. (9,6), (9,7) and (11,7)) beause d is so large that any randomly generatedlength-600 sequene always ontain a variant of any motif.We have also tested VANS on real biologial sequenes stored in the publidatabase SCPD. For eah set of genes, we hose the 600 bp upstream of thegenes as the input sequenes in T . We also randomly piked the same numberof genes and hose the 600 bp upstream of these genes as the input sequenes



Table 6. VANS' Experimental results on real data.Transription Fator Published Motif pattern Motif Pattern FoundGCR1 CWTCC CTTCCGATA CTTATC CTTATCCBF,SCB,SWI6 CNCGAAA CGCGAAACuRE,MAC1 TTTGCTC TTTGCTCGCFAR CCCGGG CCCGGGGCN1 TAATCTAATC TAATCTAATCin F . The lengths of the motifs l were the same as those of the published motifsand d was 1. Experimental results are shown in Table 6. VANS ould �nd themotifs for these data sets within one seond for eah data set.6 ConlusionSine the (l,d)-problem has a limitation that no algorithm an disover the mo-tif when d is large, we de�ne the generalized (l,d)-problem whih treats thosesequenes without variants of motif M as additional input. With this extrainformation, the motif disovering problem with large d beomes theoretiallysolvable. We also developed the VANS algorithm to solve the generalized (l,d)-problem. Experimental results showed that VANS performed well on most prob-lem instanes inluding the hallenging (9,2), (11,3), (15,5), (20,7)-motif problemwhen F is empty.The hallenging generalized (l,d)-problems for l > 20, e.g. (26,11) and (26,13),remain unsolvable beause of its long running time. Loal searh might work ifwe an redue the number of seeds by generating \good" seeds eÆiently.Referenes1. Bailey, T., Charles Elkan, C.: Unsupervised learning of multiple motifs in biopoly-mers using expetation maximization. Mahine Learning. 21 (1995) 51{802. Barash, Y., Bejerano, G., Friedman, N.: A Simple Hyper-Geometri Approah forDisovering Putative Transription Fator Binding Sites. Workshop on Algorithmsin Bioinformatis WABI 1 (2001) 278{2933. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approahes to the automatidisovery of patterns in biosequenes. Jour. Comp. Biol. 5 (1998) 279{3054. Buhler, J., Tompa, M.: Finding motifs using random projetions. Researh in Com-putational Moleular Biology RECOMB 1 (2001) 69{765. Chin, F., Leung, H.: Voting Algorithms for Disovering Long Motifs. Asia-Pai�Bioinformatis Conferene APBC 3 (2005) 261{2716. Chin, F., Leung, H., Yiu, S.M., Lam, T.W., Rosenfeld, R., Tsang, W.W., Smith,D., Jiang, Y.: Finding Motifs for InsuÆient Number of Sequenes with StrongBinding to Transription Fator. Researh in Computational Moleular BiologyRECOMB 4 (2004) 125{132
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