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Abstract. Finding similar patterns (motifs) in a set of sequences is an
important problem in Computational Molecular Biology. Pevzner and
Sze [18] defined the planted (I,d)-motif problem as trying to find a length-
| pattern that occurs in each input sequence with at most d substitutions.
When d is large, this problem is difficult to solve because the input se-
quences do not contain enough information on the motif. In this paper,
we propose a generalized planted (I,d)-motif problem which considers as
input an additional set of sequences without any substring similar to
the motif (negative set) as extra information. We analyze the effects of
this negative set on the finding of motifs, and define a set of unsolvable
problems and another set of most difficult problems, known as “chal-
lenging generalized problems”. We develop an algorithm called VANS
based on voting and other novel techniques, which can solve the (9,3),
(11,4),(15,6) and (20,8)-motif problems which were unsolvable before as
well as challenging problems of the planted (I,d)-motif problem such as
(9,2), (11,3), (15,5) and (20,7)-motif problems.

1 Introduction

A genome is a sequence consisting of four symbols ‘A’, ‘C’, ‘G’ and ‘T’. Along
the genome are substrings, called genes, which are blueprints of proteins. In or-
der to decode a gene (gene expression) to produce the corresponding protein, a
molecule called a transcription factor binds to a short region (6 - 20 base pairs),
called the binding site, in the promoter region of the gene. One kind of transcrip-
tion factor can bind to the binding sites of several genes to cause these genes to
coexpress. These binding sites, which should have similar lengths and patterns,
can be represented by a pattern called motif. The motif discovering problem [14,
18] is predicting the motif given a set of coexpressed genes, i.e., when given a
set of sequences T', each of which contains at least one binding site. Pevzner and
Sze [18] gave a precise definition of this problem.

Planted (l,d)-Motif Problem: Suppose there is a fixed but unknown string
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M (the motif) of length I. Given t length-n sequences, each of which contains
a planted d-variant of M, we want to determine M without a priori knowledge
of the positions of the planted d-variants. A d-variant (or simply variant) is a
string derivable from M with at most d symbol substitutions.

Many algorithms [1,3-5,8-13,15-19] have been developed to solve this prob-
lem and have predicted some motifs successfully. However, this problem model
will fail to find a solution when d is large, because there will be many length-I
strings having at least one variant in each input sequence and no algorithm is
likely to distinguish the motif from these strings. Buhler and Tompa [4] found
the maximum d such that a planted (I,d)-motif problem is still solvable by calcu-
lating the expected number E;(I,d) of length-I strings with at least one variant
in each input sequence. When F; (I, d) is small, say E;(I,d) < 1, the problem is
theoretically solvable. When E; (I, d) is large, no algorithm is likely to discover M
without extra information. For example, when ¢ = 20 and n = 600, the planted
(9,3), (11,4), (15,6) and (20,8)-motif problems are unsolvable as the values of
E4(1,d) for these problems are huge (2.5 x 10°, 3.3 x 105, 1.8 x 10® and 3.1 x 10*
respectively).

In biological experiments, besides getting a set of sequences bound by the
transcription factor, we may have as a by-product another set of sequences F
which are not bound by the transcription factor [2,6,7,20]. We may assume
sequences in F' contain no d-variant of the motif M. Based on this extra infor-
mation, we can modify the planted (I,d)-motif problem as follows.

Generalized Planted (/,d)-Motif Problem: Suppose there is a fixed but
unknown string M (the motif) of length I. Given ¢ length-n sequences, each of
which contains a planted d-variant of M, and f length-n sequences which con-
tains no d-variant of M, we want to determine M without a priori knowledge of
the positions of the planted d-variants.

Note that when f = 0, the generalized planted (I,d)-motif problem (or sim-
ply generalized (I,d)-problem) is reduced to the planted (I,d)-motif problem (or
simply (I,d)-problem). The extra information provided by F' might make some
of the previously unsolvable problems based only on information in T, e.g. (9,3),
(11,4), (15,6) and (20,8)-motif problems, solvable.

In this paper, we analyze the information provided by set T' and set F' (Sec-
tion 2) and how they are related (Section 3). We define a new set of unsolvable
and also another set of “challenging” generalized (I,d)-problems (most difficult
solvable problems). In Section 4, we develop an algorithm called VANS (Voting
Algorithm with Negative Set) to solve this generalized (I,d)-problem under dif-
ferent situations by employing, in additional to voting, other simple but novel
techniques, such as filtering, projection with merging and local search. In par-
ticular, VANS can solve those challenging (I,d)-problem, such as (9,2), (11,3),
(15,5) and (20,7)-problems, when F' is empty. Experimental results (Section 5)



show that VANS can solve all theoretically solvable generalized (I,d)-problems
when d < 20 and works well on some real data.

2 Calculation the Expected Value Ey(l,d)

Let T be the set of ¢ length-n input sequences, each of which contains a variant
of M and let F' be the set of f length-n input sequences with no variant of M.
Assume the occurrence probabilities of ‘A’, ‘C’, ‘G’ and ‘T’ are equal. Buhler
and Tompa [4] studied the limitation of the (I,d)-problem by calculating the
expected number E(l,d) of length-l strings with at least one d-variant in each
sequence in T'. Their calculation is described as follows.

Given a length-/ string P and a length-/ substring ¢ in the input sequence,
the probability that P and o are at most d symbol substitution apart is

- (2) (1)

The probability that a length-l string P has at least one d-variant in each se-
quence in T is

(1= (1 —p@,d)" ")

Consider the 4! possible length-I strings, the expected number of length-I strings
with at least one d-variant in each sequence in T is approximately

Ey(l,d) = 4" (1— (1 - p(l,d))" 1)’ (1)

When E;(l,d) is much larger than 1, that means there are many random length-I
strings which have the same characteristics as motif M on T, i.e. have at least
one d-variant in each sequence in 7. Under this situation, no algorithm can
distinguish the motif M from this set of random length-/ strings. On the other
hand if E;(l,d) is smaller than 1, the smaller the value of E;(l,d), the more
plausible that the found pattern is M and not an artifact. Thus E;(l,d) can be
used to estimate the amount of information contained in the set of sequences
T; the larger is F;(l,d), the less is the information and vice versa. Given the
parameters ¢, n and [, we can find the range of d such that the (I,d)-problem is
unsolvable, i.e. with E;(I, d) much larger than 1, e.g. (9,> 3), (11, > 4), (15, > 6)
and (20, > 8)-problems.

Similarly, we can estimate the amount of information contained in F' by the
expected number Ey (I, d) of length-/ strings with no variant in any sequences in
F, and also the amount of information of both T and F' by the expected number
Ey(l,d) of length-l strings with at least one variant in each sequence in T' and
no variant in the sequences of F'. If Ey(l,d) is smaller than 1, the generalized
(1,d)-problem is theoretically solvable, otherwise, it is unsolvable.

The probability that a length-/ string P has no variant in F' is

(1= p(t, a1y’
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Fig. 1. Expected number of strings against d for different motif length 1.

Consider the 4! possible length-/ strings, we have
Ey(L,d) = 4' (1 = p(t,d))"~+1)’ (2)

By(l,d) =4 (1= (1 = p(l, )"~ (1 = p(, d))"~1+1)” (3)

Figure 1 shows the values of E;(l,d), E¢(l,d) and E(l, d) for different values
of [ and d when t = f = 20 and n = 600. We have the following observations
which match with our intuition.

1. The (I,d)-problem is easier to solve for a smaller d because T' has more infor-
mation for smaller d. Thus E;(l, d) increases with d. By the same argument,
F has more information for larger d, thus E;(l,d) decreases with d.

2. The value of Ey(l,d) is always less than Ey(l,d) and Ef(l,d). Ey(l,d) =
Ei(l,d) when d is small and Ey(I,d) ~ E;(l,d) when d is large. Ey(l,d) is
peaked or the amount of information is the least for some d, 0 < d < [. It
can be shown that Ej(l,d) is maximum when p(l,d) = pihres, where

InJ—ln (t+§)
Dthres = 1 — e~ n-T+1
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Fig. 2. The value of p(l,d) against d for different motif length I.

Figure 2 shows the value of p(l, d) against d and pipres = 0.0012 whent = f =
20 and n = 600. The intersections between p;pr.s and each curve represent
those problems with the least amount of information, e.g. the generalized
(9,2), (15,5), (20,8), (26,12) and (30,14)-problems which match the results
given in Figure 1.

3. As a result, some previously unsolvable (I,d)-problems, e.g. the (9,3), (11,4)
and (15,6)-problem, become solvable after adding the set F. In fact, all
(I,d)-problems with 0 < d < [ and I < 20 are solvable. However, when
[ increases, there are still some generalized (I,d)-problems having a large
value of Ey(l,d) (e.g. the generalized (26,12), (30,14) and (30,15)-problems)
which means they are theoretically unsolvable.

Buhler and Tompa [4] defined those solvable (I,d)-problems with the largest d
as “challenging problems” (i.e. if the (I,d)-problem is a challenging problem, the
(I,d + 1)-problem should be unsolvable). Similarly, we can define a set of “chal-
lenging problems” for the generalized planted (I,d)-motif problems. A generalized
planted (I,d)-motif problems is challenging if it is solvable and either (I,d — 1) or
(I,d + 1) is unsolvable. For example, the generalized (26,11),(26,13),(30,13) and
(30,16)-problems are “challenging problems”.

3 Trade off between t and f

Although sequences in both T and F' contain information of the motif, the
amounts of information in these two sets vary with the values of n and p(l, d).
One question we want to know is “If we reduce the number of sequences in T
by At, how many sequences should we add to F' so that the input data retains
the same amount of information?” This question can be answered by comparing



Table 1. Trade off between ¢ and f when n = 600.

l
R 9 11 15 20
1 44.16 1118 422 x10°  5.35 x 10°
2 0.7547 35.41 1.39 x 10 1.48 x 107
3 0.0004 0.9763 680.6 6.37 x 10°
4 427 x 10715 0.0026 40.36 3.74 x 104
d 5 0 5.44 x 10711 2.119 2760
6 0 0 0.0362 237.6
7 0 0 3.54 x 1076 21.46
8 0 0 423 x 10717 1.598
9 0 0 0 0.0463

the value of Ej(l,d) before and after changing the number of input sequences.
The amount of information is retained if and only if the new value of Ej(l,d) is
no larger than the original value.

41 (1— (1 —p(l,d)" )" (1 - p(l, )"+
41 (1 — (1 — p(l, )=ty =2 (1 — p(1, d)yn—t1) AT =
Atlog (1= (1 —p(l,d)" ") — Aflog (1 — p(l,d))" ") > 1
Af > RAt

log (1—(1—p(l,d))"~'*1
where 1t = 10§<<1_p<z,d>)n—z+1) )

Since a random sequence containing d-variants of the motif M is independent
of another random sequence containing a d-variants of M, the information of
M contained in each input sequence is independent of the input size ¢ and f.
Therefore, the value of R is independent of the number of sequences ¢ and f in
the data set as shown in the above equation.

Table 1 shows the values of R for different values of I and d when n = 600.
For example, when [ = 20 and d = 8, if we remove one sequence from T, we
should add at least [1.598] = 2 sequences in F' to retain the same amount of
information in the input data. When d is large, the probability that a random
sequence contains a d-variant of the motif M is large while the probability that
a random sequence contains no d-variant of the motif M is small, therefore the
amount of information in each sequence in T is much less than that in each
sequence in F'. If we remove a sequence in T', even no sequence is added to F,
the total amount of information in the data set remains almost the same(e.g.
1=9,d=29). On the other hand, when d is small, the amount of information in
each sequence in T' is much more than that in each sequence in F'. If we remove
a sequence in T', many sequences should be added to F' in order to retain the
same amount of information (e.g. | = 20, d = 1).



4 Voting Algorithm with Negative Set (VANS)

Our Voting Algorithm with Negative Set (VANS) is based on a simple idea that
if a substring ¢ is a planted d-variant of the motif M, M is also a d-variant
of o. In order to find the motif, each length-/ substring in 7" and F' gives one
vote to its d-variant. The motif M would receive at least one vote from each
sequence in T and no vote from any length-/ substring in F'. Although the idea
used in the Voting algorithms [5] is simple and enumerative, they are so far the
fastest algorithms than the other methods based on brute-force [3, 10, 17], finding
the maximum clique [15, 18] and heuristic search [1,4, 8,9, 11-13] for solving the
(I,d)-problem without F'. The running times of the brute-force and the clique
search algorithms (O(ntl4!) and O((nt)!*2:376) respectively) are much longer
than that of the Voting algorithms (O(ntC",4)). The brute-force algorithms can
only solve the (I,d)-problems with [ < 11 and the clique search algorithms can
tackle those problem with small d. Thus, they have difficulties to deal with those
challenging (11,3), (15, 5) and (20,7)-problems. Heuristic algorithms can solve
the (I,d)-problems for larger I, say [ < 20, but they do not guarantee finding
the motifs all the time. The Voting algorithms, [5] on the other hand, can solve
not only the challenging (9,2), (11,3), (15,5) and (20,7)-motif problems, but also
(30,11) and (40,15)-problems.

As indicated in Figure 1, the generalized (I,d)-problem can be solved for small
d and large d when Ej(l,d) is much less than 1. Moreover, since we have shown
in Sections 2 and 3, the amount of information in the generalized (I,d)-problem is
mainly derived from T when d is small and from F' when d is large, our algorithm
VANS will first identify a set of candidate motifs by voting from 7' when d is
small and from F' when d is large. VANS will then filter out the false candidate
motifs by F or T accordingly. Based on the value of d, VANS applies different
strategies to solve the generalized (I,d)-problem.

4.1 Voting by sequences in T

Since each length-I substring o has C/3¢ variants with exactly i substitutions, o

has Z?:o Ci3! variants. By considering each length-/ substring in each sequence
in T, the voting process by T takes

d
0 (ntZ(C’f?;’)) = O (ntCl4%) time
i=0

The candidate motifs are those variants (length-I strings) which receive at least
one vote from each sequence in T'. It is shown in [5] that this simple algorithm
can solve the challenging (9,2), (11,3), (15,5) and (20,7)-motif problems in time
less than a few minutes. The filtering process removes those candidate motifs
having variants in F' and this filtering step takes O(nlf) time for each candidate
motif. Since the expected number of length-/ strings with at least one variant in
each sequence in T is E¢(l,d), the expected running time is

O (ntChA* + nifEy(1,d))



Table 2. Values of d at which voting by T works when ¢t = f = 20 and n = 600.

9 11 15 20 26 30
<2 <3 <5 <7 <10 <13
E(1,d) <16 <47 <28 <14x107% <21x107'' <0.22

This approach works well on T' when d or E;(l,d) is small. Table 2 shows the
values of d for which this approach works well.

4.2 Voting by sequences in F

When d increases, both 4¢ and FE;(l,d) increase exponentially such that the
running time of the voting process becomes unacceptable. Since the amount of
information in F' is much more than the amount of information in 7" when d is
large, we should focus on F instead of T.

As motif M has no variant in F'; M should not be a variant of any length-I
substring in F'. If each length-I substring in F' gives one vote to its variants, we
can find a set of candidate motifs which get no vote from any substring in F'. The
expected number of candidate motifs getting zero vote is Ef (I, d). The filtering
process removes those candidate motifs which have a variant in each sequence in
T. When d is large, Ef(l,d) ~ Ey(l,d) is small, therefore the expected running
time of the filtering process (O(nitE¢(l,d))) should be small too. However, the
running time of the voting process by sequences in F, i.e.

d
0 <nf 2(0532')) = 0 (nfC4?)
=0

might be prohibitively long for large d.

Our approach is to reduce this generalized (I,d)-problem to a smaller gen-
eralized (I',d’')-problem with I' < I, d' < d and d' small enough to be solvable.
Let us consider a generalized (I,d)-problem. Since M has no d-variant in F, the
length-l’ prefix of M and the length-I’ suffix of M should not have any d,-variant
in F either, where ds =d — (I —1'). Let

&= wip_ {dIF 0 d) < 1)
For example, the generalized (20,11)-problem can be reduced to the generalized
(14,5)-problem where E;(14,5) = 0.0027. Since E¢(I',d') is small and solvable,
the reduced generalized (I', d')-problem is much easier to solve because d' is
much smaller. The set of length-I' candidate motifs should contain any length-I’
substrings of any length-I candidate motifs for the generalized (I,d)-problem, in
particular, the length-I' prefix and length-I’ suffix of motif M. If the length-
(2" — 1) suffix of a length-I' candidate motif is the same as the length-(21’' — 1)
prefix of another length-l’ candidate motif, we can combine them to form a



Table 3. Values of d for which voting by F' works when ¢ = f = 20 and n = 600.

~

9 11 15 20 26 30
d >3 >4 >6 >11 >16 > 20
d 1 2 4 5 6 6

length-/ candidate motif. It can be shown that any length-l candidate motif
for the generalized (I,d)-problem can be formed by combining two candidate
length-I" motifs of the generalized (I’,d’)-problem. Thus the expected number
of length-I candidate motifs by merging two candidate (I’,d')-motifs is at most
[Ef(I',d") + (1 —1")]? and the expected running time is

o) (nfcg’,4d’ +nlt[Ep(l,d') + (I - 1’)]2)

Again this Voting algorithm based on a reduced size generalized (I’,d’)-problem
works very well for large d as long as d' is reasonably small. Table 3 shows the
values of d for which this approach works.

4.3 Local search

The voting technique discussed in Section 4.1 and 4.2 works fine for all d when
[ < 15. However, when [ > 15, there are cases that this voting technique will fail.
In particular when d is not too small or too large, we cannot solve the generalized
(1,d)-problems by voting from T or from F. For example, the generalized (20,9)-
problem cannot be solved by voting directly from sequences in T or directly from
sequences in F' because of the long running time (c2°4° ~ 4.4 x 10'° is a big
number). On the other hand, we cannot reduce the generalized (20,9)-problem
to another smaller generalized (I',d’)-problem with a small value of E¢(l',d").

In order to solve these problems, a local searching method is proposed. The
motif M has no d-variant in F' and this information in F' should be more useful
than the information in T' for finding M by local search. Assume we have a
length-/ seed string S. For each length-I neighboring string IV, i.e. 1-variant of
S, we find the number of d-variants of N occurring in set F'. We replace string
S by the neighboring string N if N has the least number of d-variants in F' and
has less d-variants than S in F. We repeat this process several times. If seed S
and motif M are within a few symbol substitutions, we may hopefully refine S
to M.

The seeds can be generated randomly or selected by voting from 7" and F.
The probabilities that S can be refined to M after k iterations when S and
M differ by k symbols for some generalized (I,d)-motif problems were shown in
Table 4. It is evident from Table 4 that there is a high probability that we can
find motif M from seed S when S and M differ by no more than 5 symbols.



Table 4. Probabilities for refining the seeds successfully. k is the number of symbol
substitutions between seed S and motif M.

k (208) (20,9) (20,10)
1 009805 1 1
0.9784 0.9707 0.9394
0.9563 0.9282 0.8652
0.9074 0.8603 0.7588
08483 04554 0
0 0 0

D T W N

Table 5. VANS’ Experimental results on simulated data.

running l
time 9 11 15 20

2 0.4s 2s  201s 9.4s
3 tends to 0s 9s  240s 10.6s
4 tends to 0s 1s  382s 11.2s

d b 0.2s 3s 113.6s 27.1s
6 - 4s 17m  107.1s
7 - - 9s 111.4s
8 - - 47s 3.4hr
9 - - - 80m
10 - - - 8.6m
11 - - - 7.7Tm
12 - - - -

5 Experimental Results

We have implemented VANS in C++ and tested it on a computer with P4 2.4
GHz CPU and 4GB memory on the simulated and real data. For the simulated
data, we picked a length-I motif M randomly and also generated 20 length-600
sequences in F' randomly with the 0.25 occurrence probability of A’, ’C’, ’G’
and ‘T’ at each position. Each of these sequences in F' would be regenerated
if it had a variant of M. Similarly we generated 20 length-600 sequences in T
and planted a variant of M at a random position in each of these sequences.
For each pair of [ and d values, we ran 50 test cases and checked whether our
program could discover the motif. Our program discovered the motif in all cases
and the average running time is shown in Table 5. Some simulated data is missed
(e.g. (9,6), (9,7) and (11,7)) because d is so large that any randomly generated
length-600 sequence always contain a variant of any motif.

We have also tested VANS on real biological sequences stored in the public
database SCPD. For each set of genes, we chose the 600 bp upstream of the
genes as the input sequences in 7. We also randomly picked the same number
of genes and chose the 600 bp upstream of these genes as the input sequences



Table 6. VANS’ Experimental results on real data.

Transcription Factor Published Motif pattern Motif Pattern Found

GCR1 CWTCC CTTCC
GATA CTTATC CTTAT
CCBF,SCB,SWI6 CNCGAAA CGCGAAA
CuRE,MAC1 TTTGCTC TTTGCTC
GCFAR CCCGGG CCCGGG
GCN1 TAATCTAATC TAATCTAATC

in F'. The lengths of the motifs | were the same as those of the published motifs
and d was 1. Experimental results are shown in Table 6. VANS could find the
motifs for these data sets within one second for each data set.

6 Conclusion

Since the (I,d)-problem has a limitation that no algorithm can discover the mo-
tif when d is large, we define the generalized (I,d)-problem which treats those
sequences without variants of motif M as additional input. With this extra
information, the motif discovering problem with large d becomes theoretically
solvable. We also developed the VANS algorithm to solve the generalized (1,d)-
problem. Experimental results showed that VANS performed well on most prob-
lem instances including the challenging (9,2), (11,3), (15,5), (20,7)-motif problem
when F' is empty.

The challenging generalized (,d)-problems for [ > 20, e.g. (26,11) and (26,13),
remain unsolvable because of its long running time. Local search might work if
we can reduce the number of seeds by generating “good” seeds efficiently.
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