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hing�
s.hku.hkAbstra
t. Finding similar patterns (motifs) in a set of sequen
es is animportant problem in Computational Mole
ular Biology. Pevzner andSze [18℄ de�ned the planted (l,d)-motif problem as trying to �nd a length-l pattern that o

urs in ea
h input sequen
e with at most d substitutions.When d is large, this problem is diÆ
ult to solve be
ause the input se-quen
es do not 
ontain enough information on the motif. In this paper,we propose a generalized planted (l,d)-motif problem whi
h 
onsiders asinput an additional set of sequen
es without any substring similar tothe motif (negative set) as extra information. We analyze the e�e
ts ofthis negative set on the �nding of motifs, and de�ne a set of unsolvableproblems and another set of most diÆ
ult problems, known as \
hal-lenging generalized problems". We develop an algorithm 
alled VANSbased on voting and other novel te
hniques, whi
h 
an solve the (9,3),(11,4),(15,6) and (20,8)-motif problems whi
h were unsolvable before aswell as 
hallenging problems of the planted (l,d)-motif problem su
h as(9,2), (11,3), (15,5) and (20,7)-motif problems.1 Introdu
tionA genome is a sequen
e 
onsisting of four symbols `A', `C', `G' and `T'. Alongthe genome are substrings, 
alled genes, whi
h are blueprints of proteins. In or-der to de
ode a gene (gene expression) to produ
e the 
orresponding protein, amole
ule 
alled a trans
ription fa
tor binds to a short region (6 - 20 base pairs),
alled the binding site, in the promoter region of the gene. One kind of trans
rip-tion fa
tor 
an bind to the binding sites of several genes to 
ause these genes to
oexpress. These binding sites, whi
h should have similar lengths and patterns,
an be represented by a pattern 
alled motif. The motif dis
overing problem [14,18℄ is predi
ting the motif given a set of 
oexpressed genes, i.e., when given aset of sequen
es T , ea
h of whi
h 
ontains at least one binding site. Pevzner andSze [18℄ gave a pre
ise de�nition of this problem.Planted (l,d)-Motif Problem: Suppose there is a �xed but unknown string? This resear
h is supported in part by an RGC grant HKU 7135/04E



M (the motif) of length l. Given t length-n sequen
es, ea
h of whi
h 
ontainsa planted d-variant of M , we want to determine M without a priori knowledgeof the positions of the planted d-variants. A d-variant (or simply variant) is astring derivable from M with at most d symbol substitutions.Many algorithms [1, 3{5, 8{13, 15{19℄ have been developed to solve this prob-lem and have predi
ted some motifs su

essfully. However, this problem modelwill fail to �nd a solution when d is large, be
ause there will be many length-lstrings having at least one variant in ea
h input sequen
e and no algorithm islikely to distinguish the motif from these strings. Buhler and Tompa [4℄ foundthe maximum d su
h that a planted (l,d)-motif problem is still solvable by 
al
u-lating the expe
ted number Et(l; d) of length-l strings with at least one variantin ea
h input sequen
e. When Et(l; d) is small, say Et(l; d) � 1, the problem istheoreti
ally solvable. When Et(l; d) is large, no algorithm is likely to dis
overMwithout extra information. For example, when t = 20 and n = 600, the planted(9,3), (11,4), (15,6) and (20,8)-motif problems are unsolvable as the values ofEt(l; d) for these problems are huge (2:5� 105, 3:3� 106, 1:8� 108 and 3:1� 104respe
tively).In biologi
al experiments, besides getting a set of sequen
es bound by thetrans
ription fa
tor, we may have as a by-produ
t another set of sequen
es Fwhi
h are not bound by the trans
ription fa
tor [2, 6, 7, 20℄. We may assumesequen
es in F 
ontain no d-variant of the motif M . Based on this extra infor-mation, we 
an modify the planted (l,d)-motif problem as follows.Generalized Planted (l,d)-Motif Problem: Suppose there is a �xed butunknown string M (the motif) of length l. Given t length-n sequen
es, ea
h ofwhi
h 
ontains a planted d-variant of M , and f length-n sequen
es whi
h 
on-tains no d-variant of M , we want to determine M without a priori knowledge ofthe positions of the planted d-variants.Note that when f = 0, the generalized planted (l,d)-motif problem (or sim-ply generalized (l,d)-problem) is redu
ed to the planted (l,d)-motif problem (orsimply (l,d)-problem). The extra information provided by F might make someof the previously unsolvable problems based only on information in T , e.g. (9,3),(11,4), (15,6) and (20,8)-motif problems, solvable.In this paper, we analyze the information provided by set T and set F (Se
-tion 2) and how they are related (Se
tion 3). We de�ne a new set of unsolvableand also another set of \
hallenging" generalized (l,d)-problems (most diÆ
ultsolvable problems). In Se
tion 4, we develop an algorithm 
alled VANS (VotingAlgorithm with Negative Set) to solve this generalized (l,d)-problem under dif-ferent situations by employing, in additional to voting, other simple but novelte
hniques, su
h as �ltering, proje
tion with merging and lo
al sear
h. In par-ti
ular, VANS 
an solve those 
hallenging (l,d)-problem, su
h as (9,2), (11,3),(15,5) and (20,7)-problems, when F is empty. Experimental results (Se
tion 5)



show that VANS 
an solve all theoreti
ally solvable generalized (l,d)-problemswhen d � 20 and works well on some real data.2 Cal
ulation the Expe
ted Value Eb(l; d)Let T be the set of t length-n input sequen
es, ea
h of whi
h 
ontains a variantof M and let F be the set of f length-n input sequen
es with no variant of M .Assume the o

urren
e probabilities of `A', `C', `G' and `T' are equal. Buhlerand Tompa [4℄ studied the limitation of the (l,d)-problem by 
al
ulating theexpe
ted number Et(l; d) of length-l strings with at least one d-variant in ea
hsequen
e in T . Their 
al
ulation is des
ribed as follows.Given a length-l string P and a length-l substring � in the input sequen
e,the probability that P and � are at most d symbol substitution apart isp(l; d) = dXi=0 Cli �34�i�14�l�iThe probability that a length-l string P has at least one d-variant in ea
h se-quen
e in T is �1� (1� p(l; d))n�l+1�tConsider the 4l possible length-l strings, the expe
ted number of length-l stringswith at least one d-variant in ea
h sequen
e in T is approximatelyEt(l; d) = 4l �1� (1� p(l; d))n�l+1�t (1)When Et(l; d) is mu
h larger than 1, that means there are many random length-lstrings whi
h have the same 
hara
teristi
s as motif M on T , i.e. have at leastone d-variant in ea
h sequen
e in T . Under this situation, no algorithm 
andistinguish the motif M from this set of random length-l strings. On the otherhand if Et(l; d) is smaller than 1, the smaller the value of Et(l; d), the moreplausible that the found pattern is M and not an artifa
t. Thus Et(l; d) 
an beused to estimate the amount of information 
ontained in the set of sequen
esT ; the larger is Et(l; d), the less is the information and vi
e versa. Given theparameters t, n and l, we 
an �nd the range of d su
h that the (l,d)-problem isunsolvable, i.e. with Et(l; d) mu
h larger than 1, e.g. (9;� 3), (11;� 4), (15;� 6)and (20;� 8)-problems.Similarly, we 
an estimate the amount of information 
ontained in F by theexpe
ted number Ef (l; d) of length-l strings with no variant in any sequen
es inF , and also the amount of information of both T and F by the expe
ted numberEb(l; d) of length-l strings with at least one variant in ea
h sequen
e in T andno variant in the sequen
es of F . If Eb(l; d) is smaller than 1, the generalized(l,d)-problem is theoreti
ally solvable, otherwise, it is unsolvable.The probability that a length-l string P has no variant in F is�(1� p(l; d))n�l+1�f
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Fig. 1. Expe
ted number of strings against d for di�erent motif length l.Consider the 4l possible length-l strings, we haveEf (l; d) = 4l �(1� p(l; d))n�l+1�f (2)Eb(l; d) = 4l �1� (1� p(l; d))n�l+1�t �(1� p(l; d))n�l+1�f (3)Figure 1 shows the values of Et(l; d), Ef (l; d) and Eb(l; d) for di�erent valuesof l and d when t = f = 20 and n = 600. We have the following observationswhi
h mat
h with our intuition.1. The (l,d)-problem is easier to solve for a smaller d be
ause T has more infor-mation for smaller d. Thus Et(l; d) in
reases with d. By the same argument,F has more information for larger d, thus Ef (l; d) de
reases with d.2. The value of Eb(l; d) is always less than Et(l; d) and Ef (l; d). Eb(l; d) �Et(l; d) when d is small and Eb(l; d) � Ef (l; d) when d is large. Eb(l; d) ispeaked or the amount of information is the least for some d, 0 < d < l. It
an be shown that Eb(l; d) is maximum when p(l; d) = pthres, wherepthres = 1� e ln f�ln (t+f)n�l+1
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Fig. 2. The value of p(l; d) against d for di�erent motif length l.Figure 2 shows the value of p(l; d) against d and pthres = 0:0012 when t = f =20 and n = 600. The interse
tions between pthres and ea
h 
urve representthose problems with the least amount of information, e.g. the generalized(9,2), (15,5), (20,8), (26,12) and (30,14)-problems whi
h mat
h the resultsgiven in Figure 1.3. As a result, some previously unsolvable (l,d)-problems, e.g. the (9,3), (11,4)and (15,6)-problem, be
ome solvable after adding the set F . In fa
t, all(l,d)-problems with 0 � d � l and l � 20 are solvable. However, whenl in
reases, there are still some generalized (l,d)-problems having a largevalue of Eb(l; d) (e.g. the generalized (26,12), (30,14) and (30,15)-problems)whi
h means they are theoreti
ally unsolvable.Buhler and Tompa [4℄ de�ned those solvable (l,d)-problems with the largest das \
hallenging problems" (i.e. if the (l,d)-problem is a 
hallenging problem, the(l,d+ 1)-problem should be unsolvable). Similarly, we 
an de�ne a set of \
hal-lenging problems" for the generalized planted (l,d)-motif problems. A generalizedplanted (l,d)-motif problems is 
hallenging if it is solvable and either (l,d�1) or(l,d+ 1) is unsolvable. For example, the generalized (26,11),(26,13),(30,13) and(30,16)-problems are \
hallenging problems".3 Trade o� between t and fAlthough sequen
es in both T and F 
ontain information of the motif, theamounts of information in these two sets vary with the values of n and p(l; d).One question we want to know is \If we redu
e the number of sequen
es in Tby �t, how many sequen
es should we add to F so that the input data retainsthe same amount of information?" This question 
an be answered by 
omparing



Table 1. Trade o� between t and f when n = 600.lR 9 11 15 201 44.16 1118 4:22 � 105 5:35 � 1082 0.7547 35.41 1:39 � 104 1:48 � 1073 0.0004 0.9763 680.6 6:37 � 1054 4:27 � 10�15 0.0026 40.36 3:74 � 104d 5 0 5:44 � 10�11 2.119 27606 0 0 0.0362 237.67 0 0 3:54 � 10�6 21.468 0 0 4:23 � 10�17 1.5989 0 0 0 0.0463the value of Eb(l; d) before and after 
hanging the number of input sequen
es.The amount of information is retained if and only if the new value of Eb(l; d) isno larger than the original value.4l �1� (1� p(l; d))n�l+1�t �(1� p(l; d))n�l+1�f4l (1� (1� p(l; d))n�l+1)t��t ((1� p(l; d))n�l+1)f+�f � 1�t log �1� (1� p(l; d))n�l+1���f log �(1� p(l; d))n�l+1� � 1�f � R�twhere R = log (1�(1�p(l;d))n�l+1)log ((1�p(l;d))n�l+1)Sin
e a random sequen
e 
ontaining d-variants of the motifM is independentof another random sequen
e 
ontaining a d-variants of M , the information ofM 
ontained in ea
h input sequen
e is independent of the input size t and f .Therefore, the value of R is independent of the number of sequen
es t and f inthe data set as shown in the above equation.Table 1 shows the values of R for di�erent values of l and d when n = 600.For example, when l = 20 and d = 8, if we remove one sequen
e from T , weshould add at least d1:598e = 2 sequen
es in F to retain the same amount ofinformation in the input data. When d is large, the probability that a randomsequen
e 
ontains a d-variant of the motif M is large while the probability thata random sequen
e 
ontains no d-variant of the motif M is small, therefore theamount of information in ea
h sequen
e in T is mu
h less than that in ea
hsequen
e in F . If we remove a sequen
e in T , even no sequen
e is added to F ,the total amount of information in the data set remains almost the same(e.g.l = 9, d = 9). On the other hand, when d is small, the amount of information inea
h sequen
e in T is mu
h more than that in ea
h sequen
e in F . If we removea sequen
e in T , many sequen
es should be added to F in order to retain thesame amount of information (e.g. l = 20, d = 1).



4 Voting Algorithm with Negative Set (VANS)Our Voting Algorithm with Negative Set (VANS) is based on a simple idea thatif a substring � is a planted d-variant of the motif M , M is also a d-variantof �. In order to �nd the motif, ea
h length-l substring in T and F gives onevote to its d-variant. The motif M would re
eive at least one vote from ea
hsequen
e in T and no vote from any length-l substring in F . Although the ideaused in the Voting algorithms [5℄ is simple and enumerative, they are so far thefastest algorithms than the other methods based on brute-for
e [3, 10, 17℄, �ndingthe maximum 
lique [15, 18℄ and heuristi
 sear
h [1, 4, 8, 9, 11{13℄ for solving the(l,d)-problem without F . The running times of the brute-for
e and the 
liquesear
h algorithms (O(ntl4l) and O((nt)t+2:376) respe
tively) are mu
h longerthan that of the Voting algorithms (O(ntCld4d)). The brute-for
e algorithms 
anonly solve the (l,d)-problems with l � 11 and the 
lique sear
h algorithms 
anta
kle those problem with small d. Thus, they have diÆ
ulties to deal with those
hallenging (11,3), (15, 5) and (20,7)-problems. Heuristi
 algorithms 
an solvethe (l,d)-problems for larger l, say l � 20, but they do not guarantee �ndingthe motifs all the time. The Voting algorithms, [5℄ on the other hand, 
an solvenot only the 
hallenging (9,2), (11,3), (15,5) and (20,7)-motif problems, but also(30,11) and (40,15)-problems.As indi
ated in Figure 1, the generalized (l,d)-problem 
an be solved for smalld and large d when Eb(l; d) is mu
h less than 1. Moreover, sin
e we have shownin Se
tions 2 and 3, the amount of information in the generalized (l,d)-problem ismainly derived from T when d is small and from F when d is large, our algorithmVANS will �rst identify a set of 
andidate motifs by voting from T when d issmall and from F when d is large. VANS will then �lter out the false 
andidatemotifs by F or T a

ordingly. Based on the value of d, VANS applies di�erentstrategies to solve the generalized (l,d)-problem.4.1 Voting by sequen
es in TSin
e ea
h length-l substring � has Cil 3i variants with exa
tly i substitutions, �hasPdi=0 Cii3i variants. By 
onsidering ea
h length-l substring in ea
h sequen
ein T , the voting pro
ess by T takesO nt dXi=0(Cli3i)! = O �ntCld4d� timeThe 
andidate motifs are those variants (length-l strings) whi
h re
eive at leastone vote from ea
h sequen
e in T . It is shown in [5℄ that this simple algorithm
an solve the 
hallenging (9,2), (11,3), (15,5) and (20,7)-motif problems in timeless than a few minutes. The �ltering pro
ess removes those 
andidate motifshaving variants in F and this �ltering step takes O(nlf) time for ea
h 
andidatemotif. Sin
e the expe
ted number of length-l strings with at least one variant inea
h sequen
e in T is Et(l; d), the expe
ted running time isO �ntCld4d + nlfEt(l; d)�



Table 2. Values of d at whi
h voting by T works when t = f = 20 and n = 600.l 9 11 15 20 26 30d � 2 � 3 � 5 � 7 � 10 � 13Et(l; d) � 1:6 � 4:7 � 2:8 � 1:4� 10�8 � 2:1� 10�11 � 0:22This approa
h works well on T when d or Et(l; d) is small. Table 2 shows thevalues of d for whi
h this approa
h works well.4.2 Voting by sequen
es in FWhen d in
reases, both 4d and Et(l; d) in
rease exponentially su
h that therunning time of the voting pro
ess be
omes una

eptable. Sin
e the amount ofinformation in F is mu
h more than the amount of information in T when d islarge, we should fo
us on F instead of T .As motif M has no variant in F , M should not be a variant of any length-lsubstring in F . If ea
h length-l substring in F gives one vote to its variants, we
an �nd a set of 
andidate motifs whi
h get no vote from any substring in F . Theexpe
ted number of 
andidate motifs getting zero vote is Ef (l; d). The �lteringpro
ess removes those 
andidate motifs whi
h have a variant in ea
h sequen
e inT . When d is large, Ef (l; d) � Eb(l; d) is small, therefore the expe
ted runningtime of the �ltering pro
ess (O(nltEf (l; d))) should be small too. However, therunning time of the voting pro
ess by sequen
es in F , i.e.O nf dXi=0(Cli3i)! = O �nfCld4d�might be prohibitively long for large d.Our approa
h is to redu
e this generalized (l,d)-problem to a smaller gen-eralized (l0,d0)-problem with l0 < l, d0 < d and d0 small enough to be solvable.Let us 
onsider a generalized (l,d)-problem. Sin
e M has no d-variant in F , thelength-l0 pre�x ofM and the length-l0 suÆx ofM should not have any ds-variantin F either, where ds = d� (l � l0). Letd0 = minl�d�l0�lfdsjEf (l0; ds) � 1gFor example, the generalized (20,11)-problem 
an be redu
ed to the generalized(14,5)-problem where Ef (14; 5) = 0:0027. Sin
e Ef (l0; d0) is small and solvable,the redu
ed generalized (l0, d0)-problem is mu
h easier to solve be
ause d0 ismu
h smaller. The set of length-l0 
andidate motifs should 
ontain any length-l0substrings of any length-l 
andidate motifs for the generalized (l,d)-problem, inparti
ular, the length-l0 pre�x and length-l0 suÆx of motif M . If the length-(2l0 � l) suÆx of a length-l0 
andidate motif is the same as the length-(2l0 � l)pre�x of another length-l0 
andidate motif, we 
an 
ombine them to form a



Table 3. Values of d for whi
h voting by F works when t = f = 20 and n = 600.l 9 11 15 20 26 30d � 3 � 4 � 6 � 11 � 16 � 20d0 1 2 4 5 6 6length-l 
andidate motif. It 
an be shown that any length-l 
andidate motiffor the generalized (l,d)-problem 
an be formed by 
ombining two 
andidatelength-l0 motifs of the generalized (l0; d0)-problem. Thus the expe
ted numberof length-l 
andidate motifs by merging two 
andidate (l0; d0)-motifs is at most[Ef (l0; d0) + (l � l0)℄2 and the expe
ted running time isO �nfCl0d04d0 + nlt[Ef (l0; d0) + (l � l0)℄2�Again this Voting algorithm based on a redu
ed size generalized (l0,d0)-problemworks very well for large d as long as d0 is reasonably small. Table 3 shows thevalues of d for whi
h this approa
h works.4.3 Lo
al sear
hThe voting te
hnique dis
ussed in Se
tion 4.1 and 4.2 works �ne for all d whenl � 15. However, when l > 15, there are 
ases that this voting te
hnique will fail.In parti
ular when d is not too small or too large, we 
annot solve the generalized(l,d)-problems by voting from T or from F . For example, the generalized (20,9)-problem 
annot be solved by voting dire
tly from sequen
es in T or dire
tly fromsequen
es in F be
ause of the long running time (
209 49 � 4:4 � 1010 is a bignumber). On the other hand, we 
annot redu
e the generalized (20,9)-problemto another smaller generalized (l0,d0)-problem with a small value of Ef (l0; d0).In order to solve these problems, a lo
al sear
hing method is proposed. Themotif M has no d-variant in F and this information in F should be more usefulthan the information in T for �nding M by lo
al sear
h. Assume we have alength-l seed string S. For ea
h length-l neighboring string N , i.e. 1-variant ofS, we �nd the number of d-variants of N o

urring in set F . We repla
e stringS by the neighboring string N if N has the least number of d-variants in F andhas less d-variants than S in F . We repeat this pro
ess several times. If seed Sand motif M are within a few symbol substitutions, we may hopefully re�ne Sto M .The seeds 
an be generated randomly or sele
ted by voting from T and F .The probabilities that S 
an be re�ned to M after k iterations when S andM di�er by k symbols for some generalized (l,d)-motif problems were shown inTable 4. It is evident from Table 4 that there is a high probability that we 
an�nd motif M from seed S when S and M di�er by no more than 5 symbols.



Table 4. Probabilities for re�ning the seeds su

essfully. k is the number of symbolsubstitutions between seed S and motif M .k (20,8) (20,9) (20,10)1 0.9895 1 12 0.9784 0.9707 0.93943 0.9563 0.9282 0.86524 0.9074 0.8603 0.75885 0.8483 0.4554 06 0 0 0Table 5. VANS' Experimental results on simulated data.running ltime 9 11 15 202 0.4s 2s 201s 9.4s3 tends to 0s 9s 240s 10.6s4 tends to 0s 1s 382s 11.2sd 5 0.2s 3s 113.6s 27.1s6 - 4s 17m 107.1s7 - - 9s 111.4s8 - - 47s 3.4hr9 - - - 80m10 - - - 8.6m11 - - - 7.7m12 - - - -5 Experimental ResultsWe have implemented VANS in C++ and tested it on a 
omputer with P4 2.4GHz CPU and 4GB memory on the simulated and real data. For the simulateddata, we pi
ked a length-l motif M randomly and also generated 20 length-600sequen
es in F randomly with the 0.25 o

urren
e probability of 'A', 'C', 'G'and 'T' at ea
h position. Ea
h of these sequen
es in F would be regeneratedif it had a variant of M . Similarly we generated 20 length-600 sequen
es in Tand planted a variant of M at a random position in ea
h of these sequen
es.For ea
h pair of l and d values, we ran 50 test 
ases and 
he
ked whether ourprogram 
ould dis
over the motif. Our program dis
overed the motif in all 
asesand the average running time is shown in Table 5. Some simulated data is missed(e.g. (9,6), (9,7) and (11,7)) be
ause d is so large that any randomly generatedlength-600 sequen
e always 
ontain a variant of any motif.We have also tested VANS on real biologi
al sequen
es stored in the publi
database SCPD. For ea
h set of genes, we 
hose the 600 bp upstream of thegenes as the input sequen
es in T . We also randomly pi
ked the same numberof genes and 
hose the 600 bp upstream of these genes as the input sequen
es



Table 6. VANS' Experimental results on real data.Trans
ription Fa
tor Published Motif pattern Motif Pattern FoundGCR1 CWTCC CTTCCGATA CTTATC CTTATCCBF,SCB,SWI6 CNCGAAA CGCGAAACuRE,MAC1 TTTGCTC TTTGCTCGCFAR CCCGGG CCCGGGGCN1 TAATCTAATC TAATCTAATCin F . The lengths of the motifs l were the same as those of the published motifsand d was 1. Experimental results are shown in Table 6. VANS 
ould �nd themotifs for these data sets within one se
ond for ea
h data set.6 Con
lusionSin
e the (l,d)-problem has a limitation that no algorithm 
an dis
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