
LARGE-SCALE PEER-TO-PEER STREAMING:

MODELING, MEASUREMENTS, AND

OPTIMIZING SOLUTIONS

by

Chuan Wu

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy,

Department of Electrical and Computer Engineering,

at the University of Toronto.

Copyright c© 2008 by Chuan Wu.

All Rights Reserved.

Large-Scale Peer-to-Peer Streaming: Modeling,

Measurements, and Optimizing Solutions

Doctor of Philosophy Thesis
Edward S. Rogers Sr. Dept. of Electrical and Computer Engineering

University of Toronto

by Chuan Wu
July 2008

Abstract

Peer-to-peer streaming has emerged as a killer application in today’s Internet, delivering

a large variety of live multimedia content to millions of users at any given time with low

server cost. Though successfully deployed, the efficiency and optimality of the current

peer-to-peer streaming protocols are still less than satisfactory. In this thesis, we investi-

gate optimizing solutions to enhance the performance of the state-of-the-art mesh-based

peer-to-peer streaming systems, utilizing both theoretical performance modeling and ex-

tensive real-world measurements. First, we model peer-to-peer streaming applications

in both the single-overlay and multi-overlay scenarios, based on the solid foundation of

optimization and game theories. Using these models, we design efficient and fully decen-

tralized solutions to achieve performance optimization in peer-to-peer streaming. Then,

based on a large volume of live measurements from a commercial large-scale peer-to-peer

streaming application, we extensively study the real-world performance of peer-to-peer

streaming over a long period of time. Highlights of our measurement study include

ii

the topological characterization of large-scale streaming meshes, the statistical charac-

terization of inter-peer bandwidth availability, and the investigation of server capacity

utilization in peer-to-peer streaming. Utilizing in-depth insights from our measurements,

we design practical algorithms that advance the performance of key protocols in peer-to-

peer live streaming. We show that our optimizing solutions fulfill their design objectives

in various realistic scenarios, using extensive simulations and experiments.

iii

Acknowledgments

I would like to first express my sincere gratitude to my thesis supervisor, Professor

Baochun Li, for his invaluable guidance and strong support throughout my academic

life in the Ph.D. stage. I deeply appreciate his strict training and precious advice in all

aspects of my academic development, which are life-long treasures for myself. I feel very

fortunate to have Prof. Li as my Ph.D. supervisor, and cherish all the opportunities to

explore my favorite research topics and exert my own strengths, that were only made

possible with Prof. Li’s unwavering support. His dedication, diligence and positiveness

have always impressed me, and will continue to inspire me in my future career.

I would also like to thank all my colleagues in the iQua research group, for the valuable

discussions on research, pleasant gatherings on occasions, and precious friendships that

support me throughout the four years. I wish them all the best in pursuing their dreams

in the future.

Finally, I feel so blessed to have a wonderful family that unconditionally supports me

in my efforts towards my goals: my father and mother, my sister and brother-in-law, and

their smart son, who brings so many laughters to the family. Especially, I would like

to thank my beloved husband, Kien Kiong. Without his relentless support, I would not

have been so focused and firm in pursuing my study.

iv

Contents

Abstract iii

Acknowledgments iv

List of Tables xii

List of Figures xviii

1 Introduction 1

1.1 Peer-to-Peer Streaming Challenges . 1

1.2 Thesis Scope . 4

1.3 Main Contributions . 7

1.4 Thesis Organization . 9

2 Background 11

2.1 P2P Streaming Systems . 11

2.1.1 Single-tree P2P streaming . 11

2.1.2 Multi-tree P2P streaming . 12

2.1.3 Mesh-based P2P streaming . 13

2.2 Optimization in P2P Resource Allocation 15

v

CONTENTS CONTENTS

2.2.1 Mathematical programming . 15

2.2.2 Lagrangian relaxation and subgradient algorithm 16

2.2.3 Application . 18

2.3 Game Theory in P2P Applications . 21

2.3.1 Game theory preliminaries . 21

2.3.2 Application . 22

2.4 P2P Streaming Measurements . 24

2.4.1 PPLive . 25

2.4.2 CoolStreaming . 26

2.4.3 Others . 27

3 Optimal Peer Selection for Minimum-Delay P2P Streaming 29

3.1 Problem Formulation . 30

3.1.1 LP for unicast streaming . 32

3.1.2 LP for multicast P2P streaming 35

3.2 Distributed Solution . 36

3.2.1 Lagrangian dualization . 37

3.2.2 Subgradient algorithm . 39

3.2.3 Distributed algorithm . 40

3.3 Handling Peer Dynamics . 41

3.4 Performance Evaluation . 42

3.4.1 Convergence speed . 43

3.4.2 Optimality . 45

3.4.3 Adaptation to dynamics . 47

3.5 Summary . 48

vi

CONTENTS CONTENTS

4 Meeting Bandwidth Demand in Practical Streaming 49

4.1 Motivation and Problem Formulation . 52

4.2 The Synchronous Case . 55

4.2.1 An iterative algorithm . 55

4.2.2 Practical implementation . 57

4.2.3 Convergence analysis . 58

4.3 The Asynchronous Case . 60

4.3.1 Practical implementation . 61

4.3.2 Handling dynamics . 63

4.4 Performance Evaluation . 66

4.5 Summary . 73

4.6 Proofs . 73

4.6.1 Proof of Theorem 1 . 73

4.6.2 Proof of Theorem 2 . 77

4.6.3 Proof of Theorem 3 . 82

5 Dynamic Bandwidth Auction in Multi-Overlay P2P Streaming 87

5.1 Multi-Overlay Streaming Model . 88

5.1.1 Network model and assumptions 88

5.1.2 Auction game model . 90

5.2 Auction Strategies . 91

5.2.1 Allocation strategy . 91

5.2.2 Bidding strategy . 92

5.3 Game Theoretical Analysis . 98

5.4 Convergence in Practical Scenarios . 107

vii

CONTENTS CONTENTS

5.4.1 Asynchronous play . 107

5.4.2 Peer dynamics . 110

5.5 Performance Evaluation . 111

5.5.1 Limited visibility of neighbor peers 112

5.5.2 The case of multiple coexisting overlays 115

5.5.3 Overlay interaction under peer dynamics 120

5.5.4 Summary . 123

6 Measurement of a Large-Scale P2P Streaming Application 124

6.1 UUSee P2P Streaming Solution . 125

6.2 Trace Collection Methodology . 129

6.2.1 Measurement method . 129

6.2.2 Reporting mechanism . 130

6.3 Global Characterization . 132

6.3.1 Overall number of simultaneous peers and flows 133

6.3.2 Number of simultaneous peers in two representative channels . . . 135

6.3.3 Number of simultaneous peers and flows in different ISPs 136

6.3.4 Number of simultaneous peers and flows in different areas 137

6.3.5 Different peer types . 138

6.3.6 Streaming quality . 138

6.4 Summary . 140

7 Charting Large-Scale P2P Streaming Topologies 142

7.1 Degree Distribution . 144

7.1.1 Degree distribution in the global topology 145

viii

CONTENTS CONTENTS

7.1.2 Degree evolution in the global topology 146

7.1.3 Intra-ISP degree evolution . 148

7.1.4 Intra-area degree evolution . 149

7.1.5 Peer sending throughput vs. outdegree 150

7.2 Clustering . 152

7.3 Reciprocity . 156

7.4 Supernode Connectivity . 160

7.5 Summary . 163

8 Characterizing P2P Streaming Flows 164

8.1 Throughput Distributions . 166

8.1.1 Overall throughput distribution at different times 166

8.1.2 Intra/inter ISP throughput distribution 169

8.1.3 Intra/inter area throughput distribution 172

8.1.4 Throughput distribution for different peer types 174

8.2 Throughput Regression: Focusing on One Snapshot 176

8.2.1 Intra-ISP throughput regression 176

8.2.2 Inter-ISP throughput regression 180

8.3 Throughput Evolution: Time Series Characterization 182

8.3.1 Intra-ISP throughput evolution 182

8.3.2 Inter-ISP throughput evolution 185

8.4 Throughput Expectation Index . 188

8.5 Summary . 192

9 Refocusing on Servers 194

ix

CONTENTS CONTENTS

9.1 Evidence from Real-world Traces . 196

9.1.1 Insufficient “supply” of server bandwidth 196

9.1.2 Increasing volume of inter-ISP traffic 198

9.1.3 What is the required server bandwidth for each channel? 199

9.2 Ration: Online Server Capacity Provisioning 201

9.2.1 Problem formulation . 201

9.2.2 Active prediction of channel popularity 203

9.2.3 Dynamic learning of the streaming quality function 206

9.2.4 Optimal allocation of server capacity 208

9.2.5 Ration: the complete algorithm 213

9.2.6 Practical implications . 215

9.3 Experimental Evaluations with Trace Replay 217

9.3.1 Performance of Ration components 219

9.3.2 Effectiveness of ISP-aware server capacity provisioning 224

9.4 Summary . 227

10 Concluding Remarks 228

10.1 Conclusions . 228

10.2 Future Directions . 229

10.2.1 Possible enhancement of minimum-delay P2P streaming modeling 229

10.2.2 Statistical traffic analysis of real-world networking systems 230

10.2.3 Addressing the conflict between ISPs and P2P applications 231

10.2.4 Optimized games for network resource allocation 232

10.2.5 Stochastic performance modeling of P2P applications 232

x

CONTENTS CONTENTS

Bibliography 234

xi

List of Tables

3.1 LP for multicast P2P streaming . 36

3.2 The distributed optimal rate allocation algorithm 41

5.1 Bidding strategy at player js . 97

8.1 Kruskal-Wallis ANOVA for throughputs at different times 168

8.2 Kruskal-Wallis ANOVA for throughputs across different ISPs at 9pm, Dec.

18, 2006 . 171

8.3 Kruskal-Wallis ANOVA for inter/intra area throughputs between different

ISPs at 9pm, Dec. 18, 2006 . 173

8.4 Robust linear regression statistics for intra-Netcom throughputs at 9pm,

Dec. 18, 2006 . 179

8.5 Robust linear regression statistics for inter-ISP throughputs at 9pm, Dec.

18, 2006 . 181

9.1 Incremental water-filling approach . 210

9.2 Ration: the online server capacity provisioning algorithm 214

xii

List of Figures

3.1 An example of the P2P streaming network model: S - the streaming server,

t1, t2, t3, t4 - the receivers. 31

3.2 An example of a unicast flow from S to t4 and its decomposition into three

fractional flows. 32

3.3 Convergence speed in random networks. 43

3.4 Convergence speed to feasibility, 90%-optimality and optimality in random

networks of 300 peers and 2400 edges. 44

3.5 Average end-to-end latency: a comparison between optimal peer selection

algorithm and a peer selection heuristic. 45

3.6 P2P streaming topologies of 20 peers: a comparison. 46

3.7 Convergence speed in a dynamic network with up to 300 peers. 47

4.1 Infeasible bandwidth allocation with a naive protocol: an example. 53

4.2 An example P2P streaming topology. 67

4.3 Convergence in the example topology: the feasible case. 68

4.4 Convergence in the example topology: the infeasible case. 68

4.5 Convergence in the example topology: the dynamic case. 69

4.6 Converge speed in large random networks. 71

xiii

LIST OF FIGURES LIST OF FIGURES

4.7 Average achieved streaming rate in a dynamic streaming session with 200

peers. 72

5.1 Two concurrent P2P streaming overlays: an example. 89

5.2 Decentralized auction games in the example overlays. 89

5.3 Bandwidth requesting strategy at player js: an illustration of the water-

filling approach. 94

5.4 Outcomes of distributed auctions in networks of different sizes, and with

various sizes of upstream vicinities. 114

5.5 The evolution of peer streaming rate in multiple coexisting overlays with

an increasing number of overlays over time. 116

5.6 A comparison of costs among multiple coexisting overlays. 117

5.7 The evolution of peer streaming rate for multiple coexisting overlays with

different budgets, and with an increasing number of overlays over time. . 118

5.8 A comparison of streaming costs among multiple coexisting overlays with

different budgets. 119

5.9 Achieved streaming rates for 4 coexisting overlays: under peer dynamics

without budget . 121

5.10 Achieved streaming rates for 4 coexisting overlays: under peer dynamics

with different budgets. 122

6.1 An illustration of UUSee P2P streaming network. 126

6.2 A snapshot involving three reporting peers and their active partners, vi-

sualized from traces collected at 10:08:45 a.m., September 5, 2006. While

widths of both types of lines represent bandwidth, the dashed links have

10 times higher bandwidth per unit width than the solid ones. 132

xiv

LIST OF FIGURES LIST OF FIGURES

6.3 Daily peer number statistics from Sunday, October 1st, 2006 to Saturday,

October 14th, 2006. 133

6.4 Daily peer/P2P flow number statistics from Sunday, December 17th, 2006

to Saturday, December 23, 2006. 134

6.5 Daily peer number statistics in two representative channels: Sunday, Oc-

tober 1st, 2006 to Saturday, October 14th, 2006. 135

6.6 Peer/P2P flow number statistics for different ISPs. 136

6.7 Peer/P2P flow number statistics for different geographic regions: Sunday,

December 17th, 2006 to Saturday, December 23, 2006. 138

6.8 Peer/P2P flow number statistics in two peer type categories: Sunday,

December 17th, 2006 to Saturday, December 23, 2006. 139

6.9 Percentage of peers with satisfactory streaming quality: Sunday, October

1st, 2006 to Saturday, October 14, 2006. 139

7.1 Degree distributions of stable peers in the global topology. 145

7.2 Evolution of average degrees for stable peers in the global topology. (A)

From October 1, 2006 to October 14, 2006. (B) From February 13, 2007

to February 19, 2007. 147

7.3 Evolution of average intra-ISP degrees for stable peers in the network. (A)

From October 1, 2006 to October 14, 2006. (B) From February 13, 2007

to February 19, 2007. 149

7.4 Evolution of average intra-area degrees for stable peers in the network.

(A) From October 1, 2006 to October 14, 2006. (B) From February 13,

2007 to February 19, 2007. 150

xv

LIST OF FIGURES LIST OF FIGURES

7.5 (A) Sending throughput distribution of stable peers in the global topology;

(B) Correlation between outdegree and sending throughput. 151

7.6 Small-world property from October 1, 2006 to October 14, 2006. (A)

Small-world metrics for the entire stable-peer graph; (B) Small-world met-

rics for an ISP subgraph (China Netcom); (C) Small-world metrics for an

area subgraph (Zhejiang Province). 153

7.7 Small-world metrics for the entire stable-peer graph: February 13, 2007 to

February 19, 2007. 155

7.8 Edge reciprocity from October 1, 2006 to October 14, 2006. (A) Edge

reciprocity for the entire network; (B) Reciprocity for edges in the same

ISP and across different ISPs; (C) Reciprocity for edges in the same area

and across different areas. 158

7.9 Edge reciprocity from February 13, 2007 to February 19, 2007. (A) Edge

reciprocity for the entire network; (B) Reciprocity for edges in the same

ISP and across different ISPs; (C) Reciprocity for edges in the same area

and across different areas. 159

7.10 Likelihood from October 1, 2006 to October 14, 2006. (A) Likelihood com-

puted with all the links in the UUSee network; (B) Likelihood computed

with only reciprocal links in the UUSee network. 161

7.11 Likelihood from February 13, 2007 to February 19, 2007. (A) Likelihood

computed with all the links in the UUSee network; (B) Likelihood com-

puted with only reciprocal links in the UUSee network. 162

8.1 Overall throughput distribution at different times. 167

8.2 Overall throughput distribution at Chinese New Year Eve. 167

xvi

LIST OF FIGURES LIST OF FIGURES

8.3 Intra/inter ISP throughput distribution on Dec. 18, 2006. 169

8.4 Intra/inter area throughput distribution at 9pm, Dec. 18, 2006. 172

8.5 Throughput CDF for different peer types at 9pm, Dec. 18, 2006. 175

8.6 Correlation of throughput with end-host characteristics for intra-Netcom

flows at 9pm, Dec. 18, 2006. 177

8.7 Correlation of throughput with per-flow end capacity for intra-Netcom

flows at 9pm, Dec. 18, 2006. 179

8.8 Correlation of throughput with per-flow end capacity for inter-ISP flows

at 9pm, Dec. 18, 2006. 180

8.9 Evolution of regression coefficients for intra-Netcom flows in the week of

Dec. 17 — 23, 2006. 183

8.10 Mean throughput evolution for intra-Netcom flows: (1) Taiwan earth-

quake, (2) Chinese New Year Eve. 184

8.11 Evolution of regression coefficients for Netcom→Telecom flows in the week

of Dec. 17 — 23, 2006. 185

8.12 Evolution of regression coefficients for Netcom→Tietong flows in the week

of Dec. 17 — 23, 2006. 186

8.13 Mean throughput evolution for Netcom→Telecom flows: (1) Taiwan earth-

quake, (2) Chinese New Year Eve. 187

8.14 Mean throughput evolution for Netcom→Tietong flows: (1) Taiwan earth-

quake, (2) Chinese New Year Eve. 187

8.15 Daily intercept/slope functions for intra-Telecom flows. 188

8.16 True rank distribution of the best sending peer selected with TEI. (1)

Taiwan earthquake, (2) Chinese New Year Eve. 191

xvii

LIST OF FIGURES LIST OF FIGURES

8.17 Distribution of throughput difference between flows from 5 top peers se-

lected with TEI and flows from true top 5 peers. (1) Taiwan earthquake,

(2) Chinese New Year Eve. 191

9.1 The evolution of server bandwidth, channels, and streaming quality over

a period of 7 months. 197

9.2 The volume of inter-ISP traffic increases over time. 199

9.3 Relationship among server upload bandwidth, number of peers, and stream-

ing quality for channel CCTV1. 200

9.4 ARIMA model identification for channel popularity series of CCTV1, shown

in Fig. 9.3(A). 204

9.5 An illustration of the incremental water-filling approach with 5 channels. 209

9.6 Prediction of the number of peers with ARIMA(0,2,1). 219

9.7 Dynamic learning of the streaming quality function for CCTV1. 220

9.8 Server capacity provisioning for 5 non-prioritized channels: (A) Server

capacity provisioning with Ration, (B) Streaming quality achieved with

Ration, (C) Streaming quality achieved with proportional allocation, (D)

Comparison of objective function values. 222

9.9 Server capacity provisioning for 5 prioritized channels with Ration. . . . 223

9.10 P2P live streaming for 5 channels in 4 ISPs: without ISP awareness. . . 225

9.11 P2P live streaming for 5 channels in 4 ISPs: with full ISP awareness. . . 225

9.12 Server capacity provisioning vs. inter-ISP traffic: a tradeoff. 226

xviii

Chapter 1

Introduction

1.1 Peer-to-Peer Streaming Challenges

Based on the peer-to-peer (P2P) communication paradigm [26], live P2P multimedia

streaming applications have been designed and deployed in the Internet in recent years.

Not relying on any router support as required by IP-layer multicast, P2P streaming uti-

lizes the bandwidth contribution by regular end hosts (peers) at the edge of the Internet,

and greatly reduces the load on dedicated streaming servers. Therefore, P2P streaming is

able to achieve much better scalability than the traditional streaming applications based

on the server-client model.

Categorized on the topology and philosophy of media distribution, P2P streaming

applications can be divided into three generations. The first generation features a single-

tree multicast topology and push-based media dissemination along the tree [17, 26, 31,

81], which is quickly taken over by the second-generation streaming solutions, due to

the vulnerability of a single multicast tree. The second-generation streaming protocols

construct multiple multicast trees, and push different sub streams of each media session

1

1.1. PEER-TO-PEER STREAMING CHALLENGES 2

down each of the trees [24, 69]. The multi-tree approaches render better failure resilience

and bandwidth utilization, however, they still suffer the high cost of tree maintenance

in the highly dynamic P2P networks. To fundamentally overcome the disadvantages

of tree-based solutions, the state-of-the-art third-generation P2P streaming systems are

built upon random mesh topologies and a distribution philosophy that features mutual

exchange of available media blocks among peers [50, 62, 70, 87, 88].

In a third-generation mesh-based P2P streaming system, hereafter referred to as mesh-

based P2P streaming for short, the media stream in a media session is divided into a series

of consecutive blocks, and the blocks are distributed across the network by allowing

neighboring peers to exchange their available blocks, that are received and cached in

their local playback buffers. Each peer is connected to a number of neighbors, which are

randomly selected from all the existing peers in the session, thus rendering a random

mesh distribution topology. Replacing structured trees with random meshes, the mesh-

based P2P streaming systems are able to achieve fundamentally better resilience to peer

dynamics, more efficient use of peer bandwidths, better scalability to accommodate large

flash crowds, as well as simplicity with respect to topology maintenance. Based on this

design philosophy, a number of commercial P2P live streaming applications have been

developed and deployed over the Internet today, which stream hundreds of media channels

to millions of users at any given time. Prominent examples include CoolStreaming [88],

PPLive [5], UUSee [10], TVAnts [9], PPStream [6], Joost [2], and SopCast [8].

While mesh-based streaming applications have been successfully deployed, practical

experiences still show a less-than-satisfactory streaming performance at the users, with

respect to long buffering delay and frequent playback interruptions, which are especially

evident in case of sudden increase of the number of users in the system, i.e., the flash

1.1. PEER-TO-PEER STREAMING CHALLENGES 3

crowd scenarios. What is a fundamental challenge that limits the advance of P2P stream-

ing performance? We believe the answer lies at the limited and time-varying bandwidth

availability in a P2P network:

⊲ Bandwidth is an all-time scare resource in P2P streaming. Nodes in P2P networks

reside at the edge of the Internet, leading to limited per-node availability of upload

capacities. Depending on the type of connection, the available per-node bandwidth

also differs significantly, by at least an order of magnitude. On the other hand,

to reduce buffering delay and ensure smooth streaming playback, a high streaming

bandwidth, that matches the streaming bit rate of the media session, must be pro-

vided to each peer on a continuous basis. All these lead to the critical requirement

to maximize the utilization of limited bandwidths in a P2P streaming network.

⊲ Bandwidth availability is consistently changing over time. P2P networks are inher-

ently dynamic and unreliable: Peers may join and depart at will; P2P connections

can be torn down and established again between different pairs of peers all the time;

the available upload capacity at each peer and that along a P2P link are varying

over time as well. All such volatility constitutes a great obstacle to achieving stable

streaming bit rates in P2P streaming sessions.

While mesh-based P2P streaming outperforms tree-based streaming solutions in ad-

dressing the above challenge, it is interesting to observe that the existing mesh-based

solutions typically employ heuristic designs for their key protocols, including the random

peer selection strategies and ad-hoc server capacity deployment methods. All these facts

motivate us to investigate: Can we do better in the design of mesh-based P2P streaming,

such that an optimized streaming performance can be provided to all the peers at all

times?

1.2. THESIS SCOPE 4

1.2 Thesis Scope

This thesis focuses on fundamental improvement of key protocols in mesh-based P2P

live streaming from multiple aspects, towards the ultimate goal of enhancing the perfor-

mance of P2P streaming. Our study can be categorized into two broad categories: From

the more theoretical perspective, we carefully model mesh-based P2P streaming using

optimization and game theoretical models, and design efficient and fully decentralized

solutions to achieve performance optimization in various practical scenarios; from the

more practical perspective, we extensively measure and analyze a real-world large-scale

P2P streaming application using a large volume of traces collected over a one-year period

of time, and design practical enhancement solutions based on in-depth insights from the

measurements.

In the first category of our study, we focus on the optimization of bandwidth utiliza-

tion in a P2P streaming network. Aiming to minimize end-to-end latencies in a single

streaming overlay, we model the minimum-delay peer selection and bandwidth allocation

problem into a global linear optimization model. We then decompose the problem into

distributed subproblems using effective algorithmic techniques, and propose efficient al-

gorithms to solve the subproblems in a fully decentralized fashion. In a more practical

scenario without any assumption of a prior knowledge of link or node bandwidths, we

further investigate the streaming rate satisfaction problem, by formulating it into a linear

feasibility problem and designing a practical distributed solution algorithm. In our dis-

tributed algorithm designs, each peer carries out local optimization steps for bandwidth

allocation on its neighboring links, and the entire system can be proven to converge to

the global optimum or streaming rate feasibility on an ongoing basis.

Beyond the single overlay optimization, we further investigate the challenge when

1.2. THESIS SCOPE 5

coexisting streaming overlays are considered, corresponding to different channels of pro-

gramming, which are the norm in a typical P2P streaming application. In such a practical

system, a typical scenario persists, that multiple peers from different overlays compete

for limited upload bandwidth at their common streaming servers or upstream peers in

the network. To resolve such a bandwidth conflict, we model the bandwidth competi-

tion in a game theoretic setting, with a distributed collection of dynamic auction games,

where downstream peers from different overlays bid for upload bandwidth at the same

upstream peer. We then design cleanly decentralized strategies to carry out the band-

width auctions, which converge to global optimal streaming topologies for all the overlays

in realistic asynchronous environments.

In the second category of our study, we extensively measure and analyze a large-scale

P2P streaming application, in collaboration with UUSee Inc. [10], one of the leading P2P

live streaming solution providers based in Beijing, China. With collaborative efforts, we

instrument the application to collect large volumes of traces, which amount to almost a

terabyte over a span of one year, involving millions of users, with a snapshot of the entire

system every five minutes. Using this large volume of live traces, our in-depth study of

this practical system features the following highlights.

First, as mesh streaming topologies play an important role towards the commercial

success of P2P streaming, it is critical to acquire a thorough and in-depth understanding

of the topological characteristics of these large-scale meshes, their time-varying behav-

ior, and how they react to extreme scenarios such as flash crowds. Based on 120 GB of

traces collected over a time span of two months, we analyze the graph theoretic proper-

ties of UUSee streaming topologies, with respect to their degrees, clustering coefficients,

reciprocity, and likelihood. We have drawn conclusions with respect to the scalability,

1.2. THESIS SCOPE 6

clustering, and reciprocal effects of the state-of-the-art P2P streaming topologies, based

on our observations.

Second, in a P2P streaming application, it is important for peers to select an appro-

priate number of neighboring peers with high-bandwidth active connections. It would

then be helpful to obtain some kind of approximate knowledge of available TCP band-

width between any two peers without active probing. To achieve this objective, we

have conducted an exhaustive investigation with respect to statistical properties of TCP

throughput values on streaming flows among peers, using 230 GB of UUSee traces over

a four-month period of time. We make quite a number of interesting discoveries with

respect to the key factors that decide inter-peer bandwidth availability. Based on our

discoveries, we design a throughput expectation index that makes it possible to select

high-bandwidth peers without probing.

Finally, we have monitored the streaming quality in different UUSee streaming chan-

nels over a seven-month span, and investigated the server capacity consumption on all

the UUSee streaming servers, based on 400 GB of traces collected during this period.

We have made an intriguing discovery that the deployed server capacities are not able to

keep up with the rapidly increasing demand in the streaming channels in such a typical

system. This motivates us to design an online server capacity provisioning algorithm,

which dynamically allocates the pool of available server capacity to each of the concur-

rent channels to address their predicted demand, and also guides the deployment of an

appropriate amount of total server capacity in the system. As another important objec-

tive, we also consider the minimization of inter-ISP (Internet Service Provider) traffic in

our design, by carrying out the algorithm with full ISP-awareness to maximally constrain

P2P traffic within ISP boundaries.

1.3. MAIN CONTRIBUTIONS 7

1.3 Main Contributions

The main contributions of the thesis work are summarized as follows.

• We design a decentralized optimal peer selection and bandwidth allocation algo-

rithm, that achieves minimized end-to-end latencies at all the participating peers

in a streaming session. Our design is firmly based on the Lagrangian dual theory

in optimization.

• We design a distributed protocol to effectively carry out streaming bandwidth al-

location in the most practical scenario without any a prior knowledge of node or

link bandwidth availability. We rigidly prove that the algorithm is able to achieve

the required streaming rate at all peers in a streaming session in both synchronous

and asynchronous dynamic environments.

• Previous studies in P2P streaming have mostly focused on a single overlay, ne-

glecting the conflicting nature among coexisting overlays with respect to available

network bandwidth. We present the first study in the literature that focuses on

such conflicts, by modeling them as a distributed collection of bandwidth auction

games, and by designing efficient tactical strategies to carry out the bandwidth

auctions. Our design is further different from most existing work on game theory,

in that we utilize the auction game model to facilitate the design of a simple, prac-

tical and fully decentralized protocol that achieves global properties. Our extensive

theoretical analysis shows that the decentralized auction strategies not only con-

verge to a Nash equilibrium in realistic asynchronous environments, but also lead

to an optimal topology for each of the coexisting streaming overlays.

1.3. MAIN CONTRIBUTIONS 8

• The scale of our measurement work with respect to UUSee is unprecedented in P2P

streaming research, with a terabyte worth of live traces collected over a span of one

year and a snapshot of the entire system every five minutes.

• We are the first to thoroughly investigate the topological properties of large-scale

P2P streaming meshes, and their evolutionary characteristics. The original insights

we have brought forward in this study include: (1) Topologies of P2P streaming

meshes do not possess similar properties as those obtained from early Internet

or AS-level topological studies, such as power-law degree distributions; (2) The

streaming topologies naturally evolve into clusters inside each ISP, but not within

geographically adjacent areas; (3) Peers are reciprocal to each other to a great

extent, which contributes to the stable performance of mesh-based streaming; (4)

There do not exist super-node hubs in the streaming topologies.

• Our in-depth statistical characterization of P2P streaming flows has led to a number

of interesting discoveries: (1) The ISPs that peers belong to are highly relevant

in determining inter-peer bandwidth, even more important than their geographic

locations; (2) Excellent linear correlations exist between the availability of peer

last-mile bandwidth and inter-peer bandwidth within the same ISP and between a

subset of ISPs, with different linear regression coefficients for different pairs of ISPs;

(3) Inter-peer bandwidth exhibits an excellent daily evolutionary pattern within or

across most ISPs.

• We design a throughput expectation index, which facilitates a new way of selecting

high-bandwidth serving peers without any active probing for available bandwidth.

Instead, this index is computed based on the ISPs that peers belong to, a table

1.4. THESIS ORGANIZATION 9

of linear regression coefficients for different pairs of ISPs, the availability of peer

last-mile bandwidth, and the time of the day.

• Controversial to most common beliefs, our measurement study has revealed the

indispensable role of dedicated streaming servers, in providing stable upload capac-

ities to accommodate peer instability in real-world P2P streaming applications. In

particular, we discover that the ad-hoc way of server capacity provisioning on the

streaming servers is not able to effectively accommodate the dynamic demand in

the streaming channels, not to mention that with an increasing number of channels

deployed.

• We design an online server capacity provisioning algorithm, that dynamically allo-

cates the pool of available server capacity to each of the concurrent channels, and

also possesses full ISP-awareness to maximally constrain P2P traffic within ISP

boundaries. The algorithm works in a proactive fashion, that optimally allocates

the server capacity among concurrent channels based on their predicted popularity,

forecasted server capacity demand, and the priority of each channel. It can also be

utilized to guide the provisioning of total server capacity in each ISP over time. We

validate the effectiveness of the algorithm based on a realistic replay of the trace

scenarios in a P2P streaming system that emulates UUSee protocols.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. We present background materials and

related research in Chapter 2. In Chapter 3, we discuss our minimum-delay bandwidth

allocation model, and the design of a distributed optimization algorithm. In Chapter 4,

1.4. THESIS ORGANIZATION 10

we model the streaming rate feasibility problem, and propose an efficient algorithm to

achieve it without any a prior knowledge of link or node bandwidths. We then character-

ize the bandwidth conflict among coexisting streaming overlays in Chapter 5, and present

our design of effective conflict-resolving strategies based on an auction game model. We

start to present our measurement-based studies of a practical large-scale P2P streaming

application from Chapter 6, in which we describe our measurement methodology and

basic global characteristics summarized from the traces. We then present our topological

characterization of large-scale streaming meshes in Chapter 7, statistically study inter-

peer bandwidths and design a new way of selecting high-bandwidth peers in Chapter 8,

and investigate server capacity consumption that motivates the design of an online server

capacity provisioning algorithm in Chapter 9. Finally, we present concluding remarks

and future directions in Chapter 10.

Chapter 2

Background

2.1 P2P Streaming Systems

Since the seminal work on end system multicast in 2000 [26], P2P streaming has emerged

as one of the most successful applications of the overlay multicast paradigm. The devel-

opment of P2P streaming systems can be categories into three generations.

2.1.1 Single-tree P2P streaming

The first-generation P2P streaming solutions feature the streaming topology of a single

multicast tree, with representative systems as follows.

Narada [26] is among the first multicast systems that advocate multicast among end

hosts at the application layer, rather than among routers in the network layer. In Narada,

a multicast tree is established by running a distant vector routing algorithm to decide

the shortest paths between the streaming source and the receivers. Its tree construction

further provides the flexibility of constructing based on different performance metrics,

11

2.1. P2P STREAMING SYSTEMS 12

such as low delay, low data loss rate, or high bandwidth.

ZIGZAG [81] organizes network nodes into an application-layer multicast tree, with

a height logarithmic with the number of receivers and a node degree bounded by a

constant. This tree structure reduces the number of processing hops on the delivery path

to a receiver, avoids network bottlenecks, and keeps the end-to-end delay from the source

to a receiver small.

Other single-tree P2P streaming systems include SpreadIt [31] and NICE [17]. These

single-tree solutions suffer sub-optimal performance of throughput, as the media stream

is pushed down the multicast tree using a same streaming rate. In addition, as each

interior node uploads to multiple downstream nodes, the challenge further surfaces when

they depart or fail, which interrupts the streaming session and requires expensive repair

processes.

2.1.2 Multi-tree P2P streaming

To overcome those disadvantages, the second-generation P2P streaming protocols con-

struct multiple multicast trees, each rooted at the streaming server and spanning all the

nodes.

CoopNet [69] employs multiple description coding (MDC) to support its multi-tree

streaming. With MDC coding, the streaming media content is divided into multiple sub-

streams, referred to as descriptions, and each description is delivered to the receivers via

a different multicast tree. Every subset of the descriptions is decodable. In this way, each

node decides how many multicast trees to join, i.e., how many descriptions to receive,

based on its download bandwidth.

SplitStream [24] is another P2P system focusing on high-bandwidth multicast based

2.1. P2P STREAMING SYSTEMS 13

on multiple trees. To achieve load balancing on the small number of interior nodes, it

constructs a forest of interior-node-disjoint multicast trees that distribute the forwarding

load among all the participating peers. The data stream is divided into multiple blocks,

and each block is distributed along a different tree.

As compared to single-tree solutions, these systems can better accommodate peers

with heterogeneous bandwidths by having each peer join different numbers of trees. It is

also more robust to peer departures and failures, as an affected peer may still be able to

continuously receive the media at a degraded quality from other trees, while waiting for

the affected tree to be repaired. These advantages come with a cost, however, as all the

trees need to be maintained in highly dynamic P2P networks.

2.1.3 Mesh-based P2P streaming

To provide fundamentally better flexibility, robustness, and bandwidth efficiency, the

third-generation mesh-based P2P streaming systems have been designed and deployed in

recent years.

Bullet. In the Bullet [50] system, nodes self-organize into a high-bandwidth overlay

mesh, and data blocks are distributed in a disjoint manner to strategic points in the

network. Individual receivers locate the data blocks using RanSub [49], a distributed

approach that uniformly spreads the availability information of data blocks across all the

overlay participants, and retrieve the data from multiple points in parallel.

CoolStreaming [88] constructs a data-driven mesh overlay network for live media

streaming. It also represents the first mesh-based P2P streaming system deployed over

the Internet in large scale. In CoolStreaming, the media stream in each media session is

divided into consecutive blocks, and is distributed across the network by allowing peers

2.1. P2P STREAMING SYSTEMS 14

to exchange their available blocks, that are received and cached in their local playback

buffers. The playback buffer at each peer represents a sliding window of the media

channel, containing blocks to be played in the immediate future. Each peer has a list of

partners for media block exchange, whose information is acquired using a gossip protocol.

A peer periodically exchanges the media block availability information in its playback

buffer, i.e., its buffer availability bitmap or buffer map in short, with its partners, and

retrieves unavailable data from one or more partners.

Chainsaw [70] is another multicast system that is based on a randomly constructed

P2P mesh graph with a fixed minimum node degree. In Chainsaw, when a peer receives

a new packet, it sends a NOTIFY message to its neighbors. Every peer maintains a

window of interest, and explicitly requests a packet from a neighbor in order to receive

it.

GridMedia [87] employs a hybrid push-pull approach on its random mesh topology

for low-delay P2P live streaming. After a peer joins the GridMedia system, in the first

time interval, it requests (“pulls”) packets from its neighbors. In what follows, at the

end of each time interval, it subscribes the packets to retrieve at each neighbor, and the

neighbors will relay (“push”) the packets to the peer as soon as they receive the packets.

They argue that while the pull mode enables dynamic connectivity in the highly dynamic

P2P environment, the push mode can effectively reduce the accumulated latency observed

at the receiver nodes.

PRIME [62] is a recent mesh-based P2P live streaming protocol that considers

the bandwidth bottleneck and content bottleneck in the swarming protocol design. In

PRIME, incoming and outgoing degrees of individual peers are decided to minimize the

2.2. OPTIMIZATION IN P2P RESOURCE ALLOCATION 15

probability of bandwidth bottleneck in the content delivery. To minimize content bot-

tleneck, PRIME summarizes the content delivery pattern into a diffusion phase and a

swarming phase, and designs a packet scheduling algorithm to accommodate this pattern.

Streaming over random mesh topologies, these systems can achieve more efficient

utilization of the limited bandwidth in the P2P network, attributed to the simultaneous

parallel downloads. The mutual block exchange and loosely-coupled P2P connectivity

provide simplicity and flexibility, that adapt better to the volatile peer dynamics in a

P2P network. Based on this design philosophy, a number of real-world P2P streaming

applications have been implemented and deployed in the Internet, including PPLive [5],

UUSee [10], TVAnts [9], PPStream [6], Joost [2], SopCast [8], Zattoo [12], VVSky [11],

QQLive [7].

2.2 Optimization in P2P Resource Allocation

2.2.1 Mathematical programming

Many network resource utilization problems are optimization problems in nature. Opti-

mization is the approximate synonym for mathematical programming (MP) in operations

research, where mathematical programming is the study of optimization problems in

which one seeks to minimize or maximize a real function of real variables, subject to con-

straints on these variables. The general form of a mathematical programming problem

is as follows, which is also referred to as a mathematical program:

min f(x) (2.1)

subject to

2.2. OPTIMIZATION IN P2P RESOURCE ALLOCATION 16

gi(x) ≤ bi, i = 1, . . . ,m. (2.2)

Here, x ∈ R
n is the optimization variable vector. The function f : R

n → R is

the objective function, and the functions gi : R
n → R, i = 1, . . . ,m, are the constraint

functions.

If the objective function f and constraint functions gi, i = 1, . . . ,m, are convex func-

tions [23], the mathematical optimization problem is a convex optimization problem,

and the mathematical program in (2.1) is referred to as a convex program [23]. Convex

programming is an important branch of mathematical programming, as it can be used

to express many practical optimization problems and is algorithmically tractable. As a

linear function is convex, linear programming, in which the objective function and con-

straint functions are linear, is an important category of convex programming, which can

model a broad range of optimization problems in practice.

Convex programming is a well-studied category of optimization, with a number of

algorithms invented to solve a convex program. These algorithms include the simplex

algorithm [30], ellipsoid method [47, 48, 74, 86], interior point methods [33, 46], and

subgradient algorithms [18, 75].

2.2.2 Lagrangian relaxation and subgradient algorithm

Most of the convex programming algorithms are inherently centralized algorithms, which

require all the computations to be carried out in one computer with all the required

information. There is one category of optimization techniques, the Lagrangian relaxation

and subgradient algorithm, which explores the decomposable structure of an optimization

problem, and renders distributed solution algorithms.

2.2. OPTIMIZATION IN P2P RESOURCE ALLOCATION 17

Lagrangian relaxation is an important mathematical programming technique [18, 23],

that relaxes a set of constraints and generates the Lagrange dual of the original optimiza-

tion problem, i.e., the primal problem. To relax a set of constraints gk, ∀ k ∈ K,K ⊂

{1, 2, . . . ,m}, we associate a Lagrange multiplier, µk, with each of the constraints, and in-

corporate them into the objective function, which then becomes f(x)+
∑

k∈K µk(gk−bk).

We can derive the Lagrange dual as

max
µ

L(µ) (2.3)

subject to

µk ≥ 0, ∀ k ∈ K,

where

L(µ) = min
P

f(x) +
∑

k∈K
µk(gk − bk), (2.4)

and P is a polytope defined by the rest of the constraints:

gi(x) ≤ bi, ∀ i ∈ {1, . . . ,m} − K.

The Lagrange Duality theorem states that, the optimal value of (2.4) is always an

lower-bound of the optimal value of the original problem in (2.1). When the primal

problem is convex, if we take the maximum of the new optimal values of (2.4) over all

non-negative values of µk, ∀ k ∈ K, the derived optimal objective function value of the

Lagrange dual problem in (2.3) is exactly the same as the optimal value of the original

problem.

2.2. OPTIMIZATION IN P2P RESOURCE ALLOCATION 18

The optimal solution to the Lagrange dual can be derived with the subgradient al-

gorithm [18, 75]. The subgradient algorithm derives the optimal values of the Lagrange

multipliers in an iterative fashion: In each step, given the current non-negative values

of the multipliers, it computes the optimal solution to the problem in (2.4), and then

updates the multiplier values along the subgradient direction according to a sequence

of prescribed step lengths. The subgradient algorithm converges to optimal values of µ,

i.e., µ∗. However, for linear programs, the optimal values of x derived using the optimal

µ∗ from (2.4) are not necessarily the optimal variable values for the primal problem in

(2.1) [73]. In this case, a primal recovery algorithm can be applied to derive the primal

optimal variables [73].

By choosing an appropriate set of constraints to relax, the derived Lagrange dual

problem may represent a decomposable structure, which can be exploited to decompose

it into subproblems that can be efficiently solved in a distributed manner. In this way,

Lagrangian relaxation constitutes a powerful tool to design efficient and distributed so-

lution algorithms to solve the original optimization problems.

2.2.3 Application

Optimization techniques have been utilized to model a variety of problems in P2P content

distribution, including the optimal allocation of flow rates to achieve maximum through-

put, minimum cost, or fairness in overlay multicast, and the optimal peer selection and

topology construction in P2P applications.

For overlay multicast over a single-tree topology, Cui et al. [28] formulate the optimal

flow rate computation problem into a non-linear program, with an aggregate utility ob-

jective function and flow rates on the overlay links as the optimization variables. Both

2.2. OPTIMIZATION IN P2P RESOURCE ALLOCATION 19

network capacity constraints and data constraints are defined to guarantee a valid mul-

ticast flow. They apply Lagrangian relaxation technique to derive a distribution solution

algorithm, in which overlay nodes coordinate to accomplish the link rate computation

tasks.

In the more complicated scenario of multicast in a general data network, Garg et

al. [34] study the maximum throughput problem by constructing optimal multicast trees.

In their linear program, the variables indicate flow rates along different multicast trees,

and the objective is to maximize the overall throughput along all possible multicast trees

in the network, subject to link capacity constraints. As this formulation is equivalent to

a NP-hard fractional packing problem, they design an approximation algorithm to solve

the linear program.

In order to solve this maximum throughput problem in polynomial time, Li et al. [58]

introduce conceptual flows to model the data constraint in a valid multicast flow, rather

than resorting to tree packing. In their formulation, the multicast flow from the server

to all the receivers is viewed as composing of multiple conceptual unicast flows from

the server to each of the receivers. Each of the conceptual unicast flows follows flow

conservation, and the multicast rate on each overlay link is the maximum of the rates

of all conceptual flows going along this link. Based on this notion, Li et al. formulate a

linear program to achieve maximum multicast throughput, by adjusting rates of those

conceptual flows. They apply Lagrangian relaxation to decompose the problem into k

min-cut problems, based on which a polynomial-time distributed algorithm is achieved.

Another practical objective in computing optimal flow rate allocation is to achieve

the best fairness among all the receivers. Cui et al. [29] formulate a variation of linear

programs to model the max-min fairness within one overlay multicast tree, with the

2.2. OPTIMIZATION IN P2P RESOURCE ALLOCATION 20

objective function in the form of a max-min rate vector. A distributed algorithm is

designed to derive the solution in the case that the multicast tree topology is given.

For overlay multicast applications with an end-to-end rate requirement, such as media

streaming applications, the optimization objective generally represents the minimization

of the cost incurred when transmitting the data at the required rate, rather than the

maximization of throughput. In the optimization model of Lun et al. [60], the objective

function is a cost function with variables denoting multicast rates on each overlay link.

With linear cost functions, the problem is a linear program with the embedded structure

of minimum-cost flow problems. Lun et al. exploit this embedded structure by applying

Lagrangian relaxation to constraints not belonging to the minimum-cost flow formulation.

In P2P file sharing applications, optimization techniques have been utilized to decide

the best set of supplying peers for each receiving peer, and the corresponding downloading

rates [13][44]. In Adler et al.’s model [13], the total downloading delay is formulated as

the optimization objective, while a total downloading budget and the available download-

ing bandwidth from each peer constitute constraints. A similar optimization model for

peer selection is proposed by Janakiraman et al. [44]. This model has an objective func-

tion in the non-standard minimax form, but can be transformed into a linear or convex

program, which can then be solved numerically by standard linear/convex programming

algorithms.

In P2P streaming, the optimization models for optimal peer selection [13][40] address

the specific requirements of media streaming applications, such as the Quality of Service

(QoS) requirements in terms of delay, jitter, etc. For example, in Adler et al.’s non-linear

optimization model [13], the optimization objective is the minimization of total streaming

cost, while a continuous playback is guaranteed with the constraints.

2.3. GAME THEORY IN P2P APPLICATIONS 21

2.3 Game Theory in P2P Applications

2.3.1 Game theory preliminaries

In game theory, a noncooperative strategic game is a model of interactive decision-making,

in which each decision-maker chooses his plan of action once and for all, and these choices

are made simultaneously [67]. A strategic game G consists of the following key elements:

• a finite set N (the set of players)

• for each player i ∈ N , a nonempty set Ai (the set of actions available to player i)

• for each player i ∈ N , a preference relation %i on A = ×j∈NAj (the preference

relation of player i)

In a strategic game where each player makes their own decision based on their pref-

erence relations, the most commonly used solution concept is the Nash equilibrium.

Nash equilibrium captures a steady state of the play of a strategic game, in which each

player holds the correct expectation about the other players’ behavior and acts ratio-

nally. More specifically, a Nash equilibrium of a strategic game < N, (Ai), (%i) > is

a profile a∗ ∈ A of actions, with the property that for every player i ∈ N , we have

(a∗
−i, a

∗
i) %i (a∗

−i, ai) for all ai ∈ Ai. Therefore, at a Nash equilibrium a∗, no player i

has an action yielding an outcome that he prefers to that generated when he chooses a∗
i ,

given that every other player j chooses his equilibrium action a∗
j . In another word, no

player can profitably deviate, given the actions of the other players.

When the players repeatedly engage in a strategic game G for numerous times, the

situation is captured by the model of a dynamic, or repeated game [67]. In a dynamic

2.3. GAME THEORY IN P2P APPLICATIONS 22

game, players have some information about the strategies chosen by others previously,

and thus may contingent their play on the past moves.

In a strategic game where noncooperative players share a common resource, a price

of anarchy is defined to measure the effectiveness of the outcome of the system [51]:

Price of Anarchy =
Cost of Worst Nash Equilibrium

Socially-Optimal Cost
.

The price of anarchy measures how much performance is lost due to the lack of

coordination among selfish players in a game model, i.e., how far the outcome of the

game is from the social optimum, defined in terms of a specific performance metric, such

as minimal total delay in an Internet routing system. A Nash equilibrium is efficient

if it coincides with the solution to a global optimization problem reflecting the social

optimum.

2.3.2 Application

In P2P applications, noncooperative strategic games have been exploited to charac-

terize peer selfishness or competition, and to provide incentives that motivate peers

to contribute their upload capacities or efficiently share common bandwidth resources

[37, 53, 61, 80].

Fabrikant et al. [32] introduce a network creation game, in which selfish nodes choose a

subset of other nodes and pay for the links that they establish, with the goal of minimizing

its connecting cost and distance to every other node in the network. The outcome of the

game is the network topology among the nodes. They show that the price of anarchy

in this network creation game, i.e., the relative cost of the lack of coordination among

selfish nodes, may be modest.

2.3. GAME THEORY IN P2P APPLICATIONS 23

Chun et al. [27] further the above study by modeling the construction of overlay rout-

ing networks as selfish nodes playing competitive network construction games. They find

that by varying the link cost function, the game produces widely different Nash equi-

libria, i.e., different topologies that achieve diverse goals, such as low stretch, balanced

degree distribution, or high failure or attack resilience.

In P2P file sharing networks, Golle et al. [37] examine the free-riding problem, i.e.,

peers obtain services without themselves contributing any resources, by modeling the

file sharing scenario during one time period using game theory. In their model, selfish

peers select what proportion of files to share and determine how much to download from

the network in each period, in order to maximize their own quasi-linear utility functions.

They design several payment mechanisms to encourage file sharing, and analyze equilibria

of user strategies under these payment mechanisms. Lai et al. [53] use the Evolutionary

Prisoners Dilemma model to capture the tension between individual and social utility in

a selfish P2P file sharing network. Each peer plays the roles as both a client and a server

in each round of the dynamic game, to decide between the actions of requesting a file or

not, and between allowing download and ignoring request, respectively.

To provide service differentiation among peers based on their contribution levels, Ma

et al. [61] model the bandwidth request and distribution process as a competition game

among the competing nodes in a P2P file sharing network. The upload capacity at each

uploading peer is distributed based on the amount of service each of its downstream nodes

has provided to the community. They show that this game has a Nash equilibrium, is

collusion-proof, and maximizes the social welfare.

To encourage contribution in P2P streaming applications, Tan et al. [80] propose a

payment-based incentive mechanism, in which peers earn points by forwarding data to

2.4. P2P STREAMING MEASUREMENTS 24

others. The streaming process is divided into fixed-length periods. During each period,

peers compete for good suppliers for the next period using their points, based on strategies

that maximize its own expected media quality.

A pricing mechanism is designed by Qiu et al. [71] to stimulate cooperation in P2P-

like ad-hoc networks. In their model, network users can charge other users a price for

relaying their data packets, and the prices and relay rates are set tactically to maximize

their own net benefit. An iterative price and rate adaption algorithm is designed, that

converges to a socially optimal bandwidth allocation in the network.

2.4 P2P Streaming Measurements

With the successful deployment of mesh-based P2P streaming applications, there have

recently emerged a number of measurement studies, in which researchers collect live

traces from real-world systems and investigate their performance. In the majority of

existing measurement studies, traces are collected using either the crawling method or

passive sniffing technique. In the former category, a crawler program or script is designed

and deployed, that collects peer information in a P2P application by sending protocol

messages to the known peers and collecting corresponding responses to learn more about

other peers. In the second category, a number of dedicated computers are deployed, that

actually join a P2P application as peers by running the P2P client software. They then

sniff packet traffic from and to themselves, and collect related performance measurements.

2.4. P2P STREAMING MEASUREMENTS 25

2.4.1 PPLive

Hei et al. [41, 42] have carried out a measurement study of PPLive, one of the most pop-

ular P2P live streaming applications in the Internet. Their trace collection incorporates

both active crawling and passive sniffing.

Using a PPLive crawler, they collect global information of the P2P applications during

a few time periods in 2006 and 2007. The global characteristics derived include the num-

ber of users in the application and their variation over time, the geographic distribution

of the users, the arrival and departure rates of users in two popular channels.

Using passive sniffing, they monitor packet traces on two dedicated nodes deployed

on high-speed campus access networks and two nodes on broadband residential access

networks. The local media traffic characteristics they have investigated in this way

include start-up delays, playback lags, fractions of control and video data each peer

receives, peer partnership, and the aggregate upload/download rates at the four peers.

The following insights are derived from this measurement study: (1) P2P streaming

users have the similar viewing behaviors as regular TV users; (2) A peer exchanges video

data dynamically with a large number of other peers; (3) A small set of super-peers act

as video proxy and contribute significantly to video data uploading; (4) Users in the

system can suffer long start-up delays and playback lags, ranging from several seconds

to a couple of minutes.

In a more recent work [43], Hei et al. have further exploited the buffer maps har-

vested from the peers in PPLive to monitor the network-wide streaming quality. The

buffer maps were collected over short periods (2-4 hour intervals) in 2007, using both

a dedicated buffer-map crawler and 3 passive sniffing nodes. As a buffer map reflects

information about the data blocks each peer makes available for sharing, they show that

2.4. P2P STREAMING MEASUREMENTS 26

information provided by the advertised buffer map of a peer correlates to that peer’s

viewing continuity and start-up latency. They also present results inferred from a large

number of buffer maps, with respect to network-wide playback continuity, start-up la-

tency, playback lags, and block propagation.

Also focusing on PPLive [83], Vu et al. investigate its two graphical properties, node

outdegree and graph clustering coefficient, based on traces collected from 300 crawled

peers in one streaming channel over a 24-hour period in 2006. They conclude from

their study that small overlays in PPLive are similar to random graphs in structure, and

the average outdegree of a peer in an overlay is independent of the population in the

streaming channel.

2.4.2 CoolStreaming

Li et al. [54, 55] measure the CoolStreaming system, based on traces collected using an

internal logging system. In their trace collection, an ActiveX component in JavaScript

code is deployed at the peers in the system, which collects peer activities and status

information and reports them to a log server. The peer activities, including join and

departure events, are collected when they occur; the status information is collected ev-

ery 5 minutes, which may include the following: the percentage of missing video data

at playback deadline, the volume of video content downloaded and uploaded, and the

partner information.

Using traces collected during live broadcast events in one sport channel on September

27th, 2006, they have investigated the type and distribution of users in CoolStreaming,

their join/departure rates, the distribution of user session durations, the distribution of

2.4. P2P STREAMING MEASUREMENTS 27

peer uploading contributions, and the start-up delay and playback continuity in the sys-

tem. From this study, they show that (1) the churn is the most critical factor that affects

the overall performance of the system, (2) there is a highly unbalanced distribution in

terms of uploading contribution among the peers, and (3) the excessive start-up time and

high failure rates during flash crowds remain critical problems in such a P2P streaming

system.

2.4.3 Others

Ali et al. [15] have studied PPLive and SopCast with information collected in 2-3 hour

durations in October and December 2005, by passive sniffing on a number of nodes

deployed in different ISPs with different types of last-mile connections. They mainly

analyze the resource usage in the two applications, with respect to the total sending

and receiving throughput at each peer, the number of children supported by each peer,

and the locality and stability of data distribution. Based on their study, they identify a

number of shortcomings and challenges these applications are likely to face: (1) Random

peer selection may result in inefficient distribution. For example, a North American

node may download all the way from Asia parents, but will upload back to peers in

Asia. (2) The systems depend heavily on the availability of high-capacity nodes, which

are richly connected to supply other peers. (3) Most communications in the systems

are based on TCP, even for small amounts of data, which may not be ideal for such

real-time applications due to the delay property of TCP connections. (4) NAT traversal

is not efficiently handled in the two systems, such that peers behind NATs are unable to

upload to other peers.

Silverston et al. [77, 78] compare the traffic pattern among four popular P2P streaming

2.4. P2P STREAMING MEASUREMENTS 28

applications, PPLive, PPStream, SOPCast, and TVAnts, using measurements collected

by passive sniffing during the broadcast of the 2006 FIFA world cup. Four personal

computers were deployed in a campus Ethernet network and a residential ADSL network,

to run these applications and to collect traffic measurements when watching two live FIFA

games on June 30, 2006. From each of the observing nodes running different applications,

they compare their total upload/download traffic, the upload traffic from top serving

peers, the types of video and control traffic involved (UDP or TCP), the number of

serving peers, and the peer life time distribution. They observe diversity among all the

applications, with respect to different traffic patterns, different video download policies,

and various neighborhood sizes. Nevertheless, they conclude that the peer life time in all

four applications follows Weibull distributions, though with different average lengths.

Chapter 3

Optimal Peer Selection for

Minimum-Delay P2P Streaming

The limited bandwidth availability in P2P networks pose a significant technical challenge

in P2P live media streaming, which has two key requirements: (1) A typical streaming bit

rate, generated with a current-generation codec such as H.264/AVC, H.263 or MPEG-4,

must be accommodated for all the peers in each streaming channel; (2) The end-to-end

latency at each peer has to be minimized, in order to guarantee high liveness of the media

content. To address these requirements in a mesh-based P2P streaming system, a critical

question arises: What is the best way for the peers to select their upstream supplying

peers and allocate the streaming rates from the selected peers, such that a specified

aggregate streaming bit rate is satisfied and the end-to-end latencies are minimized at

all the receivers? It is a nontrivial problem to obtain a feasible streaming rate allocation

strategy which guarantees all receiving peers can acquire the streaming bit rate of the

media channel, not to mention that which minimizes end-to-end latencies.

To decide streaming rates among peers, most existing P2P streaming protocols do

29

3.1. PROBLEM FORMULATION 30

not employ explicit bandwidth allocation, but resort to TCP, TFRC [38] or UDP with

heuristic traffic shapers [50, 87, 88]. For those using TCP or TFRC [50, 88], transmission

rates are adjusted on a per-link basis, and there is no guarantee that the required ag-

gregate streaming rate can be provided to each receiving peer. Delivering media packets

over UDP, GridMedia [87] applies traffic shapers at each sending peer towards each of its

downstream peers to guarantee smooth delivery, but it is not discussed how to carefully

allocate the upload capacity to satisfy the rate requirement of the downstream peers.

In this chapter, we aim to address the requirements of P2P live streaming using an

optimization approach. We design an optimal peer selection and streaming rate allocation

algorithm, that explicitly takes the streaming bandwidth demand into consideration in

the rate adjustment at each peer across all its downloading links, while guaranteeing

minimized end-to-end latencies at the receivers.

To design this optimization algorithm, we first formulate the optimal peer selection

problem as a linear optimization problem, which guarantees bandwidth availability and

minimizes streaming latencies. We then design an efficient and decentralized algorithm

to solve the problem, based on the Lagrangian relaxation technique and the subgradient

algorithm. The derived optimal peer selection algorithm computes the optimal streaming

rates on the P2P links in a fully decentralized and iterative fashion, and is also reactive

to network dynamics, including peer joins, departures and failures.

3.1 Problem Formulation

We consider a P2P streaming session, corresponding to the broadcast of one streaming

channel, with one streaming server and multiple participating receivers (Fig. 3.1). There

exists a standalone neighbor list maintenance mechanism in the network, consisting of one

3.1. PROBLEM FORMULATION 31

S

t1

t2

t3

t4

Figure 3.1: An example of the P2P streaming network model: S - the streaming server,
t1, t2, t3, t4 - the receivers.

or multiple bootstrapping servers. When a new peer joins the session, it is bootstrapped

by one of the bootstrapping servers with a list of known peers in the session, who may

serve as the initial set of upstream peers. This constructs the initial mesh overlay topology

for the streaming session. Such a mesh topology can be modeled as a directed graph

G = (N,A), where N is the set of vertices (peers) and A is the set of directed arcs

(directed overlay links). Let S be the streaming server, and let T be the set of receivers

in the streaming session. We have N = {S} ∪ T .

With this network model, our objective is to design an optimal peer selection and

streaming rate allocation strategy, which decides the best subset of upstream peers (from

all the known upstream peers) to retrieve from at each receiver and the corresponding

optimal streaming rates from each of them; such a strategy constructs an optimal stream-

ing topology, on top of which the end-to-end latencies at all receivers are minimized. We

formulate a linear programming model to address this optimal peer selection problem.

We model the objective function to reflect the minimization of streaming latencies at the

receivers, and the constraints to reflect the capacity limitations and flow constraints in

the P2P session. The key challenges of the modeling lie at the formulation of end-to-

end latencies in a multicast network, and the flow constraints to model a valid multicast

3.1. PROBLEM FORMULATION 32

0.5 0.3

0.2

0.3
0.7

0.5

0.5
0.2

0.3
S

t4

S

t4

(a) a unicast flow (b) three fractional flows

t1

t2

t3

Figure 3.2: An example of a unicast flow from S to t4 and its decomposition into three
fractional flows.

flow. In what follows, we motivate our linear program (LP) formulation of multicast P2P

streaming by first analyzing a unicast streaming session from the streaming server to one

receiver.

3.1.1 LP for unicast streaming

A unicast flow from the streaming server to a receiver is a standard network flow observing

the property of flow conservation at each intermediate node. Let r be the streaming rate

of this unicast flow, cij be the link delay and fij be the transmission rate on overlay link

(i, j). Fig. 3.2(a) depicts an example of a unit unicast flow from S to t4, with r = 1,

cij = 1, ∀ (i, j) ∈ A, and the rates fij labeled on the arcs. Such a unicast flow can be

viewed as multiple fractional flows, each going along a different overlay path. Different

paths may share some same overlay links, and the transmission rate on each shared link

is the sum of rates of all fractional flows that go through the link. Fig. 3.2(b) illustrates

the decomposition of the unit unicast flow into three fractional flows, with rates 0.2, 0.3

and 0.5, respectively.

We calculate the average end-to-end link latency of a unicast flow as the weighted

3.1. PROBLEM FORMULATION 33

average of the end-to-end latencies of all its fractional flows, with the weight being the

ratio of the fractional flow rate to the aggregate unicast flow rate. In Fig. 3.2, the end-

to-end link delays of the three paths are 3, 3 and 2 respectively, and thus the average

end-to-end latency is 0.2× 3 + 0.3× 3 + 0.5× 2. We further notice that

0.2× (1 + 1 + 1) + 0.3× (1 + 1 + 1) + 0.5× (1 + 1)

= 1× (0.2 + 0.5) + 1× 0.3 + 1× 0.2 + 1× 0.5 + 1× 0.3 + 1× (0.2 + 0.3)

= 1× 0.7 + 1× 0.3 + 1× 0.2 + 1× 0.5 + 1× 0.3 + 1× 0.5

=
∑

(i,j)∈A

cijfij/r.

In general, we can prove
∑

(i,j)∈A cijfij/r represents the average end-to-end link delay

of a unicast flow, as given in the following proposition:

Proposition. Let r be the streaming rate of a unicast session, cij be the link delay and

fij be the transmission rate on link (i, j), ∀ (i, j) ∈ A.
∑

(i,j)∈A cijfij/r represents the

average end-to-end link delay of this unicast flow.

Proof: Let P be the set of paths from the streaming server to the receiver in the session.

Let f (p) be the rate of the fractional flow going along path p ∈ P . The average end-to-end

latency at the receiver is

∑

p∈P

f (p)

r
(

∑

(i,j):(i,j) on p

cij) =
1

r

∑

(i,j)∈A

cij(
∑

p:(i,j) on p

f (p)) =
1

r

∑

(i,j)∈A

cijfij.

⊓⊔

Next, we formulate a linear program to achieve minimum-delay unicast streaming. Let

uij be the capacity of link (i, j). Omitting constant r, we use
∑

(i,j)∈A cijfij to represent

3.1. PROBLEM FORMULATION 34

the average end-to-end link latency of the unicast flow and derive

min
∑

(i,j)∈A

cijfij (3.1)

subject to

∑
j:(i,j)∈A fij −

∑
j:(j,i)∈A fji = bi, ∀ i ∈ N,

0 ≤ fij ≤ uij, ∀ (i, j) ∈ A,

where

bi =





r if i = S,

−r if i = t,

0 otherwise.

We call the optimal unicast flow decided by this linear program a minimum-delay

flow. Such a minimum-delay flow is useful in modeling minimum delay multicast stream-

ing in a P2P network, as a minimum-delay multicast streaming flow can be viewed as

consisting of multiple minimum-delay flows from the server to each of the receivers. Here

we make use of the concept of conceptual flow introduced in [58]. A multicast flow is

conceptually composed of multiple unicast flows from the sender to all receivers. These

unicast conceptual flows co-exist in the network without contending for link capacities,

and the multicast flow rate on a link is the maximum of the rates of all the conceptual

flows going along this link. For the example shown in Fig. 3.1, the multicast streaming

flow from S to t1, t2, t3 and t4 can be understood as consisting of four conceptual flows

from S to each of the receivers. When each conceptual flow is a minimum-delay flow,

the end-to-end delays of the multicast session are minimized. Based on this notion, we

proceed to formulate the optimal rate allocation problem for multicast P2P streaming.

3.1. PROBLEM FORMULATION 35

3.1.2 LP for multicast P2P streaming

Our linear optimization model aims to minimize the end-to-end link delays from the

server to all receivers. Based on the initial mesh topology decided by the neighbor

assignment from the bootstrapping service, it optimally allocates the transmission rate

on each overlay link to construct a minimum (link) delay streaming topology. In our

formulation, we consider upload and download capacity constraints at each peer, rather

than link capacity constraints. This comes from practical observations that bandwidth

bottlenecks usually occur on “last-mile” access links at each of the peers in a P2P network,

rather than at the Internet core.

Let r be the end-to-end streaming rate of the session. Let f t denote the conceptual

flow from S to a receiver t, ∀ t ∈ T . f t
ij denotes the rate of f t flowing through link (i, j).

xij is the actual multicast streaming rate on link (i, j) and cij is the delay on link (i, j),

∀ (i, j) ∈ A. For node i, Oi is its upload capacity and Ii is its download capacity. We

assume all these variables are non-negative. The linear program is formulated in Table

3.1.

In P, each conceptual flow f t is a valid network flow, subject to constraints (3.2)(3.3)(3.4)

similar to those in the LP in (3.1). The difference lies in that f t
ij’s, ∀ t ∈ T , are bounded

by the transmission rate xij on link (i, j), while xij’s are further restricted by upload and

download capacities at their incident nodes.

An optimal solution to problem P provides an optimal rate f t
ij
∗

for the conceptual

flow f t on link (i, j), ∀ (i, j) ∈ A. Let z be the optimal multicast streaming flow in the

network. We compute the optimal transmission rates as:

zij = max
t∈T

f t
ij, ∀ (i, j) ∈ A. (3.7)

3.2. DISTRIBUTED SOLUTION 36

Table 3.1: LP for multicast P2P streaming

P:

min
∑

t∈T

∑

(i,j)∈A

cijf
t
ij

subject to

∑

j:(i,j)∈A

f t
ij −

∑

j:(j,i)∈A

f t
ji = bt

i, ∀ i ∈ N, ∀ t ∈ T (3.2)

f t
ij ≥ 0, ∀ (i, j) ∈ A, ∀ t ∈ T (3.3)

f t
ij ≤ xij, ∀ (i, j) ∈ A, ∀ t ∈ T (3.4)

∑

j:(i,j)∈A

xij ≤ Oi, ∀ i ∈ N (3.5)

∑

j:(j,i)∈A

xji ≤ Ii, ∀ i ∈ N (3.6)

where

bt
i =





r if i = S,
−r if i = t,
0 otherwise.

Such an optimal rate allocation (zij, ∀ (i, j) ∈ A) guarantees r at all the receivers, and

achieves minimal end-to-end link latencies as well. At the same time, it computes an

optimal peer selection strategy, i.e., an upstream peer is selected at a receiver if the

optimal transmission rate between them is non-zero.

3.2 Distributed Solution

We now design an efficient distributed algorithm to solve the linear program P. General

LP algorithms, such as the Simplex, Ellipsoid and Interior Point methods, are inherently

3.2. DISTRIBUTED SOLUTION 37

centralized and costly, which are not appropriate for our purpose. Our solution is based

on the technique of Lagrangian relaxation and subgradient algorithm [18, 75], which can

be efficiently implemented in a fully distributed manner.

3.2.1 Lagrangian dualization

We start our solution by relaxing the constraint group (3.4) in P to obtain its Lagrange

dual. The reason of selecting this set of constraints to relax is that the resulting La-

grangian subproblem can be decomposed into classical LP problems, for each of which

efficient algorithms exist. We associate Lagrange multipliers µt
ij with the constraints in

(3.4) and modify the objective function as:

∑

t∈T

∑

(i,j)∈A

cijf
t
ij +

∑

t∈T

∑

(i,j)∈A

µt
ij(f

t
ij − xij) =

∑

t∈T

∑

(i,j)∈A

(cij + µt
ij)f

t
ij −

∑

t∈T

∑

(i,j)∈A

µt
ijxij.

We then derive the Lagrange dual of the primal problem P:

DP:

max
µ≥0

L(µ)

where

L(µ) = min
P

∑

t∈T

∑

(i,j)∈A

(cij + µt
ij)f

t
ij −

∑

t∈T

∑

(i,j)∈A

µt
ijxij (3.8)

and the polytope P is defined by the following constraints:

∑
j:(i,j)∈A f t

ij −
∑

j:(j,i)∈A f t
ji = bt

i, ∀ i ∈ N, ∀ t ∈ T,

f t
ij ≥ 0, ∀ (i, j) ∈ A, ∀ t ∈ T,

3.2. DISTRIBUTED SOLUTION 38

∑
j:(i,j)∈A xij ≤ Oi, ∀ i ∈ N,

∑
j:(j,i)∈A xji ≤ Ii, ∀ i ∈ N.

Here, the Lagrange multiplier µt
ij can be understood as the link price on link (i, j)

for the conceptual flow from server S to receiver t. Such interpretation should be clear

as we come to the adjustment of µt
ij in the subgradient algorithm.

We observe that the Lagrangian subproblem in Eq. (3.8) can be decomposed into a

maximization problem in (3.9),

max
∑

t∈T

∑

(i,j)∈A

µt
ijxij (3.9)

subject to

∑
j:(i,j)∈A xij ≤ Oi, ∀ i ∈ N,

∑
j:(j,i)∈A xji ≤ Ii, ∀ i ∈ N,

and multiple minimization problems in (3.10), each for one t ∈ T ,

min
∑

(i,j)∈A

(cij + µt
ij)f

t
ij (3.10)

subject to

∑
j:(i,j)∈A f t

ij −
∑

j:(j,i)∈A f t
ji = bt

i, ∀ i ∈ N,

f t
ij ≥ 0, ∀ (i, j) ∈ A.

3.2. DISTRIBUTED SOLUTION 39

We notice that the maximization problem in (3.9) is an inequality constrained trans-

portation problem, which can be solved in polynomial time by distributed algorithms,

e.g., the Auction algorithm [19]. Each minimization problem in (3.10) is essentially a

shortest path problem, which finds the shortest path to deliver a conceptual flow of rate r

from server S to a receiver t. For the classical shortest path problem, efficient distributed

algorithms exist, e.g., Bellman-Ford algorithm, label-correcting algorithms [14] and re-

laxation algorithms [21]. As the algorithms are all essentially the same as Bellman-Ford

algorithm, we employ the distributed Bellman-Ford algorithm [20, 21] as our solution.

3.2.2 Subgradient algorithm

We now describe the subgradient algorithm, applied to solve the Lagrange dual problem

DP. The algorithm starts with a set of initial non-negative Lagrange multiplier values

µt
ij[0], ∀ (i, j) ∈ A, ∀ t ∈ T . At the kth iteration, given current Lagrange multiplier

values µt
ij[k], we solve the transportation problem in (3.9) and the shortest path problems

in (3.10) to obtain new primal variable values xij[k] and f t
ij[k]. Then, the Lagrange

multipliers are updated by

µt
ij[k + 1] = max(0, µt

ij[k] + θ[k](f t
ij[k]− xij[k])), ∀ (i, j) ∈ A, ∀ t ∈ T, (3.11)

where θ is a prescribed sequence of step sizes that decides the convergence and the con-

vergence speed of the subgradient algorithm. When θ satisfies the following conditions,

the algorithm is guaranteed to converge to µ∗ = (µt
ij, ∀ (i, j) ∈ A, ∀ t ∈ T), an optimal

solution of DP:

θ[k] > 0, limk→∞θ[k] = 0, and
∞∑

k=1

θ[k] =∞.

3.2. DISTRIBUTED SOLUTION 40

Eq. (3.11) can be understood as the adjustment of link price for each conceptual flow

on each link. If the rate of the conceptual flow exceeds the transmission rate on the link,

(3.4) is violated, so the link price is raised. Otherwise, the link price is reduced.

For linear programs, the primal variable values derived by solving the Lagrangian

subproblem in Eq. (3.8) at µ∗ are not necessarily an optimal solution to the primal

problem P, and even not a feasible solution to it [73]. Therefore, we use the algorithm

introduced by Sherali et al. [73] to recover the optimal primal values f t
ij
∗
. At the kth

iteration of the subgradient algorithm, we also compose a primal iterate f̂ t
ij[k] via

f̂ t
ij[k] =

k∑

h=1

λk
hf

t
ij[h], ∀ (i, j) ∈ A, ∀ t ∈ T (3.12)

where
∑k

h=1 λk
h = 1 and λk

h ≥ 0, for h = 1, . . . , k. Thus, f̂ t
ij[k] is a convex combination

of the primal values obtained in the earlier iterations.

In our algorithm, we choose the step length sequence θ[k] = a/(b + ck), ∀ k, a >

0, b ≥ 0, c > 0, and convex combination weights λk
h = 1/k, ∀ h = 1, . . . , k, ∀ k. These

guarantee the convergence of our subgradient algorithm; they also guarantee that any

accumulation point f̂ ∗ of the sequence {f̂ [k]} generated via (3.12) is an optimal solution

to the primal problem P [73]. We can thus calculate f̂ t
ij[k] by

f̂ t
ij[k] =

k∑

h=1

1

k
f t

ij[h] =
k − 1

k

k−1∑

h=1

1

k − 1
f t

ij[h] +
1

k
f t

ij[k] =
k − 1

k
f̂ t

ij[k − 1] +
1

k
f t

ij[k].

3.2.3 Distributed algorithm

Based on the subgradient algorithm, we now design a distributed algorithm to solve P,

given in Table 3.2. In practice, the algorithm to be executed on a link (i, j) is delegated

3.3. HANDLING PEER DYNAMICS 41

by receiver j. Therefore, the algorithm is executed in a fully decentralized manner, in

that each peer is only responsible for computation tasks on all its incoming links with

only local information, e.g., knowledge of neighbor nodes, delay on its adjacent links, etc.

Table 3.2: The distributed optimal rate allocation algorithm

1. Choose initial Lagrange multiplier values µt
ij[0], ∀ (i, j) ∈ A,

∀ t ∈ T .

2. Repeat the following iteration until the sequence {µ[k]} con-

verges to µ∗ and the sequence {f̂ [k]} converges to f̂ ∗:

At times k = 1, 2, . . ., ∀ (i, j) ∈ A, ∀ t ∈ T
1) Compute xij[k] by the distributed auction algorithm;

2) Compute f t
ij[k] by the distributed Bellman-Ford algorithm;

3) Compute f̂ t
ij[k] = k−1

k
f̂ t

ij[k − 1] + 1
k
f t

ij[k];

4) Update Lagrange multiplier µt
ij[k + 1] = max(0, µt

ij[k] +
θ[k](f t

ij[k]− xij[k])), where θ[k] = a/(b + ck).

3. Compute the optimal transmission rate zij = maxt∈T f̂ t
ij

∗
,

∀ (i, j) ∈ A.

3.3 Handling Peer Dynamics

In P2P streaming, peers may arbitrarily join a streaming session at any time, and may de-

part or fail unexpectedly. We design the distributed optimal rate allocation algorithm to

be invoked and executed in a dynamic manner, and the peer connectivity is reconfigured

with adjusted rates with peer dynamics.

Peer joins

In our design, a new peer is admitted into a streaming session only if its download capacity

is no lower than the required streaming rate r. It then immediately starts streaming

3.4. PERFORMANCE EVALUATION 42

with the available upload capacities acquired from its upstream peers, assigned by the

bootstrapping service. Meanwhile, it sends a request to the streaming server, asking for

computation of new optimal rate allocation on the links.

Peer departures and failures

During streaming, when a peer detects the failure or departure of an upstream peer, it

attempts to acquire more upload bandwidth from its remaining upstream peers. Only

when the peer fails to acquire the required streaming rate, it sends a re-calculation request

to the server for the new optimal rate allocation.

At the server, when the number of received re-computation requests exceeds a certain

threshold, the server broadcasts such a request, such that all peers activate a new round of

distributed algorithm execution, while continuing with their own streaming at the original

optimal rates. Note that in such a dynamic environment, a new round of algorithm

execution always starts from the previously converged optimal rates, rather than from

the very beginning when all the values are zero, thus expediting its convergence. The

peers adjust their rates to the new optimal values after the rate allocation converges.

3.4 Performance Evaluation

The focus of our evaluation using extensive simulations is to investigate the performance

of our optimal peer selection algorithm over realistic network topologies, with respect

to convergence, optimality, and failure resilience. We generate random networks with

power-law degree distributions with the BRITE topology generator [64]. We simulate a

live streaming session of a high-quality 300 Kbps multimedia bitstream from a streaming

3.4. PERFORMANCE EVALUATION 43

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of peers in the network (N)

N
u

m
b

e
r

o
f
it
e

ra
ti
o

n
s

 4N edges
 6N edges
 8N edges

Figure 3.3: Convergence speed in random networks.

server with 10 Mbps of upload capacity. There are two classes of receivers: ADSL/cable

modem peers and Ethernet peers. In our general setting, ADSL/cable modem peers take

70% of the total population with 1.5 − 4.5 Mbps of download capacity and 0.6 − 0.9

Mbps of upload capacity, and Ethernet peers take the other 30% with both upload and

download capacities in the range of 8 − 12 Mbps. We use link delays generated with

BRITE as well.

3.4.1 Convergence speed

We first investigate the convergence speed of our distributed algorithm to obtain the

optimal streaming topology. The result is shown in Fig. 3.3. We compare the conver-

gence speed in networks of different network sizes (numbers of peers in the network) and

different edge densities (the ratio of the number of edges to the number of peers in the

network). We can see that it takes around 70 iterations to converge to optimality in a

network of 50 peers, and this number increases slowly to about 170 for a network of 500

peers. However, the convergence speed remains approximately the same in a fixed-sized

network with different edge densities. Therefore, the slow increase of iteration numbers

3.4. PERFORMANCE EVALUATION 44

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Percentage of Ethernet peers

N
u

m
b

e
r

o
f
it
e

ra
ti
o

n
s

 feasibility
 90% optimality
 optimality

Figure 3.4: Convergence speed to feasibility, 90%-optimality and optimality in random
networks of 300 peers and 2400 edges.

with network sizes does not affect the scalability of our algorithm.

We further compare the convergence speeds of our algorithm to the first primal fea-

sible solution, to the feasible solution which achieves 90% optimality as to the value of

the objective function, and to the optimal solution. From Fig. 3.4, we observe that the

convergence speed to the first primal feasible solution is usually much faster than the

convergence to optimality. It can also be seen that the number of iterations needed to

converge to feasibility drops quickly with the increase of the percentage of Ethernet peers

in the network, which bring more abundant upload capacities. Furthermore, in order to

converge to the feasible solution which achieves 90% optimality, the algorithm takes only

75% of the number of iterations required for convergence to the optimal solution. There-

fore, in practice, we can obtain a feasible solution to a certain degree of the optimality

in a much shorter time, when it is not always necessary to achieve the optimal solution

in a realistic streaming system.

3.4. PERFORMANCE EVALUATION 45

50 100 150 200 250 300 350 400 450 500
200

400

600

800

1000

1200

1400

1600

Number of peers in the network (N)

A
v
e

ra
g

e
 e

n
d

−
to

−
e

n
d

 l
in

k

la

te
n

c
y
 p

e
r

p
e

e
r

(m
s
)

 Opt. alg (4N edges)

 Heuristic (4N edges)

 Opt. alg (8N edges)

 Heuristic (8N edges)

Figure 3.5: Average end-to-end latency: a comparison between optimal peer selection
algorithm and a peer selection heuristic.

3.4.2 Optimality

We next compare our optimal peer selection algorithm with a commonly used peer selec-

tion heuristic [56, 88]. In the heuristic, a receiver distributes the streaming rates among

its upstream peers in proportion to their upload capacities. We compare the end-to-end

link latencies at receivers in the resulting streaming topologies. The end-to-end latency

at each receiver is calculated as the weighted average of the delays of flows from all its

upstream peers, and the weight for each flow is the portion of the assigned streaming

rate from the upstream peer in the aggregate streaming rate.

The results illustrated in Fig. 3.5 meet our expectations. In networks of different

network sizes and edge densities, our end-to-end latency minimization algorithm is able

to achieve much lower latencies than the heuristic, which does not take link delay into

consideration. We further notice that the denser the network is, the higher the average

end-to-end latency is by the heuristic. In contrast, our optimal algorithm achieves lower

latencies in denser networks. When the edge density is 4N in a network of N peers, the

average end-to-end latency of the heuristic is about 1.5 times higher than that of our

optimal algorithm, while this ratio becomes 2 in a network with 8N edges. For such

3.4. PERFORMANCE EVALUATION 46

S

8 16

11 13 6 15

4 7 3 14

18

17 10

19

9 1 5

2 12

(a) optimal peer

selection algorithm

(b) peer selection heuristic

 akin to PeerStreaming

S

8 16

11 13 6 15

4 7 3 14

18

17 10

19

9 1 5

2 12

Figure 3.6: P2P streaming topologies of 20 peers: a comparison.

an achievement of lower latencies in denser networks with our algorithm, we believe the

reason is that there are more choices of upstream peers in a denser network and our

algorithm can always find the best set of upstream peers on low delay paths. Thus, in

realistic P2P streaming networks with high edge densities, the advantage of our algorithm

is more evident over the commonly used heuristic.

The streaming topologies shown in Fig. 3.6(a) and Fig. 3.6(b) further illustrate the

superiority of our optimal algorithm. In these graphs, distances between pairs of peers

represent latencies, and the widths of edges show the streaming rates along them. The

dotted lines represent links that are not used in the resulting streaming topologies. It can

be seen that by our optimal peer selection, receivers are streaming from the best upstream

peers with minimal end-to-end latencies, while with the peer selection heuristic, peers

simply distribute their download rates among the upstream peers, which may lead to

large end-to-end latencies.

3.4. PERFORMANCE EVALUATION 47

0 60 120 180 240 300
0

10
20
30
40
50

Number of peers joined in the network

#
 o

f
a

d
d

it
io

n
a

l
it
e

ra
ti
o

n
s

0 60 120 180 240 300
0

10
20
30
40
50

Number of peers left in the network

#
 o

f
a

d
d

it
io

n
a

l
it
e

ra
ti
o

n
s

(A) Peer joining phase (B) Peer departure phase

Figure 3.7: Convergence speed in a dynamic network with up to 300 peers.

3.4.3 Adaptation to dynamics

To investigate the practicality of our algorithm, we examine the convergence speed of

the optimization algorithm in dynamic networks. In this experiment, during a 45-minute

streaming session, 300 peers sequentially join the session in the first 20 minutes, and

then start to depart from 25 minutes onwards. The distributed optimal rate allocation

algorithm is invoked about every 15 peer joins or departures, and always runs from

the previous optimal flow rates, following the dynamic execution method described in

Sec. 3.3.

The number of additional iterations needed to converge to the new optimal rates in

both the peer joining phase and departure phase are illustrated in Fig. 3.7. The results

reveal that the convergence to new optimal rates in such dynamic scenarios is much

faster, as compared to running from the very beginning in the case of static networks of

the same sizes. Independent of the current network size, the algorithm always takes less

than 30 iterations to converge.

We note that although this is a specially designed dynamic case, it reflects the capa-

bility of the optimization algorithm to converge promptly from one optimum to another

in practical dynamic scenarios. In a realistic P2P streaming network, peer joins and

departures may occur concurrently and consistently during the entire streaming session.

3.5. SUMMARY 48

In this case, our algorithm always improves the rate allocation towards optimality in the

current network and can converge quickly as long as there exists a stable operating point

in the dynamic overlay.

3.5 Summary

In this chapter, we design an efficient distributed algorithm for optimal peer selection and

streaming rate allocation in a mesh-based P2P live streaming session. We formulate the

problem as a linear optimization problem, which optimizes bandwidth utilization towards

minimized end-to-end latencies, and develop a fully decentralized algorithm to efficiently

compute the optimal streaming rates on the P2P links. With extensive simulations, we

show how this optimization algorithm can be practically carried out in realistic P2P

networks to guarantee the optimality of the streaming topologies.

Chapter 4

Meeting Bandwidth Demand in

Practical Streaming

The most fundamental requirement of P2P streaming is to achieve and maintain a spe-

cific streaming playback rate at each participating peer, in order to guarantee the smooth

playback of the media. For example, with the H.264 codec, a Standard-Definition stream

demands approximately 800 Kbps, while 480p (848 × 480 pixels) High-Definition me-

dia stream using the H.264 codec requires 1700 Kbps. In the previous chapter, we

have designed an optimal streaming rate allocation algorithm, that achieves the required

streaming rate at the peers, given a prior knowledge of their bandwidth capacities. In this

chapter, we continue to investigate: How can such a fundamental streaming rate require-

ment be practically satisfied in realistic P2P networks, without any a prior knowledge of

bandwidth availabilities on the peer nodes or overlay links?

Such a practical streaming rate satisfaction problem is not explicitly nor well ad-

dressed in existing P2P streaming solutions [40, 50, 87, 88]. In the recent work of Chain-

saw [70], peers are sending packets as their bandwidths allow, but it is not specified how

49

CHAPTER 4. MEETING BANDWIDTH DEMAND IN PRACTICAL STREAMING50

the sending rates towards different neighbors are to be regulated, such that a required

streaming playback rate can be achieved. In PRIME [62], Magharei et al. suggest that

each P2P connection in the mesh streaming overlay should have roughly the same band-

width in order to maximize the utilization of peer access link bandwidth, but have not

emphasized on how to achieve this in practice.

We identify that whether or not the streaming playback rate requirement, hereafter

referred to as streaming bandwidth demand, can be achieved at the peers depends on

three constraints. First, the last-mile download capacity must exceed the streaming rate.

We typically assume that this constraint is always satisfied, as otherwise the required

streaming rate cannot be achieved with any solution. It is most likely the case in reality,

as peers without sufficient last-mile download capacities would soon leave the session,

and join another session to download the media encoded at lower bit rates. Second, as

the peer in a mesh network is served by multiple upstream peers, the last-mile upload

capacities of these upstream peers are limited. Finally, the available bandwidth on each

overlay link between two peers is limited, subject to link capacity and cross traffic in the

Internet core.

In essence, the decisive factor of meeting the P2P streaming bandwidth demand in

a streaming session is the bandwidth supply from either dedicated streaming servers or

uploading peers. Ideally, when the total bandwidth supply is abundant, a peer can easily

contact new streaming servers or peers when its demand cannot be met at any time.

However, such a simple solution does not work effectively at all when there exist very

limited bandwidth supplies to meet the demand. Such a microeconomic phenomenon of

tight supply-demand relationships is usually the norm in realistic P2P streaming net-

works, especially during flash crowd scenarios when a limited pool of streaming servers

CHAPTER 4. MEETING BANDWIDTH DEMAND IN PRACTICAL STREAMING51

scrambles to meet the demand of a P2P session that scales up in a short period of time.

In this chapter, we seek to design a new bandwidth allocation algorithm that takes

advantage of existing bandwidth supplies in the most efficient manner in scenarios with

tight supply-demand relationships. Our algorithm dynamically adjusts the bandwidth

utilization on each overlay link, so that the streaming bandwidth demand is maximally

guaranteed on each participating peer in the session, even with very limited bandwidth

supplies.

The new algorithm we propose enjoys the following salient advantages. First, al-

though the rates allocated are subject to the capacity constraints at the edge and on the

overlay links, our new algorithm does not need knowledge of these capacity constraints.

Second, our algorithm is fully decentralized, and can thus be realistically implemented.

To design such an algorithm, we formulate the streaming rate satisfaction problem in P2P

streaming as a feasibility problem, and propose a simple algorithm to find its solution. We

discuss the implementation and prove the convergence of the algorithm in synchronous

and asynchronous environments. Third, we show that even in cases of persistent peer

dynamics and network changes, the algorithm is still guaranteed to pursue the required

streaming rate at each peer. Finally, our solution is across-the-board and not specific to

any particular mesh-based topology construction mechanism, P2P streaming protocol,

or media codec, as the problem of bandwidth allocation to guarantee smooth streaming

playback is fundamental and widely applicable to any P2P streaming algorithm. In ad-

dition, bandwidth allocation may also be realistically implemented in any P2P streaming

protocol, by using per-link bandwidth shaping mechanisms at peers (usually based on

UDP as the transport protocol).

4.1. MOTIVATION AND PROBLEM FORMULATION 52

4.1 Motivation and Problem Formulation

Consider a mesh-based P2P streaming session, G = (S,N ,A), where S is the set of

streaming servers, N is the set of participating peers, and A is the set of directed overlay

links. We assume such a mesh topology is constructed and maintained with a certain

topology construction protocol, e.g., the random mesh construction employed by most

current-generation P2P streaming applications. The overlay links among peers in the

topology are established based on their media content availability during streaming, i.e.,

a peer streams from one or more upstream peers, which can provide it with media blocks

it requires, and further serves one or more downstream peers with the media streams.

In this chapter, we study both the “demand” and the “supply” of bandwidth based

on the given topology. On the side of demand of bandwidth, a streaming playback rate R

is strictly required at each participating peer to guarantee smooth playback, i.e., media

content should be downloaded at an aggregated bandwidth of no lower than R at the

peer. On the side of supply of bandwidth, however, we need to consider both peer upload

bandwidth and overlay link bandwidth constraints, without a priori knowledge on either.

How do we meticulously allocate the supply of bandwidth so that the streaming playback

rate R — the “demand” in each session — can be satisfied at all times? This problem

is henceforth referred to as the streaming rate satisfaction problem, as we seek to design

a practical and decentralized algorithm to address such a challenge. While our focus in

the chapter is not on the specific P2P topology construction protocol, we will discuss

the interactive play between our bandwidth allocation and topology construction in P2P

streaming in Sec. 4.3.

Since we do not need to consume more bandwidth than the required streaming play-

back rate at each peer, we believe it is practical to formulate such a streaming rate

4.1. MOTIVATION AND PROBLEM FORMULATION 53

Sa1

a2

a3

b1

b2

b3

1.0

1.0

1.0
0.4

[0.45]

 0.4

[0.35]

0.5

[0.55]

0.5

[0.45]

0.6

[0.55]

0.6

[0.65]

Figure 4.1: Infeasible bandwidth allocation with a naive protocol: an example.

satisfaction problem as a feasibility problem, and aim to find a feasible bandwidth allo-

cation solution that guarantees a streaming rate of no lower than R at each peer.

One may wonder why a naive bandwidth allocation may fail to satisfy the streaming

bandwidth demand at all peers. We show this with an example in Fig. 4.1, which implies

that an explicit bandwidth allocation algorithm is required.

In this example P2P streaming network, the required streaming rate is R = 1 Mbps.

Peers a1, a2, and a3 directly stream at this rate from server s, which has 3 Mbps of upload

capacity, and then serve b1, b2, and b3. Assume that bandwidth bottlenecks occur at the

upload links of the three a peers, with upload capacities of 0.8, 1.0 and 1.2 (in Mbps),

respectively. With a naive even bandwidth allocation method, their upload capacities are

evenly shared among their respective downstream peers, and the allocated bandwidths

are labeled on the links (numbers outside the brackets). Such a bandwidth allocation

outcome is infeasible (i.e., streaming bandwidth demand is not satisfied at all peers), as

peer b1 only obtains an aggregate bandwidth of 0.9 Mbps, while b3 is allocated more than

1 Mbps.

When the required streaming bandwidth is not successfully achieved, the common

4.1. MOTIVATION AND PROBLEM FORMULATION 54

practice with existing P2P protocols is to find new upstream peers, or to start a new

connection from the streaming server, which may well fail to locate available bandwidth

when there is a tight supply-demand relationship of bandwidth in the network. It is

important to note, however, that if bandwidths are explicitly reallocated based on the

current topology, a feasible solution that satisfies all the peers can be achieved, as shown

in brackets in our example. After such a “reorganizing” process, the “supply” of band-

width is maximally utilized, the need to find new upstream peers is eliminated, and server

bandwidth costs are minimized.

In order to design a practical algorithm to achieve such feasible rate allocation solu-

tions in a particular P2P mesh topology, we first formally formulate the problem. Let

xij denote the allocated transmission rate on the overlay link (i, j), ∀ (i, j) ∈ A. In

practical P2P systems, such overlay link rates are restricted by the capacities of last-mile

access links of the peers, and affected by the cross traffic sharing the same underlying

IP network. Let Cij denote the currently available bandwidth along overlay link (i, j),

subject to the cross traffic. Let Oi denote the upload capacity at peer i, ∀ i ∈ S ∪ N .

The feasibility problem is formally defined by the following set of linear rate and capacity

constraints:

LC:

∑

i:(i,j)∈A
xij ≥ R, ∀ j ∈ N , (4.1)

∑

j:(i,j)∈A
xij ≤ Oi, ∀ i ∈ S ∪ N , (4.2)

xij ≤ Cij, ∀ (i, j) ∈ A. (4.3)

Let x = (xij, (i, j) ∈ A) be the |A|-dimensional vector of allocated link bandwidths.

4.2. THE SYNCHRONOUS CASE 55

Let XR be the region defined by the streaming rate constraints in (4.1), i.e., XR = {x :
∑

i:(i,j)∈A xij ≥ R, ∀ j ∈ N}. Let XC be the region defined by the capacity constraints in

(4.2) and (4.3), i.e., XC = {x :
∑

j:(i,j)∈A xij ≤ Oi, ∀ i ∈ S ∪ N , xij ≤ Cij, ∀ (i, j) ∈ A}.

A solution to this feasibility problem represents a feasible bandwidth allocation scheme,

expressed as x ∈ XR ∩XC .

4.2 The Synchronous Case

We are now ready to propose our iterative algorithm to solve the feasibility problem LC.

We first show that it can be readily implemented in a fully decentralized fashion, and

analyze its convergence in the synchronous case.

4.2.1 An iterative algorithm

Inspired by the iterative optimization algorithm proposed by Kar et al. [45], we design

a simple iterative algorithm to derive a feasible solution satisfying all the constraints in

the problem LC.

Let x
(n)
ij be the allocated rate on link (i, j), ∀ (i, j) ∈ A, at the nth step. Let

λ
(n)
j = max(0,R−

∑

i:(i,j)∈A
x

(n)
ij),

and

e
(n)
ij =





1 if
∑

j:(i,j)∈A x
(n)
ij > Oi,

or x
(n)
ij > Cij,

0 otherwise.

4.2. THE SYNCHRONOUS CASE 56

We update x
(n)
ij by:

x
(n+1)
ij =





x
(n)
ij if λ

(n)
j = 0, e

(n)
ij = 0,

x
(n)
ij + αnλ

(n)
j if λ

(n)
j > 0, e

(n)
ij = 0,

x
(n)
ij − βne

(n)
ij if λ

(n)
j = 0, e

(n)
ij > 0,

x
(n)
ij + αnλ

(n)
j − βne

(n)
ij if λ

(n)
j > 0, e

(n)
ij > 0,

(4.4)

where αn and βn are two sequences with the following properties:

lim
n→∞

αn = 0,
∞∑

n=1

αn =∞, lim
n→∞

βn = 0,
∞∑

n=1

βn =∞, lim
n→∞

αn

βn

= 0. (4.5)

For example, the sequences αn = a
n

and βn = b√
n
, where a, b are positive constants,

satisfy the above properties.

In each step n, λ
(n)
j represents how much more bandwidth peer j needs to acquire

in order to achieve the required streaming rate R. e
(n)
ij can be understood as a binary

indicator of insufficient bandwidth, showing whether available bandwidth is exceeded

along overlay link (i, j): either the upload capacity of peer i is exceeded, or x
(n)
ij goes

beyond the available bandwidth on overlay link (i, j).

The intuition behind the updates in (4.4) is as follows: Whenever an overlay link does

not have sufficient bandwidth, the allocated rate along the link is reduced; whenever

the aggregate rate on the download links of a peer falls below R, the allocated link

bandwidths are increased, according to how much the aggregate rate deviates from R.

αn and βn denote the step lengths of the updates. The increment step length αn is much

4.2. THE SYNCHRONOUS CASE 57

smaller than the decrement step length βn for sufficiently large n, and both of them

are diminishing. These are important properties to guarantee the convergence of the

algorithm to a feasible solution of LC, as will be used in our convergence analysis.

4.2.2 Practical implementation

Our iterative algorithm can be readily implemented in a fully distributed fashion. We

first study its decentralized implementation in the synchronous case, where updates are

synchronized to occur at times n = 1, 2, In the subsequent section, we will show

that, with minor modifications, the implementation can also achieve feasible bandwidth

allocation in asynchronous and dynamic environments.

In the synchronous case, the allocated bandwidth on a link (i, j) is adjusted at the

downstream peer j during the actual streaming process. The media streams are trans-

mitted from upstream peers at the allocated transmission rates, xij’s, using a bandwidth

shaping mechanism.

In our implementation, at times n = 1, 2, . . ., peer j calculates λ
(n)
j based on the

discrepancy between R and the currently allocated rates on its download links, i.e.,

λ
(n)
j = max(0,R−∑

i:(i,j)∈A x
(n)
ij). If λ

(n)
j > 0, it increases the allocated rates by x

(n)′

ij =

x
(n)
ij +αnλ

(n)
j , ∀ i : (i, j) ∈ A; otherwise, it sets x

(n)′

ij = x
(n)
ij . Meanwhile, peer j estimates

the actually achieved receiving rate y
(n)
ij from each of its upstream peers, by dividing the

number of bytes received on each link in a time interval by the interval length. It sets

e
(n)
ij = 1 if the actual receiving rate is lower than the allocated rate on the link, i.e.,

y
(n)
ij < x

(n)
ij , or sets e

(n)
ij = 0 otherwise. It then proceeds to update the allocated rates

again by x
(n+1)
ij = x

(n)′

ij −βne
(n)
ij , ∀ i : (i, j) ∈ A, and requests these new transmission rates

from its respective upstream peers. After an upstream peer receives the new requested

4.2. THE SYNCHRONOUS CASE 58

rates x
(n+1)
ij from all its downstream peers, it adjusts its sending rates to the new values.

We note that our implementation does not depend on any a priori knowledge of peer

upload and overlay link bandwidth, nor any feedback from IP-layer routers. In our imple-

mentation, the value of insufficient bandwidth indicator e
(n)
ij on each link (i, j) is inferred

by comparing the allocated transmission rate from upstream peer i with the achieved

receiving rate at downstream peer j during the streaming process. The rationale behind

this is that when an allocated transmission rate is larger than a respective receiving rate,

bandwidth insufficiency is implied either at the upstream peer or on the overlay link,

i.e., e
(n)
ij = 1; otherwise, no bandwidth limit is exceeded along link (i, j), and e

(n)
ij = 0.

In this way, although we formally formulate the problem LC with Oi and Cij in (4.2)

and (4.3), respectively, we do not actually need to perform any bandwidth probing to

explicitly derive the values of these bandwidth limits.

4.2.3 Convergence analysis

We now analyze the convergence of our decentralized implementation of the iterative

algorithm, in the synchronous case. To facilitate our analysis, we consider the realistic

scenario that, if the aggregate requested (sending) rate at an upstream peer i is higher

than its upload capacity, the receiving rates at all its downstream peers are lower than

their respective requested rate, i.e., each of them is able to detect the bandwidth insuf-

ficiency. Our discussion is divided into two cases: (1) a feasible solution exists for LC ,

i.e., XR ∩XC 6= φ; and (2) a feasible solution does not exist for LC, i.e., XR ∩XC = φ.

Theorem 1 shows that, when a feasible solution exists, i.e., there is sufficient band-

width in the overlay to support all peers at the required streaming rate R, the decen-

tralized implementation of our iterative algorithm converges to such a solution.

4.2. THE SYNCHRONOUS CASE 59

Theorem 1. If XR ∩ XC 6= φ, with iterative updates in (4.4) and diminishing step

lengths in (4.5), the sequence {x(n)} converges to x̃, a feasible solution of problem LC,

i.e., x̃ ∈ XR ∩XC .

Theorem 2 addresses the second case, when a feasible bandwidth allocation solution

does not exist, i.e., the overlay cannot accommodate all the peers atR. Theorem 2 states

that, at all the peers, our implementation is able to achieve the maximum throughput

supported by the overlay.

Let Rmax be the maximum throughput at the peers that the network can support,

i.e., the maximum aggregate streaming bandwidth that each peer can acquire. It implies

that there exist feasible solutions to the following problem:

LC’:

∑

i:(i,j)∈A
xij ≥ Rmax, ∀ j ∈ N , (4.6)

∑

j:(i,j)∈A
xij ≤ Oi, ∀ i ∈ S ∪ N ,

xij ≤ Cij, ∀ (i, j) ∈ A.

Theorem 2. If XR ∩ XC = φ, with iterative updates in (4.4) and diminishing step

lengths in (4.5), the sequence {x(n)} converges to the feasible region of problem LC’, i.e.,

limn→∞ ρ(x(n), X ′) = 0, where X ′ is the region defined by the constraints in LC’.

The proofs of these theorems are presented in Sec. 4.6 at the end of the chapter. The

key intuition behind the proofs is to show that, based on the diminishing step lengths, in

each step of the iterative algorithm, the current bandwidth allocation improves towards a

feasible solution of LC or approaches the feasible region of LC’. Based on these theorems,

a corollary follows:

4.3. THE ASYNCHRONOUS CASE 60

Corollary 1. During the convergence of {x(n)}, the actually achieved streaming rate

at each peer j, i.e.,
∑

i:(i,j)∈A y
(n)
ij , is asymptotically increasing and converges to R if the

network can support such rate at each peer, and Rmax otherwise.

During the dynamic process of bandwidth allocation, a peer’s achieved streaming

rate may temporarily decrease when the allocated rates on its download links decrease

due to lack of available bandwidth. However, over time, this achieved streaming rate is

asymptotically increasing until it reaches min(R,Rmax).

4.3 The Asynchronous Case

Granted, while important as a first step in our study, the synchronous case that we have

considered is an idealistic view of practical P2P networks. Peers are inherently asyn-

chronous, with different processing times and messaging latencies. Fortunately, with mi-

nor modifications, we can extend our decentralized implementation to the asynchronous

case, with the ability to handle peer and network dynamics.

In an asynchronous overlay, if we execute our decentralized implementation previ-

ously proposed for the synchronous case, the step lengths at a certain time t, α(t) and

β(t), are not identical at all the peers, as peers update the allocated rates at their own

paces. However, it is the key to guarantee algorithm convergence by updating bandwidth

allocation synchronously with the same step lengths across the network, as used in proofs

of Theorem 1 and 2 in Sec. 4.6. Thus the iterative synchronous implementation may fail

to converge in the asynchronous case.

Fortunately, we are able to show that, the update process can still be proven to

converge to a feasible solution of LC in an asynchronous environment, if each peer

follows the synchronous update rule across its own download and upload links. More

4.3. THE ASYNCHRONOUS CASE 61

rigorously, on a downstream peer j, all increments of allocated rates on all its download

links are performed at the same time t, and use a same diminishing step length αj(t), i.e.,

xij(t + 1) = xij(t) + αj(t)λj(t), ∀ i : (i, j) ∈ A. On the other hand, on an upstream peer

i, all decrements of allocated rates on all its upload links are performed at the same time

t, and use a same diminishing step length βi(t), i.e., xij(t+1) = xij(t)−βi(t)eij(t), ∀ j :

(i, j) ∈ A.

4.3.1 Practical implementation

We are now ready to present our decentralized implementation in the asynchronous case,

and show its convergence to a feasible solution. In the asynchronous implementation, the

allocated rate on a link (i, j) is adjusted with the cooperation of both upstream peer i

and downstream peer j, i.e., increment at peer j and decrement at peer i. To implement

this, rate updates and inferred values of the insufficient bandwidth indicators need to be

passed between upstream and downstream peers in special protocol messages, referred

to as Rate Update (RU) messages. These protocol messages are delivered using reliable

transport protocols such as TCP.

Our decentralized asynchronous implementation executed at each peer i proceeds as

follows.

Initialization:

1. Initialize the set of current upstream peers Ui and downstream peers Di, as well

as the step counters ni = 1, and mi = 1.

2. For every upstream peer u in Ui:

(2.1) Set xui = R/|Ui| and eui = 0.

(2.2) Send xui and eui to peer u with a RU message.

4.3. THE ASYNCHRONOUS CASE 62

Next, peer i executes the following steps in its dual roles as a downstream peer and

an upstream peer, using step counters ni and mi, respectively.

As a downstream peer:

1. Receive RU messages from its upstream peers, and estimate the actually achieved

receiving rate yui from each of them. Adjust Ui if it detects any upstream peer failures.

2. After it has received RU messages from all its existing upstream peers, do the

following:

(2.1) Retrieve allocated rates xui(t), ∀ u ∈ Ui, from the received RU messages.

(2.2) Compute λi(t) = max(0,R−∑
u:(u,i)∈A xui(t)).

(2.3) For each upstream peer u:

(2.3.1) If λi(t) > 0, increase the allocated rate by xui(t + 1) = xui(t) + αni
λi(t);

otherwise, set xui(t + 1) = xui(t).

(2.3.2) If yui < xui(t), set eui(t + 1) = 1; otherwise, set eui(t + 1) = 0.

(2.3.3) Send xui(t + 1) and eui(t + 1) to peer u with a RU message.

3. Increment step counter: ni = ni + 1.

As an upstream peer:

1. Receive RU messages from its downstream peers. Adjust Di if it detects any

downstream peer failures, or receives RU messages from new downstream peers.

2. After it has received RU messages from all its existing downstream peers, do the

following:

For each downstream peer j:

(2.1) Retrieve eij(t) and xij(t) from the RU message from peer j.

(2.2) If eij(t) = 1, decrease the allocated rate by xij(t + 1) = xij(t) − βmi
eij(t);

otherwise, set xij(t + 1) = xij(t).

4.3. THE ASYNCHRONOUS CASE 63

(2.2) Adjust the sending rate to peer j to xij(t + 1), and send xij(t + 1) in a RU

message to peer j.

3. Increment the step counter: mi = mi + 1.

Theorem 3 shows the convergence of our decentralized asynchronous implementation

of the iterative algorithm.

Theorem 3. With our decentralized asynchronous implementation, and under the as-

sumption that both the message passing delay and the time between consecutive updates

are finite, the sequence {x(t)} (the rate vector at time t) converges to a feasible solution

of LC if XR ∩XC 6= φ, or to the feasible region of LC’ otherwise.

The proof of Theorem 3 is presented in Sec. 4.6.3. The key to guarantee the conver-

gence is, as pointed out earlier, when a downstream peer i updates the allocated rates on

its download links, it increases them altogether with the same diminishing step length

αni
; when an upstream peer i updates the allocated rates on its upload links, it deducts

them altogether with the same diminishing step length βmi
. In this case, the bandwidth

allocation still improves towards feasibility in each step.

4.3.2 Handling dynamics

We further note that, our asynchronous implementation can maximally guarantee the

required streaming bandwidth at each peer, in cases of both peer and network dynamics.

To understand such robustness against dynamics, we consider the influence of dynamics

during and after the convergence process.

Dynamics during convergence. Our asynchronous implementation of the algorithm

can readily adapt to dynamics introduced before the allocated rates converge. First, when

a new peer i joins the streaming session, it is assigned an initial set of upstream peers,

4.3. THE ASYNCHRONOUS CASE 64

which is decided by the topology construction protocol based on media content avail-

ability, and executes the initialization phase. After its selected upstream peers receive

its RU messages, they include peer i in their respective sets of downstream peers. Thus,

peer i can immediately participate in the asynchronous implementation as a downstream

peer from the initial step counter ni = 1, while its upstream peers continue their own

execution with their current step counter values. Second, in the case of peer failures or

departures, after the downstream and upstream peers detect peer i’s failure or departure,

they simply remove i from their respective sets of upstream or downstream peers and

continue with their execution, effectively excluding i from later message exchanges and

computation. Finally, our implementation naturally adapts to fluctuating overlay link

bandwidth due to the appearing and vanishing of congestion along the links, since our

implementation uses binary indicators of insufficient bandwidth eij, rather than explicit

a priori knowledge of link bandwidth.

To derive the convergence properties of the asynchronous implementation in dynamic

networks, the analysis in Theorem 3 still applies, i.e., we can still show the bandwidth

allocation dynamically improves towards feasibility in the current network, and converges

to one feasible solution if there exists one in the dynamic network. Formally, we present

it as Corollary 2, which can be obtained directly from Theorem 3:

Corollary 2. If dynamics occur during the convergence of our asynchronous implemen-

tation of the iterative algorithm, the rate vector x(t) improves towards feasible bandwidth

allocation of the current overlay, and converges to a feasible solution whenever there exists

one, or maximizes the peer throughput in the dynamic overlay.

Dynamics after convergence. If dynamics occur after allocated rates have converged,

the affected peers initiate a new round of protocol execution with reset step counters, in

4.3. THE ASYNCHRONOUS CASE 65

which the bandwidth allocation continues to improve towards feasibility or throughput

maximization.

The handling of the case that a new peer joins the streaming session is similar to that

discussed when dynamics occur during convergence, except that all peers now execute

the protocol from ni = 1 or mi = 1. In the cases of peer failure or departure, or overlay

link bandwidth fluctuations, which have caused the loss of streaming rate at a particular

downstream peer, the affected downstream peer will reallocate its bandwidth requests

towards its remaining upstream peers, and send out the new RU messages to each of them.

In this way, a new round of protocol execution is invoked, and the involved peers reset

their step counters and cooperate in the protocol execution from their current bandwidth

allocation.

To conclude our analytical discussions of bandwidth allocations in P2P streaming,

we reiterate our motivation for this work. We believe that our bandwidth allocation

algorithms can help existing topology construction protocols so that they are more effec-

tive, especially in the case of tight supply-demand relationships of bandwidth. Once a

P2P topology is first constructed using a particular protocol, our bandwidth allocation

algorithm can be used to maximally utilize the existing supply of bandwidth in such a

topology. In fact, we further point out that our algorithm can directly function as a joint

topology construction and bandwidth allocation protocol as well, if complete knowledge

at each peer can be assumed (i.e., the input mesh topology G to our feasibility problem

is a complete graph). In this way, a P2P link (i, j) remains in the resulting topology if

the computed transmission rate xij is non-zero.

In a practical large-scale P2P network, it is not realistic to assume that each peer

4.4. PERFORMANCE EVALUATION 66

knows every other peer in the system. Therefore, we have proposed that our protocol

can be carried out in a complementary fashion with an existing topology construction

protocol, which assigns each peer an initial set of a small number of upstream peers

(e.g., using random peer selection). Then our bandwidth allocation algorithm can be

applied to make the best use of the available bandwidth based on the current peer

connectivity. If the required streaming rate is not satisfied on all the peers in the topology,

the topology construction protocol can be reactivated, e.g., more upstream peers with

available bandwidth are acquired at peers which have not achieved the required streaming

rate. After the topology change, our bandwidth allocation algorithm can come into play

again, which achieves the highest level of peer streaming rate satisfaction in the new

topology. With our bandwidth allocation algorithm, the need for topology reconstruction,

i.e., to find new upstream peers and adjust peer connectivity, is minimized, and the

feasible streaming rate is achieved quickly at the peers to counter the effects of network

dynamics. In essence, such joint functioning of the topology construction protocol and

our bandwidth allocation algorithm achieves the joint optimization to derive a desirable

mesh streaming structure.

4.4 Performance Evaluation

To evaluate the effectiveness, in particular the dynamic behavior of convergence, we have

conducted an in-depth empirical study on our decentralized asynchronous implemen-

tation proposed in Sec. 4.3 with C++-based simulations. We choose to simulate our

implementation in the asynchronous case due to its practicality in realistic P2P topolo-

gies. The first several proof-of-concept experiments use small example topologies, akin

to the concept of “unit testing” in software development.

4.4. PERFORMANCE EVALUATION 67

p1
 p2

p3

p4
 p5

Figure 4.2: An example P2P streaming topology.

Experiment A (behavior of convergence): We first illustrate how the imple-

mentation converges in an example topology in Fig. 4.2. We simulate a streaming ses-

sion with R = 800 Kbps. In this network, peers p1 and p2 directly stream from the

server (not shown in Fig. 4.2), and serve as “mini-sources” for p3, p4 and p5. The

rate vector is x = (x13, x23, x14, x34, x25, x35). End-to-end delays on overlay links are

(30, 50, 60, 100, 80, 120) (in milliseconds), respectively. We investigate both feasible and

infeasible cases.

The feasible case: The overlay topology is able to support p3, p4 and p5 at R, with

upload capacities of (0.7, 0.8, 1.0) (in Mbps) at p1, p2, p3, respectively, and available link

capacities of (0.4, 0.5, 0.5, 0.8, 0.6, 0.9) (in Mbps) on the six links.

The infeasible case: The overlay topology is unable to support p3, p4 and p5 atR, with

upload capacities of (0.7, 0.8, 0.6) (in Mbps) at p1, p2 and p3. Available link capacities

are the same as in the feasible case.

The step length sequences used in our experiments are αn = 1/n and βn = 1/(10
√

n).

Results for the two experiments are illustrated in Fig. 4.3 and Fig. 4.4, respectively.

Fig. 4.3(a) depicts the convergence of allocated link rates, xij’s, in the feasible case,

which are all initiated to 400 Kbps. In the first iteration, p3 and p4 find that there is

insufficient bandwidth on link (1, 3) and (1, 4), respectively, as p1’s aggregate sending

rate exceeds its upload capacity. Based on the feedbacks from its downstream peers, p1

4.4. PERFORMANCE EVALUATION 68

(A) (B)

0 1 2 3 4 5
600

650

700

750

800

850

900

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

0 1 2 3 4 5
100

200

300

400

500

600

700

800

900

time (seconds)

A
llo

ca
te

d
lin

k
ra

te
 (

K
bp

s)
X13
X23
X14
X34
X25
X35

Figure 4.3: Convergence in the example topology: the feasible case.

(A) (B)

0 2 4 6 8
100

200

300

400

500

600

700

800

time (seconds)

A
llo

ca
te

d
lin

k
ra

te
 (

K
bp

s)

X13
X23
X14
X34
X25
X35

0 2 4 6 8
550

600

650

700

750

800

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

Figure 4.4: Convergence in the example topology: the infeasible case.

decreases x13 and x14. In the next iteration, as the aggregate download link rates at p3

and p4 fall below R, they increase the allocated rates on their download links. During the

convergence, x34 and x35 keep increasing as p3’s spare upload capacity is being utilized,

and the rate vector quickly converges to a feasible solution, (370, 430, 322, 478, 352, 448).

Correspondingly, Fig. 4.3(b) shows the convergence of the actually achieved streaming

rates at the peers during the bandwidth allocation process. Though there is a temporary

decrease initially, these rates steadily increase to reach the required rate.

Fig. 4.4 illustrates the convergence in the infeasible case, in which the maximum

throughput achieved at p3, p4 and p5 is 700 Kbps. We observe that while their initial

4.4. PERFORMANCE EVALUATION 69

(A) (B)

0 5 10 15 20
400

500

600

700

800

900

1000

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

0 1 2 3 4 5 6 7 8 9 10 11 12
300

400

500

600

700

800

900

1000

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

Figure 4.5: Convergence in the example topology: the dynamic case.

streaming rates are 750, 650, 700 Kbps, respectively, the rates quickly converge to 700

Kbps at all three peers. This reveals that our implementation is able to achieve fair

allocation among the peers, when there is insufficient “supply” of bandwidth in the

overlay. The observations we have had in both feasible and infeasible cases have supported

Corollary 1 in Sec. 4.2.

Experiment B (effects of dynamics): We next investigate how our implementa-

tion converges in dynamic environments, again with the example topology in Fig. 4.2.

In this experiment, upload capacities at p1, p2 and p3 are (0.7, 1.0, 1.5) (in Mbps) and

available link capacities on the six links are (0.4, 0.8, 0.5, 0.8, 0.35, 0.9) (in Mbps). We

study two cases, and show our results in Fig. 4.5(a) and (b), respectively.

Dynamics occur during convergence: p1 and p2 already exist in the overlay session. p3

joins the session at time 0, p4 joins at 1 second, p5 joins at 2 seconds, and then p1 leaves

the network at 3 seconds.

Dynamics occur after convergence: p1 and p2 already exist in the overlay session. p3

joins the session at time 0, p4 joins at 1 seconds, and p5 joins at 2 seconds. The available

bandwidth on link (1, 3) is then decreased to 0.1 Mbps at 6 seconds. Finally, p1 leaves

4.4. PERFORMANCE EVALUATION 70

the session at 12 seconds.

In the first case, comparing its results in Fig. 4.5(a) with Fig. 4.3(b), we can see

that the convergence process is slightly prolonged due to peer dynamics, but is still

performed rapidly. In the second case, after all three peers have joined the session and

their rates stabilize, at 6 seconds, the decrease of available bandwidth on link (1, 3) causes

the decrease of p3’s streaming rate. As p3 attempts to acquire additional bandwidth

allocations from p2, it further affects p5. p3 and p5 then further adjust their bandwidth

allocation, while p4 is not affected. After the rates converge again, at 12 seconds, p1’s

departure causes all three peers to cooperate in another round of rate adjustment, which

quickly converges to a new feasible bandwidth allocation.

Experiment C (large networks): We are now ready to investigate how the asyn-

chronous implementation of our iterative algorithm converges in more realistic and larger

networks, generated with the BRITE topology generator [64]. In this set of experiments,

peers are classified into two classes: 30% of them are Ethernet peers, with 10 Mbps up-

load capacities; the remainder are ADSL peers, with 0.4 − 0.6 Mbps upload capacities.

The streaming server is an Ethernet host. The message passing delays on overlay links

are sampled from the distribution of pairwise ping times between PlanetLab nodes [1].

Available link bandwidths are chosen from the distribution of measured capacities be-

tween PlanetLab nodes as well [4]. As our bandwidth allocation algorithm is orthogonal

to peer selection strategies used by the streaming applications, we apply random peer

selection as our topology construction protocol. The experiment is further divided into

two parts.

Exp. C. 1: To investigate the scalability of the protocol, we examine its convergence

speed in networks of different sizes and various numbers of upstream peers for each peer

4.4. PERFORMANCE EVALUATION 71

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

Number of peers in the overlayC
o

n
v
e

rg
e

n
c
e

 s
p

e
e

d
 (

s
e

c
o

n
d

s
)

 D=4

 D=8

 D=12

Figure 4.6: Converge speed in large random networks.

(D) in a static setting, without peer dynamics.

The results in Fig. 4.6 show that our algorithm scales very well with the increase of

network sizes. This reveals that, in realistic large networks, by adjusting its bandwidth

allocation with peers in its neighborhood, each peer can quickly obtain the required

streaming bandwidth. The convergence is faster when a peer has more upstream peers.

Exp. C. 2: We then simulate a practical dynamic streaming session with R = 800

Kbps, and monitor the achieved streaming rates at the peers during a 10-minute period.

In the session, 200 peers join and depart following an On/Off model, with On/Off periods

both following an exponential distribution with an expected length of T seconds. Each

peer executes the following: Upon joining, it randomly selects D upstream peers and

executes the bandwidth allocation algorithm. During such execution, if its achieved

streaming rate is below R for 2 seconds, it randomly adds a new upstream peer if it

currently has fewer than D upstream peers (due to peer failures), or randomly switches

to new upstream peers otherwise.

The results in Fig. 4.7 demonstrate that our algorithm can provide the peers with

steady streaming rates under high peer churn rates. In the case that each peer joins/leaves

4.4. PERFORMANCE EVALUATION 72

(A) (B)

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=10s,D=12

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=10s,D=8

(C) (D)

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=150s,D=8

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=50s,D=8

Figure 4.7: Average achieved streaming rate in a dynamic streaming session with 200
peers.

every 10 seconds, with 200 peers, every second there are 20 peer joins/departures on

average. Even in such an extremely dynamic environment, the streaming rates at existing

peers are rather satisfactory any time during the streaming session. Comparing Fig. 4.7(c)

with (d), we can see that the streaming rates are better if each peer has more upstream

peers.

We have also experimented with varying available overlay link bandwidths. However,

as the available link capacities sampled from those between PlanetLab nodes are generally

much larger than R, such variations do not materially affect our results. We choose not

4.5. SUMMARY 73

to present further details of these experiments.

4.5 Summary

In this chapter, we propose a practical algorithm that allocates the limited “supply” of

bandwidth in a P2P streaming session, so that the “demand” of streaming playback rate

can be satisfied on all the peers. We model the problem of streaming rate satisfaction as a

feasibility problem, defined as a set of linear constraints. We further propose an iterative

algorithm, which converges to a feasible solution if it exists, adapts well to dynamics,

and can be implemented in a fully decentralized fashion, in both the synchronous and

asynchronous cases. As salient advantages of our algorithm, it does not rely on a priori

knowledge of available upload and link bandwidth, and is able to maximally guarantee

the required streaming rate at each peer even in case of persistent peer dynamics and

network changes.

4.6 Proofs

4.6.1 Proof of Theorem 1

Let λ̃
(n)
ij = λ

(n)
j , ∀ (i, j) ∈ A. The iterative updates in (4.4) can be expressed again in

the following form:

x(n+1) = x(n) + αnλ̃
(n) − βne(n)

where λ̃(n) = (λ̃
(n)
ij , ∀ (i, j) ∈ A), and e(n) = (e

(n)
ij , ∀ (i, j) ∈ A). We first prove a lemma:

Lemma 1. If XR ∩XC 6= φ, let x̃ be a feasible solution to LC, the following holds for

4.6. PROOFS 74

all sufficiently large n for which x(n) /∈ XR ∩XC:

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − rαn,

where r > 0.

Proof: Choose r̃ > 0 such that for all x satisfying ‖x− x̃‖ ≤ r̃, x ∈ XR ∩XC . For every

x ∈ XR ∩XC , we have

(λ̃(n), x(n) − x) =
∑

(i,j)∈A
λ̃

(n)
ij (x

(n)
ij − xij) =

∑

j∈N
λ

(n)
j (

∑

i:(i,j)∈A
x

(n)
ij −

∑

i:(i,j)∈A
xij).

For all j ∈ N where λ
(n)
j > 0,

∑
i:(i,j)∈A x

(n)
ij < R, and for all x ∈ XR,

∑
i:(i,j)∈A xij ≥ R.

We derive

(λ̃(n), x(n) − x) ≤ 0.

Let x = x̃− r̃ λ̃(n)

‖λ̃(n)‖ . Then x ∈ XR ∩XC . We have

(λ̃(n), x(n) − x) = (λ̃(n), x(n) − x̃ + r̃
λ̃(n)

‖λ̃(n)‖
) ≤ 0.

Therefore, (λ̃(n), x(n) − x̃) ≤ −r̃‖λ̃(n)‖.

Next, for every x ∈ XR ∩XC , we have the following:

(e(n), x(n) − x) =
∑

(i,j)∈A
e
(n)
ij x

(n)
ij −

∑

(i,j)∈A
e
(n)
ij xij.

The link rates x
(n)
ij ’s for which e

(n)
ij > 0 can be categorized into two groups: one contains

those which violate an upload capacity constraint in (4.2), and the other contains those

4.6. PROOFS 75

which do not violate (4.2), but violate an available link capacity constraint in (4.3). Let

N (n) be the set of peers whose upload capacities are exceeded. Let A(n) be the set of

links (i, j)’s, whose available bandwidths are exceeded, but i 6= N (n). Thus

(e(n), x(n) − x) =
∑

i∈N(n)

(
∑

j:(i,j)∈A
x

(n)
ij −

∑

j:(i,j)∈A
xij) +

∑

(i,j)∈A(n)

(x
(n)
ij − xij).

For all i ∈ N (n),
∑

j:(i,j)∈A x
(n)
ij > Oi. For all (i, j) ∈ A(n), x

(n)
ij > cij. For all x ∈ XC ,

∑
j:(i,j)∈A xij ≤ Oi, and xij ≤ cij. We then derive

(e(n), x(n) − x) ≥ 0.

Let x = x̃ + r̃ e(n)

‖e(n)‖ . Then x ∈ XR ∩XC . We have

(e(n), x(n) − x) = (e(n), x(n) − x̃− r̃
e(n)

‖e(n)‖) ≥ 0.

Therefore,

−(e(n), x(n) − x̃) ≤ −r̃‖e(n)‖. (4.7)

We divide our discussions into three cases:

(1) x(n) /∈ XR and x(n) ∈ XC

In this case, ‖λ̃(n)‖ > 0, e(n) = 0. By definition of λ̃(n), we know ‖λ̃(n)‖ is bounded,

i.e., 0 < ã ≤ ‖λ̃(n)‖ ≤ Ã. Then

‖x(n+1) − x̃‖2 = ‖x(n) + αnλ̃(n) − x̃‖2 = ‖x(n) − x̃‖2 + α2
n‖λ̃(n)‖2 + 2αn(λ̃(n), x(n) − x̃)

≤ ‖x(n) − x̃‖2 + Ã2α2
n − 2ãr̃αn.

4.6. PROOFS 76

As αn → 0 for sufficiently large n, we have αn ≤ ãr̃

Ã2 . Thus

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − ãr̃αn.

(2) x(n) ∈ XR and x(n) /∈ XC

In this case, λ̃(n) = 0 and ‖e(n)‖ > 0. Let L = |A|. We know 1 ≤ ‖e(n)‖2 ≤ L. Then

‖x(n+1) − x̃‖2 = ‖x(n) − βne
(n) − x̃‖2 = ‖x(n) − x̃‖2 + β2

n‖e(n)‖2 − 2βn(e(n), x(n) − x̃)

≤ ‖x(n) − x̃‖2 + Lβ2
n − 2r̃βn.

As βn → 0, αn

βn
→ 0, we have βn ≤ r̃

L
and βn > αn. Thus

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − r̃βn ≤ ‖x(n) − x̃‖2 − r̃αn.

(3) x(n) /∈ XR and x(n) /∈ XC

In this case, ‖λ̃(n)‖ > 0 and ‖e(n)‖ > 0. We have

‖x(n+1) − x̃‖2 = ‖x(n) + αnλ̃
(n) − βne(n) − x̃‖2

= ‖x(n) − x̃‖2 + α2
n‖λ̃(n)‖2 + 2αn(λ̃(n), x(n) − x̃) + β2

n‖e(n)‖2 − 2βn(e(n), x(n) − x̃)

−2αnβn(λ̃(n), e(n))

≤ ‖x(n) − x̃‖2 + Ã2α2
n − 2ãr̃αn + Lβ2

n − 2r̃βn ≤ ‖x(n) − x̃‖2 − ãr̃αn − r̃αn.

Taking r = min(ãr̃, r̃), we have for all three cases:

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − rαn.

4.6. PROOFS 77

Proof of Theorem 1: We show that there exists a sufficiently large ñ, such that x(ñ) ∈

XR ∩XC . We prove by contradiction.

Assume that there exists a n′ such that x(n) 6= XR ∩XC for all n ≥ n′. From Lemma

1, we know ‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − rαn. Then we sum up all such inequalities for

n = n′ to n = n′ + m and obtain

‖x(n′+m+1) − x̃‖2 ≤ ‖x(n′) − x̃‖2 − r
n′+m∑

n=n′

αn,

which implies that ‖x(n′+m+1)− x̃‖ → −∞ when m→∞, since
∑n′+m

n=n′ αn →∞. This is

impossible as ‖x(n′+m+1)− x̃‖ ≥ 0. Therefore, there always exists one sufficiently large ñ

such that x(ñ) ∈ XR∩XC . Based on the algorithm in (4.4), we know x(n) = x(ñ), ∀ n > ñ.

Thus Theorem 1 is proven. ⊓⊔

4.6.2 Proof of Theorem 2

Let X ′
R be the region defined by (4.6), i.e., X ′

R = {x :
∑

i:(i,j)∈A xij ≥ Rmax, ∀ j ∈ N}.

The feasible region of problem LC’ can be represented as X ′ = X ′
R ∩XC . We first prove

two lemmas:

Lemma 2. Let x̃ be a feasible solution to LC’. The following results hold for sufficiently

large n, where r1 > 0, r2 > 0:

(1) If x(n) /∈ XC , ‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − r1βn;

(2) If x(n) /∈ X ′
R and x(n) ∈ XC , ‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 + r2αn.

Proof: For every x̃ ∈ X ′
R ∩XC , we have the following:

(λ̃(n), x(n) − x̃) =
∑

j∈N
λ

(n)
j (

∑

i:(i,j)∈A
x

(n)
ij −

∑

i:(i,j)∈A
x̃ij)

4.6. PROOFS 78

For all j where λ
(n)
j > 0,

∑
i:(i,j)∈A x

(n)
ij < R. For x̃ ∈ X ′

R,
∑

i:(i,j)∈A xij ≥ Rmax. Let N

be the total number of peers in the network, i.e., N = |N |. We have

(λ̃(n), x(n) − x) ≤ NR(R−Rmax)

Next, choose r̃ > 0 such that for all x satisfying ‖x − x̃‖ ≤ r̃, x ∈ X ′
R ∩XC . With the

same proof as that for inequality (4.7) in Lemma 1, for every x̃ ∈ X ′
R ∩XC , we have

−(e(n), x(n) − x̃) ≤ −r̃‖e(n)‖.

We next prove the two results in Lemma 2:

(1) If x(n) /∈ XC , we can further divide the discussions into two sub cases:

(a) x(n) /∈ XC and x(n) ∈ XR

In this case, λ̃(n) = 0 and ‖e(n)‖ > 0. Let L be the total number of links in the

network, i.e., L = |A|. We know 1 ≤ ‖e(n)‖2 ≤ L. Then

‖x(n+1) − x̃‖2 = ‖x(n) − βne
(n) − x̃‖2 = ‖x(n) − x̃‖2 + β2

n‖e(n)‖2 − 2βn(e(n), x(n) − x̃)

≤ ‖x(n) − x̃‖2 + Lβ2
n − 2r̃βn

As βn → 0, for sufficiently large n, we have βn ≤ r̃
L
. Therefore,

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − r̃βn

(b) x(n) /∈ XC and x(n) /∈ XR.

In this case, ‖λ̃(n)‖ > 0 and ‖e(n)‖ > 0. From the definition of λ̃(n), we know ‖λ̃(n)‖

4.6. PROOFS 79

is bounded, i.e., 0 < ã ≤ ‖λ̃(n)‖ ≤ Ã. Then

‖x(n+1) − x̃‖2 = ‖x(n) + αnλ̃
(n) − βne(n) − x̃‖2

= ‖x(n) − x̃‖2 + α2
n‖λ̃(n)‖2 + 2αn(λ̃(n), x(n) − x̃) + β2

n‖e(n)‖2 − 2βn(e(n), x(n) − x̃)

−2αnβn(λ̃(n), e(n))

≤ ‖x(n) − x̃‖2 + Ã2α2
n + 2NR(R−Rmax)αn + Lβ2

n − 2r̃βn

As αn → 0 and βn → 0 for sufficiently large n, we have αn ≤ NR(R−Rmax)

Ã2 and βn < r̃
L
.

Thus

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 + 3NR(R−Rmax)αn − r̃βn

As αn

βn
→ 0, we get αn ≤ r̃βn

6NR(R−Rmax)
. Thus

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − r̃

2
βn

Let r1 = r̃
2
, we have for the above two sub cases:

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 − r1βn

(2) If x(n) ∈ XC and x(n) /∈ X ′
R

In this case, x(n) /∈ XR as well. Thus ‖λ̃(n)‖ > 0 and e(n) = 0. We get

‖x(n+1) − x̃‖2 = ‖x(n) + αnλ̃(n) − x̃‖2 = ‖x(n) − x̃‖2 + α2
n‖λ̃(n)‖2 + 2αn(λ̃(n), x(n) − x̃)

≤ ‖x(n) − x̃‖2 + Ã2α2
n + 2NR(R−Rmax)αn

4.6. PROOFS 80

As αn → 0, we have αn ≤ NR(R−Rmax)

Ã2 . Thus

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 + 3NR(R−Rmax)αn

Let r2 = 3NR(R−Rmax), we obtain

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 + r2αn.

⊓⊔

Lemma 3. For any sufficiently large n, there exists an infinite sequence n < n1 < n2 <

n3 < . . ., such that x(ni) ∈ X ′
R ∩XC, for all i = 1, 2, 3,

Proof: We prove by contradiction. Assume there exists a n′ such that x(n) /∈ X ′
R ∩ XC

for all n > n′.

Without loss of generality, we assume the following: (1) x(n′+1) ∈ XC but x(n′+1) /∈ X ′
R;

(2) x(n′+m) /∈ XC ; (3) For all n > n′, if x(n) /∈ XC , x(n+1) ∈ XC . From Lemma 2, we know

that (1) If x(n) /∈ XC , ‖x(n+1)− x̃‖2 ≤ ‖x(n)− x̃‖2− r1βn; (2) If x(n) /∈ X ′
R and x(n) ∈ XC ,

‖x(n+1) − x̃‖2 ≤ ‖x(n) − x̃‖2 + r2αn. We sum up all the inequalities for n = n′ + 1 to

n = n′ + m, and obtain

‖x(n′+m+1) − x̃‖2 ≤ ‖x(n′+1) − x̃‖2 + Z

where

Z = r2

n′+p1−1∑

n=n′+1

αn − r1βn′+p1 + r2

n′+p1+p2−1∑

n=n′+p1+1

αn − r1βn′+p1+p2 + . . .

4.6. PROOFS 81

+ r2

n′+
Pi

l=1 pl−1∑

n=n′+
Pi−1

l=1 pl+1

αn − r1βn′+
Pi

l=1 pl
+ . . . + r2

n′+m−1∑

n=n′+m−pk+1

αn − r1βn′+m (4.8)

where pi <∞ is the number of steps for a x(n) /∈ XC to move to the next x(n) /∈ XC , for

all i = 1, 2, . . . , k and m =
∑k

l=1 pl.

As αn → 0, αn < βn for sufficiently large n, we have αn <
r1β

n′+
Pi

l=1
pl

2r2(pi−1)
, for all n =

n′ +
∑i−1

l=1 pl + 1, . . . , n′ +
∑i

l=1 pl − 1, i = 1, . . . , k. Therefore

Z ≤ −r1

2
(βn′+p1 + βn′+p1+p2 + . . . + βn′+

Pi
l=1 pl

+ . . . + βn′+m) = −r1

2

k∑

i=1

βn′+
Pi

l=1 pl

Thus

‖x(n′+m+1) − x̃‖2 ≤ ‖x(n′+1) − x̃‖2 − r1

2

k∑

i=1

βn′+
Pi

l=1 pl

If m → ∞, we know k → ∞ and
∑k

i=1 βn′+
Pi

l=1 pl
→ ∞. Thus ‖x(n′+m+1) − x̃‖ → −∞,

which is impossible as ‖x(n′+m+1) − x̃‖ ≥ 0. Therefore, our assumption is not correct.

Thus the lemma is proven. ⊓⊔

Proof of Theorem 2: We show ρ(x(n), X ′) ≤ δ, for any δ. Based on Lemma 3, we know

there is a sequence n1 < n2 < n3 < . . ., for which x(ni) ∈ X ′, for all i = 1, 2, We

discuss three cases:

(1) n = ni, for some i ∈ {1, 2, . . .}. Thus x(n) ∈ X ′, and ρ(x(n), X ′) = 0.

(2) n = ni + 1. In this case, x(n) = x(ni) + αni
λ̃(ni). As αni

→∞ for sufficiently large

ni, we have

‖x(n) − x(ni)‖ = ‖x(ni) + αni
λ̃(ni) − x(ni)‖ = αni

‖λ̃(ni)‖ ≤ Ãαni
< δ

4.6. PROOFS 82

Then, we have

ρ(x(n), X ′) ≤ ρ(x(ni), X ′) + ‖x(n) − x(ni)‖ ≤ δ. (4.9)

(3) ni + 1 < n < ni+1. From (4.9), we know there exists a x∗ ∈ X ′, such that ‖x(ni+1) −

x∗‖ ≤ δ. As x(n) /∈ X ′, from Lemma 2, we know that (A) If x(n) /∈ XC , ‖x(n+1) − x∗‖2 ≤

‖x(n)−x∗‖2− r1βn; (B) If x(n) /∈ X ′
R and x(n) ∈ XC , ‖x(n+1)−x∗‖2 ≤ ‖x(n)−x∗‖2 + r2αn.

We sum up the inequalities for n = ni + 1 to n− 1, and can obtain

‖x(n) − x∗‖2 ≤ ‖x(ni+1) − x∗‖2 + Z

where Z ≤ 0 is in the similar form as (4.8). Thus

ρ(x(n), X ′) ≤ ‖x(n) − x∗‖ ≤ δ

⊓⊔

4.6.3 Proof of Theorem 3

We prove the case that there is a feasible solution to LC and omit the proof for the

infeasible case, which can be done in the similar way as Theorem 2 is proven. We first

show the following lemma:

Lemma 4. At any time t, if there are any updates to any allocated rates xij(t), ∀ (i, j) ∈

A, the rate vector x(t) is improving towards x̃, which is a feasible solution of LC, i.e.,

‖x(t + 1)− x̃‖2 ≤ ‖x(t)− x̃‖2 − rγ(t),

4.6. PROOFS 83

where r > 0 and sequence γ(t) satisfies limt→∞ γ(t) = 0,
∑∞

t=1 γ(t) =∞.

Proof: At time t, let P1 be the set of peers that are increasing the allocated rates on

their download links. Let P2 be the set of peers that are decreasing the allocated rates

on their upload links. We have

xij(t + 1) =





xij(t) + αnj
λj(t) if j ∈ P1,

xij(t)− βmi
eij(t) if i ∈ P2,

xij(t) otherwise.

Then

‖x(t + 1)− x̃‖2 =
∑

(i,j)∈A
(xij(t)− x̃ij)

2 +
∑

(i,j):j∈P1

(α2
nj

λ2
j(t) + 2αnj

λj(t)(xij(t)− x̃ij))

+
∑

(i,j):i∈P2

(β2
mi

e2
ij(t)− 2βmi

eij(t)(xij(t)− x̃ij)).

Let Λ =
∑

(i,j):j∈P1(α
2
nj

λ2
j(t) + 2αnj

λj(t)(xij(t)− x̃ij)),

Θ =
∑

(i,j):i∈P2(β
2
mi

e2
ij(t)− 2βmi

eij(t)(xij(t)− x̃ij)). We have

Λ =
∑

(i,j):j∈P1

λ2
j(t)α

2
nj

+
∑

j∈P1

2λj(t)αnj
(

∑

i:(i,j)∈A
xij(t)−

∑

i:(i,j)∈A
x̃ij).

For all j ∈ P1, as λj(t) > 0,
∑

i:(i,j)∈A xij(t) < R. For all x̃ ∈ XR,
∑

i:(i,j)∈A x̃ij ≥ R. Let

D be the maximum number of upstream peers each peer has. Then

Λ ≤
∑

j∈P1

(DR2α2
nj
− 2r̃αnj

),

where r̃ > 0.

4.6. PROOFS 84

As αnj
→ 0, we have αnj

< r̃
DR2 . Let α(t) = min(αnj

, ∀ j ∈ P1).

Λ ≤
∑

j∈P1

(−r̃αnj
) ≤ −|P1|r̃α(t).

Next, we have

Θ =
∑

(i,j):i∈P2

β2
mi

e2
ij(t)− 2

∑

(i,j):i∈P2

(βmi
eij(t)(xij(t)− x̃ij))

The link rates xij(t)’s for which i ∈ P2 can be categorized into two groups: one

contains those which violate an upload capacity constraint in (4.2), and the other contains

those which do not violate (4.2), but violate an available link capacity constraint in (4.3).

Let N(t) be the set of peers whose upload capacity is exceeded at time t. Let A(t) be

the set of links (i, j)’s, whose available bandwidths are exceeded at time t, but i 6= N(t).

We have

∑

(i,j):i∈P2

(βmi
eij(t)(xij(t)− x̃ij)) =

∑

i∈N(t)

βmi
(

∑

j:(i,j)∈A
xij(t)−

∑

j:(i,j)∈A
x̃ij) +

∑

(i,j)∈A(t)

βmi
(xij(t)− x̃ij)

As for all i ∈ N(t),
∑

j:(i,j)∈A xij(t) > Oi, and for all x̃ ∈ XC ,
∑

j:(i,j)∈A x̃ij ≤ Oi, we

get
∑

j:(i,j)∈A xij(t)−
∑

j:(i,j)∈A x̃ij > 0. Similarly, since for all (i, j) ∈ A(t), xij(t) > Cij,

and for all x̃ ∈ XC , x̃ij ≤ Cij, we have xij(t)− x̃ij > 0. Therefore, we derive

∑

(i,j):i∈P2

(βmi
eij(t)(xij(t)− x̃ij)) ≥

∑

i∈P2

r̃′βmi
≥ 0,

where r̃′ > 0.

4.6. PROOFS 85

Then, let D′ be the maximum number of downstream peer each peer has. We get

Θ =
∑

(i,j):i∈P2

β2
mi

e2
ij(t)− 2

∑

(i,j):i∈P2

(βmi
eij(t)(xij(t)− x̃ij)) ≤

∑

i∈P2

(D′β2
mi
− 2r̃′βmi

)

As βmi
→ 0, we have βmi

< r̃′

D′ . Let β(t) = min(βmi
, ∀ i ∈ P2). We get

Θ ≤ −|P2|r̃′β(t).

Therefore,

‖x(t + 1)− x̃‖2 ≤ ‖x(t)− x̃‖2 − |P1|r̃α(t)− |P2|r̃′β(t).

Let γ(t) = min(α(t), β(t)), r = |P1|r̃ + |P2|r̃′. We have

‖x(t + 1)− x̃‖2 ≤ ‖x(t)− x̃‖2 − rγ(t),

and γ(t) satisfies limt→∞ γ(t) = 0,
∑∞

t=1 γ(t) =∞. ⊓⊔

Proof of Theorem 3: We show that there exists a sufficiently large t̃, such that x(t̃) ∈

XR ∩XC . We prove by contradiction.

Assume that there exists a t′ such that x(t) 6= XR ∩XC for all t ≥ t′. From Lemma

4, we know ‖x(t + 1)− x̃‖2 ≤ ‖x(t)− x̃‖2 − rγ(t). Then we sum up all such inequalities

for t = t′ to t = t′ + m and obtain

‖x(t′ + m + 1)− x̃‖2 ≤ ‖x(t′)− x̃‖2 − r
t′+m∑

t=t′

γ(t)

which implies that ‖x(t′ + m + 1) − x̃‖ → −∞ when m → ∞, since
∑t′+m

t=t′ γ(t) → ∞.

This is impossible as ‖x(t′ + m + 1)− x̃‖ ≥ 0. Therefore, our assumption is not correct,

4.6. PROOFS 86

and there always exists one sufficiently large t̃ such that x(t̃) ∈ XR ∩XC . Based on the

protocol, we know x(t) = x(t̃), ∀ t > t̃. Thus Theorem 3 is proven. ⊓⊔

Chapter 5

Dynamic Bandwidth Auction in

Multi-Overlay P2P Streaming

In mesh-based P2P streaming applications, multiple coexisting streaming overlays, cor-

responding to different channels of television programming or live events, are the norm

rather than the exception. Generated with a modern codec, each overlay distributes

a live media stream with a specific streaming rate. As compared to the single session

scenario, it is a more challenging task to meet the demands of bandwidth at all partic-

ipating peers when coexisting streaming overlays are considered, sharing the available

upload bandwidth supplies in the P2P network.

Consider a typical scenario where multiple peers from different overlays are in conflict

with one another, competing for limited upload bandwidth at the same streaming server

or upstream peer in the network. In this case, the allocation of such upload bandwidth

needs to be meticulously mediated with appropriate strategies, such that the streaming

rate requirement of each overlay is satisfied at all their participating peers. It would be

best if, at the same time, fairness can be achieved across different overlays, and costs of

87

5.1. MULTI-OVERLAY STREAMING MODEL 88

streaming (e.g., latencies) can be minimized.

Most existing P2P streaming studies focus on a single overlay, neglecting the conflict

scenarios among coexisting overlays with respect to available bandwidth. Our study in

this chapter represents the first in the category that focuses on such conflicts, by design-

ing simple, decentralized, and effective tactical strategies to resolve inherent bandwidth

conflicts among coexisting streaming overlays. Based on the rich foundation offered by

game theory, we characterize the bandwidth conflicts among multiple overlays with dy-

namic auction games. Such games evolve over time, and involve repeated auctions in

which competing downstream peers from different overlays bid for upload bandwidth at

the same upstream peer, and the upstream peer allocates its upload bandwidth based

on the bids. We design effective strategies to carry out the distributed auctions, which

result in efficient bandwidth partition in the network across overlays.

With extensive theoretical analysis, we show that our decentralized game-theoretic

strategies not only converge to a Nash equilibrium, but also lead to favorable outcomes

in realistic asynchronous environments: We are able to obtain an optimal topology for

each of the coexisting streaming overlays, in the sense that streaming rates are satisfied,

and streaming costs are minimized. These topologies of coexisting overlays evolve and

adapt to peer dynamics, fairly share peer upload bandwidth, and can be prioritized.

5.1 Multi-Overlay Streaming Model

5.1.1 Network model and assumptions

We consider a P2P live streaming network including multiple coexisting streaming over-

lays, each consisting of streaming servers and participating peers. Each server may serve

more than one overlay, while each peer may also participate in multiple overlays. A

5.1. MULTI-OVERLAY STREAMING MODEL 89

v1 v2

n3

n4n5

n6

n7

Overlay 2

Overlay 1

Figure 5.1: Two concurrent P2P streaming
overlays: an example.

v1 v2

n3

n4n5

n6

n7

Auction Game 2

Auction Game 1

Figure 5.2: Decentralized auction games in
the example overlays.

practical scenario of this case is that users behind a same gateway may watch different

channels, while they appear as the same identity (peer) in the Internet with one same

external IP address. Fig. 5.1 shows an example of two coexisting streaming overlays,

each with two streaming servers and four participating peers.

In each streaming overlay, participating servers and peers form a mesh topology, in

which any peer is served by its upstream peers (servers can be deemed as special upstream

peers), and may serve one or more downstream peers at the same time. With respect to

the construction of each overlay, as in the previous chapters, we assume there exists a

standalone neighbor list maintenance mechanism, which bootstraps each new peer with

a number of existing peers in an overlay, and maintains the number of neighbors for each

peer during streaming as well. The application-layer links between peers in each overlay

are established based on their media content availability during streaming.

Let S denote the set of all coexisting streaming overlays in the network. The topology

of each overlay s ∈ S can be modeled as a directed graph Gs = (Vs,Ns,As), where Vs is

the set of servers serving overlay s, Ns represents the set of participating peers, and As

denotes the set of application-layer links in overlay s. Let Rs be the required streaming

rate of the media stream distributed in overlay s. Let V be the set of all streaming

servers in the network, i.e., V = ∪s∈SVs, and N be the set of all existing peers, i.e.,

5.1. MULTI-OVERLAY STREAMING MODEL 90

N = ∪s∈SNs. Let Ui denote the upload bandwidth at peer i, ∀ i ∈ V ∪ N .

Similar to our capacity assumption in Chapter 3, we assume that the last-mile upload

bandwidth on each peer (including servers) constitutes the “supply” of bandwidth in the

overlays, i.e., bandwidth bottlenecks lie at the peers rather than at the core of the

overlays. In addition, we assume that the download bandwidth of each peer is sufficient

to support the required streaming rate(s) of the overlay(s) it participates in.

5.1.2 Auction game model

To resolve the bandwidth conflict on its upload link, each upstream peer i in the network,

∀ i ∈ V ∪ N , organizes a dynamic bandwidth auction game, referred to as auction i. In

auction i, the “goods” for sale is the upload bandwidth of peer i with a total quantity of

Ui, and the players are all the downstream peers of peer i in all overlays it participates in.

Let js represent peer j in overlay s. The set of players in auction i can be expressed as

{js, ∀ j : (i, j) ∈ As, ∀ s ∈ S}. We note that in case a downstream peer j participates

in multiple overlays, it is viewed as multiple players, each for one overlay. As each peer

in an overlay may stream from multiple upstream peers in the overlay, a player js may

concurrently bid for upload bandwidth in multiple auction games, each hosted by one

upstream peer.

The auction games at the peers are dynamically carried out in a repeated fashion to

resolve bandwidth conflicts over time. In each bidding round of auction i, each player

submits its bid to peer i, declaring its requested share of upload bandwidth, as well as

the unit price it is willing to pay. The upstream peer i then allocates shares of its upload

capacity, Ui, to the players based on their bids. Let xs
ij denote the upload bandwidth

that player js requests from peer i, and ps
ij denote the unit price it is willing to pay to

5.2. AUCTION STRATEGIES 91

peer i. The bid from player js in auction i can be represented as a 2-tuple bs
ij = (ps

ij, x
s
ij).

Such a distributed game model can be illustrated with the example in Fig. 5.2. In

the example, there exist 7 auction games, two of which are marked: auction 1 at v1 with

5 players 31 (peer n3 in overlay 1), 51, 52, 61 and 62, auction 2 at v2, with 4 players 42,

51, 52 and 71, respectively.

5.2 Auction Strategies

Based on the above model, we have designed effective auction strategies to resolve band-

width conflicts in multi-overlay streaming, including the allocation strategy taken by an

upstream peer and the bidding strategy by downstream peers.

5.2.1 Allocation strategy

In auction i, the seller, upstream peer i, aims to maximize its revenue by selling its

upload bandwidth Ui at the best prices. Given bids bs
ij = (ps

ij, x
s
ij)’s from all the players

js (∀ j : (i, j) ∈ As, ∀ s ∈ S), upstream peer i’s allocation strategy can be represented

by the following revenue maximization problem. Here, as
ij (∀ j : (i, j) ∈ As, ∀ s ∈ S)

is the bandwidth share to be allocated to each downstream peer j in each competing

overlay s.

Allocation i:

max
∑

s∈S

∑

j:(i,j)∈As

ps
ija

s
ij (5.1)

subject to

5.2. AUCTION STRATEGIES 92

∑
s∈S

∑
j:(i,j)∈As

as
ij ≤ Ui,

0 ≤ as
ij ≤ xs

ij, ∀ j : (i, j) ∈ As, ∀ s ∈ S.

Such an allocation strategy can be achieved in the following fashion:

Upstream peer i selects the highest bid price, e.g., ps
ij from player js, and allocates

bandwidth as
ij = min(Ui, x

s
ij) to it. Then if it still has remaining bandwidth, it selects the

second highest bid price and assigns the requested bandwidth to the corresponding player.

This process repeats until peer i has allocated all its upload capacity, or bandwidth requests

from all the players have been satisfied. ⊓⊔

The above allocation strategy can be formally stated in the following formula:

as
ij = min(xs

ij, Ui −
∑

ps′

ik
≥ps

ij ,ks′ 6=js

as′

ik), ∀ j : (i, j) ∈ As, ∀ s ∈ S. (5.2)

5.2.2 Bidding strategy

In each overlay s ∈ S, a peer j may place its bids to multiple upstream peers, that

can supply available media blocks to it. As a common objective, it wishes to achieve the

required streaming rate for the overlay, and experiences minimum costs. We consider two

parts of costs when peer j streams from peer i in overlay s: streaming cost — denoted by

streaming cost function Ds
ij(x

s
ij) — represents the streaming latency actually experienced

by j; bidding cost — calculated by ps
ijx

s
ij — represents the bid peer j submits to peer i in

overlay s. The bidding cost reflects the degree of competition and demand for bandwidth

in the auctions at upstream peers. The overall cost at player js is the sum of the two

parts from all its upstream peers, ∀ i : (i, j) ∈ As.

In this way, the preference for player js in deciding its bids in the auctions can be

5.2. AUCTION STRATEGIES 93

expressed by the following cost minimization problem. Practically, each cost function

Ds
ij should be non-decreasing and its value increases more rapidly when the requested

bandwidth xs
ij is larger (i.e. the property of convexity [23]). Therefore, without loss

of generality, we assume the cost functions are non-decreasing, twice differentiable and

strictly convex.

Bidding js:

min
∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps

ijx
s
ij) (5.3)

subject to

∑
i:(i,j)∈As

xs
ij ≥ Rs, (5.4)

xs
ij ≥ 0, ∀ i : (i, j) ∈ As. (5.5)

The bidding strategy of player js consists of two main components: bandwidth re-

quests and price adjustments.

Bandwidth requests

If the bid prices ps
ij’s are given, the requested bandwidths at player js towards each of

its upstream peers in overlay s, i.e., xs
ij, ∀ i : (i, j) ∈ As, can be optimally decided

by solving the problem Bidding js. This can be done efficiently with a water-filling

approach, in which player js acquires the required streaming rate Rs by requesting from

upstream peers that incur minimum marginal costs:

Let f s
j (x) denote the overall cost at player js, i.e., f s

j (x) =
∑

i:(i,j)∈As
(Ds

ij(x
s
ij)+ps

ijx
s
ij).

The marginal cost with respect to xs
ij is

dfs
j (x)

dxs
ij

= D
′s
ij(x

s
ij) + ps

ij. Beginning with xs
ij = 0

5.2. AUCTION STRATEGIES 94

pij
s

Dij(0)
‘s

i

Dij(xij) - Dij(0)
‘s s ‘s

d fj(x)

 d xij

s

s

Figure 5.3: Bandwidth requesting strategy at player js: an illustration of the water-filling
approach.

(∀ i : (i, j) ∈ As), the player identifies one xs
ij that achieves the smallest marginal cost

and increases the value of this xs
ij. As Ds

ij(x
s
ij) is strictly convex, D

′s
ij(x

s
ij) increases with

the increase of xs
ij. The player increases this xs

ij until its marginal cost is no longer the

smallest. Then it finds a new xs
ij with the current smallest marginal cost and increases

its value. This process repeats until the sum of all xs
ij’s (∀ i : (i, j) ∈ As) reaches Rs. ⊓⊔

The water-filling approach can be illustrated in Fig. 5.3, in which the height of each

bin represents the marginal cost for player js to stream from each upstream peer i. To

fill water at a total quantity of Rs into these bins, the bins with the lowest heights are

flooded first, until all bins reach the same water level. Then the same water level keeps

increasing until all the water has been filled in.

Theorem 1. Given bid prices ps
ij, ∀ i : (i, j) ∈ As, the water-filling approach obtains a

unique optimal requested bandwidth assignment at player js, i.e., (xs∗
ij , ∀ i : (i, j) ∈ As),

which is the unique optimal solution to the problem Bidding js.

Proof: Let xs∗
ij , ∀ i : (i, j) ∈ As be an optimal solution to the problem Bidding js in (5.3).

Introducing Lagrange multiplier λ for the constraint in (5.4) and ν = (νi, ∀ i : (i, j) ∈ As)

for the constraints in (5.5), we obtain the KKT conditions for the problem Bidding js

5.2. AUCTION STRATEGIES 95

as follows (pp. 244, [23]):

∑

i:(i,j)∈As

xs∗
ij ≥ Rs,

λ∗ ≥ 0,

xs∗
ij ≥ 0, ν∗

i ≥ 0, ∀ i : (i, j) ∈ As,

λ∗(Rs −
∑

i:(i,j)∈As

xs∗
ij) = 0, (5.6)

xs∗
ij ν∗

i = 0, ∀ i : (i, j) ∈ As, (5.7)

D
′s
ij(x

s∗
ij) + ps

ij − λ∗ − ν∗
i = 0,

∀ i : (i, j) ∈ As. (5.8)

For xs∗
ij > 0, we have ν∗

i = 0 from (5.7). Then from (5.8), we derive the marginal

cost with respect to xs∗
ij ,

dfs
j (x∗)

dxs
ij

= D
′s
ij(x

s∗
ij) + ps

ij = λ∗. Since Ds
ij is strictly convex and

twice differentiable, the inverse function of D
′s
ij , i.e., D

′s−1
ij , exists and is continuous and

one-to-one. Then we have ∀ i : (i, j) ∈ As)

xs∗
ij =





0 if λ∗ < D
′s
ij(0) + ps

ij,

D
′s−1
ij (λ∗ − ps

ij) if λ∗ ≥ D
′s
ij(0) + ps

ij.
(5.9)

In deriving the optimal solution which achieves a same marginal cost value λ∗ for all

the positive xs∗
ij ’s, we always increase the smallest marginal cost D

′s
ij(x

s
ij)+ps

ij by increasing

the corresponding xs
ij. In this way, we are increasing the marginal costs towards the same

value of λ∗. As λ∗ > 0, we derive that xs∗
ij ’s satisfy Rs−

∑
i:(i,j)∈As

xs∗
ij = 0 based on (5.6).

Therefore, this water-filling process continues until Rs is used up, i.e.,
∑

i:(i,j)∈As
xs∗

ij = Rs,

by which time we obtain the unique optimal solution defined by (5.9). ⊓⊔

5.2. AUCTION STRATEGIES 96

Price adjustments

We next address how each player is to determine the bid price to each of its desirable

upstream peers. A price adjustment scheme is designed for this purpose, by which each

player tactically adjusts its prices in participating auctions based on whether its band-

width requirement is achieved in the previous bidding round.

When a player js first joins an overlay, it initiates bid prices ps
ij’s towards all de-

sired upstream peers to 0. Then it calculates the current optimal requested bandwidth

assignment with the water-filling approach, and sends its bids to the upstream peers.

After upstream peer i allocates its upload capacity with the allocation strategy, it sends

allocated bandwidth values to corresponding players. Upon receiving an allocated band-

width, player js increases the corresponding bid price if its “demand” is higher than

the “supply” from the upstream peer, and otherwise decreases the price. Meanwhile,

it recomputes its requested bandwidth assignment for all its upstream peers with the

water-filling approach. Such price adjustment is carried out in an iterative fashion, until

the player’s bandwidth requests may all be granted at respective upstream peers if it is

to bid the new prices in the next round.

Using the water-filling approach as a building block, the price adjustment scheme is

summarized in the bidding strategy to be carried out by player js in each round of its

participating auctions, as presented in Table 5.1.

The intuition behind the bidding strategy is that, each player places different bid

prices to different upstream peers, considering both the streaming cost and the overall

demand at each upstream peer. If the streaming cost is low from an upstream peer,

the player is willing to pay a higher price and strives to acquire more upload bandwidth

from this peer. On the other hand, if the bandwidth competition at an upstream peer

5.2. AUCTION STRATEGIES 97

Table 5.1: Bidding strategy at player js

Input
–(pij, xij): bids submitted in previous bidding round
–allocated bandwidth as

ij in previous bidding round from all up-
stream peers i, ∀ i : (i, j) ∈ As.

Adjust prices and bandwidth requests
Repeat
(a) For each upstream peer i

– If xs
ij > as

ij, increase price ps
ij by a small amount δ;

– If xs
ij ≤ as

ij and ps
ij > 0, decrease price ps

ij by δ.
(b) Adjust requested bandwidth assignment (xs

ij, ∀ i : (i, j) ∈
As) with the water-filling approach.

(c) For each upstream peer i
– Calculate new allocation as

ij that can be acquired from i if
the current price ps

ij is bid, based on Eqn. (5.2), with queried bids
of some other players in the previous round of auction i.

Until: all requested bandwidths xs
ij’s, are to be achieved with

current prices ps
ij’s, i.e., xs

ij ≤ as
ij, ∀ i : (i, j) ∈ As, and prices ps

ij’s
are the lowest possible to achieve it.

Submit new bids
Send new bids bs

ij = (ps
ij, x

s
ij), ∀ i : (i, j) ∈ As, to respective

upstream peers.

is intense such that the bidding cost becomes excessive, the player will forgo its price

increases and request more bandwidths from other peers. At all times, the marginal cost

of streaming from each upstream peer is kept the same, as achieved by the water-filling

process.

We note that to calculate the new achievable allocation as
ij, player js needs to know

bids placed by some of its opponents in the previous bidding round in auction i. Instead

of asking upstream peer i to send all received bids, player js can query such information

gradually only when necessary. If ps
ij is to be increased, it asks for the bid of opponent ms′

5.3. GAME THEORETICAL ANALYSIS 98

whose price ps′

im is immediately higher than ps
ij in auction i. While ps

ij is still below ps′

im,

player js’s achievable bandwidth is unchanged; only when ps
ij exceeds ps′

im, its achievable

bandwidth is increased by as′

im, and player js queries upstream peer i again for the

bid containing the immediately higher price than the current value of ps
ij. Similar bid

inquiries can be implemented for the case that ps
ij is to be reduced. In this way, the price

adjustments can be achieved practically with little messaging overhead.

5.3 Game Theoretical Analysis

The distributed auction games in the coexisting streaming overlays are carried out in a

repeated fashion, as these are dynamic games. They are correlated with each other as

each player optimally places its bids in multiple auctions. A critical question is: Does

there exist a stable “operating point” of the decentralized games, that achieves efficient

partition of network upload bandwidths? We now seek to answer this question with game

theoretical analysis.

We consider upload bandwidth competition in the entire network as one extended

dynamic non-cooperative strategic game (referred to as Gext), containing all the dis-

tributed correlated auctions. The set of players in the extended game can be represented

as

I = {js, ∀ j ∈ Ns, ∀ s ∈ S}. (5.10)

The action profile taken by player js is a vector of bids, in which each component is

the bid to place to one upstream peer. Formally, the set of action profiles for player js is

defined as

5.3. GAME THEORETICAL ANALYSIS 99

Γs
j = {Bs

j |Bs
j = (bs

ij, ∀ i : (i, j) ∈ As),

bs
ij = (ps

ij, x
s
ij) ∈ [0, +∞)× [0, Rs],

∑

i:(i,j)∈As

xs
ij ≥ Rs}. (5.11)

Then, let B denote the bid profile in the entire network, i.e., B = (Bs
j , ∀ j ∈

Ns, ∀ s ∈ S) ∈ ×j,sΓ
s
j . The preference relation %s

j for player js can be defined by the

following overall cost function, which is the objective function in the problem Bidding

js in (5.3)

Costs
j(B) =

∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps

ijx
s
ij). (5.12)

Therefore, we say two bid profiles B %s
j B′ if Costs

j(B) ≤ Costs
j(B

′).

Definition 1. A bid profile B in the network, B = (Bs
j , ∀ j ∈ Ns, ∀ s ∈ S) ∈ ×j,sΓ

s
j,

is feasible if its bandwidth requests further satisfy upload capacity constraints at all the

upstream peers, i.e.,
∑

s∈S
∑

j:(i,j)∈As
xs

ij ≤ Ui, ∀ i ∈ V ∪ N .

When a bid profile is feasible, from the allocation strategy discussed in Sec. 5.2.1, we

can see the upload bandwidth allocations will be equal to the requested bandwidths.

Using B̃s
j to represent action profiles of all players other than player js in I, i.e.,

B̃s
j = (Bk

m, ∀ mk ∈ I \ {js}), we have the following definition of Nash equilibrium.

Definition 2. A feasible bid profile B∗ = (Bs∗
j , ∀ j ∈ Ns, ∀ s ∈ S) is a Nash equi-

librium of the extended game Gext〈I, (Γs
j), (%

s
j)〉 if for every player js ∈ I, we have

Costsj(B
s∗
j , B̃s∗

j) ≤ Costsj(B
′s
j , B̃s∗

j) for any other feasible bid profile B′ = (B
′s
j , B̃s∗

j).

We next show the existence of a Nash equilibrium for the extended game. We focus

on feasible streaming scenarios as stated in the following assumption:

Assumption 1. The total upload bandwidth in the P2P network is sufficient to support

5.3. GAME THEORETICAL ANALYSIS 100

all the peers in all overlays to stream at required rates, i.e., there exists a feasible bid

profile in the P2P network.

Theorem 2. In the extended game Gext〈I, (Γs
j), (%

s
j)〉 in which distributed auctions are

dynamically carried out with the allocation strategy in (5.2) and the bidding strategy in

Table 5.1, there exists a Nash equilibrium under Assumption 1.

Proof: Define B to be the set of all possible bid profiles in the entire network, i.e., B ∈ B

and B ⊂ ×j,sΓ
s
j . From the definition of Γs

j in (5.11), we know B is convex and xs
ij’s are

bounded. In addition, under Assumption 1, all peers in all overlays can obtain enough

streaming bandwidths, and thus their bid prices to upstream peers will not be increased

infinitely in the respective auctions. Therefore, all prices ps
ij’s in a possible bid profile are

bounded, i.e., ∃ p̄ > 0, ps
ij ∈ [0, p̄], ∀ (i, j) ∈ As, ∀ s ∈ S. Altogether, we derive that B

is a convex compact set.

The action profile for each player js — Bs
j = (bs

ij, ∀ i : (i, j) ∈ As) — can also be

represented as Bs
j = (P s

j , Xs
j), where P s

j = (ps
ij, ∀ i : (i, j) ∈ As) is the vector of bid

prices toward all upstream peers of player js, and Xs
j = (xs

ij, ∀ i : (i, j) ∈ As) is the

vector of requested bandwidths towards all upstream peers at player js.

The price adjustment strategy described in Table 5.1 defines a mapping function θs
j ,

from bid profile B in the previous bidding round, to new prices to bid by player js, i.e.,

P s
j = θs

j(B).

Given price vector P s
j , Theorem 1 gives that the water-filling approach uniquely

decides the best requested bandwidth assignment Xs
j at player js. This mapping from

price vector P s
j to requested bandwidth vector Xs

j can be defined as function Xs
j =

ϕs
j(P

s
j).

Let gs
j (B) = (θs

j(B), ϕs
j(θ

s
j(B)) be the mapping function from bid profile B in the

5.3. GAME THEORETICAL ANALYSIS 101

previous bidding round to a new action profile at player js. Let g(B) = (gs
j (B), ∀ j ∈

Ns, s ∈ S). Therefore, g(B) is a point-to-point mapping from B to B. The Nash equilib-

rium is a fixed-point of this mapping. We next show the existence of such a fixed-point.

We first show ϕs
j is a continuous mapping. Given P s

j , Xs
j is the optimal solution of

Bidding js. Therefore, ϕs
j is defined by (5.9) in the proof of theorem 1. Since Ds

ij is strict

convex and twice differentiable, we know D
′s
ij is continuous. Thus based on the water-

filling process, we know the optimal marginal cost λ∗ is continuous on P s
j . Furthermore,

as D
′s−1
ij is continuous too, from (5.9), we derive Xs

j is continuous on P s
j , i.e., ϕs

j is

continuous.

We next show θs
j is a continuous mapping from B to vector space of bid prices P s

j at

player js. Let ps
ij be the bid price player js places to upstream peer i in the previous

bidding round, and qs
ij be the new bid price after the price adjustment defined by θs

j .

Without loss of generality, we simplify our proof by showing that a small disturbance of

the previous price ps
ij to p

′s
ij = ps

ij + ǫ, ǫ > 0, ǫ → 0 results in little disturbance at new

price qs
ij, i.e., letting q

′s
ij denote the new price corresponding to p

′s
ij, we have q

′s
ij → qs

ij. We

divide our discussions into 2 cases, and first give a result to be used in the discussions:

If ps
ij is increased to p

′s
ij and all other bid prices at player js remain unchanged, the

corresponding requested bandwidth to upstream peer i is decreased, i.e., x
′s
ij ≤ xs

ij. This

can be directly obtained from the water-filling process used to solve Bidding js.

We now investigate the two cases:

A) At upstream peer i, there is no bid price from other players right between ps
ij and

p
′s
ij, i.e., there does not exist pk

im, such that ps
ij ≤ pk

im ≤ p
′s
ij.

Starting the price adjustment described in Table 5.1 from ps
ij and p

′s
ij respectively,

we consider two sub cases: (i) If ps
ij is to be reduced as xs

ij ≤ as
ij, we know p

′s
ij is to be

5.3. GAME THEORETICAL ANALYSIS 102

reduced too, since x
′s
ij ≤ xs

ij but a
′s
ij ≥ as

ij (due to p
′s
ij > ps

ij). When p
′s
ij is reduced, it

will soon reach ps
ij, and its following adjustments will be the same as those for ps

ij. (ii)

Similarly, if ps
ij is to be increased, it will soon reach p

′s
ij and their following adjustments

will be the same. In both cases, we have for the new prices q
′s
ij → qs

ij.

B) At upstream peer i, there is a bid price from another player which lies right

between ps
ij and p

′s
ij, i.e., ∃ pk

im, such that ps
ij ≤ pk

im ≤ p
′s
ij.

We again discuss three sub cases: (i) If ps
ij is to be reduced due to xs

ij ≤ as
ij, p

′s
ij is

to be reduced too, since x
′s
ij ≤ xs

ij but a
′s
ij ≥ as

ij (due to p
′s
ij ≥ pk

im ≥ ps
ij). During p

′s
ij’s

adjustments, its value is continuously decreased, passing pk
im and reaching ps

ij. Then its

following adjustments will be the same as those for ps
ij. (ii) If ps

ij is to be increased due

to xs
ij > as

ij and p
′s
ij is to be reduced as x

′s
ij ≤ a

′s
ij, they will both stop at a same value

near pk
im. (iii) If both ps

ij and p
′s
ij are to be increased, ps

ij’s value will be continuously

increased to pass pk
im and reach ps

ij. Then their following adjustments will be the same.

In all cases, the new prices q
′s
ij → qs

ij.

Therefore, based on the continuity of θs
j and ϕs

j , we derive that the mapping gs
j (B) =

(θs
j(B), ϕs

j(θ
s
j(B)) is continuous. Thus, g(B) = (gs

j (B), ∀ j ∈ Ns, s ∈ S) is a continuous

mapping from B to itself. Based on Brouwer Fixed Point Theorem, any continuous

mapping of a convex compact set into itself has at least one fixed point, i.e., ∃ B∗ =

g(B∗) ∈ B. In addition, the fixed point B∗ must be a feasible profile, as otherwise the

adjustments of prices and requested bandwidths do not converge. Therefore, the fixed

point B∗ is a Nash equilibrium of the extended game. ⊓⊔

The next theorem shows that at equilibrium, the upload bandwidth allocation in the

network achieves the minimization of the global streaming cost.

5.3. GAME THEORETICAL ANALYSIS 103

Theorem 3. At Nash equilibrium of the extended game Gext〈I, (Γs
j), (%

s
j)〉, upload band-

width allocation in the network achieves streaming cost minimization, as achieved by the

following global streaming cost minimization problem:

min
∑

s∈S

∑

j∈Ns

∑

i:(i,j)∈As

Ds
ij(y

s
ij) (5.13)

subject to

∑
s∈S

∑
j:(i,j)∈As

ys
ij ≤ Ui, ∀ i ∈ V ∪ N , (5.14)

∑
i:(i,j)∈As

ys
ij ≥ Rs, ∀ j ∈ Ns, ∀ s ∈ S, (5.15)

ys
ij ≥ 0, ∀ (i, j) ∈ As, ∀ s ∈ S. (5.16)

Proof: We prove by showing that at equilibrium, the KKT conditions satisfied by the

equilibrium bid profile B∗ = ((ps∗
ij , xs∗

ij), ∀ (i, j) ∈ As, ∀ s ∈ S) are the same as KKT

conditions for the global streaming cost minimization problem in (5.13).

At equilibrium, given ps∗
ij ’s, the requested bandwidths at each player js, xs∗

ij , ∀ i :

(i, j) ∈ As, are the optimal solution to the problem Bidding js, and are also the same

as allocated bandwidths from respective upstream peers. Therefore, altogether, we know

the bandwidth allocations in the entire network, xs∗
ij , ∀ (i, j) ∈ As, ∀ s ∈ S, solve the

following optimization problem:

min
∑

s∈S

∑

j∈Ns

∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps∗

ij xs
ij) (5.17)

5.3. GAME THEORETICAL ANALYSIS 104

subject to

∑
i:(i,j)∈As

xs
ij ≥ Rs, ∀ j ∈ Ns, ∀ s ∈ S, (5.18)

xs
ij ≥ 0, ∀ (i, j) ∈ As, ∀ s ∈ S, (5.19)

and also satisfy upload capacity constraints at all the upstream peers:

∑

s∈S

∑

j:(i,j)∈As

xs∗
ij ≤ Ui, ∀ i ∈ V ∪ N . (5.20)

Introducing Lagrange multiplier λ = (λs
j, ∀ j ∈ Ns, ∀ s ∈ S) for the constraints in

(5.18) and ν = (νs
ij, ∀ (i, j) ∈ As, ∀ s ∈ S) for constraints in (5.19), we obtain the KKT

conditions for the optimization problem in (5.17) as follows:

∑

s∈S

∑

j:(i,j)∈As

xs∗
ij ≤ Ui, ∀ i ∈ V ∪ N ,

∑

i:(i,j)∈As

xs∗
ij ≥ Rs, ∀ j ∈ Ns, ∀ s ∈ S,

x∗ ≥ 0, λ∗ ≥ 0, ν∗ ≥ 0,

λs∗
j (Rs −

∑

i:(i,j)∈As

xs∗
ij) = 0, ∀ j ∈ Ns, ∀ s ∈ S,

xs∗
ij νs∗

ij = 0, ∀ (i, j) ∈ As, ∀ s ∈ S, (5.21)

D
′s
ij(x

s∗
ij) + ps∗

ij − λs∗
j − νs∗

ij = 0,

∀ (i, j) ∈ As, ∀ s ∈ S. (5.22)

For xs∗
ij > 0, we have νs∗

ij = 0 from (5.21), and D
′s
ij(x

s∗
ij) + ps∗

ij = λs∗
j from (5.22). Since

Ds
ij is strictly convex and twice differentiable, the inverse function of D

′s
ij , i.e., D

′s−1
ij ,

5.3. GAME THEORETICAL ANALYSIS 105

exists. Then we have ∀ (i, j) ∈ As, ∀ s ∈ S

xs∗
ij =





0 if λs∗
j < D

′s
ij(0) + ps∗

ij ,

D
′s−1
ij (λs∗

j − ps∗
ij) if λs∗

j ≥ D
′s
ij(0) + ps∗

ij .
(5.23)

Similarly, for the global streaming cost minimization problem in (5.13), introducing

Lagrange multiplier q = (qi, ∀ i ∈ V ∪ N) for the constraints in (5.14), λ = (λs
j , ∀ j ∈

Ns, ∀ s ∈ S) for the constraint in (5.15) and ν = (νs
ij, ∀ (i, j) ∈ As, ∀ s ∈ S) for

constraints in (5.16), we obtain the following KKT conditions:

∑

s∈S

∑

j:(i,j)∈As

ys∗
ij ≤ Ui, ∀ i ∈ V ∪ N ,

∑

i:(i,j)∈As

ys∗
ij ≥ Rs, ∀ j ∈ Ns, ∀ s ∈ S,

y∗ ≥ 0, q ≥ 0, λ∗ ≥ 0, ν∗ ≥ 0,

q∗i (
∑

s∈S

∑

j:(i,j)∈As

ys∗
ij − Ui) = 0, ∀ i ∈ V ∪ N , (5.24)

λs∗
j (Rs −

∑

i:(i,j)∈As

ys∗
ij) = 0, ∀ j ∈ Ns, ∀ s ∈ S,

ys∗
ij νs∗

ij = 0, ∀ (i, j) ∈ As, ∀ s ∈ S,

D
′s
ij(y

s∗
ij) + q∗i − λs∗

j − νs∗
ij = 0,

∀ (i, j) ∈ As, ∀ s ∈ S. (5.25)

And similarly, we can obtain ∀ (i, j) ∈ As, ∀ s ∈ S

ys∗
ij =





0 if λs∗
j < D

′s
ij(0) + q∗i ,

D
′s−1
ij (λs∗

j − q∗i) if λs∗
j ≥ D

′s
ij(0) + q∗i .

(5.26)

5.3. GAME THEORETICAL ANALYSIS 106

To show the two sets of KKT conditions are actually the same, we first demonstrate

that at each upstream peer i, the equilibrium bid prices from all competing players

that are allocated non-zero bandwidths are the same, i.e., ∃ t∗i , p
s∗
ij = t∗i if xs∗

ij > 0,

∀ j : (i, j) ∈ As, ∀ s ∈ S. This can be illustrated as follows: If a player in auction i is

paying a price higher than some other player who is also allocated non-zero bandwidth,

the former can always acquire more bandwidth from the later with a price lower than

its current price. Thus at equilibrium, when no one can unilaterally alter its price, all

players must be paying the same price.

In addition, we know from the price adjustment described in Table 5.1 that if up-

stream peer i’s upload capacity is large enough to satisfy all bandwidth requests, the

corresponding bid prices in auction i can all be lowered down to 0. Therefore, at equilib-

rium, if Ui >
∑

s∈S
∑

j:(i,j)∈As
xs∗

ij , we have ps∗
ij = t∗i = 0, ∀ j : (i, j) ∈ As, ∀ s ∈ S. Thus

we know t∗i satisfies

t∗i (
∑

s∈S

∑

j:(i,j)∈As

xs∗
ij − Ui) = 0, ∀ i ∈ V ∪ N . (5.27)

From these results and comparing (5.27)(5.22) with (5.24)(5.25) respectively, we can

derive t∗i = p∗i , ∀ i ∈ V ∪ N , and the two sets of KKT conditions are actually the same.

Therefore, the equilibrium solution in (5.23) is the same as the optimal solution to the

global streaming cost minimization problem in (5.26). Thus Theorem 3 is proven. ⊓⊔

From the proof of Theorem 3, we can derive the following corollary:

Corollary. At Nash equilibrium, the bid prices to each upstream peer i from all competing

players that are allocated non-zero bandwidths are the same, i.e., ∃ t∗i , p
s∗
ij = t∗i if xs∗

ij > 0,

∀ j : (i, j) ∈ As, ∀ s ∈ S.

5.4. CONVERGENCE IN PRACTICAL SCENARIOS 107

This corollary can also be intuitively illustrated: If a player in auction i is paying a

price higher than some other player who is also allocated non-zero bandwidth, the former

can always acquire more bandwidth from the latter with a price lower than its current

price. Thus at equilibrium, when no one can unilaterally alter its price, all players must

be paying the same price.

5.4 Convergence in Practical Scenarios

In contrast to existing game theoretic approaches that require synchronous play, we next

show that our auction strategies can be practically applied in realistic asynchronous and

dynamic P2P streaming networks, and prove the actual convergence of the dynamic

auctions to the desirable Nash equilibrium.

5.4.1 Asynchronous play

In a practical P2P network, peers are inherently asynchronous with different processing

speeds. Besides, with various message passing latencies, bids and allocated bandwidth

updates may arrive at each upstream or downstream peer at different times. All these

make each auction completely asynchronous. A practical deployment of the game theo-

retical strategies should be able to practically handle such asynchronous game play.

In our design, bids and allocation updates are passed by messages sent over TCP,

such that their arrival is guaranteed. The strategies are to be carried out practically in

each auction in the following fashion:

Allocation. At each upstream peer, starting from the last time it sends out allocation

updates, the upstream peer collects new bids until it has received them from all its

5.4. CONVERGENCE IN PRACTICAL SCENARIOS 108

existing downstream peers in all the overlays it participates in, or a timeout value, T ,

has passed since the previous allocation, whichever is shorter. Then the upstream peer

allocates its upload bandwidth again with the allocation strategy discussed in (5.2): for

those downstream peers whose bids it has received, it uses the new bids; for those slow

ones that it has not heard from in this round, it uses the most recent bids from them.

Then the upstream peer sends allocation updates to all the downstream peers whose

allocation has been changed, and starts a new round of execution.

Bidding. At each downstream peer in each streaming overlay, since its last bidding

round, it waits for bandwidth allocation until all allocated bandwidth updates have

arrived from all its requested upstream peers, or time T has passed since the last time it

placed all the bids, whichever is shorter. Then it adjusts prices towards those upstream

peers from which it has received allocation updates, retains its previous prices towards

those it has not heard from in this round, and recalculates its new bids to all the upstream

peers, using the bidding strategy in Table 5.1. It then submits new bids, that are different

from the ones submitted previously, to the respective upstream peers.

While we have established the existence of Nash equilibrium of the distributed auc-

tions in Theorem 2, we have not yet addressed another critical question: Can the Nash

equilibrium, i.e., the stable operating point that achieves optimal bandwidth allocation

among peers in different overlays, be actually reached with such dynamic asynchronous

play of the auction games? We now seek to justify such a convergence, based on the

following assumptions:

Assumption 2. a) Each downstream peer in each overlay will communicate its new

bids to its upstream peers within finite time (until it has acquired the required stream-

ing bandwidth for the overlay at the lowest possible prices); b) Each upstream peer will

5.4. CONVERGENCE IN PRACTICAL SCENARIOS 109

communicate latest allocation updates to its downstream peers within finite time.

Theorem 4. Under Assumption 1 and 2, the asynchronous distributed auctions converge

to the Nash equilibrium, whose existence is established in Theorem 2.

Proof: We first note the following property of the extended auction game, as modeled in

Sec. 5.3:

Claim 1. The total allocated upload bandwidth in the entire network, Ualloc =
∑

s∈S
∑

(i,j)∈As
as

ij, grows monotonically during the asynchronous play of the extended

auction game.

The truth of the above claim lies in the fact that once a unit of upload bandwidth

is allocated during the auction, it remains allocated throughout the rest of the game;

i.e., a unit of allocated bandwidth may switch its ownership from a downstream peer i

in overlay s1 to another downstream peer j in overlay s2, but will never become idling

again.

We further know Ualloc is bounded above by the total upload bandwidth in the net-

work, Uall =
∑

i∈V∪N Ui. Since Ualloc is increasing and upper-bounded, it therefore con-

verges. Let U∗
alloc be its convergence value.

We now prove the theorem by contradiction. We assume that the extended auction

game does not converge and runs for an infinitely long time. By Assumption 2, we know

that there must exist peers that do not obtain sufficient bandwidth and thus bid infinitely

often with updated prices. In this case, U∗
alloc must be smaller than the aggregated

bandwidth demand at all peers in all the overlays, as otherwise peers stop bidding and

the auction terminates.

When the total allocated bandwidth U∗
alloc is not sufficient to satisfy the bandwidth

requirement at all the peers, based on our price adjustment strategy, we know the bid

5.4. CONVERGENCE IN PRACTICAL SCENARIOS 110

prices at all upstream peers will be growing unbounded. In this case, there must not

exist an upstream peer that still has spare upload bandwidth, i.e., all upload bandwidth

in the network has been allocated. We thus derive U∗
alloc = Uall. Therefore, Uall is

smaller than the total bandwidth demand at all the peers in all the overlays, which

contradicts with assumption 1. Thus the extended auction game must converge. In

addition, the extended auction game must converge to its Nash Equilibrium (since peers

would otherwise continue bidding), which achieves streaming cost minimization based on

Theorem 3. ⊓⊔

5.4.2 Peer dynamics

Peer asynchrony aside, the inherent dynamics of realistic P2P network further leads to

dynamics of auction participants. The players in each auction may change dynamically,

due to new peers joining the network, existing peers joining another overlay or switching

upstream peers due to content availability, or peer failures and departures; a distributed

auction may start or close due to the arrival or departure of an upstream peer. With

slightly more extra effort, our asynchronous deployment can readily adapt to such dy-

namics.

At the downstream side, when a peer newly joins an auction at an upstream peer, e.g.,

in the cases of arrival of a new downstream or upstream peer, it initializes its bid price to

0, computes requested bandwidth together with its prices to other upstream peers, and

then forwards its bid to the upstream peer. In the case that one of its upstream peers fails

or departs, the downstream peer can detect it based on the broken or closed connections.

Then it may exclude the upstream peer from its bandwidth request calculation.

At the upstream side, when an upstream peer receives the bid from a new peer, it

5.5. PERFORMANCE EVALUATION 111

immediately incorporates the downstream peer into its bandwidth allocation. When it

detects the failure or departure of a downstream peer based on the broken or closed

connections, the upstream peer allocates upload bandwidth to the remaining peers only

in a new round, excluding the departed peer from the auction game.

When peer dynamics are present in the network, the dynamic auction game progresses

and strives to pursuit the optimal bandwidth allocation in the latest overlay topology.

When peers continue to join and leave the overlays, the optimal bandwidth allocation

naturally becomes a moving target. When such dynamics stop and overlay topology

stabilizes, if the overall bandwidth supply is sufficient in the current topology, by re-

sults in Theorem 2, 3 and 4, we know there exists a Nash Equilibrium which achieves

global streaming cost minimization, and the auction game converges to such an optimal

streaming topology.

5.5 Performance Evaluation

Using simulations under real-world asynchronous settings in practical scenarios, the focus

of our performance evaluation is to show that, as an outcome of our proposed auction

strategies, coexisting overlay topologies can fairly share network bandwidth, evolve under

various network dynamics, and can be prioritized.

The general realistic settings for our forthcoming experiments are as follows: Each

network includes two classes of peers, 30% Ethernet peers with 10 Mbps upload capac-

ities and 70% ADSL/Cable modem peers with heterogeneous upload capacities in the

range of 0.4 − 0.8 Mbps. Streaming servers in a network are Ethernet peers as well.

We use delay-bandwidth products to represent streaming costs (M/M/1 delays), with

streaming cost functions in the form of Ds
ij = xs

ij/(Cij − xs
ij). Here, Cij is the available

5.5. PERFORMANCE EVALUATION 112

overlay link bandwidth, chosen from the distribution of measured capacities between

PlanetLab nodes [4]. In asynchronous play of the auction games, the timeout value for

an upstream/downstream peer to start a new round of bandwidth allocation/requested

bandwidth calculation, T , is set to 1 second.

5.5.1 Limited visibility of neighbor peers

In Assumption 1 of our game theoretical analysis in Sec. 5.3, we assume that upload

capacities in the network are sufficient to support all the peers to stream at required rates.

This is generally achievable when the neighbor list maintained at each peer contains a lot

of other peers in each overlay it participates in. However, in practical scenarios, each peer

only has knowledge of a limited number of other peers, much smaller than the size of the

network. We first study the convergence and optimality of the proposed strategies in such

practical cases with asynchronous play of the auctions. As known neighbors constitute

possible upstream peers in the streaming, the neighbor list at a peer is henceforth referred

to as the upstream vicinity of the peer.

In our experiments, peers in upstream vicinity of each peer are randomly selected by

a bootstrapping server from the set of all peers in the same overlay. The actual upstream

peers at which each peer bids for bandwidth are decided by their content availability

during streaming. Specifically, we seek to answer the following questions: First, what

is the appropriate size of the upstream vicinity, such that the auctions converge and

the required streaming bandwidth can be achieved at all peers in an overlay? Second,

if the upstream vicinity is smaller, do the peers need to bid longer before the auction

games converge? Finally, how different is the resulting optimal topologies when auction

strategies are used with upstream vicinities of various sizes, with respect to streaming

5.5. PERFORMANCE EVALUATION 113

cost?

Evaluation. We investigate by experimenting in networks with 100 to 10, 000 peers

with various sizes of upstream vicinities. In each network, we now consider a single

overlay, with one server serving a 1 Mbps media stream to all peers.

Fig. 5.4 illustrates the outcome of our distributed auction strategies, either when they

converge, or when a maximum bidding time, 2 seconds, has been reached. In the latter

case, we assume the games have failed to converge, as there exist peers that cannot achieve

the required streaming rate with their current size of upstream vicinities. Decreasing the

size of upstream vicinities from n − 1 where n is the total number of peers in each

network, we discover that with 20 − 30 peers in the upstream vicinity, the games can

still converge and the required streaming rate can still be achieved at all peers in most

networks, as shown in Fig. 5.4(A) and (B). Fig. 5.4(B) further reveals that convergence is

always achieved rapidly (in a few seconds) in all networks with different sizes of upstream

vicinities, as long as these games converge at all with a particular upstream vicinity size.

A careful observation exhibits that the auction games take slightly longer to converge in

larger networks. For a fixed network size, with larger upstream vicinity, a peer may spend

more time in receiving bandwidth allocation and computing bandwidth requests, but

carry out fewer bidding rounds before it acquires the required streaming rate. Therefore,

the total time to convergence remains similar with different upstream vicinity sizes when

the auctions converge, and only distinguishes itself in larger networks when they fail to

converge.

Fig. 5.4(C) compares the optimality of resulting topologies in terms of their global

streaming costs computed with the allocated bandwidths. Although each resulting topol-

ogy achieves streaming cost minimization with respect to its own input mesh topology,

5.5. PERFORMANCE EVALUATION 114

(A)

100 500 1000 5000 10000
0

0.5

1

1.5

2

Number of peers (n)

A
v
e

ra
g

e
 p

e
e

r
s
tr

e
a

m
in

g
 r

a
te

 (
M

b
p

s
)

 n−1 neighbors
 50 neighbors
 40 neighbors
 30 neighbors
 20 neighbors
 10 neighbors

(B)

0

0.5

1

1.5

2

2.5

3

Number of peers (n)

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

s
e

c
o

n
d

s
) 40 neighbors

 30 neighbors
 20 neighbors

100 500 1000 5000 10000

(C)

Number of peers (n)
100 500 1000 5000 10000

0

0.5

1

1.5

2

2.5

3

3.5

4

S
tr

e
a

m
in

g
 c

o
s
t

 n−1 neighbors

 40 neighbors

 30 neighbors

 20 neighbors

Figure 5.4: Outcomes of distributed auctions in networks of different sizes, and with
various sizes of upstream vicinities.

the global streaming cost is less when the input topology is denser with larger upstream

vicinities. However, compared to the ultimate minimum streaming cost achieved when

upstream vicinities contain all other peers in the overlay, the cost experienced by using

5.5. PERFORMANCE EVALUATION 115

upstream vicinities of a much smaller size (30) is only 10% higher.

Summary. From these observations, it appears that the appropriate size of upstream

vicinities is relatively independent of network sizes, and the bandwidth allocation con-

verges quickly in most cases. Both are good news when our auction strategies are to be

applied in realistic large-scale networks. Based on results in this section, in our following

experiments, the upstream vicinity size at each peer is set to 30.

5.5.2 The case of multiple coexisting overlays

We now proceed to study how our game strategies resolve the bandwidth competition

among multiple coexisting streaming overlays. In particular, how does the topology

of each overlay evolve, if coexisting overlays are started in the network? Do multiple

coexisting overlays fairly share network bandwidth, and experience similar streaming

costs?

Evaluation 1. We introduce more and more streaming overlays onto a 1000-peer

network: At the beginning, all peers participate in one overlay and start to bid for their

streaming bandwidths. Then every 10 seconds, the peers join one more new streaming

overlay. To clearly show the effects of an increasing number of coexisting overlays on the

allocated streaming bandwidth of each existing overlay, the required streaming rates for

all overlays are set to the same 1 Mbps.

Fig. 5.5 illustrates the evolution of the average peer streaming rate in each overlay

over time, when 5 overlays are sequentially formed in the network. We can see when

there are up to 3 overlays coexisting in the network, the upload capacities in the network

are sufficient for each overlay to achieve their required streaming rate. When there are 4

or 5 overlays, the capacities become insufficient to support all the overlays.

5.5. PERFORMANCE EVALUATION 116

time (seconds)

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

0 10 20 30 40 50
0

0.5
1

1.5 Overlay 1

0 10 20 30 40 50
0

0.5
1

1.5 Overlay 2

0 10 20 30 40 50
0

0.5
1

1.5 Overlay 3

0 10 20 30 40 50
0

0.5
1

1.5 Overlay 4

0 10 20 30 40 50
0

0.5
1

1.5 Overlay 5

Figure 5.5: The evolution of peer streaming rate in multiple coexisting overlays with an
increasing number of overlays over time.

In the former case with 1−3 overlays, every time a new overlay is formed, the previous

equilibrium bandwidth allocation across overlays is disturbed, and the games quickly

converge to a new equilibrium, in which each overlay achieves the required streaming rate

again. In addition, the costs experienced by coexisting overlays when their topologies

stabilize are shown in Fig. 5.6. We observe both streaming and bidding costs are very

similar across the multiple coexisting overlays.

In the latter case with 4−5 overlays in the network, Fig. 5.5 shows that the games fail

to converge, and the streaming bandwidth obtained by each overlay fluctuates over time.

We observed during the experiment that peers in each overlay bid higher and higher prices

at their upstream peers, but were nevertheless unable to acquire the required streaming

rate. Similar bandwidth deficits can be observed in all coexisting overlays from Fig. 5.5.

5.5. PERFORMANCE EVALUATION 117

1 2 3
0

1

2

3

4

Number of overlays

S
tr

e
a

m
in

g
 c

o
s
t

 Overlay 1
 Overlay 2
 Overlay 3

1 2 3
0

5

10

15

Number of overlays

B
id

d
in

g
 c

o
s
t

 Overlay 1
 Overlay 2
 Overlay 3

(A) (B)

Figure 5.6: A comparison of costs among multiple coexisting overlays.

In practical P2P applications, some streaming overlays might expect to receive better

service quality than others. For example, live streaming of premium television channels

should enjoy a higher priority and better quality than regular ones. Since our game

strategies can achieve fairness among various overlays (as observed from Fig. 5.5 and

Fig. 5.6), we wonder if it is further possible to introduce a practical prioritization strat-

egy in our games, such that differentiated service qualities can be provided to different

overlays.

In our previous experiment, we have observed that overlays fairly share bandwidth for

a simple reason: Peers in different overlays are not constrained by a bidding budget, and

they can all raise bid prices at will to acquire more bandwidth from their desired upstream

peers, which leads to relative fair bandwidth allocation at the upstream peers. Motivated

by such insights, we introduce a budget-based strategy to achieve service differentiation,

by offering higher budgets to peers in higher priority overlays. To introduce such budgets,

we only need to make the following minor modification to the bidding strategy proposed

in Sec. 5.2.2:

When a peer j joins a streaming overlay s, it obtains a bidding budget Ws from

its bootstrapping server. Such a budget represents the “funds” peer j can use to acquire

5.5. PERFORMANCE EVALUATION 118

0 10 20 30 40 50
0

0.5
1

1.5 Overlay 1

0
0.5

1
1.5 Overlay 2

0
0.5

1
1.5

 Overlay 3

0
0.5

1
1.5 Overlay 4

0
0.5

1
1.5 Overlay 5

time (seconds)

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

Figure 5.7: The evolution of peer streaming rate for multiple coexisting overlays with
different budgets, and with an increasing number of overlays over time.

bandwidth in overlay s, and its total bidding costs to all upstream peers cannot exceed this

budget, i.e.,
∑

i:(i,j)∈As
ps

ijx
s
ij ≤ Ws. All peers in the same overlay receive the same budget,

and the bootstrapping server assigns different levels of budgets to different overlays based

on their priorities. During its price adjustments in overlay s, peer j may only increase

its bid prices if the incurred total bidding cost does not exceed Ws.

Evaluation 2. Applying the budget-based bidding strategy, we perform the previous

experiment again and show our new results in Fig. 5.7 and Fig. 5.8. The budgets assigned

to peers in overlay 1 to 5 range from low to high.

Comparing Fig. 5.7 with Fig. 5.5 in the cases when 1 to 3 overlays coexist, we see

that overlays can still achieve their required streaming rate within their budgets. How-

ever, when comparing Fig. 5.8 to Fig. 5.6(A), we observe that the streaming costs are

5.5. PERFORMANCE EVALUATION 119

2 3
0

1

2

3

4

S
tr

e
a

m
in

g
 c

o
s
t

 Overlay 1
 Overlay 2
 Overlay 3

Number of overlays

Figure 5.8: A comparison of streaming costs among multiple coexisting overlays with
different budgets.

differentiated across overlays, i.e., overlays with larger budgets are able to achieve lower

streaming cost than those with smaller budgets. This is because the former can afford

to pay higher prices and thus eclipse the latter in auctions at their commonly desired

upstream peers.

A further comparison between Fig. 5.7 and Fig. 5.5 (when 4 or 5 overlays coexist)

shows that, when upload capacities become insufficient, the overlay with the highest

budget, overlay 4 or overlay 5 in respective phases, always achieves the highest and most

stable streaming rates, while those for overlays with smaller budgets become less sufficient

and less stable.

Summary. We have observed that, no matter if upload capacities are sufficient or not,

our game strategies achieve fair bandwidth sharing among multiple coexisting overlays.

When overlays are able to achieve their required streaming rates, they also experience

similarly costs, which further reveal their fair share of lower latency paths. Further, we

show that by introducing budgets to our bidding strategy, we are able to differentiate

service qualities among coexisting overlays.

5.5. PERFORMANCE EVALUATION 120

5.5.3 Overlay interaction under peer dynamics

In the following set of experiments, we study how coexisting streaming overlays evolve

with peer arrivals and departures, with respect to how the achieved streaming rates in

each overlay vary in such dynamics. We investigate both cases that the overlays have or

do not have differentiated budgets.

Evaluation. We simulate a dynamic P2P streaming network, in which 2 servers con-

currently broadcast 4 different 60-minute live streaming sessions, at the streaming rate of

300 Kbps, 500 Kbps, 800 Kbps and 1 Mbps, respectively. Starting from the beginning of

the live broadcasts, 1000 peers join the network following a Poisson process. The inter-

arrival times follow an exponential distribution with an expected length of INTARRIV

seconds. Upon arrival, each peer randomly selects 2 broadcast sessions and joins the re-

spective overlays; then the peer stays in the network for a certain period of time, following

an exponential lifetime distribution with an expected length of LIFETIME seconds. In

this way, we simulate 4 dynamically evolving streaming overlays with approximately the

same number of participating peers at any time. Similar to the previous experiments,

each peer maintains about 30 neighbors in each overlay it participates in, and bids at up-

stream peers that have available blocks to serve it. All other settings of the experiments

are identical to those in previous experiments. We monitor the achieved streaming rates

in each dynamic overlay during the 60-minute broadcasts.

Fig. 5.9 shows the results achieved when the budget-based strategy is not applied.

Setting INTARRIV and LIFETIME to different values, we have repeated the experiment,

and made the following observations: With expected inter-arrival time of 1 second, 1000

peers have all joined the network in the first 10 minutes; peer arrivals last for 45 minutes

when INTARRIV is 3 seconds. With an expected lifetime of 10 minutes, most peers

5.5. PERFORMANCE EVALUATION 121

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

(A) INTARRIV=1 sec, LIFETIME=10 mins

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)

(B) INTARRIV=1 sec, LIFETIME=30 mins

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s) Overlay 1 (R1=1Mbps)

Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)

(C) INTARRIV=3 sec, LIFETIME=10 mins

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)

(D) INTARRIV=3 sec, LIFETIME=30 mins

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

Figure 5.9: Achieved streaming rates for 4 coexisting overlays: under peer dynamics
without budget

have left the network before the end of streaming; when LIFETIME is 30 minutes,

approximately half of all the peers remain till the end.

Therefore, the most severe peer dynamics occurs when 1000 peers keep joining for 45

minutes, but have almost all left before 60 minutes, i.e., the case shown in Fig. 5.9(C),

which represents the highest level of fluctuations for the achieved streaming rates. A

longer peer lifetime brings better overlay stability, which is illustrated by the smaller

rate fluctuation in (B) and (D) of Fig. 5.9. A careful comparison of the fluctuation of

the streaming rates across different overlays in Fig. 5.9 reveals slightly larger fluctuations

for overlays with larger streaming rate requirements. This is because with our auction

5.5. PERFORMANCE EVALUATION 122

(A) INTARRIV=1 sec, LIFETIME=10 mins (B) INTARRIV=1 sec, LIFETIME=30 mins

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)
0 600 1200 1800 2400 3000 3600

0

0.3

0.5

0.8

1

time (seconds)

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

(C) INTARRIV=3 sec, LIFETIME=10 mins

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

(D) INTARRIV=3 sec, LIFETIME=30 mins

0 600 1200 1800 2400 3000 3600
0

0.3

0.5

0.8

1

time (seconds)

Overlay 1 (R1=1Mbps)
Overlay 2 (R2=800Kbps)
Overlay 3 (R3=500Kbps)
Overlay 4 (R4=300Kbps)

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

A
ve

ra
ge

 p
ee

r
st

re
am

in
g

ra
te

 (
M

bp
s)

Figure 5.10: Achieved streaming rates for 4 coexisting overlays: under peer dynamics
with different budgets.

strategies, different overlays fairly share upload capacities at common upstream peers,

and the larger the required bandwidth is, the harder it is to achieve.

On the other hand, when overlays with higher rate requirement are prioritized with

higher budgets, Fig. 5.10 shows a different outcome from that in Fig. 5.9. In Fig. 5.10,

under all four interval settings, the prioritized high-rate overlays are always guaranteed

more stable rates, while low-rate overlays experience more severe rate fluctuations.

Summary. We have clearly demonstrated the effectiveness of our auction strategies

under high degrees of peer dynamics, which guarantee stable streaming bandwidth allo-

cation for all overlays at all times during such dynamics. We have also shown that using

5.5. PERFORMANCE EVALUATION 123

the budget-based bidding strategy, better streaming quality can be further provided for

prioritized overlays.

5.5.4 Summary

In this chapter, we design conflict-resolving strategies for effective bandwidth sharing

among multiple coexisting P2P streaming overlays. Our objective is to devise practical

and completely decentralized strategies to allocate peer upload capacities, such that

(1) the streaming rate requirement can be satisfied in each overlay, (2) streaming costs

can be globally minimized, and (3) overlays fairly share available upload bandwidths

in the network. Most importantly, we wish to achieve global optimality using localized

algorithms. We use dynamic auction games to facilitate our design, and use game theory

in our analysis to characterize the conflict among coexisting overlays. Different from

previous work, our focus in applying game theory is not on reasoning about the rationality

and selfishness of peers, nor on incentive engineering to encourage contribution, but to

facilitate the design of the distributed strategies to achieve global properties. We finally

show that our proposed algorithm adapts well to peer dynamics, and can be augmented

to provision service differentiation.

Chapter 6

Measurement of a Large-Scale P2P

Streaming Application

Commercial P2P live streaming applications have been successfully deployed in the In-

ternet, with millions of users at any given time [88, 5, 10, 9, 6, 8, 2, 11]. The successful

commercial deployment has made it possible to stream volumes of legal content to the

end users, with hundreds of live media channels. Most of the recent P2P streaming ap-

plications adopt the common mesh-based streaming design, in which participating peers

exchange available blocks of each media channel among each other.

Given the commercial success of mesh-based P2P streaming, it is an intriguing re-

search challenge to explore and understand how their relatively simple designs actually

behave in practice and dynamically evolve over a long period of time, in order to discover

any design inefficiencies and possible ways for improvement. Towards these objectives,

we have conducted an extensive measurement study of a large-scale P2P streaming ap-

plication, in collaboration with UUSee Inc. [10], one of the leading P2P live streaming

solution providers based in Beijing, China. In our study, we instrument the UUSee P2P

124

6.1. UUSEE P2P STREAMING SOLUTION 125

streaming application to collect large volumes of traces, which amount to almost a ter-

abyte over a span of one year, involving millions of users, with a snapshot of the entire

system every five minutes. As compared to all the existing P2P streaming measurement

work discussed in Sec. 2.4, it is fair to claim that the scale of this work is unprecedented

in P2P streaming research. Given this large volume of traces, we are able to thoroughly

study many important facets of this practical large-scale P2P streaming system, which

is not possible with the limited traces collected using crawling or passive sniffing, and

have discovered many intriguing insights, which have never been revealed by previous

measurement studies.

In this chapter, we overview the UUSee P2P streaming solution, discuss our detailed

measurement methodology, and then present the basic global characteristics derived from

the traces. In the following three chapters, we will discuss our in-depth study of the large-

scale P2P streaming system in three different aspects based on the measurements.

6.1 UUSee P2P Streaming Solution

UUSee is the commercial application developed by UUSee Inc. [10], one of the leading

P2P streaming solution providers based in Beijing, China. UUSee features exclusive

contractual rights to most of the channels of CCTV, the official Chinese television net-

work. When compared to PPLive (which is better known in the research community due

to existing measurement studies), it features a rich collection of legal content, encoded

and broadcast live over the Internet. The UUSee P2P streaming framework consists of

a media encoding server, which encodes the media channels to high quality constant-

rate streams around 400 Kbps using its own proprietary codec, and a large collection of

dedicated streaming servers (approximately 150), which receive encoded media channels

6.1. UUSEE P2P STREAMING SOLUTION 126

C
h
a
n
n
e
l a
 —
 d

C
h
a
n
n
e
l x —

 z

C
h
a
n
n
e
l

k
—
 n

Media Encoding Server

Streaming Servers

Peers

Figure 6.1: An illustration of UUSee P2P streaming network.

from the media encoding server and serve the P2P network composed of all the users

of UUSee. An illustration of the UUSee streaming network is shown in Fig. 6.1. The

streaming servers in UUSee are distributed in different regions in China and overseas

(e.g., Japan, U.S.), based on a rough estimation of the number of users in different areas.

With its large collection of streaming servers around the world, UUSee simultaneously

sustains over 800 media channels. With a growing user base, it routinely serves millions

of users in any given day. Its Windows-based P2P streaming client represents one of the

most popular downloads in this category.

Similar to most state-of-the-art mesh-based P2P streaming protocols, UUSee is de-

signed with the principle of allowing peers to serve each other by exchanging blocks of

data, that are received and cached in their local playback buffers. It employs a ran-

dom peer selection strategy to assign initial partners to each peer, using central tracking

6.1. UUSEE P2P STREAMING SOLUTION 127

servers. The tracking servers maintain a list of existing peers in each media streaming

channel during streaming. After a new peer joins a channel in UUSee, one of the tracking

servers bootstraps it with an initial set of a small number of partners (up to 50), which

are randomly selected from the list. The peer establishes TCP connections with these

partners, and buffer availability bitmaps (i.e., buffer maps) are exchanged periodically.

During this process, it measures the TCP throughput of the connection, and also executes

an estimation algorithm based on such measurements to predict the partner’s availability

to serve itself. It then ranks all known partners, and selects the best 30 peers from which

it actually requests media blocks. A synchronous playback mechanism is employed in

UUSee, by which each newly joined peer always starts to buffer the media blocks that

are to be played 20 seconds later than the current playback time of the media channel at

the media encoding server, and as thus, all peers in the channel are following a similar

playback progress.

The buffer size at each peer in UUSee is 500 media blocks, and each block represents

1/3 second of media playback. The new peer starts the media playback from the first

buffered block after 20 second, if a satisfactory buffering level has been reached during

this time period. Otherwise, it will restart its initial buffering process for another 20

seconds, and then start the playback from the first block that has been buffered during

this new 20 second period. Therefore, the initial start-up delay at the peers in UUSee is

usually 20 seconds, and may be up to 40 seconds or 1 minute depending on the availability

of media blocks in the network. During the playback at each peer, blocks to be played

in the immediate future are continuously requested and cached in the playback buffer,

and those that are not retrieved in time for playback are skipped. There is further a

policy employed in the buffering process, that a peer will stop filling up its buffer when

6.1. UUSEE P2P STREAMING SOLUTION 128

the buffer has reached around 75% of its total size.

Beyond the random peer selection protocol, UUSee also incorporates a number of

unique algorithms in its peer selection strategy, in order to maximally utilize peer upload

bandwidth and to guarantee smooth media playback at the peers. During the initial

start-up phase, each peer in UUSee employs an algorithm to estimate its maximum

download and upload capacities. During the streaming process, each peer continuously

estimates its aggregate instantaneous receiving and sending throughput from and to all

its partners. If its estimated sending throughput is lower than its upload capacity for 30

seconds, it will inform one of the tracking servers that it is able to receive new connections

from other peers. The tracking servers keep a list of peers that are able to accept new

connections, and bootstrap new peers with existing peers that are randomly selected

from this set.

The number of available blocks in the current playback buffer is used in UUSee to

represent the current streaming quality of the peer, which is referred to as the buffer

count. During the streaming process, in addition to exchanging new media blocks with

each other, neighboring peers also recommend known peers to each other. The buffer

count is used as an important criterion for such recommendations. When a peer i finds

that another peer j has a low buffer count, i.e., an insufficient number of blocks in its

buffer, peer i will recommend its known peers with larger buffer counts. As a last resort,

when a peer has a low buffer count for a sustained period of time, it will contact the

tracking server again to obtain additional peers with better streaming qualities.

6.2. TRACE COLLECTION METHODOLOGY 129

6.2 Trace Collection Methodology

To acquire a thorough understanding of this practical P2P streaming system, we col-

laborate with the UUSee development team to implement detailed measurement and

reporting capabilities within its P2P client application. The client software on each peer

in UUSee measures a wide range of performance metrics and protocol parameters during

streaming, including the channel it is watching, its buffer count and advertised buffer

map, its aggregate sending and receiving throughput, its total download and upload

bandwidth capacities. In addition, for each active partner with which it has a live TCP

connection, each peer also actively measures the number of sent or received blocks, as well

as the maximum sending or receiving throughput of the TCP connection periodically.

6.2.1 Measurement method

While the collection of most performance metrics is straightforward, in what follows, we

explain our measurement methods with respect to the download and upload capacities of

each peer, and the maximum sending or receiving throughput along each TCP connection.

The download capacity of each peer is measured at the initial buffering stage of the

peer, upon its first joining a streaming channel in the UUSee network. During this stage,

the peer has no available blocks in its playback buffer, and can concurrently download

from many supplying peers. In this case, its download bandwidth is largely saturated.

Therefore, the download capacity of the peer is estimated as its maximum aggregate

download rate at this initial buffering stage.

The upload capacity at each peer is measured upon its joining before the actual

streaming starts, by setting up a temporary upload TCP connection with one of the

nearest streaming servers. As we know, the upload bandwidth at each streaming server

6.2. TRACE COLLECTION METHODOLOGY 130

is mostly saturated due to its main upload functions, while the download bandwidth is

largely idle. Therefore, we utilize the spare download capacity of the streaming servers,

and have each peer send a randomly generated probing flow to a streaming server that is

nearest to itself. The duration of the flow should be long enough for its TCP throughput

to become stable, usually in seconds. The streaming server measures the stabilized TCP

throughput on this connection, which is then estimated as the upload capacity of the

respective peer.

The maximum sending or receiving throughput along a live TCP connection is mea-

sured periodically in the following fashion: The measurement interval is further divided

into 30-second sub intervals. In each sub interval, the time that is actually used to trans-

mit media blocks is summarized, excluding the idle TCP periods. An average throughput

is calculated with the number of bytes sent in the block transmission time divided by

the length of this duration. The maximum throughput is then derived as the maximum

of all such average throughputs within the measurement interval. Taking the average

transmission throughput within 30 seconds, we smooth out the periods of very bursty

TCP throughput; deriving the maximum of all such 30-second measurements, we aim to

obtain the maximally achievable TCP throughput on the link between two peers.

6.2.2 Reporting mechanism

All the vital measurements are collected at each peer periodically and reported to a

standalone trace server using UDP datagrams. Each report includes basic information

such as the peer’s IP address, the channel it is watching, its buffer count and advertised

buffer map, its aggregate sending and receiving throughput, its total download and upload

bandwidth capacities, as well as a list of all its partners, with their corresponding IP

6.2. TRACE COLLECTION METHODOLOGY 131

addresses, TCP/UDP ports, number of blocks sent to or received from each partner, and

current maximum sending/receiving throughput on each connection. The total size of

each report is 3− 4 Kbytes.

In our trace collection, a new peer sends its initial report 20 minutes after it joins

UUSee network, and sends subsequent reports periodically with an interval of 10 minutes

in the first two months of our trace collection, which is expedited to 5 minutes later on.

Considering the small size of each report, such reporting only introduces a very small

amount of extra traffic during the streaming process, i.e., no more than 100 bps per

peer. The 20-minute initial report delay is enforced to ensure that the reports are sent

by relatively long-lived peers in the channels. However, since each peer reports a large

number of its active partners (up to hundreds), there is a high probability that transient

peers may appear in the partner lists of at least one reporting peer as well.

We have commenced collecting these measurements to UUSee’s trace server starting

September 2006, by upgrading all existing UUSee clients to the new release that produces

periodic reports. To visualize our traces, in Fig. 6.2, we illustrate an example topology

snapshot constructed from the reports of three representative peers, taken at 10:08:45

a.m., September 5, 2006. Over a one-year span, we have collected up to 1 terabyte

of traces on the trace server, constituting continuous-time snapshots of P2P streaming

system throughout this period.

We note that the salient advantages of our trace collection lie not only in the un-

precedentedly large volume of traces, but also at the completeness of the snapshots it

captures. As compared to the snapshots collected using a crawling methodology, we are

confident that our reports at each measurement time include more complete information

from essentially all the peers in the system, and the constituted snapshots represent less

6.3. GLOBAL CHARACTERIZATION 132

10.1.0.3

192.168.0.11

202.100.85.243

202.108.40.148

218.30.67.56

218.56.57.143

218.8.251.164

218.8.251.248

221.11.4.12221.204.253.46

221.204.254.177

221.208.195.66

221.208.195.67

221.208.195.68

221.238.196.130

221.238.196.21

221.3.132.94

222.161.115.100

222.161.115.101

222.161.115.102

222.161.115.99

222.187.118.25

61.50.220.6

65.110.11.228

10.1.0.4

202.158.173.150

210.192.98.162

218.249.188.136

218.87.120.100

219.138.49.162

221.1.108.112

221.216.245.39

221.7.137.179

222.215.90.195

222.35.115.79

60.216.9.114

218.8.251.249

125.33.172.81

125.96.20.146

211.91.111.180

218.204.113.18

218.21.207.106

218.24.228.90

218.249.128.82

218.25.126.54
218.26.189.40

218.26.222.130

218.58.124.16

218.58.124.18

218.58.195.138

219.131.176.180

219.238.154.97

219.82.50.54

220.170.231.134

220.248.225.162

221.1.41.109

221.13.96.89

221.131.61.1

221.131.61.56

221.15.124.121

221.195.136.138

221.195.3.69

221.201.81.229

221.204.253.47

221.204.5.72

221.207.132.201

221.208.195.69

221.216.71.71
221.218.223.44

222.130.195.193

222.244.46.84

222.39.34.47

58.241.196.18

60.13.42.109

60.13.42.165

60.17.155.76

60.18.184.197

60.2.39.226

60.21.212.7

60.211.83.24

61.149.236.10

61.234.235.254

61.53.55.230

71.194.75.181

202.100.84.84

210.22.14.11

210.51.45.196

210.51.45.197

218.108.247.21

218.25.42.82

218.25.42.86

218.30.67.59

219.237.232.73

219.237.232.77

219.237.232.83

219.237.232.91

219.237.241.66

219.237.241.67

219.237.241.70

220.189.192.113

221.10.254.238

221.10.254.239

221.174.16.94

221.204.253.38

221.204.254.178

221.204.254.179

222.137.116.177

60.28.19.249

61.136.60.15

61.136.60.203

61.145.112.218

61.50.220.3

61.50.220.5

Figure 6.2: A snapshot involving three reporting peers and their active partners, visu-
alized from traces collected at 10:08:45 a.m., September 5, 2006. While widths of both
types of lines represent bandwidth, the dashed links have 10 times higher bandwidth per
unit width than the solid ones.

distortion over the time domain as well.

6.3 Global Characterization

We now illustrate the basic global characteristics of the UUSee P2P streaming applica-

tion, with respect to the scale of the streaming network, the distribution of peers, and

the experienced streaming quality in the streaming channels. Due to the large volume of

6.3. GLOBAL CHARACTERIZATION 133

0

0.5

1

1.5

2

2.5
x 10

5

Date (midnight)

N
u

m
b

e
r

o
f
s
im

u
lt
a

n
e

o
u

s
 p

e
e

rs Total peers
 Stable peers

(A)

SunMonTueWedThu Fri Sat SunMonTueWedThu Fri Sat
0

2

4

6

8

10

12

14
x 10

5

Date

D
a

ily
 n

u
m

b
e

r
o

f
d

if
fe

re
n

t
P

e
e

rs

 Total peers
 Stable peers

SunMonTueWedThu Fri SatSunMonTueWedThu Fri Sat

(B)

Figure 6.3: Daily peer number statistics from Sunday, October 1st, 2006 to Saturday,
October 14th, 2006.

the traces, we will only present results obtained over representative weeks in our figures.

6.3.1 Overall number of simultaneous peers and flows

First of all, we are interested to investigate: (1) How many concurrent users are usually

online in the UUSee streaming overlay? (2) What percentage do the stable peers (whose

reports are received by the trace server) take in the peer population, as compared to

transient peers (whose reports are not received)? To answer these questions, we summa-

rize the IP addresses from which reports were received and recorded in the traces, and all

the IP addresses that appeared in the traces, including IP addresses of peers that have

reported and peers in their partner lists. The peer number statistics summarized from

the traces collected from 12:00 a.m. October 1st, 2006 (GMT+8) to 11:50 p.m. October

14th, 2006 (GMT+8) are shown in Fig. 6.3(A).

The statistics indicate that there are around 100, 000 concurrent peers at any time in

the UUSee streaming overlay. Comparing the number of stable peers to the total number

of all peers, we discover that the former is asymptotically 1/3 of the later. For the daily

evolution of peer number, there is a peak around 9 p.m., and a second peak around 1

6.3. GLOBAL CHARACTERIZATION 134

1

2

3

4

x 10
5

Date (midnight)

N
u

m
b

e
r

o
f

s
im

u
lt
a

n
e

o
u

s
 p

e
e

rs
/f

lo
w

s
 Peers
 P2P flows

Sun Mon Tue Wed Thu Fri Sat

(A)

0 0

2

4

6

8

10

12

x 10
6

Date

D
a

ily
 n

u
m

b
e

r
o

f
d

if
fe

re
n

t
p

e
e

rs
/f

lo
w

s

 Peers
 P2P flows

(B)

Sun Mon Tue Wed Thu Fri Sat

Figure 6.4: Daily peer/P2P flow number statistics from Sunday, December 17th, 2006 to
Saturday, December 23, 2006.

p.m., which identify the same daily pattern as given in the study of PPLive [42]. Different

from [42], we observe only a slight peer number increase over the weekend, considering

the weekly variance trend.

To obtain a better idea of the scale of daily users of UUSee, we further summarize the

number of distinct IP addresses that appeared in the traces on a daily basis in Fig. 6.3(B).

The statistics show that UUSee serves up to 1 million different users each day.

All the above observations are further validated by the peer number statistics during

a later time period, 12:00 a.m. December 17th, 2006 (GMT+8) to 11:50 p.m. December

23, 2006 (GMT+8), as shown in Fig. 6.4. In addition, Fig. 6.4 also summarizes the

number of concurrent P2P flows among peers at each time, and the daily number of

different P2P flows: There are on average 250, 000 active P2P flows at any time in the

UUSee streaming network, and up to 10 million different flows on a daily basis.

Besides the regular daily peer/flow numbers, our trace study has revealed a few flash

crowd scenarios during the trace period as well. For example, Fig. 6.3 shows a flash

crowd scenario around 9 p.m. on October 6, 2006, which was caused by the broadcast

of a celebration TV show for the mid-autumn festival in China. Another flash crowd

6.3. GLOBAL CHARACTERIZATION 135

5

10

N
u

m
b

e
r

o
f
s
im

u
lt
a

n
e

o
u

s
 p

e
e

rs

CCTV1

 Total peer
 Stable peer

0

1

Date (midnight)

CCTV4

 Total peer

 Stable peer

SunMonTueWedThu Fri Sat SunMonTueWedThu Fri Sat

x 10
4

x 10
4

0

Figure 6.5: Daily peer number statistics in two representative channels: Sunday, October
1st, 2006 to Saturday, October 14th, 2006.

scenario was observed around 23 p.m. on February 17, 2007, due to the broadcast of the

Chinese New Year celebration show, with 871, 000 peers online in the UUSee streaming

network and 2, 271, 000 streaming flows among the peers.

6.3.2 Number of simultaneous peers in two representative chan-

nels

As mentioned earlier, UUSee provides over 800 channels to the users. To investigate

whether the observations we have made earlier regarding the global peer number evolution

also apply to individual channels, we select two representative channels broadcast by

UUSee, CCTV1 and CCTV4 (both from the official Chinese television network), where

CCTV1 is among the most popular channels sustained in UUSee and CCTV4 has less

popularity. Their peer number statistics are shown in Fig. 6.5. The different scales of

the concurrent peer numbers clearly demonstrate the popularity difference of the two

channels. Nevertheless, the evolutionary pattern of peer number in both channels is very

similar to that in the global topology. In addition, both curves reflect a flash crowd

6.3. GLOBAL CHARACTERIZATION 136

0

1

2

3

4

5

#
 o

f
s
im

u
lt
a

n
e

o
u

s
 i
n

te
r−

IS
P

 f
lo

w
s

Te
le

co
m

-N
et

co
m

x 10
4

N
et

co
m

-T
el

ec
o

m

N
et

co
m

-T
ie

to
n

g

Te
le

co
m

-T
ie

to
n

g

N
et

co
m

-E
d

u

Te
le

co
m

-U
n

ic
o

m

Ti
et

o
n

g
-N

et
co

m

Ti
et

o
n

g
-T

el
ec

o
m

0

1

2

3

4

5

#
 o

f
s
im

u
lt
a

n
e

o
u

s
 i
n

tr
a

−
IS

P
 f
lo

w
s

N
et

co
m

 T
el

ec
om

Ti
et

o
n

g
Ed

u
U

nic
om

O
th

er
s

x 10
4

China others
China Edu

China Telecom

China Netcom

China Unicom
China Tietong

Overseas ISPs

(A) (B) (C)

Figure 6.6: Peer/P2P flow number statistics for different ISPs.

scenario on October 6, 2006, as both channels broadcast the mid-autumn celebration TV

show. The CCTV1 curve further exhibits a more distinctive daily peak on evenings, as

is the prime time for China news broadcasting in the channel.

6.3.3 Number of simultaneous peers and flows in different ISPs

In our measurement study, we have also emphasized on the mapping of the abstract

streaming topology to the real world scenario, with respect to the ISP and geographic

area each peer is located at. For this purpose, we have obtained a mapping database from

UUSee Inc. that translates ranges of IP addresses to their ISPs and geographic areas.

For each IP address in China, the database provides the China ISP it belongs to and the

city/province the user is located at; for each IP address out of China, it provides a general

ISP code indicating foreign ISPs, and coarse geographic information of the continent the

address lies in.

Using this mapping database, we have determined the ISP membership of simultane-

ous peers at any time. We have discovered that the ISP distribution of peers does not

6.3. GLOBAL CHARACTERIZATION 137

vary significantly over time. Therefore, we only depict the averaged shares of peers in

major ISPs over the trace period in Fig. 6.6(A).

It exhibits that the two largest nationwide ISPs in China, Netcom and Telecom, own

the largest user shares in the UUSee P2P network. While the majority of UUSee users

are in China, peers from overseas also take a significant 20%, and their percentage shows

a rising trend as we observed in our investigation.

In addition, Fig. 6.6(B) summarizes the average number of concurrent P2P flows

inside each major China ISP, and Fig. 6.6(C) illustrates the number of inter-ISP flows

for ISP pairs that have more than 1000 concurrent flows in between. Again, the numbers

of flows inside China Netcom and Telecom, and those for flows to and from these two

ISPs dominate their respective categories.

6.3.4 Number of simultaneous peers and flows in different areas

Using the mapping database, we also determine the geographic distribution of simulta-

neous peers at any time. The distributions of IP addresses and P2P flows with respect

to geographic regions are depicted in Fig. 6.7. With the majority of peers and links in

China, those from North American, Europe and other Asian countries also have an ade-

quate share. Another interesting discovery is that the evolutionary pattern of the number

of concurrent North American users is similar to that of users in China. We identify the

reason to be that the majority of UUSee users are watching CCTV channels, and their

popular programs are broadcast live according to the same Beijing time (GMT+8).

.

6.3. GLOBAL CHARACTERIZATION 138

0

0.5

1

1.5

2

x 10
5

Date (midnight)

N
u

m
b

e
r

o
f
s
im

u
lt
a

n
e

o
u

s
 p

e
e

rs

 Others
 Europe
 North America
 Asia others
 China

Sun Mon Tue Wed Thu Fri Sat
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Date (midnight)

N
u

m
b

e
r

o
f
s
im

u
lt
a

n
e

o
u

s
 P

2
P

 f
lo

w
s

 China − Europe
 China − North America
 China − Asia others
 Intra China

Sun Mon Tue Wed Thu Fri Sat

Figure 6.7: Peer/P2P flow number statistics for different geographic regions: Sunday,
December 17th, 2006 to Saturday, December 23, 2006.

6.3.5 Different peer types

We next categorize peers into two classes based on their download capacities in the traces,

and the fact that the download bandwidth of the fastest ADSL connection in China is

at most 3 Mbps: (1) Ethernet peers, for those with download capacities higher than

384 KBps; (2) ADSL/cable modem peers, for the remainder. Fig. 6.8(A) exhibits the

domination of ADSL/cable modem peer population. We infer the reason is that users

tend to watch the broadcasts at home, and most of the residential high speed services are

based on ADSL or cable modems. Nevertheless, Fig. 6.8(B) shows comparable shares of

P2P flows in each category, which demonstrates the contribution of the limited number

of Ethernet peers in uploading to many other peers.

6.3.6 Streaming quality

To explore the streaming quality of UUSee, we make use of two measurements collected at

each peer in different channels — the number of available blocks in the current playback

buffer (buffer count) and the aggregate instantaneous receiving throughput. With the

6.3. GLOBAL CHARACTERIZATION 139

0

0.5

1

1.5

2 x 10
5

Date (midnight)

N
u
m

b
e
r

o
f
s
im

u
lt
a
n
e
o
u
s
 p

e
e
rs Ethernet

 ADSL/Cable modem

Sun Mon Tue Wed Thu Fri Sat

(A)

0

1

2

3

4

5 x 10
5

Date (midnight)

N
u
m

b
e
r

o
f
s
im

u
lt
a
n
e
o
u
s
 P

2
P

 f
lo

w
s

 Ethernet −> Ethernet
 Ethernet −> ADSL/Cable modem
 ADSL/Cable modem −> Ethernet
 ADSL/Cable modem−>ADSL/Cable modem

Sun Mon Tue Wed Thu Fri Sat

(B)

Figure 6.8: Peer/P2P flow number statistics in two peer type categories: Sunday, De-
cember 17th, 2006 to Saturday, December 23, 2006.

0.4

0.5

0.6

0.7

0.8

0.9

1

Date (midnight)

P
e

rc
e

n
ta

g
e

 o
f
p

e
e

rs
 w

it
h

s
a

ti
s
fa

c
to

ry
 b

u
ff
e

r
c
o

u
n

t

 CCTV1

 CCTV4

SunMonTueWedThu Fri Sat SunMonTueWedThu Fri Sat

(A)

0.4

0.5

0.6

0.7

0.8

0.9

1

Date (midnight)

P
e

rc
e

n
ta

g
e

 o
f
p

e
e

rs
 w

it
h

s
a

ti
s
fa

c
to

ry
 s

tr
e

a
m

in
g

 r
a

te CCTV1
 CCTV4

SunMonTueWedThu Fri Sat SunMonTueWedThu Fri Sat

(B)

Figure 6.9: Percentage of peers with satisfactory streaming quality: Sunday, October
1st, 2006 to Saturday, October 14, 2006.

example of CCTV1 and CCTV4, Fig. 6.9(A) depicts the percentage of peers in both

channels whose buffer counts are no lower than 75% of the total buffer size, and Fig. 6.9(B)

shows the percentage of peers in both channels whose receiving throughput is higher than

90% of the channel streaming rate.

With respect to the buffer count metric, we observe that the buffering level for the

popular channel CCTV1 is very encouraging, as for most of the time, around 95% of its

6.4. SUMMARY 140

participating peers have a satisfactory playback buffer count. Considering the UUSee

buffering policy discussed in Sec. 6.1 that a peer will stop buffering when its buffer has

been roughly 75% full, this shows most of the peers in CCTV1 are having a “full” buffer

for continuous playback. For the less popular channel CCTV4, the peer buffering level

represents much larger fluctuations, and around 80% of its peers achieve satisfactory

buffering for most of the times. Such a difference between popular and less popular

channels exhibits that peers watching a popular channel can usually retrieve media blocks

more easily as there are more supplying peers in the channel. A closer look at the plots

further reveals that the buffering level is generally lower at the peak hours of a day,

especially for the less popular channel.

In terms of the aggregate receiving throughput metric, we can see that around 3/4

of all viewers in both channels achieve satisfactory streaming rates, and no evident daily

pattern is discovered for the evolution of the percentages. Comparing the two quality

metrics, peer buffer count and aggregate receiving throughput, we would suggest that

the buffer count metric better represents the actual streaming quality experienced at the

peers, as it captures the block receiving quality in a recent period of time. The aggregate

receiving throughput is measured instantaneously at each peer, and thus may be less

accurate. Nevertheless, results from both metrics are quite positive, exhibiting that the

UUSee peer selection protocol scales relatively well to a large number of peers.

6.4 Summary

In this chapter, we discuss our methodology of collecting a large volume of traces from a

commercial P2P live streaming application. We also present our global characterization

of the P2P application, with respect to the number of concurrent peers and P2P flows,

6.4. SUMMARY 141

the distribution of peers/flows in different categories, and the streaming quality in the

application. We have made a number of interesting observations: (1) There exist diurnal

patterns in the evolution of the number of peers and the number of P2P flows in the sys-

tem; (2) the majority of the system consist of ADSL/cable modem peers, but the limited

number of Ethernet peers contribute significantly by uploading to many other peers; (3)

more than 75% of all the peers in the system can achieve a satisfactory streaming quality,

with a higher percentage for a more popular channel.

Chapter 7

Charting Large-Scale P2P

Streaming Topologies

The practical success of current-generation P2P live streaming applications has vali-

dated important advantages of the mesh-based design over tree-based solutions: Mesh

topologies achieve better resilience to peer dynamics, better scalability in flash crowd

scenarios, more efficient use of bandwidth, as well as simplicity with respect to topology

maintenance.

As mesh-based streaming topologies play an important role towards the recent com-

mercial success of P2P live streaming, it would be an intriguing research topic to inves-

tigate and understand how the constructed mesh topologies actually behave in practice,

dynamically evolve over time, and react to extreme scenarios such as huge flash crowds.

Unfortunately, although Internet topologies have been characterized extensively at the

IP layer, there has been little literature on the discovery and analysis of P2P topologies in

live P2P applications. As a well-known work on P2P topology characterization, Stutzbach

et al. [79] explored topological properties of the file-sharing Gnutella network. However,

142

CHAPTER 7. CHARTING LARGE-SCALE P2P STREAMING TOPOLOGIES 143

short-lived queries in Gnutella are fundamentally different from long-lived streaming ses-

sions based on block exchanges among peers, which may well lead to different topological

properties. In addition, like most of the existing measurement studies, their measure-

ments rely on the methodology of crawling the Gnutella network, by which the speed of

crawling plays a significant role in deciding the accuracy of the constructed topologies.

The recent work of Vu et al. [83] has investigated two topological properties of PPLive,

peer outdegree and clustering coefficient, but their work is based on limited information

from a few hundreds of peers collected using crawling.

In this chapter, we seek to extensively explore and chart large-scale P2P live streaming

meshes, and to gain in-depth insights and a complete understanding of their topological

characteristics, using the instantaneous streaming topologies of the entire UUSee network

presented by our traces. In particular, our study is primarily based on over 120 GB of

traces that we have collected over a two-month period, from September to October, 2006,

and our discoveries have been further validated using a more recent set of traces in 2007.

With emphasis on their evolutionary nature over a long period of time, we have uti-

lized and extended classical graph measurement metrics — such as the degree, clustering

coefficient, reciprocity and likelihood — to investigate various aspects of the streaming

topologies at different times of the day, in different days in a week, and in flash crowd

scenarios. To the best of our knowledge, this work represents the first complete and

in-depth measurement study to characterize large-scale P2P live streaming topologies.

Nevertheless, we also seek to compare our new insights with discovered topological prop-

erties from traditional file sharing P2P applications, to identify properties that are unique

to mesh-based P2P streaming, and make comparisons with related results discussed in

other P2P streaming measurement studies as well.

7.1. DEGREE DISTRIBUTION 144

While we have analyzed the entire two-month trace period, in this chapter, we

choose to show results from two representative weeks, from 12:00 a.m. October 1st,

2006 (GMT+8) to 11:50 p.m. October 14th, 2006 (GMT+8). We have observed that the

selected periods include all typical scenarios that we wish to present, including the flash

crowd on the evening of October 6, 2006. To validate the general applicability of our

topological property discoveries, we also present representative topological characteris-

tics from a more recent trace period, from 12:00 a.m. February 13th, 2007 (GMT+8) to

11:50 p.m. February 19th, 2007 (GMT+8), which includes another flash crowd scenario

on February 17, 2007. Note that in all figures that present the temporal evolution of a

metric, a small arrow is drawn to indicate the occurrence time of a flash crowd.

7.1 Degree Distribution

We first characterize the degree distributions at peers in the UUsee network. In our

traces, each stable peer reports the IP addresses in its partner list, and also the number

of blocks sent (received) to (from) each of the partners. With this information, we are

able to categorize partners of each peer into three classes: (1) active supplying partner,

from which the number of received blocks is larger than a certain threshold (e.g., 10

blocks); (2) active receiving partner, to which the number of sent blocks is larger than

the threshold; (3) non-active partner, in all the other cases.

With reports from stable peers in the traces, we investigate their degree distributions

with respect to the number of active supplying partners (indegree), the number of active

receiving partners (outdegree), and the total number of partners in the partner list in-

cluding both active and non-active partners. Note that in a mesh network, it is common

for a partner to be both a supplying partner and a receiving partner of a peer at the same

7.1. DEGREE DISTRIBUTION 145

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of partners

P
e

rc
e

n
ta

g
e

 o
f

p
e

e
rs

 9am 09/24/06

 9pm 09/24/06

 9am 10/06/06

 9pm 10/06/06

(A)

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

Indegree
P

e
rc

e
n

ta
g

e
 o

f
p

e
e

rs

 9am 09/24/06

 9pm 09/24/06

 9am 10/06/06

 9pm 10/06/06

(B)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Outdegree

P
e

rc
e

n
ta

g
e

 o
f

p
e

e
rs

 9am 09/24/06

 9pm 09/24/06

 9am 10/06/06

 9pm 10/06/06

(C)

Figure 7.1: Degree distributions of stable peers in the global topology.

time. In this case, it is counted into both peer active indegree and active outdegree.

7.1.1 Degree distribution in the global topology

Most existing research on P2P topologies reported power-law degree distributions. In

their studies on modern Gnutella topologies, Stutzbach et al. [79] pointed out that its

degree distribution does not follow a power-law or two-segment power-law distribution,

but has a spike around 30, as the Gnutella client software tries to maintain 30 neighbors

for each peer. From Fig. 7.1(A), we observe that the distributions of total number of

partners at the stable peers in the UUSee network do not follow power-law distributions

either, with spikes whose corresponding degrees vary at different times. For the distri-

butions observed in the morning, the spikes lie around a partner number of 10; for those

observed in the daily peak hour, 9 p.m. at night, the spikes are located at larger values.

During the flash crowd scenario around 9 p.m., October 6, 2006, the distribution peaks

around 25. These reveal that at peak times, each peer is engaged with more partners.

In addition, the results also exhibit that although each peer has an initial set of around

50 partners upon joining, the number of partners at different peers varies a lot during

the streaming process, according to neighbor dynamics, the block availability at known

7.1. DEGREE DISTRIBUTION 146

neighbors and the available upload capacity at each peer.

For the peer indegree distribution shown in Fig. 7.1(B), we observe spikes around 10,

and the spike is at a slightly higher degree in the flash crowd scenario. For indegree distri-

butions at all times, they drop abruptly when the indegree reaches about 23. According

to the UUSee peer selection protocol, a peer only accepts new upload connections when

it still has spare upload capacity, and thus the upload bandwidth on each upload link

is guaranteed. Besides, during streaming, the aggregated download rate at each peer is

limited by the streaming rate in UUSee. All these explain the observation that the num-

ber of active supplying peers at each peer, which guarantees satisfactory streaming rates,

is relatively small in the UUSee overlay, as compared to other file sharing applications.

The peer outdegree distributions in Fig. 7.1(C) are closer to two-segment power-law

distributions, with a joint point around degree 10. The curves for peak times exhibit

a flatter first segment, which implies that peers have higher outdegrees when there are

more requesting peers in the network.

7.1.2 Degree evolution in the global topology

We next show the evolution of average degrees of stable peers during the two-week period

in Fig. 7.2(A). We observe that the averaged total number of partners peaks at the peak

times, but the average peer indegree is consistently around 10. Given that UUSee does not

explicitly impose such an upper bound for active incoming connections at each peer, we

explain this phenomenon as follows. At peak times when a large number of peers coexist

in the network, many peers will be able to offer help to others, and thus “volunteer”

themselves at the tracking server, or get known by other peers when peers exchange their

useful partner lists. This leads to the result that each peer knows a large number of

7.1. DEGREE DISTRIBUTION 147

0

10

20

30

40

50

60

70

80

90

Date (midnight)

A
v
e
ra

g
e
 p

e
e
r

d
e
g
re

e

 Number of partners
 Indegree
 Outdegree

SunMonTueWedThu Fri Sat SunMonTueWedThu Fri Sat

(A)

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07
0

10

20

30

40

50

60

70

80

90

Date (midnight)

A
v
e
ra

g
e
 p

e
e
r

d
e
g
re

e

 Number of partners
 Indegree
 Outdegree

(B)

Figure 7.2: Evolution of average degrees for stable peers in the global topology. (A)
From October 1, 2006 to October 14, 2006. (B) From February 13, 2007 to February 19,
2007.

other peers. Nevertheless, each peer does not actually need to stream from more peers

to sustain a satisfactory streaming rate, as long as it streams from a few good ones.

To validate our discoveries with the more recent UUSee traces, we investigate the peer

degree evolution during the week of February 13, 2007 to February 19, 2007, which also

includes a flash crowd scenario due to the broadcast of Chinese New Year celebration

show on the evening of February 17, 2007. From the results in Fig. 7.2(B), we can see

the average number of partners and average outdegree per peer are smaller than those

in Fig. 7.2(A), while the average indegree is at a similar level. The reduction of partner

number may be attributed to the ISP upgrade of the access link bandwidth, which

occurred in early 2007, so that peers can achieve satisfactory streaming rates without

knowing many other peers. Nevertheless, the degree evolution patterns remain similar.

In addition, we have also investigated the degree distributions at each specific time during

the new trace period, which we have found represent similar shapes to those in Fig. 7.1,

and are thus omitted for presentation.

In Vu et al.’s PPLive measurement study [83], they have derived an average node

7.1. DEGREE DISTRIBUTION 148

outdegree within the range of 30 to 43. In their measurements, the outdegree at each

peer includes all the partners that may retrieve from the peer, not necessarily only the

ones that are actively streaming from it at each specified time, as how our outdegree is

measured. Therefore, a fairer comparison would be to compare their results with our

total number of partners, which are at a similar magnitude for both P2P streaming

applications.

7.1.3 Intra-ISP degree evolution

To better understand the connectivity among peers in the same ISP and across different

ISPs, we further investigate the active indegrees and outdegrees at each peer that are from

and to peers in the same ISP. At each stable peer, we calculate the proportion of indegrees

from partners in the same ISP to the total indegree of the peer, and the proportion of

outdegrees toward partners in the same ISP to its total outdegree, respectively.

Fig. 7.3 plots the evolution of the intra-ISP degree percentage, averaged over all stable

peers in the network at each time. From Fig. 7.3(A), we observe that the percentages for

both indegrees and outdegrees are around 0.4. Considering that many ISPs coexist, this

exhibits that the majority of active supplying/receiving partners of each peer are within

the same ISP. Although UUSee does not take ISP membership into consideration when

the tracking server assigns new partners to a peer and when neighboring peers exchange

partners, this exhibits the “natural clustering” effects in the P2P streaming overlay over

each ISP. The reason behind such clustering is that, as connections between peers in the

same ISPs have generally higher throughput and smaller delay than those across ISPs,

they are more inclined to be chosen as active connections.

In addition, Fig. 7.3(A) shows that the percentages for both indegree and outdegree

7.1. DEGREE DISTRIBUTION 149

0.2

0.3

0.4

0.5

0.6

Date (midnight)

 Indegree
 Outdegree

SunMonTueWedThu Fri Sat SunMonTueWedThu Fri Sat

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
in

tr
a

−
IS

P
 d

e
g

re
e

(A)

0.2

0.3

0.4

0.5

0.6

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
in

tr
a

−
IS

P
 d

e
g

re
e

 Indegree
 Outdegree

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

Date (midnight)

(B)

Figure 7.3: Evolution of average intra-ISP degrees for stable peers in the network. (A)
From October 1, 2006 to October 14, 2006. (B) From February 13, 2007 to February 19,
2007.

peak at the daily peak hours and during the flash crowd scenario. This implies that each

peer has more partner choices when the network is large, and it is always able to choose

high throughput connections that are largely intra-ISP.

All the above observations are further validated by the investigation results using the

more recent traces in February, 2007, as shown in Fig. 7.3(B). This exhibits the general

applicability of our conclusions over a long period of time.

7.1.4 Intra-area degree evolution

Similarly, we further investigate the connectivity among peers in the same geographic

location and across different areas. For IP addresses in China, they are in the same

geographic area if they are located in the same province; for IP addresses out of China,

they are grouped based on the continent they belong to. We compute the percentage of

indegrees and outdegrees at each stable peer that are from and to peers in the same area

at each time, and the evolution of averaged intra-area degree percentages (over all stable

peers in the network at each time) is shown in Fig. 7.4.

7.1. DEGREE DISTRIBUTION 150

0

0.02

0.04

0.06

0.08

0.1

Date (midnight)

 Indegree
 Outdegree

SunMonTueWedThu Fri SatSunMonTueWedThu Fri Sat

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
in

tr
a

−
a

re
a

 d
e

g
re

e

(A)

0.02

0.04

0.06

0.08

0.1

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
in

tr
a

−
a

re
a

 d
e

g
re

e

 Indegree
 Outdegree

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

Date (midnight)

(B)

Figure 7.4: Evolution of average intra-area degrees for stable peers in the network. (A)
From October 1, 2006 to October 14, 2006. (B) From February 13, 2007 to February 19,
2007.

From the results from both trace periods, we notice that the intra-area degree percent-

age is very low for both indegree and outdegree (less than 0.062 at all times), implying no

area-based clustering in the streaming topology. As link TCP throughput is one major

criterion for peer selection in UUSee, for connections inside China, this may also reveal

that there does not exist a significant throughput difference between connections in the

same province and across different provinces. For peers outside China, they may not

have been able to efficiently select peers in nearby regions, which may require further

improvements of the UUSee peer selection protocol.

7.1.5 Peer sending throughput vs. outdegree

As the throughput along each P2P connection varies, a peer with a large degree may not

necessarily indicate that it is a supernode, i.e., a peer with high throughput. To further

explore the relation between peer throughput and degree, we make use of the throughput

data along each P2P link as contained in the traces, and compute weighted peer degree

7.1. DEGREE DISTRIBUTION 151

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Sending throughput (KBps)

P
e

rc
e

n
ta

g
e

 o
f

p
e

e
rs

 9am 09/24/06
 9pm 09/24/06
 9am 10/06/06
 9pm 10/06/06

(A)

200 400 600
0

200

400

600

800

1000

1200

Outdegree

S
e

n
d

in
g

 t
h

ro
u

g
h

p
u

t
(K

B
p

s
) 9pm 10/06/06

(B)

0

Figure 7.5: (A) Sending throughput distribution of stable peers in the global topology;
(B) Correlation between outdegree and sending throughput.

distributions, with link throughput as the link weight. The weighted indegree of a peer at

each time is indeed its instantaneous receiving throughput, which is consistently around

the streaming rate in such a P2P streaming application. The weighted outdegree of a

peer is its instantaneous sending throughput, which is a better indication of the peer’s

resource availability as a supernode. Therefore, we first investigate the sending through-

put distribution across the UUSee overlay, and then examine its correlation with the peer

outdegree. The results are given in Fig. 7.5.

Comparing Fig. 7.5(A) and Fig. 7.1(C), we notice that the sending throughput dis-

tributions represent similar shapes to corresponding outdegree distributions. Similar to

outdegree, sending throughputs in the streaming overlay tend to be larger at peak hours

and in the flash crowd scenario. In addition, although occupying a small fraction, there

do always exist peers with large upload capacities in the overlay. For example, in the

overlay of 9 p.m., October, 6, 2006, there were about 730 peers with higher than 384

KBps aggregate sending throughput, out of 87340 stable peers in the network. We note

that we do not include the set of dedicated streaming servers in our topological studies

7.2. CLUSTERING 152

throughout the chapter, and thus the possibility that any of the discovered supernodes

might be a dedicated streaming server is excluded.

While the similarities between Fig. 7.5(A) and Fig. 7.1(C) may imply that a larger

outdegree indeed indicates a larger sending throughput in UUSee, we further validate

this point by plotting the correlation between the outdegree and sending throughput

in Fig. 7.5(B). The plot reveals a positive linear correlation, which is also proven by

the calculated Pearson product-moment correlation coefficient between outdegree and

sending throughput, at the value of 0.4871.

Finally, we note that such a correlation does not exist between the peer indegree and

aggregate receiving throughput, as the receiving throughput is consistently around the

streaming rate, while the peer indegree varies significantly, as shown in Fig. 7.1(B).

7.2 Clustering

Studies on the Gnutella network have pointed out that both previous and current gener-

ation Gnutella networks exhibit “small-world” properties, i.e., peers are highly clustered

with small pairwise shortest path lengths, as compared to a random graph of similar

peer numbers and link densities. To investigate whether an undirected graph g is a

small-world graph, a clustering coefficient is calculated as Cg = 1
N

∑N

i=1 Ci, where N is

the total number of vertices in the graph, and Ci is the clustering coefficient for vertex

i, calculated as the proportion of edges between vertices within its neighborhood to the

number of edges that could possibly exist between them [84]. Therefore, a larger cluster-

ing coefficient represents more clustering at nodes in the graph. A graph g is identified

as a small world if (1) it has a small average pairwise shortest path length lg, close to

that of a corresponding random graph lr; and (2) a large clustering coefficient Cg, which

7.2. CLUSTERING 153

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Date (midnight)C
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n

t

 C UUSee
 C random

2
4
6
8

10
12

A
v
e

ra
g

e
 p

a
th

 l
e

n
g

th

 L UUSee
 L random

Date (midnight)

(A)

0 SunMon TueWedThu Fri Sat SunMon TueWedThu Fri Sat

0 Sun Mon Tue Wed Thu Fri Sat SunMon TueWedThu Fri Sat

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Date (midnight)C
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n

t

 C UUSee
 C random

0
2
4
6
8

10
12

A
v
e

ra
g

e
 p

a
th

 l
e

n
g

th

 L UUSee
 L random

Date (midnight)

(B)

SunMon TueWedThu Fri Sat SunMon TueWedThu Fri Sat

SunMon TueWedThu Fri Sat SunMon TueWedThu Fri Sat

0

0.2

0.4

0.6

0.8

Date (midnight)C
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n

t

Date (midnight)A
v
e

ra
g

e
 p

a
th

 l
e

n
g

th

(C)

 C UUSee
 C random

0
2
4
6
8

10
12

 L UUSee
 L random

SunMon TueWedThu Fri Sat SunMon TueWedThu Fri Sat

SunMon TueWedThu Fri Sat SunMon TueWedThu Fri Sat

Figure 7.6: Small-world property from October 1, 2006 to October 14, 2006. (A)
Small-world metrics for the entire stable-peer graph; (B) Small-world metrics for an
ISP subgraph (China Netcom); (C) Small-world metrics for an area subgraph (Zhejiang
Province).

is orders of magnitude larger than that of the corresponding random graph Cr.

Based on the traces, we construct a subgraph of the entire UUSee topology at each

time, by only including the stable peers and the active links among them. We investi-

gate small-world properties of such stable-peer graphs, and believe they may reveal the

connectivity of the original topologies as well.

Fig. 7.6(A) plots the clustering coefficients and average pairwise shortest path lengths

of the stable-peer graph over the two-week period. We observe that its clustering coef-

ficients are consistently more than an order of magnitude larger than those of a corre-

sponding random graph, while their average path lengths are similar. This implies that

the stable-peer graph does exhibit small-world properties. Besides, we observe slight

decreases of clustering coefficients and slight increases of path lengths at peak hours of

each day, which may be explained by the broader choice of partners at each peer in larger

networks with significantly more peers at the peak times. In Vu et al.’s PPLive study,

using the same clustering coefficient metric, they show that a less popular channel with

7.2. CLUSTERING 154

500 nodes is similar to a random graph, while the larger the channel popularity is, the

more clustering it becomes. Our study focuses on the entire stable-peer topology, which

is composed of tens of thousands of peers at each time, and thus represents the more

clustering case discussed in the PPLive study.

Another observation we can make from Fig. 7.6(A) is that, the average pairwise

shortest path length is quite steady, consistently around 5 at all times. This implies

low network diameters in such stable-peer topologies. Considering that transient peers

are connected to one or more stable peers with high probability, we conjecture that the

pairwise shortest path lengths in the original UUSee topologies should be close to those in

the stable-peer graphs. Therefore, the overall UUSee streaming network may represent a

low network diameter, which facilitates the quick distribution of media blocks throughout

the entire topology.

In Sec. 7.1.3, we have observed the phenomenon of ISP-based peer clustering. Here, we

wish to further validate this finding by calculating the clustering coefficient and average

pairwise path length for the subgraph composed of stable peers in the same ISP and

active links among them. A representative result is shown in Fig. 7.6(B) with respect to

a major China ISP — China Netcom. Comparing Fig. 7.6(B) with Fig. 7.6(A), we have

observed that the ISP subgraph has more clustering than the complete topology of stable

peers, with (1) closer average path lengths to those of the random graphs, and (2) larger

clustering coefficient difference from those of the random graphs. In our study, similar

properties were observed for sub-topologies of other ISPs as well.

With the example of the sub streaming topology inside Zhejiang Province in China,

we again investigate the clustering coefficient and average pairwise path length over the

area sub-topology. Fig. 7.6(C) clearly demonstrates that there is no significant difference

7.2. CLUSTERING 155

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Date (midnight)C
lu

s
te

ri
n
g
 c

o
e
ff
ic

ie
n
t

 C UUSee
 C random

0
2
4
6
8

10
12

Date (midnight)A
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

 L UUSee
 L random

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

Figure 7.7: Small-world metrics for the entire stable-peer graph: February 13, 2007 to
February 19, 2007.

between the magnitudes of clustering coefficients for the area sub-topology and those

of the corresponding random networks. Together with similar results from small-world

metric evaluations of other geographic areas, it validates that there does not exist area-

based clustering in the UUSee streaming network.

To examine whether such small-world properties may be different over a longer period

of time, we have further investigated the clustering coefficient and average shortest path

length in the entire stable-peer graph using the traces in February, 2007. Comparing

the results in Fig. 7.7 to those in Fig. 7.6(A), we are able to identify a higher level of

clustering in the UUSee streaming network at the later trace period. Again, decrease of

the clustering coefficient and increase of the path length are observed during the flash

crowd scenario on February 17, 2007. We omit the results with respect to the existence of

ISP-based clustering and non-existence of area-based clustering observed in this period,

which are nevertheless similar to those given in Fig. 7.6(B) and (C).

7.3. RECIPROCITY 156

7.3 Reciprocity

In a modern P2P streaming application such as UUSee, a mesh streaming topology is

constructed and a BitTorrent-like block distribution protocol is employed over the mesh.

However, as all media blocks originate from a collection of dedicated streaming servers

and then propagate throughout the network, one may wonder: Is the media content

propagating in a tree-like fashion, i.e., a peer retrieves from a set of peers closer to the

servers and further serves another group of peers farther away from servers? Or does such

mesh-based streaming really benefit from reciprocal media block exchanges between pairs

of peers? If it is the latter case, to what extent are the peers reciprocal to each other?

To answer these questions, we investigate another graph property on the P2P stream-

ing topology: edge reciprocity. In a directed graph g, an edge (i, j) is reciprocal if vertex

j is also linked to vertex i in the reverse direction, i.e., (j, i) is also an edge in the graph.

A simple way to obtain reciprocity of a graph is to compute the fraction of bilateral edges

over the total number of edges in the graph:

r =

∑
i6=j aijaji

M
, (7.1)

where aij’s are entries of the adjacency matrix of graph g (aij = 1 if an edge exists from i

to j, and aij = 0 if not), and M is the total number of edges in the graph. However, this

simple reciprocity metric cannot distinguish between networks with high reciprocity and

random networks with high link density, which tend to have a large number of reciprocal

edges as well, due exclusively to random factors. Therefore, we utilize another more

7.3. RECIPROCITY 157

accurate edge reciprocity metric proposed by Garlaschelli et al. [35]:

ρ =
r − ā

1− ā
, (7.2)

where r is as defined in (7.1), and ā is the ratio of existing to possible directed links in

the graph, i.e., ā = M
N(N−1)

=
P

i6=j aij

N(N−1)
with N being the total number of vertices. Since

in a random network, the probability of finding a reciprocal link between two connected

nodes is equal to the average probability of finding a link between any two nodes, ā

actually represents the reciprocity calculated with (7.1), of a random graph with the

same number of vertices and edges as g. Therefore, the edge reciprocity defined in (7.2)

is an absolute quantity, in the sense that: if ρ > 0, the graph has larger reciprocity than

a corresponding random graph, i.e., it is a reciprocal graph; if ρ < 0, the network has

smaller reciprocity than its random version, i.e., it is an antireciprocal graph.

To compute the reciprocity among all the peers in the UUSee network at one time,

we use all the directed active links among peers that appeared in the trace at the time.

If streaming in the UUSee network takes place in a tree-like fashion, the computed edge

reciprocity should be negative, as its r = 0 and ρ = − ā
1−ā

< 0. If there is no strong

correlation between the sets of supplying and receiving partners at each peer, the edge

reciprocity will be around 0, i.e., the case of a random network. If the peers do help each

other materially by exchanging media blocks, the edge reciprocity should be greater than

0, and can be as large as 1.

Fig. 7.8(A) plots the evolution of edge reciprocity in the entire UUSee topology. The

consistent greater-than-zero edge reciprocity reveals significant reciprocal exchanges of

available blocks among pairs of peers in such mesh-based streaming. It also implies

that the sets of supplying and receiving partners at each peer are strongly correlated,

7.3. RECIPROCITY 158

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

E
d

g
e

 r
e

c
ip

ro
c
it
y

(A)

SunMonTueWedThu Fri Sat SunMonTue WedThu Fri Sat 0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

E
d

g
e

 r
e

c
ip

ro
c
it
y

 intra-ISP

 inter-ISP

 all

(B)

SunMonTueWedThu Fri Sat SunMonTue WedThu Fri Sat
0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

E
d

g
e

 r
e

c
ip

ro
c
it
y

 intra-area

 inter-area

 all

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

(C)

Figure 7.8: Edge reciprocity from October 1, 2006 to October 14, 2006. (A) Edge
reciprocity for the entire network; (B) Reciprocity for edges in the same ISP and across
different ISPs; (C) Reciprocity for edges in the same area and across different areas.

as compared to a purely random network. Furthermore, the reciprocity exhibits daily

evolution patterns with peaks at the peak hours as well.

We have discovered ISP-based clustering of the peers in the previous sections, where

the direction of P2P links is not essentially utilized. Now taking connection directions

into consideration, we further investigate the reciprocity of links connecting peers in the

same ISP and those among peers across different ISPs. For this purpose, we derive two

sub-topologies from each topology we used in the previous reciprocity investigation: one

contains links among peers in the same ISPs and their incident peers, and the other

consists of links across different ISPs and the incident peers. Fig. 7.8(B) shows edge

reciprocities for the two sub-topologies. For the purpose of comparison, it also plots

the edge reciprocities for the entire topology. We have observed a higher reciprocity

for the intra-ISP sub-topology and a lower reciprocity for the inter-ISP sub-topology, as

compared to that of the complete topology. This implies that the streaming topology in

each ISP is a densely connected cluster with large portions of bilateral links among the

peers.

Similarly, we investigate the edge reciprocity for links connecting peers in the same

7.3. RECIPROCITY 159

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

E
d

g
e

 r
e

c
ip

ro
c
it
y

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

(A)

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

E
d

g
e

 r
e

c
ip

ro
c
it
y

 intra−ISP

 inter−ISP

 all

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

(B)

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

E
d

g
e

 r
e

c
ip

ro
c
it
y

 intra−area
 inter−area
 all

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

(C)

Figure 7.9: Edge reciprocity from February 13, 2007 to February 19, 2007. (A) Edge
reciprocity for the entire network; (B) Reciprocity for edges in the same ISP and across
different ISPs; (C) Reciprocity for edges in the same area and across different areas.

area and those among peers across different areas, using the intra-area sub-topology and

the inter-area sub-topology at each time. While the evolution curve for the inter-area

sub-topology mostly overlaps with that of the entire topology, Fig. 7.8(C) reveals high

reciprocities in the intra-area sub-topology. This is an interesting discovery, since even

though we have observed no clustering for the streaming topology in one area, there does

exist a high level of reciprocity over the limited number of intra-area links, i.e., peers in

the same area are largely reciprocal to each other.

In addition, the edge reciprocities derived using traces in February, 2007, are given in

Fig. 7.9. Comparing Fig. 7.9 to Fig. 7.8, we observe generally smaller edge reciprocities

in February, 2007, which we attribute to the expansion of UUSee streaming network over

the months, such that each peer has a broader choice of partners. Nevertheless, the other

properties, such as the daily evolution pattern and the better reciprocity inside the same

ISP or area, remain.

7.4. SUPERNODE CONNECTIVITY 160

7.4 Supernode Connectivity

In Sec. 7.1.5, we have observed the existence of supernodes in the P2P streaming overlay,

i.e., the peers with high sending throughput. Next, we start our investigations on the

connectivity among supernodes: Do they tend to connect to each other and constitute

a hub in such a practical streaming network? Do they tend to exchange media blocks

among each other in a reciprocal way?

To address these questions, we utilize the likelihood metric proposed by Li et al. in

[57], which is also linearly related to the assortativity coefficient discussed by Newman

[66]. These metrics suggest the connectivity of nodes with similar degrees in a graph,

i.e., whether they tend to be tightly interconnected or not. The likelihood metric for

undirected graph g is defined as follows by Li et al. [57]: Let L(g) be the sum of products

of degrees of adjacent nodes, i.e., L(g) =
∑

(i,j)∈E(g) didj, where E(g) is the set of edges

in graph g and di is the degree of vertex i. Let Lmax and Lmin denote the maximum and

minimum values of L(g) among all simple connected graphs with the same number of

vertices and the same node degree sequence as graph g. The likelihood is defined as:

likelihood(g) =
L(g)− Lmin

Lmax − Lmin

. (7.3)

In order to compute Lmax and Lmin, we need to first generate graphs that have these like-

lihood values. A Lmax (Lmin) graph can be generated by the following simple heuristics:

Sort nodes in graph g from the highest to the lowest degree. To generate the Lmax (Lmin)

graph, connect the highest degree node successively to other high (low) degree nodes in

decreasing (increasing) order of their degrees until it satisfies its degree requirement, and

then connect the second highest degree node successively to other nodes in decreasing

7.4. SUPERNODE CONNECTIVITY 161

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

L
ik

e
lih

o
o
d

SunMonTue WedThu Fri Sat SunMonTue WedThu Fri Sat

(A)

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

L
ik

e
lih

o
o
d
 w

it
h
 r

e
c
ip

ro
c
a
l
lin

k
s

(B)

SunMonTue WedThu Fri Sat SunMonTue WedThu Fri Sat

Figure 7.10: Likelihood from October 1, 2006 to October 14, 2006. (A) Likelihood
computed with all the links in the UUSee network; (B) Likelihood computed with only
reciprocal links in the UUSee network.

(increasing) degree order (which have not saturated their degree requirements) to achieve

its degree, etc. This process is repeated for all nodes in descending degree order. In this

way, the likelihood computed with (7.3) is a normalized quantity in the range of [0, 1].

A close-to-0 likelihood indicates that high degree nodes tend to connect to low degree

nodes in the graph, while a close-to-1 likelihood reveals more clustering of the nodes with

similar degrees.

To derive the connectivity among supernodes in the UUSee network, instead of using

peer degrees in the computation of likelihood, we use the sending throughput of each

peer, as we believe it is a better indication of the resource availability of the peers

as supernodes. Besides, we have shown in Sec. 7.1.5 that peer sending throughput is

positively correlated with outdegree in the UUSee streaming overlay.

We first compute the likelihood using all the active links included in the instantaneous

UUSee streaming topologies. Fig. 7.10(A) shows that the likelihood values are below 0.3

at most times. These represent quite low likelihood in its value range of [0, 1], i.e.,

below the average likelihood among graphs with the same number of nodes and node

7.4. SUPERNODE CONNECTIVITY 162

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

L
ik

e
lih

o
o
d

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

(A)

0

0.1

0.2

0.3

0.4

0.5

Date (midnight)

L
ik

e
lih

o
o
d
 w

it
h
 r

e
c
ip

ro
c
a
l
lin

k
s

2/13/07 2/14/07 2/15/07 2/16/07 2/17/07 2/18/07 2/19/07

(B)

Figure 7.11: Likelihood from February 13, 2007 to February 19, 2007. (A) Likelihood
computed with all the links in the UUSee network; (B) Likelihood computed with only
reciprocal links in the UUSee network.

sending throughput sequence. This observation indicates that supernodes do not tend to

be tightly connected to each other in the UUSee streaming overlay, but are surrounded

largely by nodes with lower sending abilities.

Motivated by the reciprocal properties that we have discovered in the previous sec-

tion, we further explore the following question: Are supernodes more inclined to exchange

media content with other peers with comparably high sending throughputs? To answer

this question, we compute the likelihood of UUSee streaming network again with only re-

ciprocal links in each instantaneous topology. Comparing Fig. 7.10(B) with Fig. 7.10(A),

we find that the likelihood with respect to reciprocal links is generally larger than that

in the entire topology, implying that the reciprocal links are relatively more likely to

be connecting nodes with comparable sending throughputs. Nevertheless, the likelihood

values are still lower than average among the set of graphs with the same number of

nodes and the same sequence of node sending throughput.

Investigations of the likelihood property using traces in February, 2007 further validate

our above discoveries. As illustrated in Fig. 7.11, the likelihood is at an even lower level

7.5. SUMMARY 163

in February, 2007. All these observations exhibit that, in such a practical streaming

network, peers are not clustered based on their resource availability, and there does not

exist a supernode hub at any given time in the overlay.

7.5 Summary

In this chapter, we present the first extensive effort in the research community to char-

acterize topologies of modern large-scale P2P streaming meshes, based on instantaneous

snapshots of the active topology of UUSee. Utilizing a number of meaningful graph met-

rics, we seek to discover structural properties of the streaming topologies at short time

scales, as well as their evolutionary dynamics over longer periods of time. The original

insights that we have brought forward in this chapter are the following: (1) The degree

distribution towards active neighbors in a P2P mesh does not possess similar properties as

those obtained from early Internet or AS-level topological studies, such as power-law de-

gree distributions; (2) the streaming topologies naturally evolve into clusters inside each

ISP, but not within geographically adjacent areas; (3) peers are reciprocal to each other

to a great extent, which contributes to the stable performance of streaming in such mesh

networks; (4) there exist a small portion of high-throughput supernodes in the streaming

overlay, each assisting a large number of peers with lower bandwidth availabilities, but

not tightly connecting to each other in a hub-like fashion.

Chapter 8

Characterizing P2P Streaming Flows

The fundamental advantage of P2P live streaming is to allow peers to contribute their

upload bandwidth, such that bandwidth costs may be saved on dedicated streaming

servers. It is therefore of pivotal importance for a peer to select other peers with high

inter-peer bandwidth (i.e., the available bandwidth between two peers) during a live

streaming session, in order to retrieve the media content timely to meet the playback

deadline. As TCP is widely employed in P2P live streaming applications to guarantee

reliability and to transverse NATs, the achievable TCP throughput is an essential metric

when evaluating available inter-peer bandwidth.

However, due to the inherent dynamic nature of peer arrivals and departures in a

typical P2P streaming session, it is a daunting challenge to evaluate TCP throughput

between two peers before data transmission begins. One may start a probing TCP con-

nection to directly measure TCP throughput, but the time it takes for TCP to saturate

available bandwidth leads to intrusive and expensive bandwidth usage, that can oth-

erwise be available to stream actual media. A better approach would be to calculate

164

CHAPTER 8. CHARACTERIZING P2P STREAMING FLOWS 165

TCP throughput based on flow sizes, maximum sender/receiver windows, and path char-

acteristics such as delay and loss rate [76, 63, 68]. However, such calculations require

the knowledge of TCP parameters or path characteristics, which may not be available

without probing or new TCP connections.Yet another alternative is to summarize histor-

ical TCP throughput using time series models, which may be utilized to forecast future

TCP throughput [39, 59, 82, 85]. Unfortunately, it is common for peers to come across

neighbors with whom no historical TCP connections ever exist.

Though it is almost impossible to accurately predict TCP throughput between arbi-

trary peers without some probing or historical data, practical experiences show that it

is helpful in the design of a peer selection protocol even if the peer has only a “rough

idea” about the available bandwidth between itself and a possible candidate, and such

a “rough idea” can be used to rank the candidates based on available bandwidths. To

acquire useful knowledge towards this objective, we represent in this chapter our compre-

hensive statistical study of TCP throughputs, using 370 million live streaming flows in

230 GB of UUSee traces collected over a four-month period (November 2006 — February

2007).

Our focus in this study is to thoroughly understand and characterize the achiev-

able TCP throughputs of streaming flows among peers in large-scale real-world P2P live

streaming sessions, in order to derive useful insights towards the improvement of current

peer selection protocol. Using continuous traces over a long period of time, we explore

evolutionary properties of inter-peer bandwidth. Focusing on representative snapshots of

the entire topology at specific times, we investigate distributions of inter-peer bandwidth

in various peer ISP/area/type categories, and statistically test and model the deciding

factors that cause the variance of such inter-peer bandwidth.

8.1. THROUGHPUT DISTRIBUTIONS 166

We have made a number of original discoveries based on our statistical characteri-

zation. Our current study has mainly focused on streaming flows within China, but we

believe our discoveries also bring useful insights towards global networks. Based on these

insights, we design a throughput expectation index that facilitates high-bandwidth peer

selection without performing any active measurements.

8.1 Throughput Distributions

We start our P2P streaming flow characterization by analyzing the distributions of TCP

throughput at representative times, across or within different ISPs/areas, and among

different peer types. We note all our flow characterizations in this chapter are based

on the 5-minute maximum throughput measurements on the P2P links from the traces,

whose collection methodology was elaborated in Sec. 6.2.

8.1.1 Overall throughput distribution at different times

Fig. 8.1 shows the throughput distribution over the entire network at four representa-

tive regular times: Monday morning (9am 12/18/06), Monday evening (9pm 12/18/06),

Friday morning (9am 12/22/06) and Friday evening (9pm 12/22/06). We note that the

bin size used in all our throughput distribution plots in this section is 1KBps. With

throughput depicted in the log scale, the plots represent the shapes of normal distri-

butions, corresponding to the original throughputs having the analytic distributions of

log-normal [3, 16]. This finding is consistent with existing work of Balakrishnan et al. [16]

and Zhang et al. [89], who also discovered log-normal rate distributions within their In-

ternet flow sets.

8.1. THROUGHPUT DISTRIBUTIONS 167

10
0

10
1

10
2

10
3

10
4

10
50

0.005

0.01

0.015

0.02

0.025

0.03

Throughput (KBps)

P
er

ce
nt

ag
e

of
 th

ro
ug

hp
ut

 9am Mon. 12/18/06
 9pm Mon. 12/18/06
 9am Fri. 12/22/06
 9pm Fri. 12/22/06

Figure 8.1: Overall throughput distribution
at different times.

10
0

10
1

10
2

10
3

10
4

10
50

0.005

0.01

0.015

0.02

0.025

0.03

Throughput (KBps)

P
er

ce
nt

ag
e

of
 th

ro
ug

hp
ut 7pm 02/17/07

 9pm 02/17/07
 11pm 02/17/07
 1am 02/18/07

Figure 8.2: Overall throughput distribution
at Chinese New Year Eve.

The throughput distributions at the four times peak at 15KBps, 7KBps, 13KBps,

7KBps, respectively, with an 80th percentile of 280KBps, 96KBps, 275KBps, and 90KBps,

respectively. We observe that the mean throughputs in the mornings, which are daily

off-peak hours for the streaming application, are 2−3 times higher than those at evening

peak hours, and the variance of the throughputs in the mornings is larger than that in

the evenings as well. For the same time at different days in a week, however, there does

not exist an apparent throughput difference.

We further validate the above observations statistically using one-way analysis of vari-

ance (ANOVA) [25, 36]. The one-way ANOVA is used to test the null hypothesis that

different sets of samples for an independent variable have all been drawn indifferently

from the same underlying distribution. In our case, we use ANOVA to examine whether

the throughput distributions at different times on a same regular day are statistically

equivalent, and whether those at the same time on different days are significantly dif-

ferent. As the numbers of throughput samples in the four sets are different, we conduct

ANOVA by using the non-parametric Kruskal-Wallis test [36]. The comparisons and

reported p-values are listed in Table 8.1.

In our hypothesis test, if a result p-value is lower than the significance level of 0.05,

8.1. THROUGHPUT DISTRIBUTIONS 168

Table 8.1: Kruskal-Wallis ANOVA for throughputs at different times

Null Hypothesis Throughput Sets p-value
The two sets of 9am Mon. vs. 9am Fri. 0.8699
throughputs have 9pm Mon. vs. 9pm Fri. 0.0684
the same distribution 9am Mon. vs. 9pm Mon. 0

9am Fri. vs. 9pm Fri. 0

the difference between the corresponding distributions is statistically significant, and

the null hypothesis is rejected; otherwise there is insufficient evidence to reject the null

hypothesis. The 0 p-values reported for the latter two tests strongly suggest the difference

between throughputs at different times of a day, while the other large p-values validate

the large similarity among morning/evening throughput sets on different days.

While the above observations generally apply for throughput sets on regular days, we

have also investigated throughput distributions during a flash crowd scenario on Chinese

New Year Eve (Feb. 17th, 2007), as shown in Fig. 8.2. Four representative snapshots

are plotted: 7pm on the Eve, before the celebration TV broadcast started; 9pm, when

the flash crowd started to gather as more and more viewers tuned in to the channel;

11pm, when the flash crowd reached its largest size as the Chinese New Year approached;

and 1am on the next morning, when the crowd dismissed itself after the show ended.

With ANOVA tests, we detected that the distributions are statistically different, with

throughputs at 7pm statistically larger than those at 1am, followed by those around 9pm,

and then those at 11pm. This reflects that inter-peer bandwidths became tight as the size

of flash crowd increased and turned loose again when the crowd dismissed. Nevertheless,

there does not exist a “crash” scenario with abrupt drop of throughput over the network,

and the throughputs follow similar log-normal distributions as those at the same time on

a regular day.

8.1. THROUGHPUT DISTRIBUTIONS 169

10
0

10
1

10
2

10
3

10
4

10
50

0.01

0.02

0.03

0.04

Throughput (KBps)

P
er

ce
nt

ag
e

of
 th

ro
ug

hp
ut Intra−ISP 9am

 Inter−ISP 9am
 Intra−ISP 9pm
 Inter−ISP 9pm

Figure 8.3: Intra/inter ISP throughput distribution on Dec. 18, 2006.

8.1.2 Intra/inter ISP throughput distribution

Using the IP-to-ISP/area mapping database described in Sec. 6.3.3, we next categorize

the P2P streaming flows into two classes and investigate their respective throughput

distributions: (1) intra-ISP flows, for which the sender and receiver are in the same ISP,

and (2) inter-ISP flows, where they belong to different ISPs. Fig. 8.3 exhibits that, while

they still follow log-normal distributions in each category, intra-ISP throughputs are

generally larger than their inter-ISP counterparts measured at the same time: the former

have peaks at 60KBps (9am) and 13KBps (9pm), while those of the latter are 20KBps

(9am) and 7KBps (9pm), respectively. Also observed is that intra-ISP throughputs at

peak hours are generally smaller than inter-ISP throughputs at off-peak hours on the

same day. Within each intra-ISP or inter-ISP category, the throughput distributions

show a similar diurnal pattern as that revealed by the overall throughput distributions

in the previous section: both the mean and variance of the throughput distributions in

the mornings are larger than those in the evenings.

While these observations meet our general expectation that bandwidth is more abun-

dant within each ISP, we also notice many large inter-ISP throughput values and the

8.1. THROUGHPUT DISTRIBUTIONS 170

large span for both inter-ISP and intra-ISP throughputs. This inspires us to further in-

vestigate: Are throughputs for flows within an ISP always statistically larger than those

for flows to and from this ISP? Is there significant throughput difference across different

pairs of ISPs? To answer these questions, we again conduct Kruskal-Wallis ANOVA tests

to various throughput sets categorized based on contingent ISPs of the flows. If 3 or more

throughput sets are compared in one test and significant difference is reported, we further

perform the multiple comparison test (or procedure) [25, 36] to investigate the difference

between each pair of sets. The representative tests and their results are given in Table

8.2. To conserve space, we use the following abbreviations for ISPs: TC (Telecom), NC

(Netcom), UC (Unicom), TT (Tietong), Edu (Education Network).

Again, taking 0.05 as the p-value threshold to determine if we should reject the

null hypothesis, our discoveries from the ANOVA are the following. First, inter-ISP

throughputs are not necessarily smaller than their intra-ISP counterparts. For the two

largest China ISPs, Netcom and Telecom, the throughputs of their inbound flows are

generally smaller than those of their internal flows. Throughputs are especially small

between the two ISPs themselves. For every other ISP, there is no significant throughput

difference among the internal flows and inbound flows. This validates the fact that there

is a stringent bandwidth constraint between Netcom and Telecom, as two major ISP

competitors in China, while no such caps exist across the other small ISPs and between

those two and the small ISPs. Second, throughput asymmetry is exhibited from one

direction to the other across the two largest ISPs, as well as between them and the other

ISPs. The observation that throughput from large ISPs to small ISPs are smaller than

those in the other direction may reveal possible bandwidth caps placed by large ISPs on

such relay traffic.

8.1. THROUGHPUT DISTRIBUTIONS 171

Table 8.2: Kruskal-Wallis ANOVA for throughputs across different ISPs at 9pm, Dec.
18, 2006

Null Hypothesis Throughput Sets p-value Multiple Comparison
Test Result

Throughput sets
within an ISP and
from different ISPs
to this ISP have the
same distribution

(1) TC→TC, NC→TC,
UC→TC, TT→TC,
EDU→TC

0 ThroughputTC→TC ≈
ThroughputUC→TC ≈
ThroughputEDU→TC >
ThroughputTT→TC >
ThroughputNC→TC

(2) NC→NC, TC→NC,
UC→NC, TT→NC,
EDU→NC

0 ThroughputNC→NC ≈
ThroughputUC→NC ≈
ThroughputTT→NC >
ThroughputEDU→NC ≈
ThroughputTC→NC

(3) UC→UC, TC→UC,
NC→UC, TT→UC,
EDU→UC

0.062

(4) TT→TT, TC→TT,
NC→TT, UC→TT,
EDU→TT

0.081

Throughput set from
ISP1 to ISP2 and

(1) TC→NC, NC→TC 0.032 ThroughputTC→NC >
ThroughputNC→TC

throughput set from
ISP2 to ISP1 have

(2) TC→UC, UC→TC 0.023 ThroughputUC→TC >
ThroughputTC→UC

the same distribution (3) NC→TT, TT→NC 0.029 ThroughputTT→NC >
ThroughputNC→TT

(4) UC→TT, TT→UC 0.396
(5) EDU→UC, UC→EDU 0.153

8.1. THROUGHPUT DISTRIBUTIONS 172

10
0

10
1

10
2

10
3

10
4

10
50

0.01

0.02

0.03

0.04

Throughput (KBps)

P
er

ce
nt

ag
e

of
 th

ro
ug

hp
ut Intra−ISP Intra−area

 Intra−ISP Inter−area
 Inter−ISP Intra−area
 Inter−ISP Inter−area

Figure 8.4: Intra/inter area throughput distribution at 9pm, Dec. 18, 2006.

8.1.3 Intra/inter area throughput distribution

To characterize the P2P streaming flow at finer granularity below the ISP level, we next

compare throughput distributions in the cases that the sender and receiver are located

within or not within the same geographic area (intra-area vs. inter-area). Here, the peers

are in the same area if they are in the same province of China. As we have concluded

that ISP memberships of the peers may significantly affect the inter-peer bandwidth,

we investigate four cases, as shown in Fig. 8.4. When ISP memberships are fixed, we

observe no significant difference between the distributions of intra-area throughputs and

inter-area throughputs; in either area case, intra-ISP throughputs are always larger than

inter-ISP throughputs. To validate these observations, we again perform ANOVA to test

the difference between the intra-area throughput set and inter-area throughput set for

each specific ISP pair, and the difference among throughput sets from different ISPs to

one ISP in both the intra-area and inter-area cases. The representative tests and their

results are given in Table 8.3.

Comparing the p-values with threshold 0.05, we first find that, in both cases that

the sender and receiver do and do not belong to the same ISP, there does not exist a

8.1. THROUGHPUT DISTRIBUTIONS 173

Table 8.3: Kruskal-Wallis ANOVA for inter/intra area throughputs between different
ISPs at 9pm, Dec. 18, 2006

Null Hypothesis Throughput Sets p-value
Inside the same ISP, (1) intra-TC: intra-area set v.s. inter-area set 0.2396
intra-area throughput set and (2) intra-NC: intra-area set v.s. inter-area set 0.0701
inter-area throughput set (3) intra-TT: intra-area set v.s. inter-area set 0.6228
have the same distribution (4) intra-UC: intra-area set v.s. inter-area set 0.5751
Across two different ISPs, (1) TC→NC: intra-area set v.s. inter-area set 0.117
intra-area throughput set and (2) NC→TC: intra-area set v.s. inter-area set 0.179
inter-area throughput set (3) NC→TT: intra-area set v.s. inter-area set 0.3105
have the same distribution (4) UC→TT: intra-area set v.s. inter-area set 0.4575
Inside the same area, through-
put sets within one ISP

(1) TC→TC, NC→TC, UC→TC, TT→TC,
EDU→TC

0.0015

and from different ISPs to this
ISP have the same

(2) NC→NC, TC→NC, UC→NC, TT→NC,
EDU→NC

0.0448

distribution (3) UC→UC, TC→UC, NC→UC, TT→UC,
EDU→UC

0.5846

(4) TT→TT, TC→TT, NC→TT, UC→TT,
EDU→TT

0.5511

Across two different areas,
throughput sets within one

(1) TC→TC, NC→TC, UC→TC, TT→TC,
EDU→TC

0

ISP and from different ISPs to
this ISP have the same

(2) NC→NC, TC→NC, UC→NC, TT→NC,
EDU→NC

0

distribution (3) UC→UC, TC→UC, NC→UC, TT→UC,
EDU→UC

0.052

(4) TT→TT, TC→TT, NC→TT, UC→TT,
EDU→TT

0.2929

8.1. THROUGHPUT DISTRIBUTIONS 174

significant throughput difference when the sender and receiver are further in or not in the

same area (province). For the two nation-wide ISPs, Telecom and Netcom, considering

the fact that they are organized on the provincial basis, our discovery shows that within

each of them, the inter-province bandwidth constraints do not have apparent negative

impact on inter-province P2P flow throughputs. In addition, across the two ISPs, a same

provincial locality of two peers does not help in improving the inter-peer bandwidth. This

can be explained by the facts that the two ISPs have only 4-6 fixed peering points across

China, and even if two peers are in the same province, the underlying links in between

them may well go via a peering point that is thousands of kilometers away. Second, in

both cases that the sender and receiver are in and not in the same area (province), the

comparisons of throughputs from different ISPs (including itself) to the same ISP exhibit

similar results as those we have shown in Table 8.2. While area information is included

in the comparisons in Table 8.3 but not in Table 8.2, they both show that, for large ISPs,

there exist differences between their internal throughputs and those from other ISPs to

them; for small ISPs, no difference is identified among the different throughput sets.

All these results lead to the conclusion that ISP membership has more significant im-

pact on inter-peer bandwidths, as compared to geographic locations. In what follows, we

mainly focus on ISP memberships when we discuss deciding factors that affect bandwidth

availability in the middle of a P2P link.

8.1.4 Throughput distribution for different peer types

To discover the impact of peer types (i.e., peer last-mile bandwidths) on inter-peer band-

width, we further categorize intra-ISP and inter-ISP flows based on types of their incident

8.1. THROUGHPUT DISTRIBUTIONS 175

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Throughput (KBps)

C
D

F

 Ethernet−>Ethernet

 Ethernet−>DSL

 DSL−>Ethernet

 DSL−>DSL

(A) Intra-ISP

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Throughput (KBps)

C
D

F

 Ethernet−>Ethernet

 Ethernet−>DSL

 DSL−>Ethernet

 DSL−>DSL

(B) Inter-ISP

Figure 8.5: Throughput CDF for different peer types at 9pm, Dec. 18, 2006.

peers, and plot the CDF of throughput in each category in Fig. 8.5. The plots and accom-

panying ANOVA tests exhibit that: throughputs are significantly larger when the sender

is an Ethernet peer, in both the intra-ISP and inter-ISP cases; for the same sender type,

flows with Ethernet receivers achieve higher throughput in most cases.

The above results reveal a coarse positive correlation between inter-peer bandwidth

and the last-mile bandwidths at the peers. It inspires us to further consider the following

questions: Is the peer last-mile download/upload capacity the key factor that decides

inter-peer bandwidth, both when the peers are in the same ISP and when they are across

any pair of ISPs? Or is inter-ISP peering the most important factor that affects through-

put between some ISPs? In the following section, we seek to answer these questions with

regression modeling of the throughputs.

8.2. THROUGHPUT REGRESSION: FOCUSING ON ONE SNAPSHOT 176

8.2 Throughput Regression: Focusing on One Snap-

shot

Focusing on one representative regular snapshot of the UUSee streaming network at

9pm December 18 2006, we investigate the impact of the following factors on inter-

peer bandwidths: (1) ISP memberships of the peers, and (2) end-host characteristics,

including upload/download capacities and the number of contingent sending/receiving

TCP connections at the sender/receiver. We divide our discussions into two cases, intra-

ISP case and inter-ISP case, and perform regression analysis on TCP throughputs and

the respective end-host characteristics in each case.

8.2.1 Intra-ISP throughput regression

With the example of China Netcom, we check the correlation between flow throughputs

on its internal P2P links and various end-host characteristics at the peers. To eliminate

outliers and better capture the correlation, we divide the values of each capacity factor

into small bins with a width of 5KBps, and plot the median throughput of flows falling

into each bin at different levels of capacities in Fig. 8.6. The calculated Pearson product-

moment correlation coefficient between throughput and a respective factor, rho, is marked

at the upper right corner in each plot.

Fig. 8.6(A) exhibits that no significant linear correlation exists between throughput

and the upload capacity at the sender peer, especially when the latter is large, i.e.,

the Ethernet peer case. On the other hand, throughput and download capacity at the

receiver peer are better correlated, as shown in Fig. 8.6(B). Nevertheless, there exist many

cases in which the throughput is small when the capacity is large. Such unsatisfactory

8.2. THROUGHPUT REGRESSION: FOCUSING ON ONE SNAPSHOT 177

2000 4000 6000 8000 10000
0

1000

2000

3000

Sender upload capacity (KBps)M
e

d
ia

n
 t
h

ro
u

g
h

p
u

t
(K

B
p

s
)

 rho=0.204

2000 4000 6000 8000 10000
0

5000

10000

Receiver download capacity (KBps)M
e

d
ia

n
 t
h

ro
u

g
h

p
u

t
(K

B
p

s
)

 rho=0.734

2000 4000 6000 8000 10000
0

10

20

30

40

50

Sender upload capacity (KBps)

#
 o

f
c
o

n
c
u

rr
e

n
t
u

p
lo

a
d

 f
lo

w
s

 rho=0.441

2000 4000 6000 8000 10000
0

1000

2000

3000

Per-flow sender capacity (KBps)M
e

d
ia

n
 t
h

ro
u

g
h

p
u

t
(K

B
p

s
)

 rho=0.326

2000 4000 6000 8000 10000
0

5000

10000

Per-flow receiver capacity (KBps)M
e

d
ia

n
 t
h

ro
u

g
h

p
u

t
(K

B
p

s
)

 rho=0.794

(A) (B)

(C) (D)

(E) (F)

0 0

0

00

2000 4000 6000 8000 10000
0

10

20

30

40

50

Receiver download capacity (KBps)

#
 o

f
c
o

n
c
u

rr
e

n
t
d

o
w

n
lo

a
d

 f
lo

w
s

 rho=−0.112

0

Figure 8.6: Correlation of throughput with end-host characteristics for intra-Netcom
flows at 9pm, Dec. 18, 2006.

correlations inspire us to consider: Is the number of contingent upload/download flows

high when the upload/download capacity is large, such that the bandwidth share for

each flow is small? To answer this question, Fig. 8.6(C) shows a positive correlation

between the upload capacity at the senders and the number of their concurrent upload

flows, while no significant correlation is exhibited between receiver download capacities

and their numbers of concurrent download flows in Fig. 8.6(D). The positive correlation

in the former case can be explained by the UUSee streaming protocol design, which

8.2. THROUGHPUT REGRESSION: FOCUSING ON ONE SNAPSHOT 178

maximally utilizes upload capacity at each peer to serve more neighbors.

Naturally, we then investigate the correlation between throughput and per-flow up-

load/download bandwidth availability at the sender/receiver, defined as:

per-flow sender capacity =
sender upload capacity

no. of concurrent upload flows
,

per-flow receiver capacity =
receiver download capacity

no. of concurrent download flows
.

Fig. 8.6(E) and (F) exhibit that these two characteristics constitute better explanatory

variables towards the throughput regression.

When we take the minimum of per-flow sender capacity and per-flow receiver capacity,

we obtain the best deciding factor of throughput, referred to as per-flow end capacity

(PEC):

PEC = min(per-flow sender capacity, per-flow receiver capacity).

Its excellent positive correlation with throughput, with a correlation coefficient of 0.81,

is plotted in Fig. 8.7. We next fit PEC and throughput into a linear regression model:

Throughput = β0 + β1 × PEC + ǫ, (8.1)

where PEC is the explanatory variable, Throughput is the response variable, y-intercept

β0 and slope β1 are regression coefficients to be estimated, and ǫ denotes the error term.

The basic assumption for least-squares based linear regression analysis is that the re-

sponse variable is normally distributed. However, as we have shown in Sec. 8.1, through-

puts follow approximate log-normal distributions, in which the few large tail values tend

to have a strong influence on the regression model. Therefore, we employ robust linear

8.2. THROUGHPUT REGRESSION: FOCUSING ON ONE SNAPSHOT 179

2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Per−flow end capacity (KBps)

M
e

d
ia

n
 t

h
ro

u
g

h
p

u
t

(K
B

p
s
) rho=0.810

0

Figure 8.7: Correlation of throughput with per-flow end capacity for intra-Netcom flows
at 9pm, Dec. 18, 2006.

regression [65, 72], which uses an iteratively re-weighted least-squares algorithm and is

less sensitive to outliers by giving them lower weights. The derived regression statistics

are given in Table 8.4.

Table 8.4: Robust linear regression statistics for intra-Netcom throughputs at 9pm, Dec.
18, 2006

β0 (y-intercept) β1 (slope) p-value for testing
significance of β0

p-value for testing
significance of β1

20.4228 1.1499 0 0

The two p-values are results from tests of the following two null hypotheses, respec-

tively: (1) the y-intercept is “0” (i.e., the y-intercept is non-significant), and (2) the

slope is “0” (i.e., the slope is non-significant). As a 0 p-value rejects a corresponding

null hypothesis and confirms the significance of regression, the statistics in Table 8.4

further establish the linear correlation between PEC and throughput on intra-ISP flows.

In addition, theoretically we expect the regression line to pass through the origin and the

slope to be approximately at 45◦, and these are validated by the small y-intercept value

(as compared to peer last-mile capacities) and near-1 slope value.

8.2. THROUGHPUT REGRESSION: FOCUSING ON ONE SNAPSHOT 180

0 1000 2000 3000 4000
0

50

100

150

200

250

300

Per-flow end capacity (KBps)

M
e

d
ia

n
 t

h
ro

u
g

h
p

u
t

(K
B

p
s
) China Netcom −> China Telecom

(A)

0 200 400 600
0

200

400

600

800

1000

1200

Per-flow end capacity (KBps)

M
e

d
ia

n
 t

h
ro

u
g

h
p

u
t

(K
B

p
s
) China Netcom −> China Tietong

(B)

Figure 8.8: Correlation of throughput with per-flow end capacity for inter-ISP flows at
9pm, Dec. 18, 2006.

We have conducted the same regression analysis to throughputs within other ISPs and

observed similar correlations. Therefore, we may conclude that, within each ISP, inter-

peer bandwidth bottleneck mainly lies at the end hosts, decided by peer last-mile capaci-

ties and their concurrent upload/download load: if the capacity bottleneck occurs at the

upstream peer, i.e.,
sender upload capacity

no. of concurrent upload flows
<

receiver download capacity
no. of concurrent download flows

,

the throughput is limited by the per-flow sender capacity; otherwise, the throughput is

decided by the per-flow receiver capacity.

8.2.2 Inter-ISP throughput regression

When it comes to the inter-ISP case, we are interested to explore whether per-flow end

capacity still poses a significant impact on inter-peer bandwidth, or it is shadowed by

the inter-ISP peering bandwidth bottlenecks. We find the answer is different towards

different ISP pairs.

Fig. 8.8(A) exhibits that no significant correlation exists between PEC and through-

put for flows from Netcom to Telecom. This is further confirmed by its robust regression

analysis statistics in Table 8.5: a p-value of 0.6932 reveals the non-significance of the slope

8.2. THROUGHPUT REGRESSION: FOCUSING ON ONE SNAPSHOT 181

at the value of 0.0005. Nevertheless, when we investigate streaming flows from Netcom

to Tietong, Fig. 8.8(B) shows a different result: throughput is linearly correlated with

PEC with a slope of 0.4355, and a corresponding p-value of 0 indicates its significance.

The regression statistics for representative flow groups between other ISPs are also listed

in Table 8.5.

Table 8.5: Robust linear regression statistics for inter-ISP throughputs at 9pm, Dec. 18,
2006

Throughput
Set

β0 (y-intercept) β1 (slope) p-value for testing
significance of β0

p-value for testing
significance of β1

NC→TC 9.9526 0.0005 0 0.6932
TC→NC 20.4998 −0.0023 0 0.6585
NC→TT 30.5784 0.4355 0 0
TT→NC 39.094 0.316 0 0
TC→TT 24.1774 0.1109 0 0.0480
TT→TC 27.3144 0.5421 0 0
UC→Edu 20.2793 0.7098 0 0
Edu→UC 25.0535 0.4576 0 0

The statistics in Table 8.5 exhibit that: between the two largest ISPs, Netcom and

Telecom, throughput is not contingent upon PEC, but limited by their peering bandwidth

bottleneck; across other small ISPs and between other ISPs and the two, flow throughput

is more or less decided by the peer last-mile bandwidth availability. In addition, in the

latter cases, the regression slopes are generally smaller than those obtained for intra-ISP

flows, revealing impact of inter-ISP peering. The unexpected discovery, that no apparent

bandwidth limitations exist between the large and small ISPs, is quite interesting, espe-

cially if we consider the fact that large ISPs levy expensive bandwidth charges on small

ones for relaying their traffic in both directions. This may be explained by that small

8.3. THROUGHPUT EVOLUTION: TIME SERIES CHARACTERIZATION 182

regional ISPs have to rely on the large nation-wide ISPs to deliver both their outbound

and inbound traffic to and from the Internet.

Before we conclude this section, we add that besides regression study on the above

snapshot on a regular day, we have also conducted regression analysis on snapshots during

the Chinese New Year flash crowd scenario, and have observed similar correlations.

8.3 Throughput Evolution: Time Series Characteri-

zation

With the one-time regression model derived, we now switch our focus to evolutionary

characteristics of inter-peer bandwidth over time. Such an evolution of bandwidth is

due to (1) the variation of the number of concurrent upload/download flows at the

sender/receiver; and (2) the dynamics of cross traffic over the P2P links. Here, we are

more concerned about the inter-peer bandwidth evolution caused by the latter. Based

on the regression model we summarized in Sec. 8.2, we are able to separate effects of

the two causes, as the variation of coefficients in the linear models reflects the evolution

of bandwidth availability over the P2P links when the per-flow end capacity is kept the

same.

8.3.1 Intra-ISP throughput evolution

We now inspect the evolution of bandwidth availability over the internal P2P links of

each ISP, by first studying the evolution of coefficients in the linear models, summarized

with each of the continuous-time snapshots. Fig. 8.9 plots the evolution of regression

coefficients during the week of December 17 — 23, 2006, again with the example of

8.3. THROUGHPUT EVOLUTION: TIME SERIES CHARACTERIZATION 183

0.5

1

1.5

2

2.5

3

Date (midnight)

S
lo

p
e

0

(A)

Sun Mon Tue Wed Thu Fri Sat

20

40

60

80

100

120

Date (midnight)

Y
-

in
te

rc
e
p
t
(K

B
p
s
)

(B)

Sun Mon Tue Wed Thu Fri Sat0

Figure 8.9: Evolution of regression coefficients for intra-Netcom flows in the week of Dec.
17 — 23, 2006.

intra-Netcom flows.

Fig. 8.9 exhibits an apparent daily evolutionary pattern for y-intercept, whose value

gradually increases at early hours of a day, peaks around 9− 10 am, and then drops and

reaches the lowest around 10−11 pm. The value of slope, although not as apparent, also

shows a similar evolutionary pattern. Not shown in the figures is that p-values for testing

the significance of slopes and y-intercepts are always asymptotically zero, exhibiting the

significance of throughput regression for inter-Netcom flows at any time.

Though illustrated with the representative week only, the daily evolutionary pattern

of regression coefficients — thus bandwidth availability on intra-Netcom P2P links —

generally exists during the entire period of the traces. To validate this, we plot in Fig. 8.10

the evolution of mean throughput of intra-Netcom flows over more than 10 weeks of time,

from December 10, 2006 to February 21, 2007. To eliminate the effect of varying numbers

of concurrent flows at the peers, the mean throughput at each time is calculated as the

average of those flow throughputs with PEC in the range of 50 − 100 KBps at that

time. We observe a daily evolutionary pattern throughout the period, although it is

more apparent on some days than others. Daily pattern aside, we also observe a few

8.3. THROUGHPUT EVOLUTION: TIME SERIES CHARACTERIZATION 184

12/16/06 12/23/06 12/30/06 1/06/07 1/13/07 1/20/07 1/27/07 2/03/07 2/10/07 2/17/07
0

100

1000

Date (midnight)

T
h
ro

u
g
h
p
u
t
(K

B
p
s
)

12/09/06

(2)(1)

500

Figure 8.10: Mean throughput evolution for intra-Netcom flows: (1) Taiwan earthquake,
(2) Chinese New Year Eve.

abrupt changes of the mean throughput level during this period: one around December

26, 2006, the date when an earthquake occurred in the Strait southwest of Taiwan, and

another around January 8th, 2007. As the Taiwan earthquake damaged several undersea

cables and disrupted some major overseas network connections of China, we conjecture

that the first abrupt downgrade of bandwidth is caused by re-routing of traffic, which was

originally directed towards overseas servers, to local servers, and the resulting tightness

of bandwidths on local connections. We are not quite sure about the reason for the

increase of throughput level around mid-January, while we conjecture that it might be

caused by ISP upgrades, or measures taken by the ISP to counter the impact of the

earlier earthquake. In addition, during the flash crowd scenario on Chinese New Year

Eve, we observe no significant throughput downgrade.

Similar observations have been made during investigations of throughput evolution

inside other ISPs. All these reveal that although the level of mean throughput may shift,

the bandwidth availability on internal P2P links of an ISP statistically evolves following

a daily pattern, which persists throughout the trace period.

8.3. THROUGHPUT EVOLUTION: TIME SERIES CHARACTERIZATION 185

1

2

3
S

lo
p
e

China Netcom−>China Telecom

0
0.05

1

2

Date (midnight)

p
−

v
a
lu

e

(A)

Sun Mon Tue Wed Thu Fri Sat

Sun Mon Tue Wed Thu Fri Sat0

0

20

40

60

80

100

120

Y
-

in
te

rc
e
p
t
(K

B
p
s
)

China Netcom−>China Telecom

Date (midnight)
(B)

Sun Mon Tue Wed Thu Fri Sat

Figure 8.11: Evolution of regression coefficients for Netcom→Telecom flows in the week
of Dec. 17 — 23, 2006.

8.3.2 Inter-ISP throughput evolution

In the inter-ISP case, we seek to answer the following questions: First, between Netcom

and Telecom, does their inter-ISP peering always limit their inter-ISP P2P flow through-

put? If so, is the bottleneck bandwidth availability varying at different times? Second,

between the other ISP pairs, how does the bandwidth availability evolve over their inter-

ISP links, and does per-flow end capacity always critically decide the throughput at any

time?

With the example of the representative week, Fig. 8.11(A) reveals that, at most times

of a day between Netcom and Telecom, P2P flow throughput is capped and is not cor-

related with per-flow end capacity, with a slope of approximately 0 and a corresponding

p-value above 0.05. However, there does exist a certain period of time each day when

throughputs are significantly correlated with PEC, usually in the early mornings, with

slope values around 1 and corresponding p-values below 0.05. In addition, Fig. 8.11(B)

exhibits daily evolutionary pattern for the y-intercept, which peaks at the time when the

slope is well above 0 on a daily basis.

Based on the estimation algorithm of regression coefficients, we note that when the

8.3. THROUGHPUT EVOLUTION: TIME SERIES CHARACTERIZATION 186

0
1

3

5
S

lo
p
e

China Netcom−>China Tietong

0

1

2

p
−

v
a
lu

e

Date (midnight)
(A)

Sun Mon Tue Wed Thu Fri Sat
0.05

Sun Mon Tue Wed Thu Fri Sat

0

20

40

60

80

100

120

Y
-

in
te

rc
e
p
t
(K

B
p
s
)

China Netcom−>China Tietong

Date (midnight)
(B)

Sun Mon Tue Wed Thu Fri Sat

Figure 8.12: Evolution of regression coefficients for Netcom→Tietong flows in the week
of Dec. 17 — 23, 2006.

slope is non-significant, the y-intercept represents the mean throughput of the flows

between the two ISPs; when the slope is significant, the throughput is decided by peer

last-mile bandwidth availability, and does not show apparent inter-ISP peering caps.

Therefore, the above observations reveal that: between the two largest ISPs, the limited

bandwidth availability gradually improves at early times of a day, peaks in the morning

when peer last-mile bandwidths come into play to decide the throughput, then drops and

represents the lowest values in the evening.

Next, we inspect the throughput evolution between large ISPs and small ISPs. Fig. 8.12(A)

exhibits that, for most of the time between Netcom and Tietong, the inter-ISP through-

puts are significantly correlated with PEC, with non-zero slopes and near-zero p-values.

Only occasionally at certain moments, there are observed drops of bandwidth availability,

when the inter-ISP throughputs are limited regardless of the peer last-mile bandwidth

availability. There also exists a daily evolutionary pattern for both the slope and y-

intercept, similar to those in the previous cases, although not as apparent.

To validate the above observations in a longer period of time, we again plot the

mean throughput evolution for Netcom→Telecom flows with PEC in the range of 10−60

8.3. THROUGHPUT EVOLUTION: TIME SERIES CHARACTERIZATION 187

0
50

800

Date (midnight)

T
h
ro

u
g
h
p
u
t
(K

B
p
s
)

12/16/06 12/23/06 12/30/06 1/06/07 1/13/07 1/20/07 1/27/07 2/03/07 2/10/07 2/17/0712/09/06

(2)(1)
400

Figure 8.13: Mean throughput evolution for Netcom→Telecom flows: (1) Taiwan earth-
quake, (2) Chinese New Year Eve.

0
100

800

Date (midnight)

T
h
ro

u
g
h
p
u
t
(K

B
p
s
)

12/16/06 12/23/06 12/30/06 1/06/07 1/13/07 1/20/07 1/27/07 2/03/07 2/10/07 2/17/0712/09/06

(2)
(1)400

Figure 8.14: Mean throughput evolution for Netcom→Tietong flows: (1) Taiwan earth-
quake, (2) Chinese New Year Eve.

KBps in Fig. 8.13, and that for Netcom→Tietong flows with PEC in the range of 50−100

KBps in Fig. 8.14. We also observe the rise of throughput levels in mid-January, but no

apparent bandwidth downgrades around the earthquake scenario or flash crowd scenario

on Chinese New Year Eve. Nevertheless, the daily evolutionary pattern of throughput

persists at all times.

Similar observations have been made in investigations for other ISP pairs. Besides

the daily throughput pattern, these observations also reflect that, no apparent inter-

ISP bandwidth bottlenecks exist between a large ISP and a small one, and across small

ISPs at most times. This again confirms that small ISPs do not usually impose low

bandwidth caps at their peering point with large ISPs, in order to facilitate their traffic

in both directions.

8.4. THROUGHPUT EXPECTATION INDEX 188

4 8 12 16 20 24
0

50

100

t (hour)
In

te
rc

e
p

t(
t)

 (
K

B
p

s
)

4 8 12 16 20 24
0

1

2

3

t (hour)

S
lo

p
e

(t
)

0 0

Figure 8.15: Daily intercept/slope functions for intra-Telecom flows.

8.4 Throughput Expectation Index

The throughput characteristics we have derived in previous sections bring useful insights

towards the improvement of current P2P streaming protocols. As an important appli-

cation, we propose a Throughput Expectation Index (TEI), to facilitate the selection of

high-bandwidth serving peers.

For each pair of ISPs, as there exists a daily evolutionary pattern for each of the

regression coefficients in its throughput model, we summarize a daily intercept function

(y-intercept) and a daily slope function, β0(t) and β1(t), respectively, where t represents

different times in a day, by taking the average of coefficient values at the same time on

different days. For example, Fig. 8.15 depicts the daily intercept and slope functions for

intra-Telecom flows, summarized by averaging coefficients at the same hour during the

week of December 17 — 23, 2006. We then define the following throughput expectation

index:

TEI = β0(t) + β1(t)× PEC(t). (8.2)

TEI approximates the achievable inter-peer bandwidth between two peers across two

ISPs (including two identical ISPs) at a specified time of a day. The computation of TEI

not only captures all the deciding factors of inter-peer bandwidth — upload/download

capacities at the upstream/downstream peer, concurrent upload/download load at the

8.4. THROUGHPUT EXPECTATION INDEX 189

upstream/downstream peer, and the ISPs both peers belong to — but also considers

the temporal evolution of bandwidth availability at different times of a day. Therefore,

it can be effectively utilized in peer selection at each peer, by ranking the candidate

serving peers based on the computed TEI towards each of them. In more details, the

TEI-assisted peer selection proceeds as follows:

The P2P streaming service provider derives the intercept and slope functions for each

pair of ISPs, using the collected peer reports over a certain number of days (e.g., one

week). Upon bootstrapping a new peer, the intercept and slope functions of relevant

ISP pairs, from each of the other ISPs to the ISP the peer belongs to, are loaded onto

the peer. During the peer selection process, the peer obtains the following information

from each of its candidate serving peers: IP address, upload capacity and the number of

current upload flows. Then the peer calculates the per-flow end capacity of the potential

P2P link from the candidate to itself, decides the intercept and slope functions to use

(from its pre-loaded functions) by mapping the IP addresses of the candidate and itself

to ISPs, and computes the TEI towards this candidate with y-intercept and slope values

at the current moment. The peer ranks all candidate peers based on their derived TEIs.

Then when the peer is deciding which media block to download from which candidate

peer based on the exchanged buffer maps, it maximally retrieves available media blocks

from the peers with the highest ranks.

Similar usage of TEI can be applied at a tracking server to select the best serving

peers for a requesting peer. Note that such peer selections are performed without any

intrusive measurements. Only a small number of intercept and slope functions need to

be pre-loaded onto the peer, and a limited amount of information needs to be acquired

from neighboring peers.

8.4. THROUGHPUT EXPECTATION INDEX 190

We further emphasize that in TEI-assisted peer selection, it is the relative ranks of

peers computed by TEIs that are being used, instead of the absolute throughput values

estimated with TEIs. This is because throughput levels may vary from day to day, but

the daily throughput pattern persists for each ISP pair, and therefore the relative rank of

peers may persist as well at a specified time on different days. This allows us to use the

summarized intercept/slope functions and PEC values of end peers at a specified time

to calculate the relative throughput ranks at the time.

To investigate the accuracy of the proposed TEI, we conduct a number of cross-

validation experiments, by using intercept/slope functions summarized from the repre-

sentative week (December 17 — 23, 2006) in TEI-assisted peer selection throughout the

trace period. At each peer that appeared in the traces, we calculate the TEI towards

each of its sending partners, and then compare their ranks computed by the TEIs with

their true ranks based on the actual TCP throughput over the links. The experiments

are divided into two parts.

First, we investigate the true rank of the best sending peer selected with TEI at each

peer. Focusing on one snapshot at 9pm, December 18, 2006, Fig. 8.16(A) shows the

distribution of this true rank at all the existing peers. At 70% of the peers, the TEI

best peer coincides with the actual best sending peer with the largest throughput; at

the majority of all peers, the TEI best peer ranks among top 3. Fig. 8.16(B) plots the

evolution of the percentages of peers, at which the TEI best peer has a true rank no larger

than 2 or 3, over the 10-week period of time. We observe that the former case achieves a

peer percentage higher than 80% at all times, and the latter is consistently around 93%.

During the throughput level shift around the earthquake scenario and the flash crowd

scenario near Chinese New Year, the percentages represent larger fluctuations, but are

8.4. THROUGHPUT EXPECTATION INDEX 191

1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

True rank

P
e

rc
e

n
ta

g
e

 o
f
p

e
e

r 9pm 12/18/06

(A)

0.7

0.8

0.9

1

P
e

rc
e

n
ta

g
e

 o
f
p

e
e

r

 True rank <= 2

 True rank <= 3

Date (midnight)
12/16/06 12/23/06 12/30/06 1/06/07 1/13/07 1/20/07 1/27/07 2/03/07 2/10/07 2/17/0712/09/06

(B)

(2)(1)

Figure 8.16: True rank distribution of the best sending peer selected with TEI. (1) Taiwan
earthquake, (2) Chinese New Year Eve.

0 20 40 60 80 100120140160
0

0.2

0.4

0.6

0.8

1

Throughput difference (KBps)

P
e

rc
e

n
ta

g
e

 o
f
p

e
e

r 9pm 12/18/06

(A)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

 o
f
p

e
e

r

 Throughput difference < 10KBps

 Throughput difference < 20KBps

Date (midnight)
12/16/06 12/23/06 12/30/06 1/06/07 1/13/07 1/20/07 1/27/07 2/03/07 2/10/07 2/17/0712/09/06

(B)

(2)

(1)

Figure 8.17: Distribution of throughput difference between flows from 5 top peers selected
with TEI and flows from true top 5 peers. (1) Taiwan earthquake, (2) Chinese New Year
Eve.

nevertheless quite satisfactory as well.

Next, we compare the sum of throughputs on P2P links from two peer groups at

each receiving peer: (1) the 5 top sending peers selected with TEI, and (2) the true

top 5 peers with largest throughputs. Fig. 8.17(A) shows the distribution of throughput

difference between the two groups, at peers that existed at 9pm, December 18, 2006. The

TEI selection achieves less than 10 KBps throughput difference at more than 70% peers.

Furthermore, the difference is shown to be larger around the time of the two special

scenarios in Fig. 8.17(B), and nevertheless, it is minor at most peers at most regular

times, i.e., 75% peers are subjected to a difference less than 20 KBps.

8.5. SUMMARY 192

The above results exhibit that, while we are using intercept/slope functions summa-

rized from only one week, the peer ranking mechanism of TEI works quite well throughout

the trace period. This reflects the practical usefulness of TEI in capturing the persistent

relative ranks of inter-peer bandwidths at each specific time on different days, without

the need of intensive training using a large amount of historical data. A more elaborate

usage of TEI may involve the retraining of the intercept/slope functions over time at the

P2P streaming service provider, based on feedbacks from the peers about the accuracy

of the current functions in evaluating high-bandwidth peers. As our goal is to show one

effective application of our derived P2P streaming flow characteristics, we choose not to

go into details of such practical protocol design.

8.5 Summary

Our study in this chapter represents the first attempt in the literature to characterize

inter-peer bandwidth availability in modern large-scale P2P streaming networks. With

abundant UUSee traces and using statistical means, we explore the critical factors that

determine such achievable bandwidth, from both the end-host and ISP/area perspectives.

In addition, we also explore the evolution of inter-peer bandwidth over time.

Our original discoveries in this study include: (1) The ISPs that peers belong to are

more correlated to inter-peer bandwidth than their geographic locations; (2) Inter-ISP

peering does not always constitute bandwidth bottlenecks, which is ISP specific; (3)

There exist excellent linear correlations between peer last-mile bandwidth availability

and inter-peer bandwidth within the same ISP, and between a subset of ISPs as well;

(4) The evolution of inter-peer bandwidth between two ISPs exhibits a daily variation

pattern, although the level of throughput values shifts from time to time; (5) During a

8.5. SUMMARY 193

flash crowd scenario, the inter-peer bandwidth characteristics do not represent significant

differences from those at regular times.

We have made use of the above insights in designing a throughput expectation index,

which facilitates a new way of selecting high-bandwidth peers without any active and

intrusive probing.

Chapter 9

Refocusing on Servers

As the essence of P2P streaming is the use of peer upload bandwidth to alleviate the load

on dedicated streaming servers, so far our study, as well as most existing research, has

focused on peer strategies: How should a mesh topology be constructed? What strategies

can be designed to effectively utilize peer bandwidth? How do we select high-bandwidth

peers? Nevertheless, in a practical P2P live streaming application, it is also important to

provision adequate levels of stable upload capacities at the dedicated streaming servers,

to guarantee the streaming quality in the streaming channels in case of peer instability

and time-varying peer upload bandwidth availability.

In this chapter, we shift our focus to the streaming servers. Such refocusing on servers

is motivated by our detailed analysis of 7 months (September 2006 - March 2007) and 400

GB worth of real-world traces from hundreds of streaming channels in UUSee. As all other

state-of-the-art live streaming systems, in order to maintain a satisfactory and sustained

streaming quality, UUSee has so far resorted to the practice of over-provisioning server

capacities to satisfy the streaming demand from peers in each of its channels. Contrary

to common belief, we have observed that available capacities on streaming servers are

194

CHAPTER 9. REFOCUSING ON SERVERS 195

not able to keep up with the increasing demand from hundreds of channels. Motivated

by this observation, we advocate to explicitly allocate limited server capacities to each

of the channels, in order to maximally utilize dedicated servers.

While it is certainly a challenge to determine how much bandwidth to provision on

streaming servers to accommodate the streaming demand of all concurrent channels, the

challenge is more daunting when we further consider the conflict of interest between P2P

solution providers and ISPs. P2P applications have significantly increased the volume

of inter-ISP traffic, which in some cases leads to ISP filtering. From our measurements,

we have also observed a significant increasing trend of the volume of inter-ISP traffic in

UUSee over time. Therefore, we seek to design an effective provisioning algorithm on

servers with the awareness of ISP boundaries to minimize inter-ISP traffic.

Our proposal is Ration, an online server capacity provisioning algorithm to be carried

out on a per-ISP basis. Ration dynamically computes the minimal amount of server

capacity to be provisioned to each channel inside the ISP, in order to guarantee a desired

level of streaming quality for each channel. With the analysis of our real-world traces, we

have observed that the number of peers and their contributed bandwidth in each channel

are dynamically varying over time, and significantly affect the required bandwidth from

servers. Ration is designed to actively predict the bandwidth demand in each channel

in an ISP with time series forecasting and dynamic regression techniques, utilizing the

number of active peers, the streaming quality, and the server bandwidth usage within a

limited window of recent history. It then proactively allocates server bandwidth to each

channel, respecting the predicted demand and priority of channels.

To show the effectiveness of Ration, it has been implemented in streaming servers

serving a mesh-based P2P streaming system. In a cluster of dual-CPU servers, the

9.1. EVIDENCE FROM REAL-WORLD TRACES 196

system emulates real-world P2P streaming by replaying the scenarios captured by traces.

9.1 Evidence from Real-world Traces

Why shall we refocus our attention to dedicated streaming servers in P2P live streaming

systems? Based on our study of 7-month worth of runtime traces from UUSee (400 GB

of traces with more than 300 million unique IP addresses), we have made the following

observations.

9.1.1 Insufficient “supply” of server bandwidth

First, we have observed that the server bandwidth becomes insufficient in the streaming

system, as more channels are added over time. Such insufficiency has gradually affected

the streaming quality, in both popular and less popular channels.

In order to show bandwidth usage over 7 months and at different times of a day within

one figure, we choose to show all our 5-minute measurements on representative dates in

each month. One such date, February 17 2007, is intentionally chosen to coincide with the

Chinese New Year event, with typical flash crowds due to the broadcast of a celebration

show on a number of the channels. Fig. 9.1(A) shows the total server bandwidth usage

on the 150 streaming servers in UUSee network. We may observe that an increasing

amount of server bandwidth has been consumed over time, but stabilizing in January

2007. This rising trend can be explained by the rapidly increasing number of channels

deployed during this period, as shown in Fig. 9.1(B). The interesting phenomenon that

such bandwidth usage has stabilized, even during the Chinese New Year flash crowd,

has led to the conjecture that the total uplink capacity of all servers has been reached.

9.1. EVIDENCE FROM REAL-WORLD TRACES 197

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

0

500

1000

MonthT
o

ta
l n

u
m

b
e

r
o

f
ch

a
n

n
e

ls

 09/06
10/06

11/06
12/06

01/07
02/07

03/079/15/06
10/15/06

11/15/06
0

10

20

30

Date

S
e

rv
e

r
u

p
lo

a
d

 c
a

p
a

ci
ty

 u

sa
g

e
 (

G
b

p
s)

12/15/06
1/15/07

2/17/07
3/15/07

Date

(A) Server capacity usage over time.

(C)The streaming quality of a popular channel.

(B) Number of channels deployed over time.

(D) The streaming quality of a less popular channel.

9/15/06
10/15/06

11/15/06
12/15/06

1/15/07
2/17/07

3/15/07

Date

9/15/06
10/15/06

11/15/06
12/15/06

1/15/07
2/17/07

3/15/07

Figure 9.1: The evolution of server bandwidth, channels, and streaming quality over a
period of 7 months.

The daily variation of server bandwidth usage coincides with the daily pattern of peer

population, which peaks in the evenings.

Our conjecture that server capacities have saturated is confirmed when we investigate

the streaming quality in each channel. The streaming quality in a channel at each time

is evaluated as the percentage of high-quality peers in the channel, where a high-quality

peer has a buffer count of more than 80% of the total size of its playback buffer. Recall

the buffer count at each peer is the number of available blocks in its current playback

buffer, as defined in Sec. 6.1. Representative results with a popular channel (CCTV1,

with more than 10,000 concurrent users) and a less popular channel (CCTV12, with

fewer than 1000 concurrent users) are shown in Fig. 9.1(C) and (D), respectively. The

streaming quality of both channels has been decreasing over time, as server capacities are

saturated. During the Chinese New Year flash crowd, the streaming quality of CCTV1

degraded significantly, due to the lack of bandwidth to serve a flash crowd of users in the

channel.

9.1. EVIDENCE FROM REAL-WORLD TRACES 198

Would it be possible that the lack of peer bandwidth contribution has overwhelmed

the servers? As discussed in Sec. 6.1, the protocol in UUSee uses a number of algorithms

to maximize peer upload bandwidth utilization, which in our opinion represents one of

the state-of-the-art peer strategies in P2P streaming. The following back-of-the-envelope

calculation with data from the traces may be convincing: At one time on October 15,

2006, about 100, 000 peers in the entire network have each achieved a streaming rate

around 400 Kbps, by consuming a bandwidth level of 2 Gbps from the servers. The

upload bandwidth contributed by peers can be computed as 100, 000×400−2, 000, 000 =

38, 000, 000 Kbps, which is 380 Kbps per peer on average. This represents quite an

achievement, as most of the UUSee clientele are ADSL users in China, with a maximum

of 500 Kbps upload capacity.

Indeed, server capacities have increasingly become a bottleneck in real-world P2P live

streaming solutions.

9.1.2 Increasing volume of inter-ISP traffic

The current UUSee protocol is not aware of ISPs. We now investigate the volume of

inter-ISP traffic during the 7-month period, computed as the throughput sum of all links

across ISP boundaries at each time, by mapping IP addresses to the ISPs using the

mapping database from UUSee. Fig. 9.2 reveals that both the inter-ISP peer-to-peer and

server-to-peer traffic have been increasing, quadrupled over the 7-month period, due to

the increased number of channels and peers.

In China, the two nation-wide ISPs, Netcom and Telecom, charge each other based on

the difference of inter-ISP traffic volume in both directions, and regional ISPs are charged

based on traffic to and from the nation-wide ISPs. Both charging mechanisms have made

9.1. EVIDENCE FROM REAL-WORLD TRACES 199

0

40

80

DateO
v
e

ra
ll

in
te

r−
IS

P
 t
ra

ff
ic

 (
G

b
p

s
)

 Peer−to−peer

 Server−to−peer

9/15/06 10/15/0611/15/0612/15/06 1/15/07 2/17/07 3/15/07

Figure 9.2: The volume of inter-ISP traffic increases over time.

it important for ISPs to limit inter-ISP traffic. Considering the large and persistent

bandwidth consumption for live streaming, we believe that P2P streaming systems should

be designed to minimize inter-ISP traffic, which remains one of our objectives in this

chapter.

9.1.3 What is the required server bandwidth for each channel?

To determine the amount of server bandwidth needed for each channel, we wish to ex-

plore the relation among server upload bandwidth, the number of peers, and the achieved

streaming quality in each channel. Fig. 9.3(A) illustrates the evolution of the three

quantities for channel CCTV1 over a period of one week, from February 13 to 19, 2007.

Though there appears to be a positive relation between server bandwidth and the stream-

ing quality, and a negative relation between the peer population and streaming quality,

these relationships are not strong and are far from consistent over time. For example,

Fig. 9.3(B) plots the correlation of the quantities in a period of three days (February

13-15 2007). There does not exist any evident correlation in this period.

Nevertheless, if we focus on a shorter time scale, the correlation becomes more evident.

For example, Fig. 9.3(C)-1 plots the correlation between server upload bandwidth usage

and the streaming quality on February 13, which exhibits a positive square-root relation

9.1. EVIDENCE FROM REAL-WORLD TRACES 200

0
1
2
3

x 10
5

N
u

m
b

e
r

o
f
p

e
e

rs

0
0.4
0.8
1.2

S
e

rv
e

r
u

p
lo

a
d

 b

w
 (

G
b

p
s
)

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A) (B)

0 0.4 0.8 1.2 1.6
0

0.5

1

Server upload capacity usage (Gbps)S
tr

e
a

m
in

g
 q

u
a

lit
y

 2/13−2/15

0 10000 20000 30000 40000
0

0.5

1

Number of peers

S
tr

e
a

m
in

g
 q

u
a

lit
y

 2/13−2/15

0 100000 200000 300000
0

0.5

1

S
tre

am
in

g
qu

al
ity

0 10000 20000 30000 40000
0

0.5

1

Number of peersS
tre

am
in

g
qu

al
ity

0 0.4 0.8 1.2
0

0.5

1

Server upload capacity usage (Gbps)S
tre

am
in

g
qu

al
ity

 2/13

 2/13

 2/17

1

2

3

(C)

Number of peers

2/13 2/14 2/15 2/16 2/17 2/18 2/19

2/13 2/14 2/15 2/16 2/17 2/18 2/19

Figure 9.3: Relationship among server upload bandwidth, number of peers, and streaming
quality for channel CCTV1.

between the two quantities. Meanwhile, a negative correlation is shown to exist between

the number of peers and the streaming quality, in Fig. 9.3(C)-2. We have also observed

that the shape of such short-term correlation varies from time to time. For example,

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 201

during the same time period on February 17, the relation between the number of peers

and the streaming quality represents a reciprocal curve, as shown in Fig. 9.3(C)-3. We

have observed from the traces that such variations exist in other channels as well, which

can be attributed to the time-varying peer upload bandwidth availability in the channels.

All of our observations thus far point to the challenging nature of our problem at

hand: how much server bandwidth should we allocate in each channel to assist peers in

each ISP?

9.2 Ration: Online Server Capacity Provisioning

To answer the above questions, our proposal is Ration, an online server capacity provi-

sioning algorithm to be carried out on a per-ISP basis, that dynamically assigns a minimal

amount of server capacity to each channel to achieve a desired level of streaming quality.

9.2.1 Problem formulation

We consider a P2P live streaming system with multiple channels (such as UUSee). We

assume that the tracking server in the system is aware of ISPs: when it supplies any

requesting peer with information of new partners, it first assigns peers (or dedicated

servers) with available upload bandwidth from the same ISP. Only when no such peers

or servers exist, will the tracking server assign peers from other ISPs.

The focus of Ration is the dynamic provisioning of server capacity in each ISP, carried

out by a designated server in the ISP. In the ISP that we consider, there are a total of M

concurrent channels to be deployed, represented as a set C. There are nc peers in channel

c, ∀ c ∈ C. Let sc denote the server upload bandwidth to be assigned to channel c, and

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 202

qc denote the streaming quality of channel c, i.e., the percentage of high-quality peers in

the channel that have a buffer count of more than 80% of the size of its playback buffer.

Let U be the total amount of server capacity to be deployed in the ISP. We assume a

priority level pc for each channel c, that can be assigned different values by the P2P

streaming solution provider to reflect the relative importance of the channels.

At each time t, Ration proactively computes the amount of server capacity sc
t+1 to be

allocated to each channel c for time t+1, that achieves optimal utilization of the limited

overall server capacity across all the channels, based on their priority and popularity

(as defined by the number of peers in the channel) at time t + 1. Such an objective

can be formally represented by the optimization problem Provision(t+1) as follows

(∀ t = 1, 2, . . .), in which a streaming quality function F c
t+1 is included to represent the

relationship among qc, sc and nc at time t + 1:

Provision(t+1):

max
∑

c∈C
pcnc

t+1q
c
t+1 (9.1)

subject to

∑
c∈C sc

t+1 ≤ U,

qc
t+1 = F c

t+1(s
c
t+1, n

c
t+1), ∀ c ∈ C, (9.2)

0 ≤ qc
t+1 ≤ 1, sc

t+1 ≥ 0, ∀ c ∈ C.

Weighting the streaming quality qc
t+1 of each channel c with its priority pc, the ob-

jective function in (9.1) reflects our wish to differentiate channel qualities based on their

priorities. With channel popularity nc
t+1 in the weights, we aim to provide better stream-

ing qualities for channels with more peers. Noting that ncqc represents the number of

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 203

high-quality peers in channel c, in this way, we guarantee that, overall, more peers in the

network can achieve satisfying streaming qualities.

The challenges in solving Provision(t+1) at time t to derive the optimal values of

sc∗
t+1, ∀ c ∈ C, lie in (1) the uncertainty of the channel popularity nc

t+1, i.e., the number

of peers in each channel in the future, and (2) the dynamic relationship F c
t+1 among qc,

sc, and nc of each channel c at time t + 1. In what follows, we present our solutions to

both challenges.

9.2.2 Active prediction of channel popularity

We first estimate the number of active peers in each channel c at the future time t+1, i.e.,

nc
t+1, ∀ c ∈ C. Existing work has been modeling the evolution of the number of peers in

P2P streaming systems based on Poisson arrivals and Pareto life time distributions (e.g.,

[52]). We argue that these models represent ideal simplifications of real-world P2P live

streaming systems, where peer dynamics are actually affected by many random factors.

To dynamically and accurately predict the number of peers in a channel, we employ

time series forecasting techniques. We treat the number of peers in each channel c, i.e.,

nc
t , t = 1, 2, . . ., as an unknown random process evolving over time, and use the recent

historical values to forecast the most likely values of the process in the future.

As the time series of channel popularity is generally non-stationary (i.e., its values do

not vary around a fixed mean), we utilize the autoregressive integrated moving average

model, ARIMA(p,d,q), which is a standard linear predictor to tackle non-stationary time

series. With ARIMA(p,d,q), a time series, zt, t = 1, 2, . . ., is differenced d times to derive

a stationary series, wt, t = 1, 2, . . ., and each value of wt can be expressed as the linear

weighted sum of p previous values in the series, wt−1, . . . , wt−p, and q previous random

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 204

−1

−0.5

0

0.5

1
x 10

5

Date

2
rd

−
o
rd

e
r

d
if
fe

re
n
c
e
 o

f

p
e
e
r

n
u
m

b
e
r

s
e
ri
e
s

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

0 10 20 30
−1

0

1

lag k

r k

0 10 20 30
−1

0

1

lag k

φ
k
k

(B)

Figure 9.4: ARIMA model identification for channel popularity series of CCTV1, shown
in Fig. 9.3(A).

errors, at−1, . . . , at−q. The employment of an ARIMA(p,d,q) model involves two steps:

(1) model identification, i.e., the decision of model parameters p, d, q, and (2) model

estimation, i.e., the estimation of p + q coefficients in the linear weighted summation.

In model identification, to determine the degree of differencing, d, a standard tech-

nique is to difference the time series as many times as is needed to produce stationary

time series. We have therefore derived d = 2 for our time series nc
t , t = 1, 2, . . ., based

on the observations that the second-order difference of the original time series for all the

channels is largely stationary. For example, Fig. 9.4(A) shows the 2nd-order difference of

the channel popularity time series of CCTV1, as given in Fig. 9.3(A), which is stationary

with the mean of zero. To identify the values of p and q, the standard technique is to

study the general appearance of the estimated autocorrelation and partial autocorrela-

tion functions of the differenced time series ([22], pp. 187). For example, Fig. 9.4(B)

plots the autocorrelation rk and partial autocorrelation φ̂kk function values of the differ-

enced channel popularity series in Fig. 9.4(A) up to lag k = 30. We observe that only

r1 is non-zero and φ̂kk tails off, which identifies p = 0 and q = 1 ([22], pp. 186). As we

have generally made similar observations regarding channel popularity series for other

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 205

channels, we derive an ARIMA(0,2,1) model to use in our predictions.

Having identified an ARIMA(0,2,1) model, the channel popularity prediction at time

t + 1, n̄c
t+1 can be expressed as follows:

n̄c
t+1 = 2nc

t − nc
t−1 + at+1 − θat, (9.3)

where θ is the coefficient for the random error term at and can be estimated with a least

squares algorithm. When we use (9.3) for prediction in practice, the random error at

future time t + 1, i.e., at+1, can be treated as zero, and the random error at time t can

be approximated by at = nc
t − n̄c

t [22]. Therefore, the prediction function is simplified to

n̄c
t+1 = 2nc

t − nc
t−1 − θ(nc

t − n̄c
t). (9.4)

To dynamically refine the model for accurate prediction of popularity of a channel

c over time, we propose to carry out the forecasting in a dynamic fashion: To start,

the ARIMA(0,2,1) model is trained with channel popularity statistics in channel c in

the most recent N1 time steps, and the value of coefficient θ is derived. Then at each

following time t, n̄c
t+1 is predicted using (9.4), and the confidence interval of the predicted

value (at a certain confidence level, e.g., 95%) is computed. When time t + 1 comes, the

actual number of peers, nc
t+1, is collected and tested against the confidence bounds. If

the real value lies out of the confidence interval and such prediction errors have occurred

T1 out of T2 consecutive times, the forecasting model is retrained, and the above process

repeats.

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 206

9.2.3 Dynamic learning of the streaming quality function

Next, we dynamically derive the relationship among streaming quality, server bandwidth

usage, and the number of peers in each channel c, denoted as the streaming quality

function F c in (9.2), with a statistical regression approach.

From the traces, we have observed qc ∝ (sc)αc

at short time scales, where αc is the

exponent of sc, e.g., qc ∝ (sc)0.5 in Fig. 9.3(C)-1. We also observed qc ∝ (nc)βc

, where

βc is the exponent of nc, e.g., qc ∝ (nc)−1 in Fig. 9.3(C)-3. As we have made similar

relationship observations from a broad trace analysis of channels over different times, we

model the streaming quality function as

qc = γc(sc)αc

(nc)βc

, (9.5)

where γc > 0 is a weight parameter. Such a function model is advantageous in that it can

be transformed into a multiple linear regression problem, by taking logarithm at both

sides:

log(qc) = log(γc) + αc log(sc) + βc log(nc).

Let Qc = log(qc), Sc = log(sc), N c = log(nc), Γc = log(γc). We derive the following

multiple linear regression problem

Qc = Γc + αcSc + βcN c + ǫc, (9.6)

where Sc and N c are regressors, Qc is the response variable, and ǫc is the error term.

Γc, αc, and βc are regression parameters, which can be estimated with least squares

algorithms.

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 207

As we have observed in trace analysis that the relationship in (9.5) is evident on short

time scales but varies over a longer term, we dynamically re-learn the regression model

in (9.6) for each channel c in the following fashion: To start, the designated server trains

the regression model with collected channel popularity statistics, server bandwidth usage

and channel streaming quality during the most recent N2 time steps, and derives the

values of regression parameters. At each following time t, it uses the model to estimate

the streaming quality based on the used server bandwidth and the collected number of

peers in the channel at t, and examines the fitness of the current regression model by

comparing the estimated value with the collected actual streaming quality. If the actual

value exceeds the confidence interval of the predicted value for T1 out of T2 consecutive

times, the regression model is retrained with the most recent historical data.

We note that the signs of exponents αc and βc in (9.5) reflect positive or negative

correlations between the streaming quality and its two deciding variables, respectively.

Intuitively, we should always have 0 < αc < 1, as the streaming quality could not be

worse when more server capacity is provisioned, and its improvement slows down with

more and more server capacity provided, until it finally reaches the upper bound of 1.

On the other hand, the sign of βc may be uncertain, depending on the peer upload

bandwidth availability at different times: if more peers with high upload capacities (e.g.,

Ethernet peers) are present, the streaming quality can be improved with more peers in

the channel (βc > 0); otherwise, more peer joining the channel could lead to a downgrade

of the streaming quality (βc < 0).

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 208

9.2.4 Optimal allocation of server capacity

Based on the predicted channel popularity and the most recently derived streaming qual-

ity function for each channel, we are now ready to proactively assign the optimal amount

of server capacity to each channel for time t+ 1, by solving problem Provision(t+1) in

(9.1). Replacing qc with its function model in (9.5), we transform the problem in (9.1)

into:

Provision(t+1)’:

max G (9.7)

subject to

∑
c∈C sc

t+1 ≤ U, (9.8)

sc
t+1 ≤ Bc

t+1, ∀ c ∈ C, (9.9)

sc
t+1 ≥ 0, ∀ c ∈ C, (9.10)

where the objective function

G =
∑

c∈C pcnc
t+1q

c
t+1 =

∑
c∈C pcγc(nc

t+1)
(1+βc)(sc

t+1)
αc

, and Bc
t+1 = (γc(nc

t+1)
βc

)−
1

αc , de-

noting the maximal server capacity requirement for channel c at time t+1, that achieves

qc
t+1 = 1.

The optimal server bandwidth provisioning for each channel, sc∗
t+1, ∀ c ∈ C, can be

obtained with a water-filling approach. The implication of the approach is to maximally

allocate the server capacity, at the total amount of U , to the channels with the current

largest marginal utility, as computed with dG
dsc

t+1
, as long as the upper bound of sc

t+1

indicated in (9.9) has not been reached.

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 209

w5w1

(s)
1-a

d G
 d s

c()
-1

c

w2 w4w3 w5w1

(s)
1-a

d G
 d s

c()
-1

c

w2 w4w3 w5w1

(s)
1-a

d G
 d s

c()
-1

c

w2 w4w3

(A) (B) (C)

c
c c

Figure 9.5: An illustration of the incremental water-filling approach with 5 channels.

In Ration, the server capacity assignment is periodically carried out to adapt to

the changing demand in each of the channels over time. To minimize the computa-

tion overhead, we propose an incremental water-filling approach, that adjusts server

capacity shares among the channels from their previous values, instead of a complete

re-computation from the very beginning.

The incremental water-filling approach is given in Table 9.1. To better illustrate the

idea of water filling, we utilize the reciprocal of marginal utility dG
dsc

t+1
, i.e., (dG

dsc
t+1

)−1, in

our algorithm description, and maximally assign server capacity to the channels with the

current smallest value of (dG
dsc

t+1
)−1, equivalently.

We further explain the incremental water-filling approach with a 5-channel example

in Fig. 9.5. In this figure, each channel is represented by one bin. The volume of water

in bin c is (sc)(1−αc), the width of bin c is wc = pcγcαc(nc)(1+βc), and thus the water

level of the bin represents (dG
dsc)

−1 = (sc)(1−αc)

wc
for channel c. As 0 < αc < 1, each bin

has a maximal height,
(Bc

t+1)(1−αc)

wc
, which is represented by the dashed line in each bin.

The incremental water-filling approach starts with the optimal server capacity allocation

at the current time t, i.e., sc = sc∗
t , ∀ c ∈ C (Step 1 in Table 9.1). It first computes

whether there exists any surplus of the overall provisioned server capacity, that occurs

when not all the server capacity has been used with respect to the current allocation,

i.e., U −∑
c∈C sc > 0, or the allocated capacity of some channel c exceeds its maximal

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 210

Table 9.1: Incremental water-filling approach

1. Initialize
sc ← sc∗

t , ∀ c ∈ C.
2. Compute current surplus of server capacity

surplus = U −∑
c∈C sc.

for all c ∈ C
if sc > Bc

t+1

surplus = surplus + (sc −Bc
t+1)

end if
end for.

3. Allocate surplus to channels

Compute (dG
dsc)

−1 = (sc)1−αc

pcγcαc(nc)(1+βc) , ∀ c ∈ C.
while surplus > 0 and not all sc has reached Bc

t+1, ∀ c ∈ C
find the channel c0 with the smallest value of (dG

dsc)
−1 and sc0 < Bc0

t+1.
sc0 ← sc0 + δ, surplus← surplus− δ.
update (dG

dsc0
)−1.

end while
4. Adjust channel capacity assignment towards the same marginal utility

if not all sc has reached Bc
t+1, ∀ c ∈ C

find channel cmin with the current smallest value of (dG
dsc)

−1 and sc < Bc
t+1.

find channel cmax with the current largest value of (dG
dsc)

−1.
while ‖ (dG

dscmin
)−1 − (dG

dscmax
)−1 ‖> ǫ

scmin ← scmin + δ,scmax ← scmax − δ.
update (dG

dsc)
−1 for channels cmin and cmax.

find channel cmin with the current smallest (dG
dsc)

−1 and sc < Bc
t+1.

find channel cmax with the current largest (dG
dsc)

−1.
end while

end if
5. sc∗

t+1 ← sc, ∀ c ∈ C.

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 211

server capacity requirement for time t + 1, i.e., sc > Bc
t+1 (e.g., the case that the water

level goes above the maximal bin height for bin 1 in Fig. 9.5(A).) If so, the overall surplus

is computed (Step 2 in Table 9.1) and allocated to the channels whose maximal server

capacity requirement has not been reached, starting from the channel with the current

lowest water level (Step 3 in Table 9.1). For the example in Fig. 9.5, the surplus part of

the water in bin 1 in (A) is reallocated to bin 2 and bin 4, with the results shown in (B).

After all the surplus has been allocated, the bandwidth assignment is further adjusted

among the channels towards the same water level (marginal utility), in the fashion that

the water (bandwidth) in the bin with the highest water level (largest value of (dG
dsc)

−1) is

flooded into the bin that has the lowest water level (smallest value of (dG
dsc)

−1) and has not

reached its maximal bin height yet (Step 4 in Table 9.1). For the example in Fig. 9.5(B),

the water from bin 3 and 5 are filled into bin 2 and 4, until bin 4 reaches its maximal

height and bins 2, 3, and 5 achieve the same water level, as shown in Fig. 9.5(C).

Such an incremental water-filling approach derives the optimal server capacity provi-

sioning for all channels at time t + 1, as established by the following theorem:

Theorem 1. Given the channel popularity prediction nc
t+1, ∀ c ∈ C, and the most recent

streaming quality function qc
t+1 = γc(sc

t+1)
αc

(nc
t+1)

βc

, ∀ c ∈ C, the incremental water-

filling approach obtains an optimal server capacity provisioning across all the channels

for time t + 1, i.e., sc∗
t+1, ∀ c ∈ C, which solves the problem Provision(t+1) in (9.1).

Proof: Let sc∗
t+1, ∀ c ∈ C be an optimal solution to the optimization problem in (9.7).

Introducing Lagrange multiplier λ for the constraint in (9.8), ν = (νc, ∀ c ∈ C) for the

constraints in (9.9) and µ = (µc, ∀ c ∈ C) for the constraints in (9.10), we obtain the

KKT conditions for the problem as follows (pp. 244, [23]):

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 212

∑

c∈C
sc∗

t+1 ≤ U,

λ∗ ≥ 0,

0 ≤ sc∗
t+1 ≤ Bc

t+1, ν
c∗ ≥ 0, µc∗ ≥ 0, ∀ c ∈ C,

λ∗(
∑

c∈C
sc∗

t+1 − U) = 0, (9.11)

µc∗sc∗
t+1 = 0, ∀ c ∈ C, (9.12)

νc∗(sc∗
t+1 −Bc

t+1) = 0, , ∀ c ∈ C (9.13)

− dG

dsc
t+1

+ λ∗ − µc∗ + νc∗ = 0, ∀ c ∈ C. (9.14)

For sc∗
t+1 > 0, we have µc∗ = 0 from (9.12), and then dG

dsc
t+1

= λ∗ + νc∗ from (9.14).

Therefore, if further we have sc∗
t+1 < Bc

t+1, we derive νc∗ = 0 from (9.13) and then

dG
dsc

t+1
= λ∗. As dG

dsc
t+1

=
pcγcαc(nc

t+1)
(1+βc)

(sc
t+1)1−αc , γc > 0 and 0 < αc < 1, we can derive, ∀ c ∈ C,

sc∗
t+1 =





Bc
t+1 if 1

λ∗ ≥ (Bc
t+1)(1−αc)

pcγcαc(nc
t+1)(1+βc) ,

(
pcγcαc(nc

t+1)1+βc

λ∗)
1

1−αc if 1
λ∗ <

(Bc
t+1)(1−αc)

pcγcαc(nc
t+1)(1+βc) .

(9.15)

Notice that for all the channels with 0 < sc∗
t+1 < Bc

t+1, we have 1
λ∗ = (dG

dsc
t+1

)−1,

which is the final water level for those bins whose maximal heights are not achieved, as

illustrated in Fig. 9.5(C) (Note that sc∗
t+1 = 0 only occurs at very special cases, such as

nc
t+1 → 0 or αc → 0. In this case, the width of the bin corresponding to channel c is

zero, and thus no water (bandwidth) will be assigned to the bin. We omit this special

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 213

case in our discussions.) We also notice that
(Bc

t+1)(1−αc)

pcγcαc(nc
t+1)(1+βc) is the maximal height for

bin c. Therefore, the key to derive sc∗
t+1 is to derive the optimal water level 1

λ∗ . If a bin’s

maximal height is below the optimal water level, the optimal server capacity share for

the corresponding channel is its maximal server capacity requirement, i.e., sc∗
t+1 = Bc

t+1;

otherwise, its allocated server capacity is what achieves
(sc∗

t+1)(1−αc)

pcγcαc(nc
t+1)

(1+βc) = 1
λ∗ .

To derive the optimal water level, from the starting water levels in the bins decided

by the server capacity assignment at time t, we first make sure the overall server capacity

at the amount of U is maximally filled into the bins, while no bin’s maximal height is

exceeded. Then, we decrease the high water levels by decreasing the server capacity

assigned to the corresponding bins (as αc < 1, (dG
dsc

t+1
)−1 decreases with the decrease of

sc
t+1), and increase the low water levels by increasing the server capacity assigned to the

corresponding bins, while guaranteeing the maximal height of each bin is never exceeded.

When all bins reach the same water level, except those whose maximal heights have been

reached, we have derived the optimal server capacity allocation for all channels for time

t + 1, as given in (9.15). ⊓⊔

9.2.5 Ration: the complete algorithm

Our complete algorithm is summarized in Table 9.2, which is periodically carried out on

a designated server in each ISP. The only peer participation required is to have each peer

in the ISP send periodical heartbeat messages to the server, each of which includes its

current playback buffer count.

We note that in practice, the allocation interval is decided by the P2P streaming

solution provider based on need, e.g., every 30 minutes, and peer heartbeat intervals can

be shorter, e.g., every 5 minutes.

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 214

Table 9.2: Ration: the online server capacity provisioning algorithm

At time t, the designated server in each ISP

1. Peer statistics collection
Collect the number of active peers in each channel, nc

t , ∀ c ∈ C, with peer
heartbeat messages.

Collect per-peer buffer count statistics from the heartbeat messages, and
derive the streaming quality for each channel, qc

t , ∀ c ∈ C.
2. Channel popularity prediction for each channel c ∈ C

Test if nc
t is within the confidence interval of n̄c

t , the value predicted at time
t− 1.

If nc
t lies out of the confidence interval for T1 out of T2 consecutive times,

retrain the ARIMA(0,2,1) model with the most recent N1 peer number statis-
tics.

Predict the channel popularity at time t+1 by n̄c
t+1 = 2nc

t−nc
t−1−θ(nc

t−n̄c
t),

where θ is the parameter in ARIMA(0,2,1).
→ Channel popularity predictions for all channels are derived.

3. Learning the streaming quality function for each channel c ∈ C
Estimate the streaming quality for time t with the current streaming quality

function model: q̄c
t = γc(sc

t)
αc

(nc
t)

βc

.
Test if the actual qc

t is within the confidence interval of q̄c
t .

If qc
t lies out of the confidence interval for T1 out of T2 consecutive times,

retrain the regression model in Eq. (9.6) with statistics in the most recent N2

times.
→ The current streaming quality functions for all channels are derived.

4. Proactive server capacity provisioning for all the channels
Adjust server capacity assignment among all the channels with the incre-

mental water-filling approach in Sec. 9.2.4.
→ Optimal server capacity provisioning,sc∗

t+1, ∀ c ∈ C,is derived.

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 215

We further briefly remark on the computational complexity of the algorithm in Table

9.2. The main computation for steps 2 and 3 lies at the training of ARIMA or the

regression model, with least squares algorithms at O(N3) where N is the size of the

training sample set. As both steps are carried out for each of the M channels, their

complexity are at most O(MN1
3) and O(MN2

3), respectively. We generally need no

more than 30 − 50 samples to train an ARIMA(0,2,1) model, i.e., N1 < 50, and even

less to derive the regression model (thus only a small amount of historical data needs to

be maintained at the server for the execution of Ration). Further considering that the

training is both only carried out when necessary, we conclude that the two steps incur low

computational overhead in reality. At step 4, we have designed the incremental water-

filling approach, which only involves local adjustments for channels that are affected. In

summary, the algorithm involves low computational overhead, and can be carried out in

a completely online fashion to adapt to the dynamics of P2P systems.

9.2.6 Practical implications

Finally, we discuss the practical application of Ration in real-world P2P live streaming

systems.

Addressing various supply-demand relationships

In practical systems with unknown demand for server capacity in each ISP, Ration can

make full utilization of the currently provisioned server capacity, U , and meanwhile

provide excellent guidelines for the adjustment of U , based on different relationships

between the supply and demand for server capacity.

If the P2P streaming system is operating at the over-provisioning mode in an ISP, i.e.,

9.2. RATION: ONLINE SERVER CAPACITY PROVISIONING 216

the total deployed server capacity exceeds the overall demand from all channels to achieve

the required streaming rate at their peers, Ration derives the minimal amount of server

capacity needed for each channel c to achieve its best streaming quality, represented

as qc = 1. This is guaranteed by (9.9) in Provision(t+1)’, as the server capacity

provisioned to each channel may not exceed the amount that achieves qc = 1. When the

P2P streaming solution provider discovers that the system is always operating at the over-

provisioning mode, they may consider to reduce their total server capacity deployment

in the ISP.

If the system is operating in a mode with tight supply-demand relations, i.e., the

total server capacity can barely meet the demand from all channels to achieve the best

streaming qualities, Ration guarantees the limited server capacity is most efficiently uti-

lized across the channels, respecting their demand and priority. With its water-filling

approach, the preference in capacity assignment is based on marginal utility of each

channel, dG
dsc = pcnc dqc

dsc , as determined by the popularity and priority of the channel, and

the marginal improvement of its streaming quality upon unit increase of server capacity.

If the streaming solution provider wishes to improve the streaming quality of the channels

in the ISP, they may further compute how much more server capacity to be added, using

the derived streaming quality function in (9.5).

If the system is operating with extremely tight supply-demand relations, e.g., the

flash crowd scenario, most server capacity is assigned to the one or few channels that are

involved in the flash crowd, and most of the other channels are starving with no or very

little server bandwidth. Upon detecting this, our algorithm can trigger the deployment

of backup server resources. Similarly, the extra amount to add can be computed with

the current streaming quality function derived for the respective channels.

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 217

Making decisions on channel deployment in each ISP

In addition, with Ration, the P2P streaming solution provider can dynamically make

decisions on channel deployment in each ISP, when it is not possible or necessary to

deploy every one of the hundreds or thousands of channels in each ISP. When a channel

is not allocated any server capacity due to very low popularity or priority during a period

of time, the channel is not to be deployed in the ISP during this time.

Deploying server capacities

Finally, we note that the server capacity provisioning in each ISP can be implemented in

practice with a number of servers deployed, with the number decided by the total capacity

to be provisioned and the upload capacity of each server. Inside each ISP, the servers

can be further deployed in different geographic areas, and the derived server capacity

provisioning for each channel can be distributed among several servers as well, in order

to achieve load balancing and streaming delay minimization.

9.3 Experimental Evaluations with Trace Replay

Our evaluation of Ration is based on its implementation in a multi-ISP mesh-based P2P

streaming system, which replays real-world streaming scenarios captured by the traces.

The P2P streaming system is implemented in C++ on a high-performance cluster of

50 Dell 1425SC and Sun v20z dual-CPU servers, interconnected by Gigabit Ethernet. On

this platform, we are able to emulate hundreds of concurrent peers on each cluster server,

and emulate all network parameters, such as node/link capacities. Actual media streams

are delivered over TCP connections among the peers, and control messages are sent by

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 218

UDP. The platform supports multiple event-driven asynchronous timeout mechanisms

with different timeout periods, and peer joins and departures are emulated with events

scheduled at their respective times.

The P2P streaming protocol we implemented includes both the standard pull protocol

and the unique algorithms employed by UUSee, as introduced in Sec. 6.1. Without loss

of generality, we deploy one server for each ISP, implementing both the tracking server

and streaming server functions. Ration is also implemented on each of the servers, with

800 lines of C++ code. The server capacity allocation for each channel is implemented

by limiting the total number of bytes sent over the outgoing connections from the server

for the channel in each unit time.

Our experiments are carried out on realistic replays of the traces. We emulate peer

dynamics based on the evolution of the number of peers in each channel from the traces:

when the number of peers rises between two consecutive time intervals, we schedule a

corresponding number of peer join events during the interval; when the number of peers

decreases, peer departure events are scheduled for a corresponding number of randomly

selected peers. Upon arrival, each peer acquires 30 initial upstream peers, and the P2P

topology evolves based on the same peer selection protocol as UUSee’s. The node upload

capacities are emulated using values from the traces, which follow a heavy-tail distribution

in the major range of 50 Kbps to 10 Mbps. The streaming rate of each channel is 400

Kbps, with the streams divided into 1-second blocks for distribution. The size of playback

buffer on the peers is set to 30 seconds. Each peer reports its buffer count to the server in

its ISP every 20 seconds, and the server processes them and adjusts capacity allocation

every 60 seconds.

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 219

0

1

2

3

4
x 10

4

N
u

m
b

e
r

o
f
p

e
e

rs
 Actual number

 Predicted number

 95% confidence interval

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A) CCTV1

0

500

1000

1500

N
u
m

b
e
r

o
f
p
e
e
rs

 Actual number
 Predicted number
 95% confidence interval

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B) CCTV12

-400

Figure 9.6: Prediction of the number of peers with ARIMA(0,2,1).

9.3.1 Performance of Ration components

We first examine the effectiveness of each composing algorithm in Ration. In this set of

experiments, we focus on the streaming inside one ISP, with one server of 80 Mbps upload

capacity and 5 channels. We use the peer number statistics of 5 channels from the traces,

CCTV1, CCTV4, CCTV2, CCTV7, and CCTV12, in one ISP (China Telecom) during

the week of February 13 – 19, 2007. To expedite our experiments, each peer number

time series from the traces is sampled, such that the evolution of the P2P system in

each day is emulated within half an hour. The 5 channels have a regular instantaneous

number of peers at the scale of 2000, 500, 400, 150 and 100, respectively. The statistics of

CCTV1 and CCTV4 also captured the flash crowd scenario on February 17, 2007, when

the Chinese New Year celebration show was broadcast on the two channels.

Prediction of the number of peers

Fig. 9.6 presents the results of prediction with ARIMA(0,2,1) for the popular channel

CCTV1 and the unpopular channel CCTV12, respectively. In the dynamic prediction,

the training set size is N1 = 30, and the error count parameters are T1 = 8 and T2 = 10.

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 220

0
2
4 gamma

0

0.5

1 alpha

−0.5
0

0.5
1 beta

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

 Actual quality
 Predicted quality
 95% confidence interval

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

Figure 9.7: Dynamic learning of the streaming quality function for CCTV1.

The predicted numbers for both channels largely coincide with the actually collected

number of peers, both at regular times and during the flash crowd, no matter whether

the prediction confidence interval is large or small at different times. This validates the

correctness of our model identification, as well as the accuracy of our dynamic prediction.

Dynamic streaming quality function

Fig. 9.7(A) plots the derived parameter values for the dynamic streaming quality function

of CCTV1. In the dynamic regression, the training set size is N2 = 20, the error count

parameters are T1 = 8 and T2 = 10. We see that γc is all positive, the values of αc are

always within the range of 0− 1, and βc may be positive or negative at different times.

We have observed similar results with the derived streaming quality functions of other

channels. This validates our analysis in the last paragraph of Sec. 9.2.3. During the

flash crowd scenario, which hereinafter is marked with a vertical line in the figures, βc

is significantly below zero, revealing a negative impact on the streaming quality with a

rapidly increasing number of peers in the channel.

Fig. 9.7(B) plots the actually measured streaming quality in the channel against its

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 221

estimated value, calculated with the derived streaming quality function at each time. The

actual streaming quality closely follows the predicted trajectory at most times, including

the flash crowd scenario, which exhibits the effectiveness of our dynamic regression.

Optimal provisioning among all channels

We now investigate the optimal server capacity provisioned to different channels over

time. In this experiment, we focus on examining the effects of channel popularity on

capacity allocation, and set the priorities for all 5 channels to the same value of 1.

Fig. 9.8(A) and (B) show the server capacity allocated to each of the 5 channels, and

their actually achieved streaming quality at different times. We observe that, generally

speaking, the higher the channel’s popularity is, the more server capacity it is assigned.

This can be explained by the marginal utility of the channels used in the water-filling

allocation of Ration, dG
dsc = pcnc dqc

dsc = pcγcαc(nc)(1+βc)

(sc)1−αc . As βc > −1 is observed in our

previous experiment, the marginal utility is positively correlated with the number of

peers, and thus the more popular channel is assigned more server capacity.

On the other hand, in Fig. 9.8(B), we do not observe evident correlation between

the channel popularity and its achieved streaming quality, as the latter is decided by

both the allocated server capacity (positively) and the number of peers (positively or

negatively at different times). Nevertheless, we show that our water-filling assignment

achieves the best utilization of the limited overall server capacity at all times, with a

comparison study to a proportional allocation approach.

The proportional allocation approach goes as follows: At each time t, instead of using

water-filling, the server capacity is proportionally allocated to the channels, based only

on their predicted number of peers for time t+1. Fig. 9.8(C) shows that the most popular

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 222

1200

1400

1600

1800

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

 Optimal provisioning
 Proportional provisioning

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(C)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(D)

S
e

rv
e

r
c
a

p
a

c
it
y
 p

ro
v
is

io
n

in
g

 (
M

b
p

s
)

12

16

20

24
 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

Figure 9.8: Server capacity provisioning for 5 non-prioritized channels: (A) Server capac-
ity provisioning with Ration, (B) Streaming quality achieved with Ration, (C) Streaming
quality achieved with proportional allocation, (D) Comparison of objective function val-
ues.

channel, CCTV1, achieves better streaming quality with this proportional allocation as

compared to that in Fig. 9.8(B), at the price of downgraded quality for the other channels,

especially during the flash crowd. This is because CCTV1 now obtains more than half of

the total server capacity at regular times, and almost all during the flash crowd scenario.

With the streaming quality results in Fig. 9.8(B) and (C), we compute the values of

the objective function of Provision(t+1) in (9.1), and plot them in Fig. 9.8(D). Given

a same priority for all the channels, the value of the objective function at each time

represents the total number of peers in all the channels that achieve satisfying streaming

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 223

0

16

48

32

S
e

rv
e

r
c
a

p
a

c
it
y
 p

ro
v
is

io
n

in
g

 (
M

b
p

s
)

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

64

80

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

Figure 9.9: Server capacity provisioning for 5 prioritized channels with Ration.

rates at the time. The values from the proportional allocation are consistently lower

than those achieved with our water-filling approach, exhibiting the optimality of the

server capacity utilization with Ration.

Effectiveness of channel prioritization

In the next experiment, we investigate the effect of channel prioritization on server capac-

ity provisioning with Ration, by setting 3 priority levels: pc = 500 for CCTV1, pc = 200

for CCTV4 and CCTV2, and pc = 50 for CCTV7 and CCTV12.

Comparing its results in Fig. 9.9(A) to those in Fig. 9.8(A), we observe further differ-

entiated server capacities among the channels, where the channel with the highest priority

and popularity, CCTV1, is allocated much more capacity than the others. In Fig. 9.9(B),

we also observe differentiated streaming qualities among channels based on their priority

levels. These demonstrate the effectiveness of channel prioritization in Ration, which

facilitates the streaming solution provider to differentiate services across channels, when

the supply-demand relation of server capacity is tight in the system.

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 224

9.3.2 Effectiveness of ISP-aware server capacity provisioning

Next, we evaluate Ration in multi-ISP streaming scenarios. 4 ISPs are emulated by

tagging servers and peers with their ISP IDs. Again, 5 channels, CCTV1, CCTV4,

CCTV2, CCTV7, CCTV12, are deployed in the ISPs, with peer number statistics in

each ISP extracted from those in 4 China ISPs, Telecom, Netcom, Unicom and Tietong,

from the traces. While a fixed overall server capacity is used in the previous experiments,

in the following experiments, we do not cap the server capacity, but derive with Ration the

minimal amount of overall server capacity needed to achieve the best streaming qualities

for all the channels in the system (i.e., qc = 1, ∀ c ∈ C), which is referred to as UB

hereinafter. At each time during the dynamic provisioning, UB is derived by summing

up the upper bound of server capacity required for each of the channels, as given in (9.9),

at the time. Our focus is to compare the total server capacity UB required when ISP

awareness is in place and not, and the inter-ISP traffic that is caused. The channels are

not prioritized in this set of experiments.

Without ISP awareness

In the first experiment, we deploy one server in the system, and stream with a peer

selection protocol that is not ISP-aware. The overall server capacity UB used on the

server over time is shown in Fig. 9.10(A), and the total inter-ISP P2P traffic in the

system is plotted in Fig. 9.10(B).

With full ISP awareness

In the second experiment, we deploy one server in each ISP, and constrain all streaming

traffic inside each ISP by fully ISP-aware peer selection, i.e., peers are only assigned

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 225

0

80

160

240

320

400
O

v
e

ra
ll

s
e

rv
e

r
c
a

p
a

c
it
y
 (

M
b

p
s
)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

0

0.8

1.6

2.4

3.2

O
v
e

ra
ll

in
te

r−
IS

P
 P

2
P

 t
ra

ff
ic

 (
G

b
p

s
)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

Figure 9.10: P2P live streaming for 5 channels in 4 ISPs: without ISP awareness.

0

80

160

240

320

400

480

O
v
e

ra
ll

s
e

rv
e

r
c
a

p
a

c
it
y
 (

M
b

p
s
)

 ISP1

 ISP2

 ISP3

 ISP4

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

Figure 9.11: P2P live streaming for 5 channels in 4 ISPs: with full ISP awareness.

partners inside the ISP. The server capacity used on the server in each ISP is illustrated

with the area plot in Fig. 9.11. Comparing Fig. 9.11 to Fig. 9.10(A), we can see that

the overall server capacity usage in the system does not increase much when the traffic

is completed restricted inside each ISP with per-ISP server capacity deployment. The

difference is only larger during the flash crowd, the reason for which, we believe, is that

it becomes hard for peers to identify enough supplying peers inside the ISP when the

total number of peers soars, and thus they have to resort to the server.

9.3. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY 226

0

0.8

1.6

2.4

3.2

O
v
e

ra
ll

in
te

r−
IS

P
 P

2
P

 t
ra

ff
ic

 (
G

b
p

s
)

 Phi=3/4

 Phi=1/2

 Phi=1/4

 Phi=0

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

Figure 9.12: Server capacity provisioning vs. inter-ISP traffic: a tradeoff.

Tradeoff between server capacity and inter-ISP traffic

In the final experiment, we provision a total server capacity in the system that is between

the amount used in Fig. 9.10(A) and that used in Fig. 9.11, and examine the resulting

inter-ISP traffic. Specifically, let the overall server capacity usage shown in Fig. 9.10(A)

be UBmin and that shown in Fig. 9.11 be UBmax. We reduce the server capacity provisioned

on each server in each ISP, such that the overall server capacity at each time is at the

value of UBmin +φ(UBmax−UBmin) at the time. In this case, peers are allowed to connect

to servers/peers across ISPs if they fail to acquire sufficient streaming bandwidth within

the ISP.

The experiment is repeated by setting φ to 3
4
, 1

2
, 1

4
or 0, that represent different levels

of the total server capacity. The results in Fig. 9.12 show an increase of inter-ISP traffic

with the decrease of server capacity provisioning. Further comparing the φ = 0 case in

Fig. 9.12 to Fig. 9.10(B), we observe that while the total server capacity is the same UBmin

in both cases, a smaller amount of inter-ISP P2P traffic is involved with the ISP-aware

peer selection than without any ISP awareness.

9.4. SUMMARY 227

9.4 Summary

As the first in the literature, we present detailed measurements of server capacity utiliza-

tion in a real-world P2P streaming system, and an online server capacity provisioning

mechanism to address the dynamic demand in multi-ISP multi-channel P2P live stream-

ing systems. In practice, we believe that it is important to refocus our attention on

dedicated streaming servers: based on our detailed analysis of 7 months of traces from

UUSee, available server capacities are not able to keep up with the increasing demand in

such a practical system, leading to a downgrade of peer streaming quality. Emphasizing

on practicality, our proposed algorithm, Ration, is able to dynamically predict the de-

mand in each channel, using an array of dynamic learning techniques, and to proactively

provision optimal server capacities across different channels. With full ISP awareness,

Ration is carried out on a per-ISP basis, and is able to guide the deployment of server

capacities and channels in each ISP to maximally constrain P2P traffic within ISP bound-

aries. Our performance evaluation of Ration features the realistic replay of real-world

streaming traffic from our traces. We show that Ration lives up to our expectations to

effectively provision server capacities according to the demand over time.

Chapter 10

Concluding Remarks

10.1 Conclusions

The main focus of this thesis is to improve key protocols in large-scale mesh-based P2P

live streaming systems from both theoretical and practical perspectives.

From the more theoretical perspective, we focus on the optimization of the utiliza-

tion of the crucial bandwidth resources in P2P streaming. In a single-overlay system,

we model the optimal peer selection and bandwidth allocation problem into a linear op-

timization model, which minimizes end-to-end streaming latencies, and design a fully

distributed algorithm to carry out the optimization. In the more practical scenario with-

out any assumption on a prior knowledge of link or node bandwidth, we model the

streaming rate satisfactory problem into a linear feasibility problem, and design an ef-

ficient distributed protocol to achieve it. In a realistic multi-overlay system, we resolve

the bandwidth competitions among multiple coexisting streaming overlays by modeling

them into a distributed collection of dynamic bandwidth auction games. Solidly estab-

lished on the foundation of game theory, we design effective auction strategies, and rigidly

228

10.2. FUTURE DIRECTIONS 229

prove their convergence to a desirable optimal Nash equilibrium in realistic asynchronous

environments.

From the more practical perspective, we extensively measure and analyze a commer-

cial large-scale P2P live streaming system over a long period of time. Using a unique

measurement methodology, in that we implement measurement facilities into the P2P

client software, we collect a large volume of consecutive traces throughout the trace pe-

riod. We are able to acquire a thorough and in-depth understanding of the large-scale

mesh-based streaming, and derive many novel in-depth insights that is not possible with

previous measurement methodologies. We have thoroughly investigated the topologi-

cal properties of large-scale live streaming meshes, extensively characterized inter-peer

bandwidths using statistical means, and carefully studied the importance of server ca-

pacity provisioning in P2P streaming. Based on a synergistic application of measurement

insights and theoretical models, we have designed effective and practical algorithms to

improve the key protocols in P2P streaming, e.g., peer selection and deployment of

streaming server capacities. We have also considered the rising tension between P2P

applications and ISPs in our proposals, by effectively constraining the P2P traffic within

ISP boundaries with server capacity deployment.

10.2 Future Directions

10.2.1 Possible enhancement of minimum-delay P2P streaming

modeling

In addressing the minimum-delay peer selection and streaming rate allocation problem in

Chapter 3, we have modeled a linear program which minimizes average end-to-end link

10.2. FUTURE DIRECTIONS 230

delays for the unicast flows from the server to each of the receivers (i.e., model (3.1)).

An intuitive thought about the optimization model is that, the end-to-end latency of

a unicast flow should be formulated as the maximum of the end-to-end latencies of all

its fraction flows, instead of the average, i.e., the objective function can be formulated

as min maxp∈P

∑
(i,j):(i,j) on p cij. We have modeled the average end-to-end latency in

our objective function due to the following considerations. (1) We are able to derive a

nice linear formulation in (3.1), which is indeed a standard minimum-cost flow problem.

Besides, when cij’s (∀ (i, j) ∈ A) are of similar magnitude, we can understand the

objection function as the minimization of the average hop count from the streaming

server to the receiver. (2) The minimization of the average end-to-end delay achieves

similar results, while not exactly the same, as the minimization of maximum end-to-end

latency: the rates are allocated in such a way that high latency links, such as satellite

and transcontinental links, are avoided as much as possible whenever there are available

bandwidths on low latency links. The solvability of the optimization problem minimizing

the maximum delays and achievability of the solution with nice distributed structures

require further studies.

10.2.2 Statistical traffic analysis of real-world networking sys-

tems

We believe a thorough understanding of existing solutions is an important prerequisite

towards the design of the next generation Internet systems. Built on our experience of

collaborating with UUSee Inc., we would like to continue with such large-scale measure-

ments, by establishing close research collaborations with commercial developments. Our

objective is to obtain in-depth insights from careful investigations of real-world systems

10.2. FUTURE DIRECTIONS 231

over long periods of time. We believe statistical techniques represent powerful tools to-

wards in-depth analysis of Internet systems, including simple linear, multivariate linear,

and nonlinear regressions, as well as time series structural analysis techniques. It will be

intriguing research to apply these statistical techniques in the characterization of modern

large-scale content distribution systems, such as novel P2P Internet applications, Content

Distribution Networks, and mobile wireless systems.

10.2.3 Addressing the conflict between ISPs and P2P applica-

tions

With the widespread use of P2P applications over the Internet and the shift of bandwidth

load on ordinary users, the conflict between P2P solution providers and Internet Service

Providers has become a major challenge, that leads to the heated debate of network

neutrality in the US Congress. In this thesis, we have made our first effort in addressing

such a conflict in P2P streaming applications by constraining the P2P traffic within ISP

boundaries with server capacity deployment. However, there still exist a lot of interesting

research topics in this area to be explored: First, what may actually be the current scale

of inter-ISP P2P traffic, including P2P file sharing, streaming and VoIP applications?

Large-scale measurement studies are required towards an in-depth understanding to ad-

dress this question. Second, how shall we characterize the economical conflict between

ISPs and P2P solution providers, that might motivate them to collaborate to generate a

solution? Game theory may come into play to provide strategic solutions for both parties.

Third, if we wish to constrain P2P traffic within ISP boundaries by server deployment,

what caching policy shall we deploy on such servers to guarantee service quality of dif-

ferent P2P applications? Statistical techniques and optimization theories may constitute

10.2. FUTURE DIRECTIONS 232

powerful tools for solving these problems.

10.2.4 Optimized games for network resource allocation

Game theory has represented a novel and intriguing way for networking algorithm design,

that characterizes the challenging selfish nature of participants in network applications.

The Nash equilibrium of a networking game represents the stable operating point of node

behavior over time. However, in most cases, the Nash equilibrium is not an optimized

working point for the system, i.e., the existence of the price of anarchy. In this thesis, we

have proposed an auction game mechanism that achieves an optimal Nash equilibrium.

In generalization, we believe that an algorithm designed based on game theory is most

valuable when an efficient Nash equilibrium, that represents global optimal properties,

can be achieved. It is an intriguing challenge to design effective incentives or pricing

mechanisms to guide the node behavior towards such an optimal operating point, or

a best approximation to the optimum. Together with the decentralized nature of game

play, the networking game will then essentially constitute a distributed optimization algo-

rithm, or approximation algorithm, to solve a global performance optimization problem.

It constitutes an intriguing research topic to incorporate the insights offered by both

optimization theory and game theory, to design efficient, practical, and decentralized

algorithms.

10.2.5 Stochastic performance modeling of P2P applications

Significant research efforts have been devoted towards the stochastic modeling and per-

formance analysis of BitTorrent-like protocols for file sharing, while little analytical atten-

tion has been paid to P2P live streaming applications. While practical P2P streaming

10.2. FUTURE DIRECTIONS 233

applications have largely employed simple protocol designs, it would be interesting to

stochastically model the behavior of such P2P systems, in order to improve existing de-

sign choices. Rather than making simplistic assumptions that are far from realistic (such

as Poisson peer arrival in live streaming systems), it will be more convincing to derive

dynamics models—such as peer arrival and lifetime distributions—from in-depth mea-

surement investigations of real-world P2P systems. Combining large-scale measurements

with stochastic tools, such modeling efforts will lead to instrumental theoretical insights

that may essentially affect the design of practical systems.

Bibliography

[1] All-Sites-Pings for PlanetLab. http://ping.ececs.uc.edu/ping/.

[2] Joost. http://www.joost.com/.

[3] Log-normal distribution. http://mathworld.wolfram.com/LogNormalDistribution.html.

[4] PlanetLab IPerf. http://jabber.services.planet-lab.org/php/iperf/.

[5] PPLive. http://www.pplive.com/en/index.html.

[6] PPStream. http://www.ppstream.com/.

[7] QQLive. http://tv.qq.com/.

[8] SopCast. http://www.sopcast.org/.

[9] TVAnts. http://www.tvants.com/.

[10] UUSee. http://www.uusee.com/.

[11] VVSky. http://www.vvsky.com/.

[12] Zattoo. http://zattoo.com/.

234

BIBLIOGRAPHY 235

[13] M. Adler, R. Kumar, K. W. Ross, D. Rubenstein, T. Suel, and D. D. Yao. Optimal

Peer Selection for P2P Downloading and Streaming. In Proc. of IEEE INFOCOM,

March 2005.

[14] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, 1993.

[15] A. Ali, A. Mathur, and H. Zhang. Measurement of Commercial Peer-To-Peer Live

Video Streaming. In Proc. of Workshop in Recent Advances in Peer-to-Peer Stream-

ing, August 2006.

[16] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz. Analyzing Stability in

Wide-Area Network Performance. In Proc. of ACM SIGMETRICS, 1997.

[17] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application Layer

Multicast. In Proc. of ACM SIGCOMM, August 2002.

[18] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

[19] D. P. Bertsekas and D. A. Castanon. The Auction Algorithm for the Transportation

Problem. Annals of Operations Research, 20:67–96, 1989.

[20] D. P. Bertsekas and R. Gallager. Data Networks, 2nd Ed. Prentice Hall, 1992.

[21] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numer-

ical Methods. Prentice Hall, 1989.

[22] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting

and Control (Third Edition). Prentice Hall, 1994.

[23] S. Boyd. Convex Optimization. Cambridge University Press, 2004.

BIBLIOGRAPHY 236

[24] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.

SplitStream: High-Bandwidth Multicast in Cooperative Environments. In Proc. of

the 19th ACM Symposium on Operating Systems Principles (SOSP), October 2003.

[25] R. Christensen. Analysis of Variance, Design, and Regression: Applied Statistical

Methods. Chapman and Hall/CRC, 1996.

[26] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast. In Proc. of

ACM SIGMETRICS, June 2000.

[27] B.-G. Chun, R. Fonseca, I. Stoica, and J. Kubiatowicz. Characterizing Selfishly

Constructed Overlay Routing Networks. In Proc. of IEEE INFOCOM, March 2004.

[28] Y. Cui, Y. Xue, and K. Nahrstedt. Optimal Resource Allocation in Overlay Multi-

cast. In Proc. of 11th International Conference on Network Protocols (ICNP 2003),

Atlanta, Georgia, USA, November 2003.

[29] Y. Cui, Y. Xue, and K. Nahrstedt. Max-min Overlay Multicast: Rate Allocation and

Tree Construction. In Proc. of the 12th IEEE International Workshop on Quality

of Service (IWQoS 2004), June 2004.

[30] G. B. Dantzig. Linear Programming and Extensions. Prentice University Press,

Princeton, New Jersey, 1963.

[31] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming Live Media over a Peer-

to-Peer Network. Technical report, Standford Database Group 2001-20, August

2001.

BIBLIOGRAPHY 237

[32] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a

Network Creation Game. In Proc. of the 22nd ACM Symposium on Principles of

Distributed Computing (PODC 2003), July 2003.

[33] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. Reprinted in SIAM Classics in Applied Mathe-

matics Series, 4, 1990.

[34] N. Garg, R. Khandekar, K. Kunal, and V. Pandit. Bandwidth Maximization in

Multicasting. In Proc. of the 11th Annual European Symposium on Algorithms,

Budapest, Hungary, September 2003.

[35] D. Garlaschelli and M. I. Loffredo. Patterns of Link Reciprocity in Directed Net-

works. Physical Review Letters 93(26):268701, 2004.

[36] J. D. Gibbons and S. Chakraborti. Nonparametric Statistical Inference, 4nd edition.

Marcel Dekker, 2003.

[37] P. Golle, K. L. Brown, I. Mironov, and M. Lillibridge. Incentives for Sharing in

Peer-to-Peer Networks. In Proc. of the 2nd International Workshop on Electronic

Commerce, 2001.

[38] M. Handley, S. Floyd, J. Pahdye, and J. Widmer. TCP Friendly Rate Control

(TFRC) : Protocol Specification. RFC 3448, Jan 2003.

[39] Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large Transfer TCP

Throughput. In Proc. of ACM SIGCOMM, August 2005.

BIBLIOGRAPHY 238

[40] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. PROMISE: Peer-to-

Peer Media Streaming Using CollectCast. In Proc. of the 11th ACM international

conference on Multimedia, Berkeley, California, USA, November 2003.

[41] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insight into PPLive: Measure-

ment Study of a Large-Scale P2P IPTV System. In Workshop on Internet Protocol

TV (IPTV) Services over World Wide Web, in conjunction with WWW 2006, May

2006.

[42] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A Measurement Study of

a Large-Scale P2P IPTV System. IEEE Trans. on Multimedia, 9(8):1672–1687,

December 2007.

[43] X. Hei, Y. Liu, and K. W. Ross. Inferring Network-Wide Quality in P2P Live

Streaming Systems. IEEE Journal on Selected Areas in Communications, Special

Issue on Advances in Peer-to-Peer Streaming Systems, 25(9):1640–1654, December

2007.

[44] R. Janakiraman and L. Xu. Efficient and Flexible Parallel Retrieval using Priority

Encoded Transmission. In Proc. of the 14th International Workshop on Network

and Operating Systems Support for Digital Audio and Video (NOSSDAV 2004),

June 2004.

[45] K. Kar, S. Sarkar, and L. Tassiulas. A Simple Rate Control Algorithm for Maximiz-

ing Total User Utility. In Proc. of IEEE INFOCOM, April 2001.

[46] N. K. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming.

Combinatorica 4, pages 373–395, 1984.

BIBLIOGRAPHY 239

[47] L. G. Khachiyan. A Polynomial Algorithm in Linear Programming. Soviet Mathe-

matics Doklady, 20:191–194, 1979.

[48] L. G. Khachiyan. Polynomial Algorithms in Linear Programming. U.S.S.R. Com-

putational Mathematics and Mathematical Physics, 20:53–72, 1980.

[49] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat. Using Random

Subsets to Build Scalable Network Services. In Proc. of the USENIX Symposium on

Internet Technologies and Systems, March 2003.

[50] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High Bandwidth Data

Dissemination Using an Overlay Mesh. In Proc. of the 19th ACM Symposium on

Operating Systems Principles (SOSP), October 2003.

[51] E. Koutsoupias and C. H. Papadimitriou. Worst-Case Equilibria. Lecture Notes in

Computer Science, 1563:404–413, 1999.

[52] R. Kumar, Y. Liu, and K. W. Ross. Stochastic Fluid Theory for P2P Streaming

Systems. In Proc. of IEEE INFOCOM, May 2007.

[53] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentives for Cooperation in Peer-

to-Peer Networks. In Workshop on Economics of Peer-to-Peer Systems, June 2003.

[54] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. Inside the New

Coolstreaming: Principles, Measurements and Performance Implications. In Proc. of

IEEE INFOCOM, April 2008.

[55] B. Li, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, and X. Zhang. An Em-

pirical Study of the CoolStreaming+ System. IEEE Journal on Selected Areas in

BIBLIOGRAPHY 240

Communications, Special Issue on Advances in Peer-to-Peer Streaming Systems,

25(9):1627–1639, December 2007.

[56] J. Li. PeerStreaming: A Practical Receiver-Driven Peer-to-Peer Media Streaming

System. Technical report, Microsoft Research MSR-TR-2004-101, September 2004.

[57] L. Li, D. Alderson, W. Willinger, and j. Doyle. A First-Principles Approach to

Understanding the Internet’s Router-Level Topology. In Proc. of ACM SIGCOMM,

August 2004.

[58] Z. Li, B. Li, D. Jiang, and L. C. Lau. On Achieving Optimal Throughput with

Network Coding. In Proc. of IEEE INFOCOM, March 2005.

[59] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Characterizing and Predicting

TCP throughput on the Wide Area Network. In Proc. of the 25th International

Conference on Distributed Computing Systems (ICDCS 2005), June 2005.

[60] D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee. Achieving

Minimum-Cost Multicast: A Decentralized Approach Based on Network Coding. In

Proc. of IEEE INFOCOM, March 2005.

[61] R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. A Game Theoretic

Approach to Provide Incentive and Service Differentiation in P2P Networks. In

Proc. of ACM SIGMETRICS/Performance’04, June 2004.

[62] N. Magharei and R. Rejaie. PRIME: Peer-to-Peer Receiver-drIven MEsh-based

Streaming. In Proc. of IEEE INFOCOM, May 2007.

[63] M. Mathis, J. Semke, and J. Mahdavi. The Macroscopic Behavior of the TCP

Congestion Avoidance Algorithm. Computer Communications Review, 27(3), 1997.

BIBLIOGRAPHY 241

[64] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Boston University Represen-

tative Internet Topology Generator. Technical report, http://www.cs.bu.edu/brite,

2000.

[65] D. C. Montgomery, e. A. Peck, and G. G. Vining. Introduction to Linear Regression

Analysis, Third Edition. John Wiley and Sons, Inc., 2001.

[66] M. E. J. Newman. Assortative Mixing in Networks. Physical Review Letters

89(208701), 2002.

[67] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,

1994.

[68] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A

Simple Model and its Empirical Validation. In Proc. of ACM SIGCOMM, September

1998.

[69] V. N. Padmanabhan, H. J. Wang, P. A. Chow, and K. Sripanidkulchai. Distributing

Streaming Media Content Using Cooperative Networking. In Proc. of the 12th In-

ternational Workshop on Network and Operating Systems Support for Digital Audio

and Video (NOSSDAV 2002), May 2002.

[70] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr. Chainsaw:

Eliminating Trees from Overlay Multicast. In Proc. of the 4th International Work-

shop on Peer-to-Peer Systems (IPTPS’05), February 2005.

[71] Y. Qiu and P. Marbach. Bandwidth Allocation in Ad Hoc Networks: A Price-Based

Approach. In Proc. of IEEE INFOCOM, April 2003.

[72] T. P. Ryan. Modern Regression Methods. John Wiley and Sons, Inc., 1997.

BIBLIOGRAPHY 242

[73] H. D. Sherali and G. Choi. Recovery of Primal Solutions when Using Subgradient

Optimization Methods to Solve Lagrangian Duals of Linear Programs. Operations

Research Letter, 19:105–113, 1996.

[74] N. Z. Shor. Cut-off method with space extension in convex programming problems.

Cybernetics 13(1), pages 94–96, 1977.

[75] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-

Verlag, 1985.

[76] B. Sikdar, S. Kalyanaraman, and K. Vastol. Analytic Models for the Latency and

Steady-State Throughput of TCP Tahoe, Reno and SACK. IEEE/ACM Transac-

tions on Networking, 11(6):959–971, 2003.

[77] T. Silverston and O. Fourmaux. P2P IPTV Measurement: A Case Study of TVants.

In Proc. of the 2nd Conference on Future Networking Technologies (CoNEXT ’06),

December 2006.

[78] T. Silverston and O. Fourmaux. Measuring P2P IPTV Systems. In Proc. of the

17th International Workshop on Network and Operating Systems Support for Digital

Audio and Video (NOSSDAV 2007), June 2007.

[79] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing Unstructured Overlay Topolo-

gies in Modern P2P File-Sharing Systems. In Proc. of Internet Measurement Con-

ference (IMC), October 2005.

[80] G. Tan and S. A. Jarvis. A Payment-based Incentive and Service Differentiation

Mechanism for Peer-to-Peer Streaming Broadcast. In Proc. of the 14th International

Workshop on Quality of Service (IWQoS 2006), June 2006.

BIBLIOGRAPHY 243

[81] D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: An Efficient Peer-to-Peer Scheme for

Media Streaming. In Proc. of IEEE INFOCOM, March 2003.

[82] S. Vazhkudai, J. Schopf, and I. Foster. Predicting the Performance of Wide Area

Data Transfers. In Proc. of the 16th International Parallel and Distributed Processing

Symposium (IPDPS 2002), April 2002.

[83] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt. Measurement and Modeling a Large-

Scale Overlay for Multimedia Streaming. In Proc. of the Fourth International Con-

ference on Heterogeneous Networking for Quality, Reliability, Security and Robust-

ness (QShine 2007), August 2007.

[84] D. J. Watts. Six Degrees: the Science of a Connected Age. ACM Press, 2003.

[85] R. Wolski. Dynamically Forecasting Network Performance Using the Network

Weather Service. Cluster Computing, 1(1):119–132, 1998.

[86] D. B. Yudin and A. S. Nemirovski. Informational Complexity and Efficient Methods

for the Solution of Convex Extremal Problems. Matekon 13(2), pages 3–25, 1976.

[87] M. Zhang, J.-G. Luo, L. Zhao, and S. Yang. A Peer-to-Peer Network for Live

Media Streaming - Using a Push-Pull Approach. In Proc. of ACM Multimedia 2005,

November 2005.

[88] X. Zhang, J. Liu, B. Li, and T. P. Yum. CoolStreaming/DONet: A Data-Driven

Overlay Network for Live Media Streaming. In Proc. of IEEE INFOCOM, March

2005.

[89] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the Characteristics and Origins

of Internet Flow Rates. In Proc. of ACM SIGCOMM, 2002.

