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Abstract— Due to the lack of stability and reliability in peer-to-
peer networks, multimedia streaming over peer-to-peer network
represents several fundamental engineering challenges. First,
multimedia streaming sessions need to be resilient to volatile
network dynamics and node departures that are characteristic in
peer-to-peer networks. Second, they need to take full advaage of
the existing bandwidth capacities, by minimizing the delivery of
redundant content and the need for content reconciliation among
peers during streaming. Finally, streaming peers need to be
optimally selected to construct high-quality streaming topologies,
so that end-to-end latencies are taken into consideration. The
original contributions of this paper are two-fold. First, we propose
to use a recent coding technique, referred to asateless codes,
to code the multimedia bitstreams before they are transmitted

for the entire peer-to-peer topology. Even if a particular
streaming rate may be satisfied, we may wish to minimize the
end-to-end latencies to peer nodes in the streaming session
It is nontrivial to construct a feasible topology to satisfy
an arbitrary streaming bit rate, not to mention that with
minimized average end-to-end latency.

> Delivery redundancy and content reconciliatidb.has be-
come typical in recent peer-to-peer streaming proposals
for a peer node to concurrently download from multiple
upstream peers, and serve multiple downstream peers. While
it improves overall bandwidth availability and resilientze
dynamics, there exist fundamental problems in spafallel

over peer-to-peer links. The use of rateless codes eliminates the  retrieval with respect to delivery redundancy and reconcilia-

requirements of content reconciliation, as well as the risks of
delivering redundant content over the network. Rateless codes
also help the streaming sessions to adapt to volatile network

dynamics. Second, we minimize end-to-end latencies in streaming

sessions by optimizing towards a latency-related objective in
a linear optimization problem, the solution to which can be
efficiently derived in a decentralized and iterative fashion. The
validity and effectiveness of our new contributions are demon-
strated in extensive experiments in emulated realistic peer-to- e
environments with our rStream implementation.

Index Terms— Distributed networks, distributed applications,
peer-to-peer protocol, media streaming

I. INTRODUCTION

tion. As there are always risks that the same content may be
unnecessarily delivered by multiple upstream peers, tee pe
nodes need to reconcile the differences among the contents
held by different upstream peers before downloading [1], [2

a problem referred to asontent reconciliation

While there exists previous work on peer-to-peer streani@ng
discussion of which is postponed to Sec. VI), to the best of ou
knowledge, this paper represents the first attempt to baittlall
three fronts of the peer-to-peer streaming challenge. Cainm
contribution is a peer-to-peer streaming protocol reféne as
rStream which involves the combination afateless codesnd
optimal peer selectionie first argue that the recent advances of
rateless fountain code#cluding LT codes [3], Raptor codes [4]

With peer-to-peer media streaming, streaming servers do B@d online codes [5], can be readily used in peer-to-peearsting

need to directly support a large number of unicast sessidmish
effectively eliminates server overloading, and reducestand-
width costs on servers by a few orders of magnitude. Despde s
an important advantage, peer-to-peer streaming posesicagi
technical challenges, especially when it comes to realdrand
large-scale deployment:

with substantial advantages. As a class of erasure codetlesa
codes provide natural resilience to losses, and therefaréde
the best possible resilience to peer dynamics. Beatgjess there
is potentially no limit with respect to the number of uniquel
coded “blocks,” coded from a set of original data blocks.sThi
completely eliminates the needs for content reconciligtas no

> Network dynamicsPeer-to-peer networks are inherently dyredundant contents exist in the network. A sufficient numitdfer
namic and unreliable: peers may join and depart at will anghded blocks from any set of peers may be used to recover the
without notice. The demand for stable streaming bit rategiginal content.

may not be satisfied.

> Limited bandwidth availabilityNodes in peer-to-peer net-

works reside at the edge of the Internet, leading to limit

per-node availability of upload and download capacitie

Based on the foundation of rateless codes, we propose an
optimal peer selection strategy to guarantee bandwidtitedléy
d to minimize end-to-end latencies. We first formulate the

%ptimal peer selection and rate allocation problem as aaline

To further exacerbate the situation, the available peenodiimi;ation problem, and then derive an efficient and deaén
bandwidth differs, by at least an order of magnitude. Toq aigorithm to solve the problem. As rateless codes abyur

ensure uninterrupted streaming playback, typical stregmi

bit rates in modern streaming codecs must be accommod

The completion of this research was made possible thanks tcCBehda’s
support through its Bell University Laboratories R&D progra

eliminate the need for content assignment on each link, we ar

to deliver useful media content at the optimally coragut
rates. Our algorithm is reactive to network dynamics, idiig
peer joins, departures and failures.
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Fig. 1. An illustration of the mesh topology and peer-to-psteeaming model.

The remainder of this paper is organized as follows. In Sec.

I In recent yearserasure codesiave been applied in peer-to-

we present our network model and the case for using ratelgeser content distribution to cope with network dynamicgnAk)

codes. In Sec. Ill, we address the optimal peer selectioblemg
by formulating it as a linear optimization problem, and bgide-
ing a distributed algorithm to derive the optimal peer sidec
and rate allocation strategies. We present the comp&tieam
media distribution and dynamics handling protocols in S¥c.
Extensive evaluation results based r@treamimplementation in
emulated peer-to-peer streaming environments are pezbeémt

erasure code, such as Reed-Solomon codes and Tornado codes
[6], is a forward error correction code with as the number of
original symbols, ana. as the number of generated symbols from
the k original symbols. A(n, k) erasure code is loss resilient,
due to its favorable property that if any (or slightly more
thank) of the n transmitted symbols are received, theriginal
symbols can be recovered. Such loss resilience makes erasur

Sec. V. We discuss related work and conclude the paper ifvdec.codes an ideal solution for reliable transmission over arliable

and Sec. VII, respectively.

II. RESILIENT PEER-TO-PEER STREAMING
WITH RATELESSCODES

In this paper, we consider a peer-to-peer live streamingi@es
with one streamingsourceand multiple participatingeceivers
We assume there exists a stand-alone bootstrapping meohani
the peer-to-peer network, consisting of one or multipletswap-
ping servers. When a new peer joins the session, it is bapstd
with a list of existing peers in the session. During streameach
receiver peer is served by one or more peers irugrstream and
may serve one or more receivers in th@wvnstreamconstituting

transportation protocol, such as UDP. Also, since any syfinbm
any upstream peer can be used for decoding, a receiver dbes no
rely on a specific upstream node for the supply of certainimaig
symbols, and no specific upstream node may become a boklenec
This makes erasure codes failure-resilient. Thus, an exasde
seamlessly tolerates packet losses and peer dynamicsngmiaki
ideal for peer-to-peer parallel streaming.

In addition, the use of erasure codes partially alleviates t
content reconciliation problem in parallel retrievals. Wastrate
the problem with an example in Fig. 2(a). In this examgie,
transmits the component blocks2, 3 and4 of a media segment
to ¢t; and ty directly, and thust; and ¢, have the same four

ameshstreaming topology. The objective is to stream live medidlocks. Wheniz concurrently streams fromy andt, it has to
content, coded as a constant bit rate bitstream with a aurrélgcide which block to retrieve from which upstream peersThi
generation codec such as H.264/AVC, H.263 or MPEG-4, to @IS0 occurs oriy which concurrently retrieves from andt;.

the participating receivers in the session.

If an erasure code is applied at the data source, the prdabil

Such a mesh topology can be modeled as a directed graphcontent conflicts among upstream peers can be decreased.

G =
and A is the set of directed arcs (directed overlay links). Set

(N, A), where N is the set of vertices (source and peerdylowever, since the total number of encoded symbols are fixed,

the problem is not completely solved with a traditional eras

be the streaming source, and 1Etbe the set of receivers in thecode. To illustrate this, consider Fig. 2(b). With(@& 4) erasure

streaming session. We havé = S U T. The sourceS streams
a media b|tstreanM to the receivers irf’. Independent of the

code, S generates six coded blocks, 2/, ..., 6/ based on the
four original blocksl, 2, 3 and4. ¢; andt, both directly retrieve

codec used in/, we treat) as a stream of symbols, partitionedfour coded blocks frons, and thus inevitably hold two common

into consecutive segments, so, . . ..

A segment typically consists blocks. This leads to the need for reconciliationtgatand later

of one media frame, a group of frames (GOF), or simply a periéd t4. Even with a high-rate erasure code wheres much larger
of time (e.g.,one second). Each segment is further divided into thank, content reconciliation may not be necessary in many cases,

blocks. Each block has a fixed length iobytes. InrStream we

encode each media segment with a rateless code and distitigut

but the problem is still not completely solved.
To address the challenges from content reconciliation, el w

coded blocks. An example of the mesh topology and the streamias to provide better resilience to network dynamics, we @sep

model is illustrated in Fig. 1.

A. Rateless codes

to use a recently developed category of coding scherasless
codes Typical rateless codes include LT codes [3], Raptor codes
[4] and online codes [5]. With rateless codes, the numbeodéd

We now motivate the use of rateless codes. The beneftambols that can be generated fr@noriginal symbols is up to
of rateless codes are related to the fundamental challeinges2”, which is potentially unlimited whehn is large. Rateless codes

peer-to-peer streamingiolatile network dynamicsnd content
reconciliation

are also failure-tolerant as it retains the desirable ptgpkat the
k original symbols are decodable from any set of slightly more



S

E
U'|

~
@

e 1,2'3 56,78
\\3,4 5.6 1234 \e',r,s' /
tl - 2

S
45l lslo o
4

1,2,3,V \1,2,3,4 123
T 2 1 7 a 2 [sTe7[e]
Sl4]se] ‘ [sTe]7]e]
12| 34 34 12| 56 34 12| 56 34 1@ 2(1{ 1N,4<1)
§ 12| w2 e | | [ ik \ 2 \1 \z \ 1 0 P
(2e]e] 4 [32R 14 | || [F12516] |7~ GT2R19) || | [aTels o) B2 (21214 ||| o) || oo,
(a) Peer-to-peer streaming (b) Peer-to-peer streamig with (c) Peer-to-peer streaming with (d) Peer-to-peer streaming with
without erasure codes fixed rate erasure codes rateless codes without recoding rateless encoding and recoding
Fig. 2. Peer-to-peer streaming with different coding schermesxample.
than k coded symbols with high probability. from any upstream nodes are unique and useful for decoding at

As compared to traditional erasure codes, rateless codseg® a receiver.
the excellent property of simple and efficient encoding and In our protocol, the streaming source encodes the blocks of
decoding with XOR only operations. We briefly illustrate theach media segment by a rateless code based on a specia degre
basic idea in the encoding and decoding process. For coenpldistribution, such as the LT code with the Robust SolitontiBis
descriptions, please refer to [3], [4]. Givénoriginal symbols, bution [3], and streams the coded blocks. After a peer retsie
a rateless-code encoder generates coded symbols on the Hlycoded blocks for segmemt of M, whereK; = (1 + ¢)k, it
by performing exclusive-or operations onsabsetof original decodes thex; coded blocks and obtains the origirfalblocks.
symbols, randomly chosen based on a special degree diiiribu Upon retrieving requests from other peers, it generatesooeled
such as thé&Robust Soliton distributiofor LT codes. Adecoding blocks from these original blocks by the same rateless-code
graphthat connects coded symbols to input symbols is defined bpcoder based on the same degree distribution, and detihess
the encoding process. The number of original symbols eagbcco new coded blocks. Thisateless recodingprotocol is summarized
symbol is generated fron.¢., the “degree” of the coded symbolin Table 1, with the example of an LT code.
in the decoding graph) and the indices of these original s}snb
(neighbor indices in the decoding graph) are communicabed t
the receiver for the purpose of decoding, together with tiaed
symbol. At the decoder, it reconstructs the decoding graph.
each round of the decoding process, the decoder identifies |aafter receiving K; packets for segment;
coded symbol of degree one, and recovers the value of its
unique neighbor among the input symbols. Then the value of
the recovered input symbol is exclusive-or'ed to the valoés
all its neighboring coded symbols, and all the incident edae
removed. Such a process is repeated until all the input skambo
are recovered, . . . (1.a) Randomly choose the degrd@ from the Robust

As a rateless code can potentially provide a nearly unliite | ggiton distribution:
number of unique coded symbols, it further decreases thie- pro (1.b) Choosad? distinct original blocks uniformly at ran
ability of block conflicts among upstream nodes in the patall | dom, and seB? to be exclusive-or of these blocks.

TABLE |
RECODING WITH RATELESS CODES AT EACH RECEIVER

Decode to obtain it& original blocks.
To serve another receiverat ratey:
While ¢ still needs new coded blocks

1. Generate coded bloclk from s;'s original blocks
bi,bZ,...,bF by

retrievals. Therefore, rateless codes are useful towandin§ a 2. PacketizeB! into a packet together with the degrég
solution to the content reconciliation problem. In the epien | and the set of neighbor indices.

shown in Fig. 2(c), from the four original blocks 2, 3 and4, S 3. Deliver the packet tq at ratey.

generates an unlimited number of coded blotks?’, ..., with

The following proposition proves the correctness of ouodsc
ing protocol.
Proposition 1. The k original blocks of segment; in M can be
recovered from any set d@fi + ¢)k coded blocks with the same
high probability as the original code, in a peer-to-peerestming
session implementing the recoding protocol in Table 1.
Proof: We present a brief outline of the proof. The coded blocks a
receiver receives for recovering segmenare either coded by the

In order to completely eliminate the need for content recostreaming source or recoded by an upstream peer, both frem th
ciliation, we explore another desirable property of raeleodes. same set ok original blocks ofs;. Since all the encoders follow
With rateless codes, the receiver may decode from outpubsigm the same encoding steps and generate each block indeplgndent
generated by different rateless-code encoders, as lontpegs tfrom any other one based on the same Robust Soliton disoihut
operate on the same set of input symbols with the same ratelt®e coded blocks are all potentially unique as if they arelpced
code [4]. Based on this favorable property, we propose adirgo by a same encoder. Thus, after collectifigt €)k coded blocks
scheme to be carried out by each peer, such that freshly codiexsin any upstream peers, a receiver can recoverkthegiginal
blocks are produced at each receiver and all the receivatkdloblocks with the same high probability as the original coder

a rateless-code encodey. and t, are able to each obtaln four.
unique coded blocks frons, thus reconciliation is not required
at t3. Unfortunately, content reconciliation may still be reai
at t4, whose upstream peets andt3 share common blocks’
and?’.

B. Recoding with rateless codes
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Fig. 3. Comparison of average streaming rates in large pegedo streaming networks with different coding schemes.

The rateless recoding protocol guarantees the uniquemess a We next investigate the impact of the number of blocks in each
equal usefulness of all the coded blocks in the session, thmedia segment on the block conflicts at the receivers (Fi©)).3(
completely eliminating the need for content reconciliation Varying k& from 5 to 1000, we find the average streaming rates
Fig. 2(d), for example$ generates a potentially unlimited numberemain approximately the same for each coding scheme. Thus,
of blocks1’, 2/, ... from the original blocksl, 2, 3 and4. The we conclude that by varying the number of blocks per segment,
difference between Fig. 2(d) and (c) is that, rather tharpkim we are not able to alleviate the severity of block conflicts in
relaying received blocks, all peers recode the recoveriggnal those coding schemes where content reconciliation is redui
blocks and deliver the freshly coded blocks. After recejvinAll these exhibit the benefits of rateless recoding in elitiimg
blocks 1/, 2/, 3’ and 4’ from S, ¢; decodes them to derive, delivery redundancy without the need of reconciliation.

2, 3 and4, then it encodes them again int6"), 2(1), 3(1) 4(1),
..., upon requests frorty andt4. Similarly, o recovers the four D. Efficiency of rateless recoding

original blocks froms’, 6', 7" ands’, and recodes to obtaif),  Finally, we discuss the efficiency of our rateless recoding
2(), 31%), 4(), ... Thust; can safely retrieve unique codedscheme. As previously mentioned, rateless codes are highly
blocks 11V, 21, 1), 2() from ¢, andt,. After decoding,ts  computationally efficient. For the example of LT codes, ke
further recodes to obtain unique blocks for delivety?), 2, o averagen(in(k/5)) block exclusive-or operations to generate

3(%),40), ... Thereforey, is able to concurrently retrieve blocksa coded block fromé original blocks, andO(k In(k/s)) block
1), 23), 3014 without reconciliation between; and¢;. exclusive-or operations to recover theriginal blocks fromk +
C. Best answer to content reconciliation problem O(VkIn?(k/8)) coded blocks with probability — 5. Each block

To investigate the effectiveness of rateless recoding imiel exclusive-or operation includgsbitwise exclusive-or operations.
nating delivery redundancy and maximizing bandwidth zdilion, As exclusive-or operations can be implemented very effiien
we now show a comparison study result among the four codirgteless codes can achieve a high encoding/decoding bathgwi
schemes in large scale networks in Fig. 3: no coding, fixednd thus they can always be used to encode and decode on the
rate erasure codes, rateless codes without recoding, &ldss fly with the streaming process.
codes with recoding. In this empirical study, we simulatgoa Besides the many advantages of using rateless codes, there
Kbps live streaming session on random networks generatdd wéxists additional overhead with the recoding process.t,Fas
BRITE [7] based on power-law degree distributions. We assuraegment is recoded and relayed from an upstream peer only whe
no constraints of peer upload/download capacities in thidys it has been entirely received and successfully recoverettheat
and heuristically assign transmission rates on the linkgdwide upstream peer. Such additional delay to receive an entijmeet
an aggregate receiving rate 860 Kbps at each peer. Underis determined by the size of the segmént/, and the streaming
each scheme, the media is streamed without content reiztioeil rate. Second, to decode a segmenk afiginal blocks, additional
among peers. At each receiver, duplicated and non-usefeived bandwidths are required to send the extracoded blocks, where
blocks (for decoding) are eliminated, and the actual stiegmate ¢ is O(In?(k/5)/v/k) for LT codes.
is calculated. We can see that values @&f and! play a significant role in

We first fix k£, the number of blocks in each media segmentleciding the efficiency of the recoding process. On one hand,
to 50, and compare the four schemes in networks of differekt should be sufficiently large to guarantee the generation of a
numbers of peers and varioadge densitiem Fig. 3(a) and (b). potentially unlimited number of coded blocks for each segime
The results exhibit that onlyStreans rateless recoding schemeln addition, it is usually more efficient to have larger valusf
can actually achieve an average streaming rate arefdbps [ in practice as well, to achieve less overhead with respect to
at the receivers. In other schemes, the streaming rates@uead bookkeeping operations. On the other hand, the valué of,
at different degradation levels, caused by the duplicatiothe the size of a media segment, may not be too large, in order to
received blocks. In our investigation with fixed-rate erastodes, reduce the initial waiting time at each receiver. Furtherenohe
we also noticed that increasing the ratgk of the codes helps encoding/decoding speed and extra block overhead of asatel
alleviate the conflicts at receivers. Nevertheless, thiravement code are contingent updnandi as well. We are going to explore
is upper bounded by the results of the scheme of ratelesslieigco and discuss results based on different values of these ptgesn
without recoding. with our rStreamimplementation in Sec. V.



I1l. OPTIMAL PEER SELECTION AND RATE ALLOCATION fractional flows, with the weight being the ratio of the fiactal

In this section, we seek to answer a question that is critichpw rate to the aggregate unicast flow rate. In Fig. 4, thetend-
to any peer-to-peer streaming schemes: in a mesh peeeto-p%‘d link delays of the three paths ae3 and2 respectively, and
network, what is the best way to select upstream peers dhyS the average end-to-end latency.isx 3 +0.3 x 340.5 x 2.
allocate transmission rates of the rateless-code codednssr, Ve further notice that
such that a specified streaming bit rate is_, satisfied androomis 02X (14+14+1)+03x(1+1+1)+0.5x (1+1)
playback is guaranteed at all the receivers? We formulage th

problem as a linear optimization problem, and then design an— 1x(02+05)+1x0.3+1x0.2

efficient distributed optimal rate allocation algorithm. +1x05+1x03+4+1x(0240.3)

A. Linear programming formulation = 1x0741x034+1x02+1x05+1x03+1x0.5
In live media streaming sessions, it is desirable to achieve = Z cijfij /T

minimal end-to-end latencies at the receivers [8], [9]. W\btur (i,j)€A

rateless recoding, coding delays are introduced at eadr- int

mediqte receiver, a _trqdeoff b(_aside_s the many advan_tagesa\gérage end-to-end link delay of a unicast flow, as given @ th
recoding. Therefore, it is especially important for eacbeieer following proposition:

to select the upstream peers close to the streaming SOurCq°|‘8position 2. Let r be the streaming rate of a unicast session,

terms_of overlay hops, and to minimize _the end-to-eqd |In(|:(i_ be the link delay and;; be the transmission rate on lirfk j),
J J
latencies along the paths. In our optimization problem, we a

g ; X Y(i,j) € A. o c;i;i fii/7 represents the average end-to-end
to construct an optimal streaming topology, on top of whicih n Iir(lkjd)elay o?tﬁig)ﬁﬁicgggjﬂ/ow P g

only the streaml_ng r_ate is satisfied, but _also the end-toliefd Proof: Let P be the set of paths from the streaming source to the
latencies are minimized at all the receivers. We formulate Lreceiver in the session. Let?) be the rate of the fractional flow

objective funct|9n to reflect the m|n|m|zat|pn of such |.E!IEH$, going along patlp € P. The average end-to-end latency at the
and the constraints to represent the streaming rate reggiveand receiver is

capacity limitations in the network. In what follows, we rivate
our linear program (LP) formulation of multicast peer-teep Z ﬁ( Z cij) = 1 Z cij( Z f(p))
streaming by first analyzing a unicast streaming sessian fte /=7 ", .\.i7 onp " GEA  piig) ONp
streaming source to one receiver. 1

1) LP for unicast streamingA unicast flow from the streaming - Z cij fij-

In general, we can proVQ(i’j)eACijfij/T represents the

source to a receiver is a standard network flow observing the (i,4)eA
property of flow conservation at each intermediate node r st O
streaming rate of this unicast flow;; be the link delay and;; Next, we formulate a linear program to achieve minimum-gela

be the transmission rate on overlay lifk j). Fig. 4(a) depicts unicast streaming. Let;; be the capacity of linKi, 7). Omitting
an example of a unit unicast flow frorfi to ¢4, with » = 1, constant-, we Usey"; ;e cijfij to represent the average end-
cij = L,¥(i,j) € A', and the ratesf;; labeled on the arcs. to-end link latency of the unicast flow and derive

Such a unicast flow can be viewed as multiple fractional flows, )

each going along a different overlay path. Different pathesym min Z ¢ijfij @)
share some same overlay links, and the transmission rataatn e (1.7)€A

shared link is the sum of rates of all fractional flows that gsubject to

through the link. Fig. 4(b) illustrates the decompositidntioe

unit unicast flow into three fractional flows, with rate, 0.3 Zj:(m‘)eA fij = Zj:(j,z‘)eA fji="bi, VieN,
and 0.5, respectively. 0 < fij < uij, V(i j) € A,
where r ifi=235,
b; = —r if i =t,

0 otherwise

An intuitive thought about the optimization formulation ght

be that, the end-to-end latency of a unicast flow should be

formulated as the maximum of the end-to-end latencies of all

its fraction flows, instead of the average. However, we mdiuel

average end-to-end latency not only because we are ableite de

the nice linear formulation in (1), which is indeed a staadar

minimum cost flow problem, but also since the minimization of
(a) a unicast flow (b) three fractional flows the average end-to-end delay achieves the same resulteas th

minimization of maximum end-to-end latendye., the rates are
Fig. 4. An example of a unicast flow frorfi to ¢4 and its decomposition z||ocated in such a way that high latency links, such as Igatel

into three fractional flows. . h R .
and transcontinental links, are avoided as much as possible

We calculate the average end-to-end link latency of a unicgSegides, when;’s (v(i,j) € A) are of similar magnitude, we
flow as the weighted average of the end-to-end latencied @6al ;5 ynderstand the objection function as the minimizatiothe

INote thatc;;'s may well take different values. In this simple illustrative 8Verage hop COUht from_the streamlng source t_o t_he receiver.
example, we make;;'s all equal for easier understanding. We call the optimal unicast flow decided by this linear progra




TABLE Il TABLE Il

LP FORrStreamPEER TO-PEER STREAMING SUMMARY OF NOTATIONS
P: . r the required streaming rate of the sessjon
mind > ciuf a g
) et hea ¢j | the link delay on overlay link(z, j),
subject to Z i — Z fli=bl, VieNWeT ) Y(i,j) € A
j:(i,5) €A j:(j,i)EA .
m JJ t . ft | the conceptual flow fron to receiver
fliy Swij, Vi j) € AVEET 4)
> wi; <0 Vie N (5) £ | the rate off* on link (4, 5)
7:(4,7)€EA
. Zij | the transmission rate on link(,j),
S wu <, Vie N (6) I i) e s Ki, )
j:(j,i)EA ’
where roifi=25, O; | the upload capacity at node
bl = —r ifi=t,
0 otherwise I, | the download capacity at node

a minimum-delay flowSuch a minimum-delay flow is useful optimal transmission rates as:
in modeling minimum delay multicast streaming in a peer-to-
peer network, as a minimum-delay multicast streaming flow ca
be viewed as consisting of multiple minimum-delay flows fro
the source to each of the receivers. Here we make use of
concept ofconceptual flowintroduced in [10]. A multicast flow
is conceptually composed of multiple unicast flows from th
sender to all receivers. These unicast conceptual flowsisb-e

i th K with ding for link . b optimal transmission rate between them is non-zero.
n t e network without co_nten_ ing for n capacities, ame t oo that here we have formulated the optimal rate allonatio
multicast flow rate on a link is the maximum of the rates o

I th Ll ; | his link. For th I|5roblem for a single streaming session. In general, maltipl
all the ponpeptua ows going aong.t Is link. For the exae ps'[reaming sessions may co-exist in the same network. In FPact
shown in Fig. 2, the multicast streaming flow frasrto ¢4, ts, t3

L can be readily extended to model the multiple-session sicena
andt, can be understood as consisting of four conceptual f|OV¥§]d the resulting LP is its multicommodity variant. Inteeeb

from_ S to each of the receivers. When each conceptual ﬂ(_)W f8aders are referred to our previous work [11] for detailed
a minimum-delay flow, the end-to-end delays of the multicagfyc \sjons of the multiple session case.
session are minimized. Based on this notion, we proceed to ) .
formulate the optimal rate allocation problem for multicpser- B. Efficient subgradient solution
to-peer streaming. We now design an efficient distributed algorithm to solve the

2) LP for multicast peer-to-peer streamingdur linear op- linear progranP. General LP algorithms, such as the Simplex, El-
timization model for rStream aims to minimize the end-to- lipsoid and Interior Point methods, are inherently ceizeal and
end link delays from the source to all receivers. Based on thestly, which are not appropriate for our purpose. Our dmuis
initial mesh topology decided by the neighbor assignmewninfr based on the technique of Lagrangian relaxation and suiegtad
the bootstrapping service, it optimally allocates the ¢maission algorithm [12], [13], which can be efficiently implemented &
rate on each overlay link to construct a minimum (link) delajully distributed manner.
streaming topologyln our formulation, we consider upload and 1) Lagrangian dualization:We start our solution by relaxing
download capacity constraints at each peer, rather thaa lithe constraint group (4) irP to obtain its Lagrangian dual.
capacity constraints. This comes from practical obsesuatthat The reason of selecting this set of constraints to relax & th
bandwidth bottlenecks usually occur on “last-mile” acclgks the resulting Lagrangian subproblem can be decomposed into
at each of the peers in a peer-to-peer network. The linegrano classical LP problems, for each of which efficient algorigheist.
is formulated in Table fi, with notations summarized in Table Ill. We associate Lagrangian multipliepéj with the constraints in

In P, each conceptual flovy’ is a valid network flow, subject (4) and modify the objective function as:
to constraints (2)(3)(4) similar to those in the LP in (1).eTdhf- gt toet
ference lies in thaf!;’s, vt € T, are bounded by the transmission 2 D ekt D il )

+ L.
2ij = Iglea%(fijy v(i,j) € A. (7

uch an optimal rate allocatiap;;,V(i, j) € A) guarantees at
Fthe receivers, and achieves minimal end-to-end lin&rieies
as well. At the same time, it computes an optimal peer selecti
§trategy,i.e., an upstream peer is selected at a receiver if the

. A i i teT (i,j)€A teT (i,j)€EA
ratex;; on link (4, j), while z;;'s are further restricted by upload P .
and download capacities at their incident nodes. = Z Z (cij + pig) fig — Z Z HijTig-
An optimal solution to problen® provides an optimal ratg/;" LET (i,5)€A tET (i,5)eA
for the conceptual flows” on link (4, 5), V(4,j) € A. Let = be the We then derive the Lagrangian dual of the primal probRm
optimal multicast streaming flow in the network. We comptliee t DP: m%(L(u)
nz

2|f we consider the extra bandwidth required by ratelesecodded where
streams, the aggregate receiving rate at each peer should ec)r. In . Lot p
our LP formulation, we omit this slight difference. In our implentation, we ~ L(n) = min Z Z (cij + wig)fiz — Z Z pijzi;  (8)
take this into account and ugé + ¢)r to compute the optimal rates. teT (i,j)€A teT (i,5)€A



and the polytopeP is defined by the following constraints:

S iieali — 2 (j vealji="bi, Vie NVteT,

For linear programs, the primal variable values derived by
solving the Lagrangian subproblem in Eq. (8) @&t are not
necessarily an optimal solution to the primal problepand even

> Y(i,j) € AVt €T,  not a feasible solution to it [18]. Therefore, we use the algm
> ji(ij)eA Tid S 0;, Vi € N, introduced by Sheralet al. [18] to recover the optimal primal
) (’ veatii < T Vie N valuesf” At the k! iteration of the subgradient algorithm, we
7:(4,0)€E gt > 14, .

) o also compose a prlmal |teray§ [k] via
Here, the Lagrangian multlpllqn;?j can be understood as the

link price on link (¢, 5) for the conceptual flow from sourcg to fitj [k] = Z A]flffj [h],V(i,j) € AVt e T (12)

receivert. Such interpretation should be clear as we come to the h=1

adjustment Of,utj in the subgradient algorithm. A —
We observe that the Lagrangian subproblem in Eq. (8) can W&€re Yho1 M =1andAf >0, for h=1,... k. Thus,f} (k]

is a convex comblnat|on of the primal values obtalned in the
earlier iterations.

In our algorithm, we choose the step length sequetiep=
a/(b + ck),Vk,a > 0,b > 0,c > 0, and convex combination
weights AZ = 1/k,Vh = .,k,Vk. These guarantee the
convergence of our subgradient algorithm; they also gueean
that any accumulation point* of the sequencéf[k}} generated
via (12) is an optimal solution to the primal problePn18]. We
can thus calculatg;[k] by

decomposed into a maximization problem in (9),

maxz Z ,uﬁj:vq;j 9)
teT (i,j)eA

Zj;(i,j)eA wij <04 Vi€ N,

Zj;(j,i)eA zj; < I, Vi€ N,

and multiple minimization problems in (10), each for ane T,

subject to

min > (cij + pij) i @) ko
(enea L = 3 =t Z L F T 7
subject to . , h=1 h=1
Yjitigea fis Zm, yea t; = TGk =1+ L ShIEL

j) € A.

We notice that the maximization problem in (9) is an inC-. Distributed algorithm
equality constrained transportation problem, which casdieed Based on the subgradient algorithm, we now design a dis-
in polynomial time by distributed algorithm.g, the Auction tributed algorithm to solveP,given in Table IV. In practice, the
algorithm [14]. Each minimization problem in (10) is essalty algorithm to be executed on a lirk, j) is delegated by receiver
a shortest path problem, which finds the shortest path teeteli ;. Therefore, the algorithm is executed in a fully decerteadi
a conceptual flow of rate from sourceS to a receiver. For the manner, in that each peer is only responsible for computatio
classical shortest path problem, efficient distributedodlgms tasks on all its incoming links with only local information,g,
exist, e.g, Bellman-Ford algorithm, label-correcting algorithmsknowledge of neighbor nodes, delay on its adjacent links, et
[15] and relaxation algorithms [16]. As the algorithms atk a
essentially the same as Bellman-Ford algorithm, we empgiey t
distributed Bellman-Ford algorithm [16], [17] as our sddut

2) Subgradient algorithm:We now describe the subgradient
algorithm, applied to solve the Lagrangian dual probl&m.
The algorithm starts with a set of initial non-negative Laggian
multiplier valuesu” [0], V(i,5) € A,Vt € T. At the kth iteration,
given current Lagrangian multiplier valueé' [k], we solve the
transportation problem in (9) and the shortest path problem
(10) to obtain new primal variable values; k| andffj [k]. Then,
the Lagrangian multipliers are updated by

piki e + 1] = max(0, puf; [k] + O[k)(f1;[K] — 2i;[K))),
V(i,j) € AVt €T,

TABLE IV
THE DISTRIBUTED OPTIMAL RATE ALLOCATION ALGORITHM

1. Choose initial Lagrangian multiplier valugs;[0], V(i, j) €
A vteT.
2. Repeat the following iteration until the sequente(k]}
converges tq.* and the sequenc{af[k}} converges tof*:
Attimesk =1,2,...,V(i,j) € A, VteT
1) Computez;;[k] by the distributed auction algorithm;

2) Computeﬁj [k] by the distributed Bellman-Ford algg
rithm;
3) Computef}; [k] = 52 f1 [k — 1] + £ /5 [K];
. Co
whered is a prescribed sequence of step sizes that decides the 4) Update Lagrangian multiplier ji;, [k _+ =
tax(0, ui; [k]+0[k] (fi; k] — i [k])), whered[k] = a/(b+ck).
convergence and the convergence speed of the subgradient al 3. Compute the optimal transmission ratg — maxeer F% S
rithm. When# satisfies the following conditions, the algorithm V(i, ) € A. bt Jig o
is guaranteed to converge i = (uﬁj,V(i,j) € AVt €T), an
optimal solution ofDP: While the optimal transmission rates on the links can be
0[k] > 0,limy_ . 0[k] = 0, and Z 0k computed, we argue that only by transmitting with our ragle
k=1 recoding protocol, can the optimal rates be actually aduev
Eqg. (11) can be understood as the adjustment of link price fohis is because these optimal rates may only be achieved at
each conceptual flow on each link. If the rate of the conceptugach receiver when media contents from its upstream peers ar
flow exceeds the transmission rate on the link, (4) is vidlag® carefully reconciled and not duplicated. WitBtreans rateless
the link price is raised. Otherwise, the link price is redlice recoding, delivery redundancy is eliminated and thus tlxdaive

(11)
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bandwidth can be indeed saturated. We further note thatéarst a respective upstream peer terminates the push of the turren
ing, there is only one flow on each lir(k j), composed of coded segment, and starts delivering coded blocks for the new segm
blocks delivered at the optimal rate ef;. The introduction of This pull-push paradigm is illustrated in Fig. 5, where peéirst
conceptual flows is only to facilitate our optimization farkation requests segmenfrom upstream peetrsandc, and then segment
and the derivation of optimal rates;'s over the links. Thanks i + 1 after is successfully decoded.

to rateless recoding, we are exempted from the elaboratéamed With the simple segment pulling strategy and block pushing
assignment required for each flow if no coding is applied,dset method inside each segment, we minimize the control message
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able to saturate the limited bandwidth capacities. overhead, and more importantly, the streaming delays, as co
pared to schemes which pull individual blocks. Meanwhilay-h
IV. RSTREAM: THE COMPLETE PROTOCOL ing each peer explicitly ask selected upstream peers fonsets,

Combining the optimal rate allocation algorithm with théera OUr protocol provides the flexibility for each peer to recgafe its
less recoding protocolStreamrepresents a complete peer-to-peefonnectivity in case of network dynamics. Finally, we emgpza
streaming solution, which guarantees resilience and ayityn that this efficient pull-push paradigm is only achievabletwi
at the same time. In what follows, we present the practicidteless recoding, as every pushed block is useful for degod
rStreammedia distribution protocol and the protocol to handig Handling peer dynamics

peer dynamics, based on the two components. In peer-to-peer streaming, peers may arbitrarily join aastr-

A. Media distribution ing session at any time, and may depart or fail unexpectedly.
In rStream the media segments are disseminated with a hybiid rStream the distributed optimal rate allocation algorithm is
of pull and push methods. invoked and executed in a dynamic manner, and the peer connec

At each receiver, it maintains a receiving range of the mediwity is reconfigured with adjusted rates with peer dynanic
segments, typically from the next media segment to play to al) Peer joins: In rStream a new peer is admitted into a
number of future segments beyond. The segment retrieedégly, streaming session only if its download capacity is no lovhemt
i.e, which segment to retrieve next from each upstream peer.tlige required streaming rate It then immediately starts streaming
decided at the downstream peer, representing the “pullf’ giar with the available upload capacities acquired from its rgash
the distribution protocol. While such retrieval strategssiin is peers, assigned by the bootstrapping service. Meanwh#ends
key in a media streaming protocol without coding, this task & request to the streaming source, asking for computatioewf
significantly alleviated inrStream When receiver is deciding optimal rate allocation on the links.
theavailablesegment to retrieve from upstream peea segment  2) Peer departures and failuresDuring streaming, when a
that has been successfully decoded ait selects a segment thatpeer detects the failure or departure of an upstream peer, it
is in its receiving range with the nearest playback time. Bue attempts to acquire more upload bandwidth from its remginin
rateless recoding, evenidfconcurrently downloads coded blocksupstream peers. Only when the peer fails to acquire the nextjui
for a same segment from multiple upstream peers, the reteisreaming rate, it sends a re-calculation request to theceduor
blocks can all be used for decoding the segment. Therefotiee new optimal rate allocation.
not only the need for reconciling blocks inside each segneent At the source, when the number of received re-computation
eliminated, but also the reconciliation for the retrievesegments requests exceeds a certain threshold, the source brosduet
from different upstream peers becomes unnecessary. Weefurta request, such that all peers activate a new round of digdb
consider that an upstream peer may not have any segmalgorithm execution, while continuing with their own stneiag
available in the receiving range of a receiver. In this cdke, at the original optimal rates. Note that in such a dynamic
downstream peer temporarily increases its streaming fete@s environment, a new round of algorithm execution alwayststar
other upstream peers that have available segments to $erve ifrom the previously converged optimal rates, rather thamfr

Upon receiving a request for a specific segment, an upstreéim very beginning when all the values are zero, thus expegdit
peer starts generating coded blocks of the segment, anth€onits convergence. The peers adjust their rates to the newnapti
uously pushesthem to the requesting peer at the optimal ratealues after the rate allocation converges.
computed by the optimal rate allocation. The receiver passe We conclude with the note that, this simple and efficient
received blocks onto its decoder and decodes on the fly. Whenocess of handling peer dynamics is only achievable with
all the original blocks in the segment have been recovergdeless recoding. As rateless recoding guarantees thetwddd
the receiver sends a “stop” signal to all its upstream pedtocks in the session are useful, we can rest assured that all
that are serving it this segment, and requests for new segmeadditionally acquired or newly allocated bandwidths carfulky
selected with the segment retrieval strategy discussectabben used to deliver useful blocks for decoding, without the neéd



reconciliation. In addition, the dynamic execution of opi rate Exp. 1. We first examine the net encoding and decoding
allocation algorithm provides optimal streaming topoksgat any speed by continuously feeding original/coded blocks irtte t
time. Working together, they provide excellent failureilieace encoder/decoder. Table V-VIII show the speed obtained with

and streaming delay minimization at the same time. various values of coding parameters. Again,s the number
of original blocks in each segment ards block size.c and
V. PERFORMANCE EVALUATION ¢ are parameters in the Robust Soliton distribution of LT code

[3], whered is the allowed failure probability for decoding from
k + O(vkIn?(k/6)) coded blocks, and is a positive constant
. . . _which, together withs, decides the probability of deriving a
implementation of theStreamprotocols with the C++ program low encoding degree with the Robust Soliton Distributiors A

ming language. Our implementation includes the ratelesec .
o Gincreases and decreases, more low degree coded blocks are
encoder and decoder at each peer, message switching aed bu

management in the application layer to implement tS&eam generated. . . .
o . . Our results in Table V and VIl reveal an increasing trend for
protocols, as well as distributed optimal rate allocati@ur

: - encoding and decoding speed asncreases and decreases.
implementation also supports the measurement and enmlat . .
s more low degrees are generated with the Robust Soliton

of net_work parametgrse.g, node upload/doyvnload capacme$. Idistribution in this case, encoding/decoding involvesdewocks
compiles and runs in all major UNIX variants (such as Linux . f L )
nd requires fewer XOR operations. Fiximgand ¢, results in

and Mac OS X), and uses standard Berkeley sockets to estab able VI and VIII show that the speed decreases with the asere

TCP/UDP connections between peers. All our experiments alg . . .
. g ol k (as the block degree increases), and increases with the
conducted on a high-performance cluster consistingtbDell

1425SC and Sun v20z dual-CPU servers, each equipped increase of (as bookkeeping overhead decreases). Nevertheless,

dual Intel Pentium 4 Xeon 3.6GHz and dual AMD Opteron 25 c achle_ved codln_g_ bandwidth in all cases is much Iargem tha
processors overlay link capacities. We can now conclude that, with our

“streamable” decoder implementation, there is little ding
A. Rateless-code encoder and decoder delay introduced to streaming, which will be further vatith
with experiments in Sec.V-B.2.

In this section, we present results from extensive expearime
in emulated peer-to-peer streaming environments, baseoupn

1) Optimized decoder desigrn our implementation, we have . :
implemented LT codes based on the Robust Soliton distabuti Exp. 2.We next investigate the average number of coded blocks

In addition to the basic functions in LT codes [3], our deaodé]eeded to I?_ucl:cessfijlly decode a;egmlfnt, Wh'_Ch are riigmtl'lad
implementation represents two new designs, which con&ibo one or multiple upstream peers. Resulls are given as o
significant improvements of decoding latency. k,i.e, 1+¢, in Table IX and X. We observe that+ ¢ decreases
First, the decoding is “streamable in the sense that thv(g'ith the increase of andk. For fixed coding parameter values,
decoding graph is constructed incrementally and origifaths results remain the same no matter the coded blocks are gediera

are recovered on the fly with the data transmission. Whemeve?t one or mqltlple upstream peers. This vahda;es projosil
new coded block arrives at the decoder, its encoding infooma in Sec. II-B, i.e, coded blocks produced by different LT-code
(degree and indices of original blocks that it is generatedj encoders are equally useful.
is added to the decoding graph, and original blocks are ezedv ~ From the above results, we conclude that the value of pasmet
as soon as enough information has been received to decédeepresents a tradeoff between encoding/decoding speed and
them. As compared to the traditional implementation whichandwidth consumption to deliver sufficient coded blocks fo
decodes a segment df original blocks after(1 + ¢)k coded decoding. Considering that the encoding/decoding spesid/es/s
blocks have all arrived, our “streamable” decoder reprisstémee much higher than regular media streaming rates, largeresalu
advantages: (1) It maximally utilizes the time that it waits of k are more appropriate to reduce bandwidth consumption.
new incoming blocks to construct the decoding graph andaiecoBesides, larger values af provide higher encoding/decoding
thus minimizing the extra decoding delay during streami@); speed. Nevertheless, [, the segment size, also affects the end-
The encoding information of received blocks is accumulateni t0-end delay at peers in the network, to be further discussed
no re-computation of such information occurs during desgdi S€c. V-B.2.
In the traditional implementation, if the first decodingeatipt B. Performance of rStream Streaming
with (1 + €)k coded blocks fails, the entire decoding graph needsWe now evaluate theStream protocol implementation in
to be constructed again when additional blocks are recef®d emulated streaming environments. In order to emulate steali
In combine with our pull-push media distribution schemeg thnetworks, all the initial mesh topologies used in our expents
“streamable” decoder minimizes the delay between recemifo are random networks generated with power-law degree lalistri
the last received block used for decoding and the succesgiohs with the BRITE topology generator [7]. In each netwaak
recovery of a segment, thus minimizing the number of nordus800 Kbps media bitstream is streamed from a streaming source
coded blocks injected into the network from upstream peers. with 10 Mbps of upload capacity. We consider two classes of
Secondthe decoding graph is implemented with the most effreceivers: ADSL/cable modem peers and Ethernet peerss$&nle
cient double-linked dynamic data structures in C++. Alleirion  otherwise stated, ADSL/cable modem peers takg of the total
and removal operations are achieved(xil) time, instead of population with download capacities in the rangestt Kbps -3
O(k). This further improves the efficiency of the decoders, whicklbps and upload capacities in the range206 — 800 Kbps, and
is also critical to improve the performance rStreamprotocol.  Ethernet peers take the ott8% with both upload and download
2) Performance of LT-code encoder/decod&/e now present capacities in the range of — 8 Mbps. Overlay link delays are
evaluation results with our LT-code implementation. Theesk sampled from the distribution of pairwise ping times betwee
ments are divided into two parts. PlanetLab nodes [19].
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TABLE V TABLE VI
ENCODING SPEED(MBPS): K = 100,L = 1KB ENCODING SPEED(MBPS): ¢ =0.05,§ =0.1
c\d 0.01 0.05 0.1 0.5 1.0 I\ k 10 50 100 500 1000
0.01 35.65 37.37 37.84 38.26 37.52 200 62.98 30.19 26.00 18.85 16.11
0.05 25.53 27.39 28.20 32.68 34.02 500 67.06 32.26 27.52 19.98 17.66
0.1 31.19 31.44 31.93 33.26 3451 1K 68.96 32.87 28.20 20.32 18.16
0.5 75.46 60.25 59.23 50.82 50.90 2K 68.81 33.37 29.09 20.69 18.54
1.0 119.78 | 108.29 | 103.40 | 73.65 69.15 3K 69.13 34.16 29.21 20.81 18.59
TABLE VII TABLE VIl
DECODING SPEED(MBPS): K =100,L = 1KB DECODING SPEED(MBPS): c=0.05,6 = 0.1
c\d 0.01 0.05 0.1 0.5 1.0 I\ k 10 50 100 500 1000
0.01 28.33 29.32 30.53 29.60 28.34 200 44.39 18.17 15.79 10.92 8.40
0.05 16.67 19.77 21.71 26.52 28.28 500 58.89 22.62 19.17 13.74 11.63
0.1 19.69 21.56 23.45 26.34 29.34 1K 61.80 24.35 21.71 14.70 13.16
0.5 50.53 48.63 46.24 44.43 41.68 2K 66.11 24.80 22.65 16.30 14.75
1.0 53.70 51.61 47.70 46.71 44.25 3K 68.76 25.00 22.71 16.69 14.93
TABLE IX TABLE X
NUMBER OF CODED BLOCKS FOR DECODING AS MULTIPLES Ok: C = NUMBER OF CODED BLOCKS FOR DECODING AS MULTIPLES Ok: K =
0.05,6 =0.1,L = 1KB (Nup: NUMBER OF UPSTREAM PEER} 100,L = 1KB, NUMBER OF UPSTREAM PEERS 1
Nup\k ] 10 50 100 500 1000 c\o 0.01 0.05 0.1 0.5 1.0
1 1.49 1.39 1.26 1.20 1.16 0.01 1.34 1.36 1.34 1.35 1.33
2 1.48 1.39 1.27 1.22 1.15 0.05 1.50 1.38 1.26 1.25 1.21
5 1.47 1.41 1.27 1.20 1.17 0.1 1.62 1.48 1.37 1.26 1.21
10 1.48 1.39 1.26 1.21 1.15 0.5 1.72 1.49 1.46 1.34 1.33
20 1.47 1.40 1.27 1.20 1.19 1.0 3.12 2.83 2.74 1.99 1.88

1) Control message overheadlVe first investigate the control if the segment size is larger. In general, the control messag
message overhead irStreans distribution protocol. In this overhead is non-significant as compared to media traffic.
set of experiments, we stream 28-minute 300 Kbps media  2) End-to-end delayWe next investigate the optimality of the
stream in networks of different sizes and edge densitiet) wistreaming topologies derived wittStreans optimal rate allo-
various media segment sizes, i.&.; I. Fig. 6(A) exhibits the cation algorithm, and the actual end-to-end delay expeeigrat
ratio of total control message sizes (in Bytes) over the alerthe peers when streaming over such optimal topologiesjdimud
media data message sizes (in Bytes) during the entire strganrecoding delay at intermediate peers, link latencies, e
period in each network. Fig. 6(B) further illustrates theermge distributed optimization algorithm, as summarized in &by,
control m_essa?ing bandwidth consumed at each peer, cadulds carried out at the background during the streaming psyces
py fotal size of control messages sent at a peer and rates are adjusted after the computation converges.
streaming time at the peer . . S

Exp. 1.As a natural first step, we start our investigations by

<

%5’( 10° s 3 ——— studying the convergence performance of the distributeithiga-

<, — k=100=1KBAN edges|| 2, 5 T iC100/-1KBN edges|  tiON algorithm.

: 00 L tKBAN ovges P T kcsorKBaNedges | Fig. 7 shows the convergence speed when the distributed algo
58 £ g rithm runs from the beginning with all flow rates initializéol 0,

55 % 5 ° in various static networks. With respect to the number oéiiens
s ;é ! executed by the iterative algorithm to converge to optitpali

§‘ g §§0-5 Fig. 7(A) shows that the number slowly increases with nekwor

o I o . . . . . .

';93 (E‘L:O 100 150 200 250 300 350 400 450 500 %0 100 150 200 250 300 350 400 450 500 SI_ZeS’ and remains at the S_ame level na fI_Xed_Slzed net A k w

o Number of peers in the network (N) Number of peers in the network (N) dlﬁerent edge denSItleS. Flg 7(B) further |||UStrateB ﬂmnnlng

(A) ® . ) . o .
time for these iterations. As a fully distributed algorithits each

Fig. 6. Control message overhead in random networks of diffesizes.  iteration takes a similar length of time regardless of thievoek

The results reveal that our pull-push mechanism involveyg vesizes, and therefore, the time to convergence only incsesloa/ly
low control message overhead. In details, we observe thah¢l with the increase of number of iterations executed.
overhead remains at similar levels for networks of diff¢érgnes, When we consider the practical scenario that a convergence
showing good scalability of the pull-push mechanism; (2 thto absolute optimum is usually not necessary in realistiieg-
overhead increases with the increase of edge densitiesviories  tions, we further investigate the convergence speeds sibifity
of the same size, as more control messages are required atien and90% optimality, and compare them with that to optimality in
peer has more upstream peers; and (3) the overhead decrekigps8. We observe that the convergence to the primal feasibl
with the increase of media segment sikel, as control messagessolution is usually much faster, and even the convergencz to
are sent per segment basis, and there are fewer segmentalin feasible solution, which achieve®% optimality, is 20% faster.
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In addition, the time for convergence to feasibility dropgscfly latency in denser networks. This reveals that when therenare
with the increase of Ethernet peer percentages, whichdrimgye choices of upstream peers in a denser network, our algogdmm
abundant upload capacities into the system. always find the best set of upstream peers on low delay paths.

Based on these observations, we conclude that in practidderefore, in realistic peer-to-peer streaming networkh Wigh
applications, the algorithm can obtain a feasible solutiora edge densities, the advantage of our algorithm is more Bvide
certain degree of optimality in a short time, even when itsrurover the commonly used heuristic.
from the very beginning in large networks. In our evaluation To visualize the optimal topology, Fig. 10 illustrates exden
of dynamic scenarios in Sec. V-B.3, we will show that thetreaming topologies derived with both algorithms from mea
convergence to new optimum from previous ones is even fast@n-peer input topology. In these graphs, distances betweis pa

Exp. 2. We now investigate the optimality of the streamingf peers represent link latencies, and the widths of edgew sh
topologies obtained with the optimal rate allocation ailpon, the transmission rates on them. The dotted lines represet |
by comparing them with those constructed with a commontpat are not used in the resulting streaming topologiesarit fne
used peer selection heuristic [2], [20]. In this set of expents, seen that by our optimal peer selection, receivers arensinga
we only consider end-to-end link latencies on the topokgés from the best upstream peers with minimal end-to-end lasnc
used as optimization objective of our algorithm, and ledwe twhile with the heuristic, peers simply distribute theirestming
investigation of overall end-to-end streaming delays ® tiext rate among upstream peers, which may lead to large endeto-en
experiment. latencies.

In the peer selection heuristic, each receiver distribules Exp. 3.We next investigate overall end-to-end streaming delays
required streaming rate among its upstream peers in piopddt experienced at the receivers when streaming over the derive
their upload capacities. Its end-to-end link latency iscekted optimal topologies, including encoding/decoding delayinter-
as the weighted average of the end-to-end link delays of flowsediate peers, transmission delays, and link latencies oVarall
from all its upstream peers, and the weight for each flow is tlend-to-end delay at each peer to receive a segment is mdasire
ratio of the assigned transmission rate from the upstreaamtpe the difference between the time when the streaming souacts st
the required streaming rate. to generate and deliver coded blocks for a segment and thee tim

Fig. 9 exhibits that therStream optimal rate allocation al- when the peer has successfully decoded the segment.
gorithm achieves much lower latencies than the heuristic, i In rStream the overall end-to-end streaming delay at each peer
networks of various sizes and edge densities. When thalinitis decided by the number of overlay hops that the peer is away
input topology is dense with more edges per peer, the omtimiz  from the source, as well as the delay on each hop. With respect
algorithm converges to better optimal topology with snrallehe former, in our optimal streaming topology constructitre
end-to-end link latencies, while the heuristic results ighkr diameter of a topology withV peers isO(log(N)), leading to
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density function of peer end-to-end streaming delays fid@peer network.

log-scale increment of the delay with network size in Fig(A)1 Fig. 12. Convergence speed in a dynamic network with upO@ peers.

Fig. 11(A) also shows that the delay is smaller with a hightgee i, he case of static networks of the same sizes. Indeperdent

density. This is because witistreans optimal rate allocation, a he current network size, the algorithm always takes leas 1t

peer has higher probability to be closer to the source insesm o 4tions ( — 2 seconds) to converge.

hop _counts if it knows more neighbors. , . . We note that although this is a specially designed dynamic
\(/leth rezpectdtol delay ﬁn each hop, it consists O,f d,ecoi"?:%se, it reflects the capability of the optimization alduritto

an henco llng feay at(; eh upstre?m ﬁ{eir,dtrlamsmlssmg &@¥verge promptly from one optimum to another in practical

at the scale ofkl/r, and the overlay link delay. Based ongynamic scenarios. In a realistic peer-to-peer streamatgark,

our opt|_m|zed decoder design a_nd encodlr_lg/decod_mg_ _en‘bwe eer joins and departures may occur concurrently and denslis

shown in Sec. V-A.2, the recoding delay is non-significasst, @ ring the entire streaming session. In this case, our idigor

cor_npared to ot_her_ delays. With various valueskc_zfndl — thus always improves the rate allocation towards optimality e t

various transmission delay. on each hOP — Fig. 11(A) furthey,,rant network and can converge quickly as long as thestsexi

exhibits the effect of media segment sizes on the end-to-eg table operating point in the dynamic overlay.

streaming Iatencyite., the larger each segment is, the higher the Exp. 2.We next investigate a more practical dynamic scenario

entzj-to-gnd ('jetlay 1S- work. Fia. 11(B) plots CDF fWhere peer joins/departures occur concurrently and ciemsig.

ooming into a5_00-peer network, F1g. (B) plots S %N this set of experiments, 300 Kbps media streaming session

end-to-end streaming delay distribution at _the particigapeers. is emulated in &200-peer dynamic network. The peers join and

we obser\_/e that the delay a_t most Peers 1s moderate, and On&eﬁart following an On/Off model, with On/Off intervals ot

small portion of peers experience a relatively longer delay following an exponential distribution with an expecteddén of

From the above results, we see thatnd ! should be kept T seconds. Each peer is bootstrapped withupstream peers

at moderate values in order to guarantee small end-to-elagisde YPON joining. The optimal rate e_lllocation algori_thm is dgmeally
at the peers. Combining this point with our previous disinres  €Xecuted at background to adjust the streaming rates.
we conclude that choices df and i represent another tradeoff 10 investigate the smoothness oStream streaming, we
between bandwidth consumption and end-to-end streamilay dgmonitor two rate metrics at the peers during 4a-minute
in streaming sessions. Therefore, if a streaming sessian Rgrod of time: (1) throughput which is the aggregate
stringent delay restrictions but presents lower bandwdgtmand, ate of r?celvmg fcoddedd B"I'edl'(a bltstre%ms at a peer, com-
we may choose relatively small values forand I; otherwise, it puted by —= LuReRtes t ocks received IN bng (2) good-
is more appropriate to use a largeand a largd. put, representing the aggregate rate of deriving original me-
3) rStream streaming during peer dynamic#& consistent dia contents,i.e, the actual streaming rate, computed by
streaming rate is critical to guarantee smooth playbadkeapeers | x no. of onglnaltblocks decoded in t
throughout the streaming session. Working together, tmauhjc
execution of optimal rate allocation algorithm and the leg®s 400 —
recoding scheme provide such streaming rate stabilittream e e
Exp. 1.In order to show its practicality in dynamic scenarios, oo Eggzzggggzv g:i
we first investigate the convergence speed of the optinoizati ’
algorithm in dynamic networks. In this experiment, duringsa
minute streaming sessiod)0 peers sequentially join the session
in the first20 minutes, and then start to depart fr@h minutes
on. The distributed optimal rate allocation algorithm isaked
about everyl5 peer joins or departures, and always runs from
the previous optimal flow rates, following the dynamic exemu S
method described in Sec. IV-B. 0 5 10 15 20 DX F® A0
The number of additional iterations and time needed to con-
verge to the new optimal rates in both the peer joining phase arFig. 13. Average goodput in a dynamic streaming session 2ithpeers:
departure phase are illustrated in Fig. 12. The resultsatebat & =100, 1 =1KB, ¢ =0.05,6 = 0.1.
the convergence to new optimal rates in such dynamic samnari We first plot the average goodput achieved at peers in Fig. 13,
is much faster, as compared to running from the very beggniwith varying peer churn rates and network edge densitied, an
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fixed coding parameter values at= 100, [ = 1K B, ¢ = 0.05, degraded quality, while waiting for the tree to be repairBoese
ands = 0.1. We observe no significant streaming rate fluctuatiorelvantages come with a cost, however, as all the trees nds to
in all scenariosj.e., the average goodput is steadily maintainethaintained in highly dynamic peer-to-peer networ&reamuses
around300 Kbps. In the case that each peer joins/leaves evesycombination of rateless codes and mesh topologies tod®ovi
30 seconds, in the200-peer network, there aré — 7 peer resilience and flexibility as well, but without the costs apkcit
joins/departures every second. Even with such consisteat ptree maintenance.

churns, the streaming rates at existing peers remain rsdiisfac- Similar to rStream there have recently emerged a number
tory at all times. In addition, we observe that the goodpum@e of peer-to-peer streaming proposals that use mesh togslogi
stable when peers have more neighbors. These results deatense.g, CoolStreaming [2], Chainsaw[25], GridMedia[26], and Pee
the excellent dynamic resilience oStream supported by its Streaming [20]. In these proposals, each peer periodiaatly

dynamics handling protocol discussed in Sec. IV-B. changes media availability with its neighbors, and the meég-
650 —rroughpit GraloreL23) ments to be retrieved from each neighbor are dependent tjgon t
800 o o) number of potential suppliers for each segment and theadblail
0 — oo ez || upload capacities of neighbors. In PeerStreaming[20]ntleelia
K] ¢ |dehia] epsiion] §°* . Goodpt (cpelon=1.20) downloading load is distributed among the set of supplyiegrp
200 | 500B | 0.05 |0.1 1.23 450 Goodput (epsilon=1.34)

in proportion to their upload capacities. Comparedr&ream
these heuristics fall short of achieving optimality, andyrstarve
the peers with high download demandSireamalso considers
the heterogeneity of link delays, which has not been prelou
e s o = o s taken into consideration.

Time (minutes)

@ ® In all mesh-based proposals, the need for content recatiaili
naturally arises. Byerst al. [1] provide algorithms for estimation
Fig. 14. Average throughput/goodput in a dynamic streamirsgise with gnd approximate reconciliation of sets of symbols betwesirsp
200 peers:T" = 60 seconds D = 4. of collaborating peers. These algorithms may be very resour
Fixing the peer On/Off interval length t60 seconds and intensive with respect to both computation and messagirtg. A
upstream peer number o we further investigate the throughputthough Byerset al. advocate Tornado codes to provide reliability
and goodput achieved at the peers at various coding parameigd flexibility, the sets of coded symbols acquired by déffer
values in Fig. 14. As discussed in Sec. V-A.2, the values of fopeers are still likely to overlap, as Tornado codes are rietass.
coding parameters, [, c andé, decidee, a factor representing peerStreaming [20] also employs a high rate erasure codehwh
extra bandwidth needed to delivery the additional code@kslo js 3 modified Reed-Solomon code on the Galois Field2&H(
for decoding each media segment. We experimented with foaid ensures with high probability that the serving peers hol
sets of coding parameter values, and the correspondirajues parts of the media without conflicts. PROMISE [27] uses Tdma
are given in Fig. 14(A). We further note that the value «f codes to tolerate packet losses and peer dynamics, andmerfo
reflects theaveragepercentage of extra coded blocks requireghte assignment of the coded streams to a selected set dfisigpp
for decoding under each set of coding parameter values, randhkers. By applying these erasure codes with fixed rates,be n
actual streaming, the number of coded blocks used for ssitdesfor content reconciliation is mitigated, but not elimingtén com-
recovery of each segment varies. Nevertheless, Fig. 14Bbis  parison, by using rateless codes and recodi@geamcompletely
that with each set of coding parameters, the achieved gadsipuexcludes any necessity for content reconciliation amoreyspe
consistently around = 300 Kbps, while the throughput is always Maymounkovet al. [5] use online codes, which belong to the
near (1 + ¢)r. Such streaming rate stability reveals the fact thajass of rateless codes, to download large-scale contg@etgnto-
the slight variation in the number of coded blocks used tamdec peer networks. It takes advantage of the benefits of ratetess.
different segments actually introduces little jitter iretitreaming. However, by only encoding at the source peer and not recaating
the relaying peers, there may still be significant contergriayp
VI. RELATED WORK between a pair of relay peers, when they download from the
Earlier work on peer-to-peer multimedia streaming has besame upstream peer. Further, it may not be readily applied to
based on a single multicast tree [21], [22], rooted at theasting peer-to-peer streaming, as media streams are delay+gersitd
source, and constructed with a minimized height and a balnd®ay be generated on-the-flg.g., live streaming). Huangt al.
node degree. The challenge, however, surfaces when inpeéos [28] design an on-demand media streaming scheme based on the
in the tree do not have sufficient available capacities tmaghl combination of media segmentation and rateless encoditly wi
to multiple children nodes, and when they depart or fail,chi Raptor codes. However, they mainly utilize the higher eimgd
interrupts the streaming session and requires expenspairreand decoding efficiency property of such rateless codesddbut
processes. not explore the useful properties related to their rateless.
Streaming based on multiple multicast trees has been pedpos With respect to peer selection, most existing work employs
to address this problem, as in CoopNet [23] and SplitStrezth [ various heuristics without formulating the problem theioadly,
The media can be split into multiple sub-streams and each swlith only one exception: Adleet al.[29] propose linear program-
stream is delivered along a different multicast tree. Assaulie ming models that aim at minimizing costs in peer-to-peerteoin
these systems accommodate peers with heterogeneous dérslwdistribution. rStreamis tailored to the specific requirements of
by having each peer join different numbers of trees. It @dsodre media streaming, by minimizing streaming latencies. In],[29
robust to peer departures and failures, as an affectedviegei : supplying peers are allowed to fail, by having constraints
peer may still be able to continuously display the media atguaranteeing the aggregate rate from any subset composeé; of

100 | 1IKB 0.05 | 0.1 1.26
200 | 500B | 0.01 |0.1 1.30
100 | 1IKB 0.01 |0.1 1.34
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supplying peers out of the totalis larger than the streaming rate[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlifjetwork Flows: Theory,

rStreamhandles peer failures based on the combination of rateless rer o
] D. P. Bertsekas and J. N. TsitsikliBarallel and Distributed Computa-

recoding and dynamic execution of optimal rate allocatitm.

addition, the problem of content reconciliation is not agded [17]

in [29], which is the motivating factor towards the use oftass

codes inrStream

We conclude this paper by reinforcing our strong argument

VII. CONCLUSION

that rateless codes are ideal companions to peer-to-peanshg

solutions, and are orthogonal to any multimedia codec$,dlirg
H.264/AVC. A typical multimedia stream, such as an MPEG-

4 or H.264 stream, can be treated as a bitstream demandizaj
a constant bit rate, which can be segmented and treated by

rateless codes. Using examples, analysis, and experimsuits,

we have made it very clear that rateless codes representesur b

possible option to provide resilience to dynamics typic&lund

in peer-to-peer networks, and to completely eliminate teedn (24]

for content reconciliation. Combined with optimal peerestibn
and rate allocation strategies that can be computed ofiythie-

a decentralized manner, we believe that rateless codesdprov25]

a solid foundation towards winning the battle on all fronfs o

the

peer-to-peer streaming challenge: dynamics, recdatiail,

and bandwidth. We believe that our positive experimentsiilis

with rStreamimplementation in the emulated realistic peer-t
peer streaming environments have revealed the effecggeak
rStreamin real-world scenarios. In ongoing work, we are working
towards a large-scale deployment and evaluation ofrStream

implementation in the Internet.
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