
1

rStream: Resilient and Optimal Peer-to-Peer
Streaming with Rateless Codes

Chuan Wu,Student Member, IEEE,Baochun Li,Senior Member, IEEE
Department of Electrical and Computer Engineering

University of Toronto
{chuanwu, bli}@eecg.toronto.edu

Abstract— Due to the lack of stability and reliability in peer-to-
peer networks, multimedia streaming over peer-to-peer networks
represents several fundamental engineering challenges. First,
multimedia streaming sessions need to be resilient to volatile
network dynamics and node departures that are characteristic in
peer-to-peer networks. Second, they need to take full advantage of
the existing bandwidth capacities, by minimizing the delivery of
redundant content and the need for content reconciliation among
peers during streaming. Finally, streaming peers need to be
optimally selected to construct high-quality streaming topologies,
so that end-to-end latencies are taken into consideration. The
original contributions of this paper are two-fold. First, we propose
to use a recent coding technique, referred to asrateless codes,
to code the multimedia bitstreams before they are transmitted
over peer-to-peer links. The use of rateless codes eliminates the
requirements of content reconciliation, as well as the risks of
delivering redundant content over the network. Rateless codes
also help the streaming sessions to adapt to volatile network
dynamics. Second, we minimize end-to-end latencies in streaming
sessions by optimizing towards a latency-related objective in
a linear optimization problem, the solution to which can be
efficiently derived in a decentralized and iterative fashion. The
validity and effectiveness of our new contributions are demon-
strated in extensive experiments in emulated realistic peer-to-peer
environments with our rStream implementation.

Index Terms— Distributed networks, distributed applications,
peer-to-peer protocol, media streaming

I. I NTRODUCTION

With peer-to-peer media streaming, streaming servers do not
need to directly support a large number of unicast sessions,which
effectively eliminates server overloading, and reduces the band-
width costs on servers by a few orders of magnitude. Despite such
an important advantage, peer-to-peer streaming poses significant
technical challenges, especially when it comes to real-world and
large-scale deployment:

⊲ Network dynamics.Peer-to-peer networks are inherently dy-
namic and unreliable: peers may join and depart at will and
without notice. The demand for stable streaming bit rates
may not be satisfied.

⊲ Limited bandwidth availability.Nodes in peer-to-peer net-
works reside at the edge of the Internet, leading to limited
per-node availability of upload and download capacities.
To further exacerbate the situation, the available per-node
bandwidth differs, by at least an order of magnitude. To
ensure uninterrupted streaming playback, typical streaming
bit rates in modern streaming codecs must be accommodated

The completion of this research was made possible thanks to Bell Canada’s
support through its Bell University Laboratories R&D program.

for the entire peer-to-peer topology. Even if a particular
streaming rate may be satisfied, we may wish to minimize the
end-to-end latencies to peer nodes in the streaming session.
It is nontrivial to construct a feasible topology to satisfy
an arbitrary streaming bit rate, not to mention that with
minimized average end-to-end latency.

⊲ Delivery redundancy and content reconciliation.It has be-
come typical in recent peer-to-peer streaming proposals
for a peer node to concurrently download from multiple
upstream peers, and serve multiple downstream peers. While
it improves overall bandwidth availability and resilienceto
dynamics, there exist fundamental problems in suchparallel
retrieval with respect to delivery redundancy and reconcilia-
tion. As there are always risks that the same content may be
unnecessarily delivered by multiple upstream peers, the peer
nodes need to reconcile the differences among the contents
held by different upstream peers before downloading [1], [2],
a problem referred to ascontent reconciliation.

While there exists previous work on peer-to-peer streaming(a
discussion of which is postponed to Sec. VI), to the best of our
knowledge, this paper represents the first attempt to battleon all
three fronts of the peer-to-peer streaming challenge. Our main
contribution is a peer-to-peer streaming protocol referred to as
rStream, which involves the combination ofrateless codesand
optimal peer selection.We first argue that the recent advances of
rateless fountain codes, including LT codes [3], Raptor codes [4]
and online codes [5], can be readily used in peer-to-peer streaming
with substantial advantages. As a class of erasure codes, rateless
codes provide natural resilience to losses, and therefore provide
the best possible resilience to peer dynamics. Beingrateless, there
is potentially no limit with respect to the number of uniquely
coded “blocks,” coded from a set of original data blocks. This
completely eliminates the needs for content reconciliation, as no
redundant contents exist in the network. A sufficient numberof
coded blocks from any set of peers may be used to recover the
original content.

Based on the foundation of rateless codes, we propose an
optimal peer selection strategy to guarantee bandwidth availability
and to minimize end-to-end latencies. We first formulate the
optimal peer selection and rate allocation problem as a linear
optimization problem, and then derive an efficient and decentral-
ized algorithm to solve the problem. As rateless codes naturally
eliminate the need for content assignment on each link, we are
able to deliver useful media content at the optimally computed
rates. Our algorithm is reactive to network dynamics, including
peer joins, departures and failures.

2

S

Raw media stream

Audio/Video
 encoder

Rateless-code
 Encoder

10010101010010010010

Source Receiver

Coded stream

Uncompressed media for playback

Rateless-code
 Decoder

Received coded stream

Audio/Video
 decoder

Media stream M Media stream M

Fig. 1. An illustration of the mesh topology and peer-to-peerstreaming model.

The remainder of this paper is organized as follows. In Sec. II,
we present our network model and the case for using rateless
codes. In Sec. III, we address the optimal peer selection problem,
by formulating it as a linear optimization problem, and by design-
ing a distributed algorithm to derive the optimal peer selection
and rate allocation strategies. We present the completerStream
media distribution and dynamics handling protocols in Sec.IV.
Extensive evaluation results based onrStreamimplementation in
emulated peer-to-peer streaming environments are presented in
Sec. V. We discuss related work and conclude the paper in Sec.VI
and Sec. VII, respectively.

II. RESILIENT PEER-TO-PEER STREAMING

WITH RATELESSCODES

In this paper, we consider a peer-to-peer live streaming session
with one streamingsourceand multiple participatingreceivers.
We assume there exists a stand-alone bootstrapping mechanism in
the peer-to-peer network, consisting of one or multiple bootstrap-
ping servers. When a new peer joins the session, it is bootstrapped
with a list of existing peers in the session. During streaming, each
receiver peer is served by one or more peers in theupstream, and
may serve one or more receivers in thedownstream, constituting
a meshstreaming topology. The objective is to stream live media
content, coded as a constant bit rate bitstream with a current
generation codec such as H.264/AVC, H.263 or MPEG-4, to all
the participating receivers in the session.

Such a mesh topology can be modeled as a directed graph
G = (N, A), whereN is the set of vertices (source and peers)
and A is the set of directed arcs (directed overlay links). LetS

be the streaming source, and letT be the set of receivers in the
streaming session. We haveN = S ∪ T . The sourceS streams
a media bitstreamfM to the receivers inT . Independent of the
codec used infM , we treatfM as a stream of symbols, partitioned
into consecutive segmentss1, s2, A segment typically consists
of one media frame, a group of frames (GOF), or simply a period
of time (e.g.,one second). Each segment is further divided intok

blocks. Each block has a fixed length ofl bytes. InrStream, we
encode each media segment with a rateless code and distribute the
coded blocks. An example of the mesh topology and the streaming
model is illustrated in Fig. 1.

A. Rateless codes

We now motivate the use of rateless codes. The benefits
of rateless codes are related to the fundamental challengesin
peer-to-peer streaming:volatile network dynamicsand content
reconciliation.

In recent years,erasure codeshave been applied in peer-to-
peer content distribution to cope with network dynamics. A(n, k)

erasure code, such as Reed-Solomon codes and Tornado codes
[6], is a forward error correction code withk as the number of
original symbols, andn as the number of generated symbols from
the k original symbols. A(n, k) erasure code is loss resilient,
due to its favorable property that if anyk (or slightly more
thank) of the n transmitted symbols are received, thek original
symbols can be recovered. Such loss resilience makes erasure
codes an ideal solution for reliable transmission over an unreliable
transportation protocol, such as UDP. Also, since any symbol from
any upstream peer can be used for decoding, a receiver does not
rely on a specific upstream node for the supply of certain original
symbols, and no specific upstream node may become a bottleneck.
This makes erasure codes failure-resilient. Thus, an erasure code
seamlessly tolerates packet losses and peer dynamics, making it
ideal for peer-to-peer parallel streaming.

In addition, the use of erasure codes partially alleviates the
content reconciliation problem in parallel retrievals. Weillustrate
the problem with an example in Fig. 2(a). In this example,S

transmits the component blocks1, 2, 3 and4 of a media segment
to t1 and t2 directly, and thust1 and t2 have the same four
blocks. Whent3 concurrently streams fromt1 and t2, it has to
decide which block to retrieve from which upstream peer. This
also occurs ont4 which concurrently retrieves fromt1 and t3.

If an erasure code is applied at the data source, the probability
of content conflicts among upstream peers can be decreased.
However, since the total number of encoded symbols are fixed,
the problem is not completely solved with a traditional erasure
code. To illustrate this, consider Fig. 2(b). With a(6, 4) erasure
code,S generates six coded blocks1′, 2′, . . ., 6′ based on the
four original blocks1, 2, 3 and4. t1 andt2 both directly retrieve
four coded blocks fromS, and thus inevitably hold two common
blocks. This leads to the need for reconciliation att3, and later
at t4. Even with a high-rate erasure code wheren is much larger
thank, content reconciliation may not be necessary in many cases,
but the problem is still not completely solved.

To address the challenges from content reconciliation, as well
as to provide better resilience to network dynamics, we propose
to use a recently developed category of coding schemes,rateless
codes. Typical rateless codes include LT codes [3], Raptor codes
[4] and online codes [5]. With rateless codes, the number of coded
symbols that can be generated fromk original symbols is up to
2k, which is potentially unlimited whenk is large. Rateless codes
are also failure-tolerant as it retains the desirable property that the
k original symbols are decodable from any set of slightly more

3

(a) Peer-to-peer streaming
without erasure codes

(b) Peer-to-peer streamig with
fixed rate erasure codes

(c) Peer-to-peer streaming with
rateless codes without recoding

(d) Peer-to-peer streaming with
rateless encoding and recoding

T2

S
1 2 3 4

t2
1 2 3 4 1 2 3 4

t1

t4
1 2 3 4

t3
1 2 3 4

1,2,3,4 1,2,3,4

1,2 3,4

1,2

3,4

T2 t2
3' 4' 5' 6'

t4
1' 2' 3' 4' 2' 5' 6'

1',2',3',4' 3',4',5',6'

1',2' 5',6'

1',2'

3',4'

S

1' 2' 3' 5' 4' 6'

1' 2' 3' 4'
t1

t3
1'

T2 t2
5' 6' 7' 8'

t4
1' 2' 3' 4' 2' 5' 6'

1',2',3',4' 5',6',7',8'

1',2' 5',6'

1',2'

3',4'

1' 2' 3' 4'
t1

S
1' 2' 3' 5' 4' 6'

7' 8' 9' ...

t3
1'

1',2',3',4' 5',6',7',8'

1' 2' 3' 5' 4' 6'

7' 8' 9' ...

S

1 (1)

1' 2' 3' 4'

2 (1)
3 (1) 4 (1) ...

t1

1 (2)

5' 6' 7' 8'

2 (2)
3 (2) 4 (2) ...

t2

1 (2) ,2 (2)
1 (1) ,2 (1)

1 (1) 2 (1)
1 (2) 2 (2)

1 (3) 2 (3)
3 (3) 4 (3) ...

t3
1 (3) ,2 (3) 1 (3) 2 (3)

3 (1) 4 (1)

1 (4) 2 (4)
3 (4) 4 (4) ...

t4

3 (1) ,4 (1)

Fig. 2. Peer-to-peer streaming with different coding schemes: an example.

thank coded symbols with high probability.
As compared to traditional erasure codes, rateless codes possess

the excellent property of simple and efficient encoding and
decoding with XOR only operations. We briefly illustrate the
basic idea in the encoding and decoding process. For complete
descriptions, please refer to [3], [4]. Givenk original symbols,
a rateless-code encoder generates coded symbols on the fly,
by performing exclusive-or operations on asubsetof original
symbols, randomly chosen based on a special degree distribution,
such as theRobust Soliton distributionfor LT codes. Adecoding
graph that connects coded symbols to input symbols is defined by
the encoding process. The number of original symbols each coded
symbol is generated from (i.e., the “degree” of the coded symbol
in the decoding graph) and the indices of these original symbols
(neighbor indices in the decoding graph) are communicated to
the receiver for the purpose of decoding, together with the coded
symbol. At the decoder, it reconstructs the decoding graph.In
each round of the decoding process, the decoder identifies a
coded symbol of degree one, and recovers the value of its
unique neighbor among the input symbols. Then the value of
the recovered input symbol is exclusive-or’ed to the valuesof
all its neighboring coded symbols, and all the incident edges are
removed. Such a process is repeated until all the input symbols
are recovered.

As a rateless code can potentially provide a nearly unlimited
number of unique coded symbols, it further decreases the prob-
ability of block conflicts among upstream nodes in the parallel
retrievals. Therefore, rateless codes are useful towards finding a
solution to the content reconciliation problem. In the example
shown in Fig. 2(c), from the four original blocks1, 2, 3 and4, S

generates an unlimited number of coded blocks1′, 2′, . . ., with
a rateless-code encoder.t1 and t2 are able to each obtain four
unique coded blocks fromS, thus reconciliation is not required
at t3. Unfortunately, content reconciliation may still be required
at t4, whose upstream peerst1 and t3 share common blocks1′

and2′.

B. Recoding with rateless codes

In order to completely eliminate the need for content recon-
ciliation, we explore another desirable property of rateless codes.
With rateless codes, the receiver may decode from output symbols
generated by different rateless-code encoders, as long as they
operate on the same set of input symbols with the same rateless
code [4]. Based on this favorable property, we propose a recoding
scheme to be carried out by each peer, such that freshly coded
blocks are produced at each receiver and all the received blocks

from any upstream nodes are unique and useful for decoding at
a receiver.

In our protocol, the streaming source encodes the blocks of
each media segment by a rateless code based on a special degree
distribution, such as the LT code with the Robust Soliton Distri-
bution [3], and streams the coded blocks. After a peer retrieves
Ki coded blocks for segmentsi of fM , whereKi = (1 + ǫ)k, it
decodes theKi coded blocks and obtains the originalk blocks.
Upon retrieving requests from other peers, it generates newcoded
blocks from these original blocks by the same rateless-code
encoder based on the same degree distribution, and deliversthese
new coded blocks. Thisrateless recodingprotocol is summarized
in Table 1, with the example of an LT code.

TABLE I

RECODING WITH RATELESS CODES AT EACH RECEIVER

After receivingKi packets for segmentsi

Decode to obtain itsk original blocks.

To serve another receiverq at ratey:

While q still needs new coded blocks

1. Generate coded blockBq
j from si’s original blocks

b1
i , b

2
i , . . . , b

k
i by

(1.a) Randomly choose the degreedq
j from the Robust

Soliton distribution;
(1.b) Choosedq

j distinct original blocks uniformly at ran-
dom, and setBq

j to be exclusive-or of these blocks.
2. PacketizeBq

j into a packet together with the degreedq
j

and the set of neighbor indices.
3. Deliver the packet toq at ratey.

The following proposition proves the correctness of our recod-
ing protocol.
Proposition 1. Thek original blocks of segmentsi in fM can be
recovered from any set of(1 + ǫ)k coded blocks with the same
high probability as the original code, in a peer-to-peer streaming
session implementing the recoding protocol in Table 1.
Proof: We present a brief outline of the proof. The coded blocks a
receiver receives for recovering segmentsi are either coded by the
streaming source or recoded by an upstream peer, both from the
same set ofk original blocks ofsi. Since all the encoders follow
the same encoding steps and generate each block independently
from any other one based on the same Robust Soliton distribution,
the coded blocks are all potentially unique as if they are produced
by a same encoder. Thus, after collecting(1 + ǫ)k coded blocks
from any upstream peers, a receiver can recover thek original
blocks with the same high probability as the original code.⊓⊔

4

(a) Comparison in random networks of different network
sizes (N) and fixed edge density (4N)

(b) Comparison in random networks of a fixed network size
 (200 peers) and different edge densities

(c) Comparison among different block numbers in a
random network of 200 peers and 800 edges

400 800 1200 1600 2000 2400 2800 3200 3600 4000
240

250

260

270

280

290

300

310

320

330

Number of edges in the network

 A
ve

ra
ge

 s
tr

ea
m

in
g

ra
te

 (
K

bp
s)

 rateless codes with recoding
 rateless codes without recoding
 erasure codes (n/k=10)
 no codes

50 100 150 200 250 300 350 400 450 500
240

250

260

270

280

290

300

310

320

330

Number of peers in the network(N)

 A
ve

ra
ge

 s
tr

ea
m

in
g

ra
te

 (
K

bp
s)

 rateless codes with recoding
 rateless codes without recoding
 erasure codes (n/k=10)
 no codes

 5 10 20 50 80 100 200 500 800 1000
240

250

260

270

280

290

300

310

320

330

Number of blocks in one segment (k)

 A
ve

ra
ge

 s
tr

ea
m

in
g

ra
te

 (
K

bp
s)

 rateless codes with recoding
 rateless codes without recoding
 erasure codes (n/k=10)
 no codes

Fig. 3. Comparison of average streaming rates in large peer-to-peer streaming networks with4 different coding schemes.

The rateless recoding protocol guarantees the uniqueness and
equal usefulness of all the coded blocks in the session, thus
completely eliminating the need for content reconciliation. In
Fig. 2(d), for example,S generates a potentially unlimited number
of blocks 1′, 2′, . . . from the original blocks1, 2, 3 and 4. The
difference between Fig. 2(d) and (c) is that, rather than simply
relaying received blocks, all peers recode the recovered original
blocks and deliver the freshly coded blocks. After receiving
blocks 1′, 2′, 3′ and 4′ from S, t1 decodes them to derive1,
2, 3 and4, then it encodes them again into1(1), 2(1), 3(1), 4(1),
. . ., upon requests fromt3 andt4. Similarly, t2 recovers the four
original blocks from5′, 6′, 7′ and8′, and recodes to obtain1(2),
2(2), 3(2), 4(2), Thus t3 can safely retrieve unique coded
blocks 1(1), 2(1), 1(2), 2(2) from t1 and t2. After decoding,t3
further recodes to obtain unique blocks for delivery:1(3), 2(3),
3(3), 4(3), Therefore,t4 is able to concurrently retrieve blocks
1(3), 2(3), 3(1), 4(1) without reconciliation betweent1 and t3.
C. Best answer to content reconciliation problem

To investigate the effectiveness of rateless recoding in elimi-
nating delivery redundancy and maximizing bandwidth utilization,
we now show a comparison study result among the four coding
schemes in large scale networks in Fig. 3: no coding, fixed-
rate erasure codes, rateless codes without recoding, and rateless
codes with recoding. In this empirical study, we simulate a300

Kbps live streaming session on random networks generated with
BRITE [7] based on power-law degree distributions. We assume
no constraints of peer upload/download capacities in this study,
and heuristically assign transmission rates on the links toprovide
an aggregate receiving rate of300 Kbps at each peer. Under
each scheme, the media is streamed without content reconciliation
among peers. At each receiver, duplicated and non-useful received
blocks (for decoding) are eliminated, and the actual streaming rate
is calculated.

We first fix k, the number of blocks in each media segment,
to 50, and compare the four schemes in networks of different
numbers of peers and variousedge densitiesin Fig. 3(a) and (b).
The results exhibit that onlyrStream’s rateless recoding scheme
can actually achieve an average streaming rate around300 Kbps
at the receivers. In other schemes, the streaming rates are reduced
at different degradation levels, caused by the duplicationin the
received blocks. In our investigation with fixed-rate erasure codes,
we also noticed that increasing the raten/k of the codes helps
alleviate the conflicts at receivers. Nevertheless, this improvement
is upper bounded by the results of the scheme of rateless encoding
without recoding.

We next investigate the impact of the number of blocks in each
media segment on the block conflicts at the receivers (Fig. 3(c)).
Varying k from 5 to 1000, we find the average streaming rates
remain approximately the same for each coding scheme. Thus,
we conclude that by varying the number of blocks per segment,
we are not able to alleviate the severity of block conflicts in
those coding schemes where content reconciliation is required.
All these exhibit the benefits of rateless recoding in eliminating
delivery redundancy without the need of reconciliation.

D. Efficiency of rateless recoding

Finally, we discuss the efficiency of our rateless recoding
scheme. As previously mentioned, rateless codes are highly
computationally efficient. For the example of LT codes, it takes
on averageO(ln(k/δ)) block exclusive-or operations to generate
a coded block fromk original blocks, andO(k ln(k/δ)) block
exclusive-or operations to recover thek original blocks fromk +

O(
√

k ln2(k/δ)) coded blocks with probability1− δ. Each block
exclusive-or operation includesl bitwise exclusive-or operations.
As exclusive-or operations can be implemented very efficiently,
rateless codes can achieve a high encoding/decoding bandwidth,
and thus they can always be used to encode and decode on the
fly with the streaming process.

Besides the many advantages of using rateless codes, there
exists additional overhead with the recoding process. First, a
segment is recoded and relayed from an upstream peer only when
it has been entirely received and successfully recovered atthe
upstream peer. Such additional delay to receive an entire segment
is determined by the size of the segment,k · l, and the streaming
rate. Second, to decode a segment ofk original blocks, additional
bandwidths are required to send the extraǫk coded blocks, where
ǫ is O(ln2(k/δ)/

√
k) for LT codes.

We can see that values ofk and l play a significant role in
deciding the efficiency of the recoding process. On one hand,
k should be sufficiently large to guarantee the generation of a
potentially unlimited number of coded blocks for each segment.
In addition, it is usually more efficient to have larger values of
l in practice as well, to achieve less overhead with respect to
bookkeeping operations. On the other hand, the value ofk · l,
the size of a media segment, may not be too large, in order to
reduce the initial waiting time at each receiver. Furthermore, the
encoding/decoding speed and extra block overhead of a rateless
code are contingent uponk andl as well. We are going to explore
and discuss results based on different values of these parameters
with our rStreamimplementation in Sec. V.

5

III. O PTIMAL PEER SELECTION AND RATE ALLOCATION

In this section, we seek to answer a question that is critical
to any peer-to-peer streaming schemes: in a mesh peer-to-peer
network, what is the best way to select upstream peers and
allocate transmission rates of the rateless-code coded streams,
such that a specified streaming bit rate is satisfied and continuous
playback is guaranteed at all the receivers? We formulate the
problem as a linear optimization problem, and then design an
efficient distributed optimal rate allocation algorithm.
A. Linear programming formulation

In live media streaming sessions, it is desirable to achieve
minimal end-to-end latencies at the receivers [8], [9]. With our
rateless recoding, coding delays are introduced at each inter-
mediate receiver, a tradeoff besides the many advantages of
recoding. Therefore, it is especially important for each receiver
to select the upstream peers close to the streaming source in
terms of overlay hops, and to minimize the end-to-end link
latencies along the paths. In our optimization problem, we aim
to construct an optimal streaming topology, on top of which not
only the streaming rate is satisfied, but also the end-to-endlink
latencies are minimized at all the receivers. We formulate the
objective function to reflect the minimization of such latencies,
and the constraints to represent the streaming rate requirement and
capacity limitations in the network. In what follows, we motivate
our linear program (LP) formulation of multicast peer-to-peer
streaming by first analyzing a unicast streaming session from the
streaming source to one receiver.

1) LP for unicast streaming:A unicast flow from the streaming
source to a receiver is a standard network flow observing the
property of flow conservation at each intermediate node. Letr be
streaming rate of this unicast flow,cij be the link delay andfij

be the transmission rate on overlay link(i, j). Fig. 4(a) depicts
an example of a unit unicast flow fromS to t4, with r = 1,
cij = 1, ∀(i, j) ∈ A1, and the ratesfij labeled on the arcs.
Such a unicast flow can be viewed as multiple fractional flows,
each going along a different overlay path. Different paths may
share some same overlay links, and the transmission rate on each
shared link is the sum of rates of all fractional flows that go
through the link. Fig. 4(b) illustrates the decomposition of the
unit unicast flow into three fractional flows, with rates0.2, 0.3

and0.5, respectively.

0.5 0.3

0.2

0.3
0.7

0.5

0.5
0.2

0.3
S

t4

S

t4

(a) a unicast flow (b) three fractional flows

t1

t2

t3

Fig. 4. An example of a unicast flow fromS to t4 and its decomposition
into three fractional flows.

We calculate the average end-to-end link latency of a unicast
flow as the weighted average of the end-to-end latencies of all its

1Note thatcij ’s may well take different values. In this simple illustrative
example, we makecij ’s all equal for easier understanding.

fractional flows, with the weight being the ratio of the fractional
flow rate to the aggregate unicast flow rate. In Fig. 4, the end-to-
end link delays of the three paths are3, 3 and2 respectively, and
thus the average end-to-end latency is0.2× 3+0.3× 3+0.5× 2.
We further notice that

0.2 × (1 + 1 + 1) + 0.3 × (1 + 1 + 1) + 0.5 × (1 + 1)

= 1 × (0.2 + 0.5) + 1 × 0.3 + 1 × 0.2

+1 × 0.5 + 1 × 0.3 + 1 × (0.2 + 0.3)

= 1 × 0.7 + 1 × 0.3 + 1 × 0.2 + 1 × 0.5 + 1 × 0.3 + 1 × 0.5

=
X

(i,j)∈A

cijfij/r.

In general, we can prove
P

(i,j)∈A cijfij/r represents the
average end-to-end link delay of a unicast flow, as given in the
following proposition:
Proposition 2. Let r be the streaming rate of a unicast session,
cij be the link delay andfij be the transmission rate on link(i, j),
∀(i, j) ∈ A.

P
(i,j)∈A cijfij/r represents the average end-to-end

link delay of this unicast flow.
Proof: Let P be the set of paths from the streaming source to the
receiver in the session. Letf (p) be the rate of the fractional flow
going along pathp ∈ P . The average end-to-end latency at the
receiver is
X

p∈P

f (p)

r
(

X

(i,j):(i,j) on p

cij) =
1

r

X

(i,j)∈A

cij(
X

p:(i,j) on p

f (p))

=
1

r

X

(i,j)∈A

cijfij .

⊓⊔
Next, we formulate a linear program to achieve minimum-delay

unicast streaming. Letuij be the capacity of link(i, j). Omitting
constantr, we use

P
(i,j)∈A cijfij to represent the average end-

to-end link latency of the unicast flow and derive

min
X

(i,j)∈A

cijfij (1)

subject to
P

j:(i,j)∈A fij −
P

j:(j,i)∈A fji = bi, ∀i ∈ N,

0 ≤ fij ≤ uij , ∀(i, j) ∈ A,

where
bi =

8
<
:

r if i = S,

−r if i = t,

0 otherwise.

An intuitive thought about the optimization formulation might
be that, the end-to-end latency of a unicast flow should be
formulated as the maximum of the end-to-end latencies of all
its fraction flows, instead of the average. However, we modelthe
average end-to-end latency not only because we are able to derive
the nice linear formulation in (1), which is indeed a standard
minimum cost flow problem, but also since the minimization of
the average end-to-end delay achieves the same results as the
minimization of maximum end-to-end latency,i.e., the rates are
allocated in such a way that high latency links, such as satellite
and transcontinental links, are avoided as much as possible.
Besides, whencij ’s (∀(i, j) ∈ A) are of similar magnitude, we
can understand the objection function as the minimization of the
average hop count from the streaming source to the receiver.

We call the optimal unicast flow decided by this linear program

6

TABLE II

LP FOR rStreamPEER-TO-PEER STREAMING

P:
min

X

t∈T

X

(i,j)∈A

cijf
t
ij

subject to X

j:(i,j)∈A

f t
ij −

X

j:(j,i)∈A

f t
ji = bt

i, ∀i ∈ N,∀t ∈ T (2)

f t
ij ≥ 0, ∀(i, j) ∈ A, ∀t ∈ T (3)

f t
ij ≤ xij , ∀(i, j) ∈ A, ∀t ∈ T (4)X

j:(i,j)∈A

xij ≤ Oi, ∀i ∈ N (5)

X

j:(j,i)∈A

xji ≤ Ii, ∀i ∈ N (6)

where
bt
i =

8
<
:

r if i = S,
−r if i = t,
0 otherwise.

TABLE III

SUMMARY OF NOTATIONS

r the required streaming rate of the session

cij the link delay on overlay link(i, j),
∀(i, j) ∈ A

f t the conceptual flow fromS to receiver
t, ∀t ∈ T

f t
ij the rate off t on link (i, j)

xij the transmission rate on link(i, j),
∀(i, j) ∈ A

Oi the upload capacity at nodei

Ii the download capacity at nodei

a minimum-delay flow. Such a minimum-delay flow is useful
in modeling minimum delay multicast streaming in a peer-to-
peer network, as a minimum-delay multicast streaming flow can
be viewed as consisting of multiple minimum-delay flows from
the source to each of the receivers. Here we make use of the
concept ofconceptual flowintroduced in [10]. A multicast flow
is conceptually composed of multiple unicast flows from the
sender to all receivers. These unicast conceptual flows co-exist
in the network without contending for link capacities, and the
multicast flow rate on a link is the maximum of the rates of
all the conceptual flows going along this link. For the example
shown in Fig. 2, the multicast streaming flow fromS to t1, t2, t3
and t4 can be understood as consisting of four conceptual flows
from S to each of the receivers. When each conceptual flow is
a minimum-delay flow, the end-to-end delays of the multicast
session are minimized. Based on this notion, we proceed to
formulate the optimal rate allocation problem for multicast peer-
to-peer streaming.

2) LP for multicast peer-to-peer streaming:Our linear op-
timization model for rStream aims to minimize the end-to-
end link delays from the source to all receivers. Based on the
initial mesh topology decided by the neighbor assignment from
the bootstrapping service, it optimally allocates the transmission
rate on each overlay link to construct a minimum (link) delay
streaming topology. In our formulation, we consider upload and
download capacity constraints at each peer, rather than link
capacity constraints. This comes from practical observations that
bandwidth bottlenecks usually occur on “last-mile” accesslinks
at each of the peers in a peer-to-peer network. The linear program
is formulated in Table II2, with notations summarized in Table III.

In P, each conceptual flowf t is a valid network flow, subject
to constraints (2)(3)(4) similar to those in the LP in (1). The dif-
ference lies in thatf t

ij ’s, ∀t ∈ T , are bounded by the transmission
ratexij on link (i, j), while xij ’s are further restricted by upload
and download capacities at their incident nodes.

An optimal solution to problemP provides an optimal ratef t
ij

∗

for the conceptual flowf t on link (i, j), ∀(i, j) ∈ A. Let z be the
optimal multicast streaming flow in the network. We compute the

2If we consider the extra bandwidth required by rateless-code coded
streams, the aggregate receiving rate at each peer should be(1 + ǫ)r. In
our LP formulation, we omit this slight difference. In our implementation, we
take this into account and use(1 + ǫ)r to compute the optimal rates.

optimal transmission rates as:

zij = max
t∈T

f t
ij , ∀(i, j) ∈ A. (7)

Such an optimal rate allocation(zij , ∀(i, j) ∈ A) guaranteesr at
all the receivers, and achieves minimal end-to-end link latencies
as well. At the same time, it computes an optimal peer selection
strategy,i.e., an upstream peer is selected at a receiver if the
optimal transmission rate between them is non-zero.

Note that here we have formulated the optimal rate allocation
problem for a single streaming session. In general, multiple
streaming sessions may co-exist in the same network. In fact, P
can be readily extended to model the multiple-session scenario,
and the resulting LP is its multicommodity variant. Interested
readers are referred to our previous work [11] for detailed
discussions of the multiple session case.

B. Efficient subgradient solution

We now design an efficient distributed algorithm to solve the
linear programP. General LP algorithms, such as the Simplex, El-
lipsoid and Interior Point methods, are inherently centralized and
costly, which are not appropriate for our purpose. Our solution is
based on the technique of Lagrangian relaxation and subgradient
algorithm [12], [13], which can be efficiently implemented in a
fully distributed manner.

1) Lagrangian dualization:We start our solution by relaxing
the constraint group (4) inP to obtain its Lagrangian dual.
The reason of selecting this set of constraints to relax is that
the resulting Lagrangian subproblem can be decomposed into
classical LP problems, for each of which efficient algorithms exist.
We associate Lagrangian multipliersµt

ij with the constraints in
(4) and modify the objective function as:X

t∈T

X

(i,j)∈A

cijf
t
ij +

X

t∈T

X

(i,j)∈A

µt
ij(f

t
ij − xij)

=
X

t∈T

X

(i,j)∈A

(cij + µt
ij)f

t
ij −

X

t∈T

X

(i,j)∈A

µt
ijxij .

We then derive the Lagrangian dual of the primal problemP:
DP: max

µ≥0
L(µ)

where
L(µ) = min

P

X

t∈T

X

(i,j)∈A

(cij + µt
ij)f

t
ij −

X

t∈T

X

(i,j)∈A

µt
ijxij (8)

7

and the polytopeP is defined by the following constraints:
P

j:(i,j)∈A f t
ij − P

j:(j,i)∈A f t
ji = bt

i, ∀i ∈ N,∀t ∈ T,

f t
ij ≥ 0, ∀(i, j) ∈ A,∀t ∈ T,

P
j:(i,j)∈A xij ≤ Oi, ∀i ∈ N,

P
j:(j,i)∈A xji ≤ Ii, ∀i ∈ N.

Here, the Lagrangian multiplierµt
ij can be understood as the

link price on link (i, j) for the conceptual flow from sourceS to
receivert. Such interpretation should be clear as we come to the
adjustment ofµt

ij in the subgradient algorithm.
We observe that the Lagrangian subproblem in Eq. (8) can be

decomposed into a maximization problem in (9),

max
X

t∈T

X

(i,j)∈A

µt
ijxij (9)

subject to
P

j:(i,j)∈A xij ≤ Oi, ∀i ∈ N,
P

j:(j,i)∈A xji ≤ Ii, ∀i ∈ N,

and multiple minimization problems in (10), each for onet ∈ T ,

min
X

(i,j)∈A

(cij + µt
ij)f

t
ij (10)

subject toP
j:(i,j)∈A f t

ij −
P

j:(j,i)∈A f t
ji = bt

i, ∀i ∈ N,

f t
ij ≥ 0, ∀(i, j) ∈ A.

We notice that the maximization problem in (9) is an in-
equality constrained transportation problem, which can besolved
in polynomial time by distributed algorithms,e.g., the Auction
algorithm [14]. Each minimization problem in (10) is essentially
a shortest path problem, which finds the shortest path to deliver
a conceptual flow of rater from sourceS to a receivert. For the
classical shortest path problem, efficient distributed algorithms
exist, e.g., Bellman-Ford algorithm, label-correcting algorithms
[15] and relaxation algorithms [16]. As the algorithms are all
essentially the same as Bellman-Ford algorithm, we employ the
distributed Bellman-Ford algorithm [16], [17] as our solution.

2) Subgradient algorithm:We now describe the subgradient
algorithm, applied to solve the Lagrangian dual problemDP.
The algorithm starts with a set of initial non-negative Lagrangian
multiplier valuesµt

ij [0], ∀(i, j) ∈ A, ∀t ∈ T . At the kth iteration,
given current Lagrangian multiplier valuesµt

ij [k], we solve the
transportation problem in (9) and the shortest path problems in
(10) to obtain new primal variable valuesxij [k] andf t

ij [k]. Then,
the Lagrangian multipliers are updated by

µt
ij [k + 1] = max(0, µt

ij [k] + θ[k](f t
ij [k] − xij [k])),

∀(i, j) ∈ A, ∀t ∈ T, (11)

whereθ is a prescribed sequence of step sizes that decides the
convergence and the convergence speed of the subgradient algo-
rithm. Whenθ satisfies the following conditions, the algorithm
is guaranteed to converge toµ∗ = (µt

ij , ∀(i, j) ∈ A, ∀t ∈ T), an
optimal solution ofDP:

θ[k] > 0, limk→∞θ[k] = 0, and
∞X

k=1

θ[k] = ∞.

Eq. (11) can be understood as the adjustment of link price for
each conceptual flow on each link. If the rate of the conceptual
flow exceeds the transmission rate on the link, (4) is violated, so
the link price is raised. Otherwise, the link price is reduced.

For linear programs, the primal variable values derived by
solving the Lagrangian subproblem in Eq. (8) atµ∗ are not
necessarily an optimal solution to the primal problemP, and even
not a feasible solution to it [18]. Therefore, we use the algorithm
introduced by Sheraliet al. [18] to recover the optimal primal
valuesf t

ij
∗
. At the kth iteration of the subgradient algorithm, we

also compose a primal iteratecf t
ij [k] via

cf t
ij [k] =

kX

h=1

λk
hf t

ij [h], ∀(i, j) ∈ A, ∀t ∈ T (12)

where
Pk

h=1 λk
h = 1 andλk

h ≥ 0, for h = 1, . . . , k. Thus,cf t
ij [k]

is a convex combination of the primal values obtained in the
earlier iterations.

In our algorithm, we choose the step length sequenceθ[k] =

a/(b + ck), ∀k, a > 0, b ≥ 0, c > 0, and convex combination
weights λk

h = 1/k, ∀h = 1, . . . , k, ∀k. These guarantee the
convergence of our subgradient algorithm; they also guarantee
that any accumulation pointbf∗ of the sequence{ bf [k]} generated
via (12) is an optimal solution to the primal problemP [18]. We
can thus calculatecf t

ij [k] by

cf t
ij [k] =

kX

h=1

1

k
f t
ij [h] =

k − 1

k

k−1X

h=1

1

k − 1
f t
ij [h] +

1

k
f t
ij [k]

=
k − 1

k
cf t
ij [k − 1] +

1

k
f t
ij [k].

C. Distributed algorithm

Based on the subgradient algorithm, we now design a dis-
tributed algorithm to solveP,given in Table IV. In practice, the
algorithm to be executed on a link(i, j) is delegated by receiver
j. Therefore, the algorithm is executed in a fully decentralized
manner, in that each peer is only responsible for computation
tasks on all its incoming links with only local information,e.g.,
knowledge of neighbor nodes, delay on its adjacent links, etc.

TABLE IV

THE DISTRIBUTED OPTIMAL RATE ALLOCATION ALGORITHM

1. Choose initial Lagrangian multiplier valuesµt
ij [0], ∀(i, j) ∈

A, ∀t ∈ T .

2. Repeat the following iteration until the sequence{µ[k]}
converges toµ∗ and the sequence{ bf [k]} converges tobf∗:

At times k = 1, 2, . . ., ∀(i, j) ∈ A, ∀t ∈ T
1) Computexij [k] by the distributed auction algorithm;

2) Computef t
ij [k] by the distributed Bellman-Ford algo-

rithm;

3) Computecf t
ij [k] = k−1

k
cf t
ij [k − 1] + 1

k
f t

ij [k];

4) Update Lagrangian multiplier µt
ij [k + 1] =

max(0, µt
ij [k]+θ[k](f t

ij [k]−xij [k])), whereθ[k] = a/(b+ck).

3. Compute the optimal transmission ratezij = maxt∈T
cf t
ij

∗

,
∀(i, j) ∈ A.

While the optimal transmission rates on the links can be
computed, we argue that only by transmitting with our rateless
recoding protocol, can the optimal rates be actually achieved.
This is because these optimal rates may only be achieved at
each receiver when media contents from its upstream peers are
carefully reconciled and not duplicated. WithrStream’s rateless
recoding, delivery redundancy is eliminated and thus the available

8

Peer c

Peer b

Peer a R
eq

ue
st

 S
eg

. i
R

eq
ue

st
 S

eg
. i

B
lock 1

B
lock 2

B
lock 1'

B
lock 3

B
lock 2'

B
lock 4

B
lock 3'

B
lock 5

B
lock 4'

B
lock 6

B
lock 5'

B
lock 7

B
lock 6'

R
eq

ue
st

 S
eg

. i
+1

B
lock 1''

B
lock 2''

R
eq

ue
st

 S
eg

. i
+1

B
lock

B
lock

B
lock

B
lock

t

B
lock 1'''

B
lock 2'''

B
lock

B
lock

B
lock

Fig. 5. Media distribution protocol: the pull-push paradigm.

bandwidth can be indeed saturated. We further note that in stream-
ing, there is only one flow on each link(i, j), composed of coded
blocks delivered at the optimal rate ofzij . The introduction of
conceptual flows is only to facilitate our optimization formulation
and the derivation of optimal rateszij ’s over the links. Thanks
to rateless recoding, we are exempted from the elaborate media
assignment required for each flow if no coding is applied, butare
able to saturate the limited bandwidth capacities.

IV. RSTREAM: THE COMPLETE PROTOCOL

Combining the optimal rate allocation algorithm with the rate-
less recoding protocol,rStreamrepresents a complete peer-to-peer
streaming solution, which guarantees resilience and optimality
at the same time. In what follows, we present the practical
rStreammedia distribution protocol and the protocol to handle
peer dynamics, based on the two components.

A. Media distribution

In rStream, the media segments are disseminated with a hybrid
of pull and push methods.

At each receiver, it maintains a receiving range of the media
segments, typically from the next media segment to play to a
number of future segments beyond. The segment retrieval strategy,
i.e., which segment to retrieve next from each upstream peer, is
decided at the downstream peer, representing the “pull” part of
the distribution protocol. While such retrieval strategy design is
key in a media streaming protocol without coding, this task is
significantly alleviated inrStream. When receiverv is deciding
theavailablesegment to retrieve from upstream peeru, a segment
that has been successfully decoded atu, it selects a segment that
is in its receiving range with the nearest playback time. Dueto
rateless recoding, even ifv concurrently downloads coded blocks
for a same segment from multiple upstream peers, the received
blocks can all be used for decoding the segment. Therefore,
not only the need for reconciling blocks inside each segmentis
eliminated, but also the reconciliation for the retrieval of segments
from different upstream peers becomes unnecessary. We further
consider that an upstream peer may not have any segments
available in the receiving range of a receiver. In this case,the
downstream peer temporarily increases its streaming ratesfrom
other upstream peers that have available segments to serve it.

Upon receiving a request for a specific segment, an upstream
peer starts generating coded blocks of the segment, and contin-
uously pushesthem to the requesting peer at the optimal rate
computed by the optimal rate allocation. The receiver passes
received blocks onto its decoder and decodes on the fly. When
all the original blocks in the segment have been recovered,
the receiver sends a “stop” signal to all its upstream peers
that are serving it this segment, and requests for new segments
selected with the segment retrieval strategy discussed above. Then

a respective upstream peer terminates the push of the current
segment, and starts delivering coded blocks for the new segment.
This pull-push paradigm is illustrated in Fig. 5, where peera first
requests segmenti from upstream peersb andc, and then segment
i + 1 after i is successfully decoded.

With the simple segment pulling strategy and block pushing
method inside each segment, we minimize the control message
overhead, and more importantly, the streaming delays, as com-
pared to schemes which pull individual blocks. Meanwhile, hav-
ing each peer explicitly ask selected upstream peers for segments,
our protocol provides the flexibility for each peer to reconfigure its
connectivity in case of network dynamics. Finally, we emphasize
that this efficient pull-push paradigm is only achievable with
rateless recoding, as every pushed block is useful for decoding.

B. Handling peer dynamics

In peer-to-peer streaming, peers may arbitrarily join a stream-
ing session at any time, and may depart or fail unexpectedly.
In rStream, the distributed optimal rate allocation algorithm is
invoked and executed in a dynamic manner, and the peer connec-
tivity is reconfigured with adjusted rates with peer dynamics.

1) Peer joins: In rStream, a new peer is admitted into a
streaming session only if its download capacity is no lower than
the required streaming rater. It then immediately starts streaming
with the available upload capacities acquired from its upstream
peers, assigned by the bootstrapping service. Meanwhile, it sends
a request to the streaming source, asking for computation ofnew
optimal rate allocation on the links.

2) Peer departures and failures:During streaming, when a
peer detects the failure or departure of an upstream peer, it
attempts to acquire more upload bandwidth from its remaining
upstream peers. Only when the peer fails to acquire the required
streaming rate, it sends a re-calculation request to the source for
the new optimal rate allocation.

At the source, when the number of received re-computation
requests exceeds a certain threshold, the source broadcasts such
a request, such that all peers activate a new round of distributed
algorithm execution, while continuing with their own streaming
at the original optimal rates. Note that in such a dynamic
environment, a new round of algorithm execution always starts
from the previously converged optimal rates, rather than from
the very beginning when all the values are zero, thus expediting
its convergence. The peers adjust their rates to the new optimal
values after the rate allocation converges.

We conclude with the note that, this simple and efficient
process of handling peer dynamics is only achievable with
rateless recoding. As rateless recoding guarantees that all coded
blocks in the session are useful, we can rest assured that all
additionally acquired or newly allocated bandwidths can befully
used to deliver useful blocks for decoding, without the needof

9

reconciliation. In addition, the dynamic execution of optimal rate
allocation algorithm provides optimal streaming topologies at any
time. Working together, they provide excellent failure resilience
and streaming delay minimization at the same time.

V. PERFORMANCE EVALUATION

In this section, we present results from extensive experiments
in emulated peer-to-peer streaming environments, based onour
implementation of therStreamprotocols with the C++ program-
ming language. Our implementation includes the rateless-code
encoder and decoder at each peer, message switching and buffer
management in the application layer to implement therStream
protocols, as well as distributed optimal rate allocation.Our
implementation also supports the measurement and emulation
of network parameters,e.g., node upload/download capacities. It
compiles and runs in all major UNIX variants (such as Linux
and Mac OS X), and uses standard Berkeley sockets to establish
TCP/UDP connections between peers. All our experiments are
conducted on a high-performance cluster consisting of50 Dell
1425SC and Sun v20z dual-CPU servers, each equipped with
dual Intel Pentium 4 Xeon 3.6GHz and dual AMD Opteron 250
processors.

A. Rateless-code encoder and decoder

1) Optimized decoder design:In our implementation, we have
implemented LT codes based on the Robust Soliton distribution.
In addition to the basic functions in LT codes [3], our decoder
implementation represents two new designs, which contribute to
significant improvements of decoding latency.

First, the decoding is “streamable,” in the sense that the
decoding graph is constructed incrementally and original blocks
are recovered on the fly with the data transmission. Whenevera
new coded block arrives at the decoder, its encoding information
(degree and indices of original blocks that it is generated from)
is added to the decoding graph, and original blocks are recovered
as soon as enough information has been received to decode
them. As compared to the traditional implementation which
decodes a segment ofk original blocks after(1 + ǫ)k coded
blocks have all arrived, our “streamable” decoder represents three
advantages: (1) It maximally utilizes the time that it waitsfor
new incoming blocks to construct the decoding graph and decode,
thus minimizing the extra decoding delay during streaming;(2)
The encoding information of received blocks is accumulated, and
no re-computation of such information occurs during decoding.
In the traditional implementation, if the first decoding attempt
with (1+ ǫ)k coded blocks fails, the entire decoding graph needs
to be constructed again when additional blocks are received; (3)
In combine with our pull-push media distribution scheme, the
“streamable” decoder minimizes the delay between reception of
the last received block used for decoding and the successful
recovery of a segment, thus minimizing the number of non-used
coded blocks injected into the network from upstream peers.

Second, the decoding graph is implemented with the most effi-
cient double-linked dynamic data structures in C++. All insertion
and removal operations are achieved inO(1) time, instead of
O(k). This further improves the efficiency of the decoders, which
is also critical to improve the performance ofrStreamprotocol.

2) Performance of LT-code encoder/decoder:We now present
evaluation results with our LT-code implementation. The experi-
ments are divided into two parts.

Exp. 1. We first examine the net encoding and decoding
speed by continuously feeding original/coded blocks into the
encoder/decoder. Table V-VIII show the speed obtained with
various values of coding parameters. Again,k is the number
of original blocks in each segment andl is block size.c and
δ are parameters in the Robust Soliton distribution of LT codes
[3], whereδ is the allowed failure probability for decoding from
k + O(

√
k ln2(k/δ)) coded blocks, andc is a positive constant

which, together withδ, decides the probability of deriving a
low encoding degree with the Robust Soliton Distribution. As
c increases andδ decreases, more low degree coded blocks are
generated.

Our results in Table V and VII reveal an increasing trend for
encoding and decoding speed asc increases andδ decreases.
As more low degrees are generated with the Robust Soliton
distribution in this case, encoding/decoding involves fewer blocks
and requires fewer XOR operations. Fixingc and δ, results in
Table VI and VIII show that the speed decreases with the increase
of k (as the block degree increases), and increases with the
increase ofl (as bookkeeping overhead decreases). Nevertheless,
the achieved coding bandwidth in all cases is much larger than
overlay link capacities. We can now conclude that, with our
“streamable” decoder implementation, there is little recoding
delay introduced to streaming, which will be further validated
with experiments in Sec.V-B.2.

Exp. 2.We next investigate the average number of coded blocks
needed to successfully decode a segment, which are receivedfrom
one or multiple upstream peers. Results are given as multiples of
k, i.e., 1 + ǫ, in Table IX and X. We observe that1 + ǫ decreases
with the increase ofδ andk. For fixed coding parameter values,
results remain the same no matter the coded blocks are generated
at one or multiple upstream peers. This validates proposition 1
in Sec. II-B, i.e., coded blocks produced by different LT-code
encoders are equally useful.

From the above results, we conclude that the value of parameter
k represents a tradeoff between encoding/decoding speed and
bandwidth consumption to deliver sufficient coded blocks for
decoding. Considering that the encoding/decoding speed isalways
much higher than regular media streaming rates, larger values
of k are more appropriate to reduce bandwidth consumption.
Besides, larger values ofl provide higher encoding/decoding
speed. Nevertheless,k · l, the segment size, also affects the end-
to-end delay at peers in the network, to be further discussedin
Sec. V-B.2.
B. Performance of rStream Streaming

We now evaluate therStream protocol implementation in
emulated streaming environments. In order to emulate realistic
networks, all the initial mesh topologies used in our experiments
are random networks generated with power-law degree distribu-
tions with the BRITE topology generator [7]. In each network, a
300 Kbps media bitstream is streamed from a streaming source
with 10 Mbps of upload capacity. We consider two classes of
receivers: ADSL/cable modem peers and Ethernet peers. Unless
otherwise stated, ADSL/cable modem peers take70% of the total
population with download capacities in the range of512 Kbps -3
Mbps and upload capacities in the range of200− 800 Kbps, and
Ethernet peers take the other30% with both upload and download
capacities in the range of3 − 8 Mbps. Overlay link delays are
sampled from the distribution of pairwise ping times between
PlanetLab nodes [19].

10

TABLE V

ENCODING SPEED(MBPS): K = 100,L = 1KB

c \ δ 0.01 0.05 0.1 0.5 1.0
0.01 35.65 37.37 37.84 38.26 37.52
0.05 25.53 27.39 28.20 32.68 34.02
0.1 31.19 31.44 31.93 33.26 34.51
0.5 75.46 60.25 59.23 50.82 50.90
1.0 119.78 108.29 103.40 73.65 69.15

TABLE VI

ENCODING SPEED(MBPS): C = 0.05,δ = 0.1

l \ k 10 50 100 500 1000
200 62.98 30.19 26.00 18.85 16.11
500 67.06 32.26 27.52 19.98 17.66
1K 68.96 32.87 28.20 20.32 18.16
2K 68.81 33.37 29.09 20.69 18.54
3K 69.13 34.16 29.21 20.81 18.59

TABLE VII

DECODING SPEED(MBPS): K = 100,L = 1KB

c \ δ 0.01 0.05 0.1 0.5 1.0
0.01 28.33 29.32 30.53 29.60 28.34
0.05 16.67 19.77 21.71 26.52 28.28
0.1 19.69 21.56 23.45 26.34 29.34
0.5 50.53 48.63 46.24 44.43 41.68
1.0 53.70 51.61 47.70 46.71 44.25

TABLE VIII

DECODING SPEED(MBPS): C = 0.05,δ = 0.1

l \ k 10 50 100 500 1000
200 44.39 18.17 15.79 10.92 8.40
500 58.89 22.62 19.17 13.74 11.63
1K 61.80 24.35 21.71 14.70 13.16
2K 66.11 24.80 22.65 16.30 14.75
3K 68.76 25.00 22.71 16.69 14.93

TABLE IX

NUMBER OF CODED BLOCKS FOR DECODING AS MULTIPLES OFk: C =

0.05,δ = 0.1,L = 1KB (Nup : NUMBER OF UPSTREAM PEERS)

Nup\k 10 50 100 500 1000
1 1.49 1.39 1.26 1.20 1.16
2 1.48 1.39 1.27 1.22 1.15
5 1.47 1.41 1.27 1.20 1.17
10 1.48 1.39 1.26 1.21 1.15
20 1.47 1.40 1.27 1.20 1.19

TABLE X

NUMBER OF CODED BLOCKS FOR DECODING AS MULTIPLES OFk: K =

100,L = 1KB, NUMBER OF UPSTREAM PEERS= 1

c \δ 0.01 0.05 0.1 0.5 1.0
0.01 1.34 1.36 1.34 1.35 1.33
0.05 1.50 1.38 1.26 1.25 1.21
0.1 1.62 1.48 1.37 1.26 1.21
0.5 1.72 1.49 1.46 1.34 1.33
1.0 3.12 2.83 2.74 1.99 1.88

1) Control message overhead:We first investigate the control
message overhead inrStream’s distribution protocol. In this
set of experiments, we stream a20-minute 300 Kbps media
stream in networks of different sizes and edge densities, with
various media segment sizes, i.e.,k · l. Fig. 6(A) exhibits the
ratio of total control message sizes (in Bytes) over the overall
media data message sizes (in Bytes) during the entire streaming
period in each network. Fig. 6(B) further illustrates the average
control messaging bandwidth consumed at each peer, calculated

by total size of control messages sent at a peer
streaming time at the peer .

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5
x 10

−3

Number of peers in the network (N)R
a
ti
o
 o

f
c
o
n
tr

o
l
tr

a
ff
ic

 o
v
e
r

m
e
d
ia

 t
ra

ff
ic

 k=50,l=1KB,8N edges
 k=100,l=1KB,8N edges
 k=50,l=1KB,4N edges
 k=100,l=1KB,4N edges

(A)

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

Number of peers in the network (N)

A
v
e
ra

g
e
 c

o
n
tr

o
l
m

e
s
s
a
g
in

g

b
a
n
d
w

id
th

 p
e
r

p
e
e
r

(K
B

p
s
)

 k=50,l=1KB,8N edges
 k=100,l=1KB,8N edges
 k=50,l=1KB,4N edges
 k=100,l=1KB,4N edges

(B)

Fig. 6. Control message overhead in random networks of different sizes.

The results reveal that our pull-push mechanism involves very
low control message overhead. In details, we observe that (1) the
overhead remains at similar levels for networks of different sizes,
showing good scalability of the pull-push mechanism; (2) the
overhead increases with the increase of edge densities in networks
of the same size, as more control messages are required when each
peer has more upstream peers; and (3) the overhead decreases
with the increase of media segment size,k · l, as control messages
are sent per segment basis, and there are fewer segments in total

if the segment size is larger. In general, the control message
overhead is non-significant as compared to media traffic.

2) End-to-end delay:We next investigate the optimality of the
streaming topologies derived withrStream’s optimal rate allo-
cation algorithm, and the actual end-to-end delay experienced at
the peers when streaming over such optimal topologies, including
recoding delay at intermediate peers, link latencies, etc.The
distributed optimization algorithm, as summarized in Table IV,
is carried out at the background during the streaming process,
and rates are adjusted after the computation converges.

Exp. 1.As a natural first step, we start our investigations by
studying the convergence performance of the distributed optimiza-
tion algorithm.

Fig. 7 shows the convergence speed when the distributed algo-
rithm runs from the beginning with all flow rates initializedto 0,
in various static networks. With respect to the number of iterations
executed by the iterative algorithm to converge to optimality,
Fig. 7(A) shows that the number slowly increases with network
sizes, and remains at the same level in a fixed-sized network with
different edge densities. Fig. 7(B) further illustrates the running
time for these iterations. As a fully distributed algorithm, its each
iteration takes a similar length of time regardless of the network
sizes, and therefore, the time to convergence only increases slowly
with the increase of number of iterations executed.

When we consider the practical scenario that a convergence
to absolute optimum is usually not necessary in realistic applica-
tions, we further investigate the convergence speeds to feasibility
and90% optimality, and compare them with that to optimality in
Fig. 8. We observe that the convergence to the primal feasible
solution is usually much faster, and even the convergence toa
feasible solution, which achieves90% optimality, is 20% faster.

11

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Number of peers in the network (N)

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

 4N edges

 6N edges

 8N edges

(B)(A)

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

Number of peers in the network (N)

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
e
c
o
n
d
s
)

 4N edges

 6N edges

 8N edges

Fig. 7. Convergence speed in static networks.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Percentage of Ethernet peers

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

s
e
c
o
n
d
s
)

 feasibility

 90% optimality

 optimality

Fig. 8. Convergence time in static networks of
300 peers and2400 edges.

50 100 150 200 250 300 350 400 450 500
200

400

600

800

1000

1200

1400

1600

Number of peers in the network (N)

A
ve

ra
ge

 e
nd

−
to

−
en

d
lin

k
la

te
nc

y
pe

r
pe

er
(m

s)

 rStream alg (4N edges)
 Heuristic (4N edges)
 rStream alg (8N edges)
 Heuristic (8N edges)

Fig. 9. Average end-to-end link latency: a comparison between rStream
and a peer selection heuristic.

S

8 16

11 13 615

4 7314

18

17 10

19

91 5

2 12

(a) rStream (b) peer selection heuristic

 akin to PeerStreaming

S

8 16

11 13 615

4 7314

18

17 10

19

91 5

2 12

Fig. 10. Peer-to-peer streaming topologies of 20 peers: a comparison.

In addition, the time for convergence to feasibility drops quickly
with the increase of Ethernet peer percentages, which brings more
abundant upload capacities into the system.

Based on these observations, we conclude that in practical
applications, the algorithm can obtain a feasible solutionto a
certain degree of optimality in a short time, even when it runs
from the very beginning in large networks. In our evaluation
of dynamic scenarios in Sec. V-B.3, we will show that the
convergence to new optimum from previous ones is even faster.

Exp. 2. We now investigate the optimality of the streaming
topologies obtained with the optimal rate allocation algorithm,
by comparing them with those constructed with a commonly
used peer selection heuristic [2], [20]. In this set of experiments,
we only consider end-to-end link latencies on the topologies, as
used as optimization objective of our algorithm, and leave the
investigation of overall end-to-end streaming delays to the next
experiment.

In the peer selection heuristic, each receiver distributesthe
required streaming rate among its upstream peers in proportion to
their upload capacities. Its end-to-end link latency is calculated
as the weighted average of the end-to-end link delays of flows
from all its upstream peers, and the weight for each flow is the
ratio of the assigned transmission rate from the upstream peer to
the required streaming rate.

Fig. 9 exhibits that therStream optimal rate allocation al-
gorithm achieves much lower latencies than the heuristic, in
networks of various sizes and edge densities. When the initial
input topology is dense with more edges per peer, the optimization
algorithm converges to better optimal topology with smaller
end-to-end link latencies, while the heuristic results in higher

latency in denser networks. This reveals that when there aremore
choices of upstream peers in a denser network, our algorithmcan
always find the best set of upstream peers on low delay paths.
Therefore, in realistic peer-to-peer streaming networks with high
edge densities, the advantage of our algorithm is more evident
over the commonly used heuristic.

To visualize the optimal topology, Fig. 10 illustrates example
streaming topologies derived with both algorithms from a same
20-peer input topology. In these graphs, distances between pairs
of peers represent link latencies, and the widths of edges show
the transmission rates on them. The dotted lines represent links
that are not used in the resulting streaming topologies. It can be
seen that by our optimal peer selection, receivers are streaming
from the best upstream peers with minimal end-to-end latencies,
while with the heuristic, peers simply distribute their streaming
rate among upstream peers, which may lead to large end-to-end
latencies.

Exp. 3.We next investigate overall end-to-end streaming delays
experienced at the receivers when streaming over the derived
optimal topologies, including encoding/decoding delays at inter-
mediate peers, transmission delays, and link latencies. The overall
end-to-end delay at each peer to receive a segment is measured as
the difference between the time when the streaming source starts
to generate and deliver coded blocks for a segment and the time
when the peer has successfully decoded the segment.

In rStream, the overall end-to-end streaming delay at each peer
is decided by the number of overlay hops that the peer is away
from the source, as well as the delay on each hop. With respectto
the former, in our optimal streaming topology construction, the
diameter of a topology withN peers isO(log(N)), leading to

12

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

Number of peers in the network (N)

A
v
e

ra
g

e
 e

n
d

−
to

−
e

n
d

 s
tr

e
a

m
in

g

d
e

la
y
 p

e
r

p
e

e
r

(s
e

c
o

n
d

s
)

 k=50,l=1KB,8N edges
 k=100,l=1KB,8N edges
 k=50,l=1KB,4N edges
 k=100,l=1KB,4N edges

(A)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Overall end−to−end streaming delay (seconds)

C
D

F

 k=50,l=1KB,8N edges
 k=100,l=1KB,8N edges
 k=50,l=1KB,4N edges
 k=100,l=1KB,4N edges

(B)

Fig. 11. End-to-end streaming delay in random networks. (A) Average peer
end-to-end streaming delay in networks of different sizes. (B) Cumulative
density function of peer end-to-end streaming delays in a500-peer network.

log-scale increment of the delay with network size in Fig. 11(A).
Fig. 11(A) also shows that the delay is smaller with a higher edge
density. This is because withrStream’s optimal rate allocation, a
peer has higher probability to be closer to the source in terms of
hop counts if it knows more neighbors.

With respect to delay on each hop, it consists of decoding
and encoding delay at the upstream peer, transmission delay
at the scale ofkl/r, and the overlay link delay. Based on
our optimized decoder design and encoding/decoding efficiency
shown in Sec. V-A.2, the recoding delay is non-significant, as
compared to other delays. With various values ofk and l — thus
various transmission delay on each hop — Fig. 11(A) further
exhibits the effect of media segment sizes on the end-to-end
streaming latency,i.e., the larger each segment is, the higher the
end-to-end delay is.

Zooming into a500-peer network, Fig. 11(B) plots CDFs of
end-to-end streaming delay distribution at the participating peers.
We observe that the delay at most peers is moderate, and only a
small portion of peers experience a relatively longer delay.

From the above results, we see thatk and l should be kept
at moderate values in order to guarantee small end-to-end delays
at the peers. Combining this point with our previous discussions,
we conclude that choices ofk and l represent another tradeoff
between bandwidth consumption and end-to-end streaming delay
in streaming sessions. Therefore, if a streaming session has
stringent delay restrictions but presents lower bandwidthdemand,
we may choose relatively small values fork and l; otherwise, it
is more appropriate to use a largek and a largel.

3) rStream streaming during peer dynamics:A consistent
streaming rate is critical to guarantee smooth playback at the peers
throughout the streaming session. Working together, the dynamic
execution of optimal rate allocation algorithm and the rateless
recoding scheme provide such streaming rate stability inrStream.

Exp. 1.In order to show its practicality in dynamic scenarios,
we first investigate the convergence speed of the optimization
algorithm in dynamic networks. In this experiment, during a45-
minute streaming session,300 peers sequentially join the session
in the first20 minutes, and then start to depart from25 minutes
on. The distributed optimal rate allocation algorithm is invoked
about every15 peer joins or departures, and always runs from
the previous optimal flow rates, following the dynamic execution
method described in Sec. IV-B.

The number of additional iterations and time needed to con-
verge to the new optimal rates in both the peer joining phase and
departure phase are illustrated in Fig. 12. The results reveal that
the convergence to new optimal rates in such dynamic scenarios
is much faster, as compared to running from the very beginning

0 60 120 180 240 300
0

10
20
30
40
50

Number of peers joined in the network

#
 o

f
a
d
d
it
io

n
a
l
it
e
ra

ti
o
n
s

0 60 120 180 240 300
0

10
20
30
40
50

Number of peers left in the network

#
 o

f
a
d
d
it
io

n
a
l
it
e
ra

ti
o
n
s

0 60 120 180 240 300
0

1

2

3

Number of peers joined in the network

A
d
d
it
io

n
a
l
c
o
n
v
e
rg

e
n
c
e

 t
im

e
 (

s
e
c
o
n
d
s
)

0 60 120 180 240 300
0

1

2

3

Number of peers left in the network

A
d
d
it
io

n
a
l
c
o
n
v
e
rg

e
n
c
e

 t
im

e
 (

s
e
c
o
n
d
s
)

(A) Peer joining phase (B) Peer departure phase

Fig. 12. Convergence speed in a dynamic network with up to300 peers.

in the case of static networks of the same sizes. Independentof
the current network size, the algorithm always takes less than 30

iterations (1 − 2 seconds) to converge.
We note that although this is a specially designed dynamic

case, it reflects the capability of the optimization algorithm to
converge promptly from one optimum to another in practical
dynamic scenarios. In a realistic peer-to-peer streaming network,
peer joins and departures may occur concurrently and consistently
during the entire streaming session. In this case, our algorithm
always improves the rate allocation towards optimality in the
current network and can converge quickly as long as there exists
a stable operating point in the dynamic overlay.

Exp. 2.We next investigate a more practical dynamic scenario
where peer joins/departures occur concurrently and consistently.
In this set of experiments, a300 Kbps media streaming session
is emulated in a200-peer dynamic network. The peers join and
depart following an On/Off model, with On/Off intervals both
following an exponential distribution with an expected length of
T seconds. Each peer is bootstrapped withD upstream peers
upon joining. The optimal rate allocation algorithm is dynamically
executed at background to adjust the streaming rates.

To investigate the smoothness ofrStream streaming, we
monitor two rate metrics at the peers during a45-minute
period of time: (1) throughput, which is the aggregate
rate of receiving coded media bitstreams at a peer, com-

puted by l × no. of coded blocks received in t
t , and (2) good-

put, representing the aggregate rate of deriving original me-
dia contents, i.e., the actual streaming rate, computed by
l × no. of original blocks decoded in t

t .

0 5 10 15 20 25 30 35 40 45
200

250

300

350

400

Time (minutes)

A
ve

ra
ge

 g
oo

dp
ut

 (
K

bp
s)

 T=60seconds, D=8
 T=60seconds, D=4
 T=30seconds, D=8
 T=30seconds, D=4

Fig. 13. Average goodput in a dynamic streaming session with200 peers:
k = 100, l = 1KB, c = 0.05, δ = 0.1.

We first plot the average goodput achieved at peers in Fig. 13,
with varying peer churn rates and network edge densities, and

13

fixed coding parameter values atk = 100, l = 1KB, c = 0.05,
andδ = 0.1. We observe no significant streaming rate fluctuations
in all scenarios,i.e., the average goodput is steadily maintained
around300 Kbps. In the case that each peer joins/leaves every
30 seconds, in the200-peer network, there are6 − 7 peer
joins/departures every second. Even with such consistent peer
churns, the streaming rates at existing peers remain rathersatisfac-
tory at all times. In addition, we observe that the goodput ismore
stable when peers have more neighbors. These results demonstrate
the excellent dynamic resilience ofrStream, supported by its
dynamics handling protocol discussed in Sec. IV-B.

(A) (B)

k l c
200 500B 0.05 0.1 1.23
100 1K B 0.05 0.1 1.26
200 500B 0.01 0.1 1.30
100 1K B 0.01 0.1 1.34

0 5 10 15 20 25 30 35 40 45
200

250

300

350

400

450

500

550

600

650

Time (minutes)

A
ve

ra
ge

 th
ro

ug
hp

ut
/g

oo
dp

ut
 (

K
bp

s)

 Throughput (epsilon=1.23)
 Throughput (epsilon=1.26)
 Throughput (epsilon=1.30)
 Throughput (epsilon=1.34)
 Goodput (epsilon=1.23)
 Goodput (epsilon=1.26)
 Goodput (epsilon=1.30)
 Goodput (epsilon=1.34)

delta epsilon

Fig. 14. Average throughput/goodput in a dynamic streaming session with
200 peers:T = 60 seconds,D = 4.

Fixing the peer On/Off interval length to60 seconds and
upstream peer number to4, we further investigate the throughput
and goodput achieved at the peers at various coding parameter
values in Fig. 14. As discussed in Sec. V-A.2, the values of four
coding parameters,k, l, c and δ, decideǫ, a factor representing
extra bandwidth needed to delivery the additional coded blocks
for decoding each media segment. We experimented with four
sets of coding parameter values, and the correspondingǫ values
are given in Fig. 14(A). We further note that the value ofǫ

reflects theaveragepercentage of extra coded blocks required
for decoding under each set of coding parameter values, and in
actual streaming, the number of coded blocks used for successful
recovery of each segment varies. Nevertheless, Fig. 14(B) exhibits
that with each set of coding parameters, the achieved goodput is
consistently aroundr = 300 Kbps, while the throughput is always
near(1 + ǫ)r. Such streaming rate stability reveals the fact that
the slight variation in the number of coded blocks used to decode
different segments actually introduces little jitter in the streaming.

VI. RELATED WORK

Earlier work on peer-to-peer multimedia streaming has been
based on a single multicast tree [21], [22], rooted at the streaming
source, and constructed with a minimized height and a bounded
node degree. The challenge, however, surfaces when interior peers
in the tree do not have sufficient available capacities to upload
to multiple children nodes, and when they depart or fail, which
interrupts the streaming session and requires expensive repair
processes.

Streaming based on multiple multicast trees has been proposed
to address this problem, as in CoopNet [23] and SplitStream [24].
The media can be split into multiple sub-streams and each sub-
stream is delivered along a different multicast tree. As a result,
these systems accommodate peers with heterogeneous bandwidths
by having each peer join different numbers of trees. It also is more
robust to peer departures and failures, as an affected receiving
peer may still be able to continuously display the media at a

degraded quality, while waiting for the tree to be repaired.These
advantages come with a cost, however, as all the trees need tobe
maintained in highly dynamic peer-to-peer networks.rStreamuses
a combination of rateless codes and mesh topologies to provide
resilience and flexibility as well, but without the costs of explicit
tree maintenance.

Similar to rStream, there have recently emerged a number
of peer-to-peer streaming proposals that use mesh topologies,
e.g., CoolStreaming [2], Chainsaw[25], GridMedia[26], and Peer-
Streaming [20]. In these proposals, each peer periodicallyex-
changes media availability with its neighbors, and the media seg-
ments to be retrieved from each neighbor are dependent upon the
number of potential suppliers for each segment and the available
upload capacities of neighbors. In PeerStreaming[20], themedia
downloading load is distributed among the set of supplying peers
in proportion to their upload capacities. Compared torStream,
these heuristics fall short of achieving optimality, and may starve
the peers with high download demands.rStreamalso considers
the heterogeneity of link delays, which has not been previously
taken into consideration.

In all mesh-based proposals, the need for content reconciliation
naturally arises. Byerset al. [1] provide algorithms for estimation
and approximate reconciliation of sets of symbols between pairs
of collaborating peers. These algorithms may be very resource
intensive with respect to both computation and messaging. Al-
though Byerset al. advocate Tornado codes to provide reliability
and flexibility, the sets of coded symbols acquired by different
peers are still likely to overlap, as Tornado codes are not rateless.
PeerStreaming [20] also employs a high rate erasure code, which
is a modified Reed-Solomon code on the Galois Field GF(216),
and ensures with high probability that the serving peers hold
parts of the media without conflicts. PROMISE [27] uses Tornado
codes to tolerate packet losses and peer dynamics, and performs
rate assignment of the coded streams to a selected set of supplying
peers. By applying these erasure codes with fixed rates, the need
for content reconciliation is mitigated, but not eliminated. In com-
parison, by using rateless codes and recoding,rStreamcompletely
excludes any necessity for content reconciliation among peers.

Maymounkovet al. [5] use online codes, which belong to the
class of rateless codes, to download large-scale content inpeer-to-
peer networks. It takes advantage of the benefits of ratelesscodes.
However, by only encoding at the source peer and not recodingat
the relaying peers, there may still be significant content overlap
between a pair of relay peers, when they download from the
same upstream peer. Further, it may not be readily applied to
peer-to-peer streaming, as media streams are delay-sensitive and
may be generated on-the-fly (e.g., live streaming). Huanget al.
[28] design an on-demand media streaming scheme based on the
combination of media segmentation and rateless encoding with
Raptor codes. However, they mainly utilize the higher encoding
and decoding efficiency property of such rateless codes, butdo
not explore the useful properties related to their ratelessness.

With respect to peer selection, most existing work employs
various heuristics without formulating the problem theoretically,
with only one exception: Adleret al. [29] propose linear program-
ming models that aim at minimizing costs in peer-to-peer content
distribution. rStream is tailored to the specific requirements of
media streaming, by minimizing streaming latencies. In [29],
i supplying peers are allowed to fail, by having constraints
guaranteeing the aggregate rate from any subset composed ofn−i

14

supplying peers out of the totaln is larger than the streaming rate.
rStreamhandles peer failures based on the combination of rateless
recoding and dynamic execution of optimal rate allocation.In
addition, the problem of content reconciliation is not addressed
in [29], which is the motivating factor towards the use of rateless
codes inrStream.

VII. C ONCLUSION

We conclude this paper by reinforcing our strong argument
that rateless codes are ideal companions to peer-to-peer streaming
solutions, and are orthogonal to any multimedia codecs, including
H.264/AVC. A typical multimedia stream, such as an MPEG-
4 or H.264 stream, can be treated as a bitstream demanding
a constant bit rate, which can be segmented and treated by
rateless codes. Using examples, analysis, and experiment results,
we have made it very clear that rateless codes represent our best
possible option to provide resilience to dynamics typically found
in peer-to-peer networks, and to completely eliminate the need
for content reconciliation. Combined with optimal peer selection
and rate allocation strategies that can be computed on-the-fly in
a decentralized manner, we believe that rateless codes provide
a solid foundation towards winning the battle on all fronts of
the peer-to-peer streaming challenge: dynamics, reconciliation,
and bandwidth. We believe that our positive experimental results
with rStream implementation in the emulated realistic peer-to-
peer streaming environments have revealed the effectiveness of
rStreamin real-world scenarios. In ongoing work, we are working
towards a large-scale deployment and evaluation of ourrStream
implementation in the Internet.

REFERENCES

[1] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
Content Delivery Across Adaptive Overlay Networks,” inProc. of ACM
SIGCOMM 2002, August 2002.

[2] X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DONet: A
Data-driven Overlay Network for Peer-to-Peer Live Media Streaming,”
in Proc. of IEEE INFOCOM 2005, March 2005.

[3] M. Luby, “LT Codes,” in Proc. of the 43rd Symposium on Foundataions
of Computer Science, November 2002.

[4] A. Shokrollahi, “Raptor Codes,” inProc. of the IEEE International
Symposium on Information Theory (ISIT) 2004, June 2004.

[5] P. Maymounkov and D. Mazieres, “Rateless Codes and Big Downloads,”
in Proc. of the 2nd Int. Workshop Peer-to-Peer Systems (IPTPS),
February 2003.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A DigitalFountain
Approach to Reliable Distribution of Bulk Data,” inProc. of ACM
SIGCOMM 1998, September 1998.

[7] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE:
Boston University Representative Internet Topology Generator,”
http://www.cs.bu.edu/brite, Tech. Rep., 2000.

[8] D. A. Tran, K. A. Hua, and T. T. Do, “A Peer-to-Peer architecture for
Media Streaming,”IEEE Journal on Selected Areas in Communications,
vol. 22, pp. 121–133, January 2004.

[9] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” inProc. of ACM SIGCOMM 2002, August 2002.

[10] Z. Li, B. Li, D. Jiang, and L. C. Lau, “On Achieving OptimalThroughput
with Network Coding,” inProc. of IEEE INFOCOM 2005, March 2005.

[11] C. Wu and B. Li, “Optimal Peer Selection for Minimum-Delay Peer-
to-Peer Streaming with Rateless Codes,” inProc. of ACM Workshop
on Advances in Peer-to-Peer Multimedia Streaming(P2PMMS 2005), in
conjunction with ACM Multimedia 2005, November 2005.

[12] D. Bertsekas,Nonlinear Programming. Athena Scientific, 1995.
[13] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.

Springer-Verlag, 1985.
[14] D. P. Bertsekas and D. A. Castanon, “The Auction Algorithm for the

Transportation Problem,”Annals of Operations Research, vol. 20, pp.
67–96, 1989.

[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[16] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, 1989.

[17] D. P. Bertsekas and R. Gallager,Data Networks, 2nd Ed.Prentice Hall,
1992.

[18] H. D. Sherali and G. Choi, “Recovery of Primal Solutions when Using
Subgradient Optimization Methods to Solve Lagrangian Dualsof Linear
Programs,”Operations Research Letter, vol. 19, pp. 105–113, 1996.

[19] “All-Sites-Pings for PlanetLab,” http://ping.ececs.uc.edu/ping/.
[20] J. Li, “PeerStreaming: A Practical Receiver-Driven Peer-to-Peer Media

Streaming System,” Microsoft Research MSR-TR-2004-101, Tech. Rep.,
September 2004.

[21] H. Deshpande, M. Bawa, and H. Garcia-Molina, “StreamingLive Media
over a Peer-to-Peer Network,” Standford Database Group 2001-20, Tech.
Rep., August 2001.

[22] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-
Peer Scheme for Media Streaming,” inProc. of IEEE INFOCOM 2003,
March 2003.

[23] V. N. Padmanabhan, H. J. Wang, P. A. Chow, and K. Sripanidkulchai,
“Distributing Streaming Media Content Using Cooperative Networking,”
in Proc. of NOSSDAV 2002, May 2002.

[24] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” inProc. of the 19th ACM Symposium on Operating
Systems Principles (SOSP) 2003, October 2003.

[25] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating Trees from Overlay Multicast,” inProc. of the
4th International Workshop on Peer-to-Peer Systems, February 2005.

[26] M. Zhang, L. Zhao, Y. Tang, J. Luo, and S. Yang, “Large-Scale Live
Media Streaming over Peer-to-Peer Networks through Global Internet,”
in Proc. of ACM Multimedia 2005, November 2005.

[27] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-Peer Media Streaming Using CollectCast,” inProc. of ACM
Multimedia 2003, November 2003.

[28] C. Huang, R. Janakiraman, and L. Xu, “Loss-resilient On-demand Media
Streaming Using Priority Encoding,” inProc. of ACM Multimedia 2004,
October 2004.

[29] M. Adler, R. Kumar, K. W. Ross, D. Rubenstein, T. Suel, andD. D.
Yao, “Optimal Peer Selection for P2P Downloading and Streaming,” in
Proc. of IEEE INFOCOM 2005, March 2005.

Chuan Wu. Chuan Wu received her B.Engr. and
M.Engr. degrees from Department of Computer Sci-
ence and Technology, Tsinghua University, China,
in 2000 and 2002, respectively. She is currently
a Ph.D. candidate at the Department of Electrical
and Computer Engineering, University of Toronto,
Canada. Her research interests include distributed
algorithm design to improve Quality of Service of
overlay multicast applications. She is particularly
interested in applying optimization and game theory
to guide practical protocol design.

Baochun Li. Baochun Li received his B.Engr. de-
gree in 1995 from Department of Computer Science
and Technology, Tsinghua University, China, and his
M.S. and Ph.D. degrees in 1997 and 2000 from
the Department of Computer Science, University
of Illinois at Urbana-Champaign. Since 2000, he
has been with the Department of Electrical and
Computer Engineering at the University of Toronto,
where he is currently an Associate Professor. He
holds the Nortel Networks Junior Chair in Network
Architecture and Services since October 2003, and

the Bell University Laboratories Chair in Computer Engineering since July
2005. His research interests include application-level Quality of Service
provisioning, wireless and overlay networks.

