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Abstract—In peer-to-peer (P2P) live streaming applications
such as IPTV, it is natural to accommodate multiple coexisting
streaming overlays, corresponding to channels of programming.
In the case of multiple overlays, it is a challenging task to
design an appropriate bandwidth allocation protocol, such that
these overlays efficiently share the available upload bandwidth
on peers, media content is efficiently distributed to achieve the
required streaming rate, as well as the streaming costs are
minimized. In this paper, we seek to design simple, effective
and decentralized strategies to resolve conflicts among coexisting
streaming overlays in their bandwidth competition, and combine
such strategies with network coding based media distribution to
achieve efficient multi-overlay streaming. Since such strategies of
conflict are game theoretic in nature, we characterize them as
a decentralized collection of dynamic auction games, in which
downstream peers bid for upload bandwidth at the upstream
peers for the delivery of coded media blocks. With extensive
theoretical analysis and performance evaluation, we show that
these local games converge to an optimal topology for each
overlay in realistic asynchronous environments. Together with
network coding based media dissemination, these streaming
overlays adapt to peer dynamics, fairly share peer upload
bandwidth to achieve satisfactory streaming rates, and can be
prioritized.

Index Terms—Distributed networks, distributed applications,
peer-to-peer streaming, bandwidth auction, multiple overlays

I. I NTRODUCTION

Peer-to-peer streaming applications have recently become
a reality in the Internet [1], [2], [3], in which large numbers
of peers self-organize into streaming overlays. It is natural
to consider multiple coexisting streaming overlays (sessions)
in such applications, each of which corresponds to a channel
of television programming or live events. Generated with a
modern codec such as H.264, each overlay distributes a live
media stream with a specific streaming rate, such as800
Kbps for a Standard-Definition stream and1700 Kbps for a
480p (848×480 pixels) High-Definition stream. To meet such
exactingdemandsof bandwidth that have to be satisfied at
all participating peers, a streaming overlay relies on available
upload bandwidthsuppliesof both dedicated streaming servers
and regular participating peers. Smooth streaming playback
is not possible unless suchsupplies meet the demand for
streaming bandwidth, and efficient media distribution scheme
is applied.

This work was supported in part by Bell Canada through its Bell University
Laboratories R&D program.

It only becomes more challenging when coexisting stream-
ing overlays are considered, sharing the available upload
bandwidth in the peer-to-peer network. Consider a typical
scenario where multiple peers from different overlays are
in conflict with one another, competing for limited upload
bandwidth at the same streaming server or upstream peer in the
network. Apparently, the allocation of such upload bandwidth
needs to be meticulously mediated with appropriate strategies,
and media content needs to be efficiently distributed, such that
the streaming rate requirement of each overlay is satisfied at
all participating peers. It would be best if, at the same time,
fairness can be achieved across different overlays, and costs of
streaming (e.g., latencies) can be minimized. It goes without
saying that if such tactical strategies are not implemented,
the conflict among streaming overlays may not be resolved
satisfactorily.

In this paper, we seek to design simple, decentralized,
but nonetheless effective tactical strategies to resolve inherent
bandwidth conflicts among coexisting streaming overlays, and
utilize network coding to achieve efficient media content
distribution. For this purpose, we characterize the bandwidth
conflicts in a game theoretic setting, withdynamic auction
games. Such games evolve over time, and involve repeated
auctionsin which competing downstream peers from different
overlaysbid for upload bandwidth at the same upstream peer,
for the streaming of media blocks coded with network coding.
In these dynamic auction games, an upstream peer allocates
its upload bandwidth based on bids from downstream peers,
and a downstream peer may optimize and place its bids to
multiple upstream peers that have innovative coded blocks it
desires, and subsequently compete in multiple auctions. Each
of these auctions is locally administered, and leads to cleanly
decentralized strategies.

With extensive theoretical analysis and performance evalua-
tion using simulations, we show that these decentralized game-
theoretic strategies not only converge to a Nash equilibrium,
but also lead to favorable outcomes, in realistic asynchronous
environments: we are able to obtain an optimal topology for
each coexisting streaming overlay, in the sense that streaming
rates are satisfied, and streaming costs are minimized. These
topologies of coexisting overlays evolve and adapt to peer
dynamics, fairly share peer upload bandwidth, and can be
prioritized. In contrast to existing game theoretic approaches
that are largely theoretical in nature, we show that our pro-
posed strategies can be practically implemented in realistic
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Fig. 1. Two concurrent P2P streaming overlays: an example.

v1 v2

n3

n4n5

n6

n7

Auction Game 2 

Auction Game 1 

Fig. 2. Decentralized auction games in the example overlays.

streaming overlays, and can be seamlessly integrated with ef-
ficient media distribution based on network coding to produce
a complete conflict-resolving multi-overlay streaming protocol
design. Indeed, our focus in this paper is not on reasoning
about the rationality and selfishness of peers, nor on incentive
engineering to encourage contribution. We seek to devise
practical strategies that may be realistically implemented, and
use game theoretic tools only to facilitate the design of such
conflict-resolving strategies.

The remainder of this paper is organized as follows. In
Sec. II, we present our system model and motivate the design
of distributed auction games for resolving bandwidth conflicts.
In Sec. III, we discuss the bidding and allocation strategies,
and establish their equilibrium using game theory techniques.
In Sec. IV, their convergence to the optimal bandwidth alloca-
tion is analyzed in both asynchronous and dynamic environ-
ments, and their practical implementation with network coding
based media distribution is discussed. Sec. V is dedicated to an
in-depth study of the proposed strategies in realistic settings,
with respect to interactions of multiple dynamic streaming
overlays. We then discuss related work and conclude the paper
in Sec. VI and Sec. VII, respectively.

II. M ULTI -OVERLAY STREAMING MODEL

A. Network model and assumptions

This paper considers a P2P live streaming network including
multiple coexisting streaming overlays, each consisting of
streaming servers and participating peers. Each server may
serve more than one overlay, while each peer may also
participate in multiple overlays1. Fig. 1 shows an example of
two coexisting streaming overlays, each with two streaming
servers and four participating peers.

In each streaming overlay, participating servers and peers
form a mesh topology, in which any peer is served by its
upstreampeers (servers can be deemed as special upstream
peers), and may serve one or moredownstreampeers at
the same time. The peers server each other by exchanging
segments of media data in the streaming channel, which
are received and cached in their local playback buffers. The
playback buffer at each peer represents a sliding window of
the streaming channel, and contains segments to be played in
the immediate future.

With respect to the construction of each overlay, we consider
there exists a standalone neighbor list maintenance mechanism

1A practical scenario of this case is that users behind a same gateway may
watch different channels, while they appear as the same identity (peer) in the
Internet with one same external IP address.

in the network, consisting of one or multiple bootstrapping
servers. The mechanism assigns a certain number of existing
peers in an overlay as neighbors to each new peer upon its
joining, and maintains the number of neighbors for each peer
during streaming upon peer dynamics. The application-layer
links between peers in each overlay are established based on
their media content availability during streaming.

Let S denote the set of all coexisting streaming overlays
in the network. The topology of each overlays ∈ S can be
modeled as a directed graphGs = (Vs,Ns,As), whereVs is
the set of servers serving overlays, Ns represents the set of
participating peers, andAs denotes the set of application-layer
links in overlays. Let Rs be the required streaming rate of
the media stream distributed in overlays. Let V be the set of
all streaming servers in the network,i.e., V = ∪s∈SVs, and
N be the set of all existing peers,i.e., N = ∪s∈SNs. Let Ui

denotes the upload bandwidth at peeri, ∀i ∈ V ∪ N .
Realistically, we assume that the last-mile upload bandwidth

on each peer (including servers) constitutes the “supply” of
bandwidth in the overlays,i.e., bandwidth bottlenecks lie at
the peers rather than at the core of the overlays. In addition, we
assume that the download bandwidth of each peer is sufficient
to support the required streaming rate(s) of the overlay(s)it
participates in. This represents a practical scenario, as peers
with insufficient download bandwidth for an overlay will soon
quit the overlay and may join another overlay with lower
streaming rate requirement.

B. Auction game model

To resolve the bandwidth conflict on its upload link, each
upstream peeri in the network,∀i ∈ V ∪ N , organizes a
dynamic bandwidth auction game, referred to as auctioni. In
auction i, the “goods” for sale is the upload bandwidth of
peeri with a total quantity ofUi, and the players are all the
downstream peers of peeri in all overlays it participates in. Let
js represent peerj in overlays. The set of players in auction
i can be expressed as{js,∀j : (i, j) ∈ As,∀s ∈ S} 2. As
each peer in an overlay may stream from multiple upstream
peers in the overlay, a playerjs may concurrently bid for
upload bandwidth in multiple auction games, each hosted by
one upstream peer.

The auction games at the peers are dynamically carried out
in a repeated fashion to resolve bandwidth conflicts over time.
In eachbidding roundof auctioni, each player submits its bid
to peeri, declaring its requested share of upload bandwidth, as
well as the unit price it is willing to pay. The upstream peeri

2Note that in case a downstream peerj participates in multiple overlays,
it is viewed as multiple players, each for one overlay.
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then allocates shares of its upload capacity,Ui, to the players
based on their bids. Letxs

ij denote the upload bandwidth that
playerjs requests from peeri, andps

ij denote the unit price it
is willing to pay to peeri. The bid from playerjs in auction
i can be represented as a2-tuple bs

ij = (ps
ij , x

s
ij).

Such a distributed game model can be illustrated with the
example in Fig. 2. In the example, there exist7 auction games,
two of which are marked: auction1 at v1 with 5 players31

(peern3 in overlay1), 51, 52, 61 and62, auction2 at v2, with
4 players42, 51, 52 and71, respectively.

Seamlessly integrated with the distributed bandwidth auc-
tions, a dissemination scheme based on the state-of-the-art
framework of streaming with network coding ([4], [5], [6]) is
employed to distribute coded media content among the peers
in each overlay. Based on network coding, a downstream peer
in each overlay bids in the auction at one upstream peer only
when the upstream peer can supply it with innovative coded
blocks for the overlay, and the allocated bandwidth in the
auctions is efficiently utilized to deliver such coded blocks.
We leave the related detailed discussions to Sec. IV-C.

III. T HE BANDWIDTH AUCTION GAME

In this section, we present the auction strategies to resolve
bandwidth conflicts in multi-overlay streaming, includingthe
allocation strategy taken by an upstream peer and the bidding
strategy by downstream peers, and establish the equilibrium
of the distributed auctions from the game theoretical pointof
view.

A. Allocation strategy

In auctioni, the seller, upstream peeri, aims to maximize
its revenue by selling its upload bandwidthUi at the best
prices. Given bidsbs

ij = (ps
ij , x

s
ij)’s from all the playersjs

(∀j : (i, j) ∈ As,∀s ∈ S), upstream peeri’s allocation
strategy can be represented by the following revenue maxi-
mization problem. Here,as

ij (∀j : (i, j) ∈ As,∀s ∈ S) is the
bandwidth share to be allocated to each downstream peerj in
each competing overlays.

Allocation i:

max
∑

s∈S

∑

j:(i,j)∈As

ps
ija

s
ij (1)

subject to∑
s∈S

∑
j:(i,j)∈As

as
ij ≤ Ui,

0 ≤ as
ij ≤ xs

ij , ∀j : (i, j) ∈ As,∀s ∈ S.

Such an allocation strategy can be achieved in the following
fashion:

Upstream peeri selects the highest bid price,e.g., ps
ij from

player js, and allocates bandwidthas
ij = min(Ui, x

s
ij) to it.

Then if it still has remaining bandwidth, it selects the second
highest bid price and assigns the requested bandwidth to the
corresponding player. This process repeats until peeri has
allocated all its upload capacity, or bandwidth requests from
all the players have been satisfied. ⊓⊔

The above allocation strategy can be formally stated in the

following formula:

as
ij = min(xs

ij , Ui −
∑

ps′

ik
≥ps

ij
,ks′ 6=js

as′

ik),

∀j : (i, j) ∈ As,∀s ∈ S. (2)

B. Bidding strategy

In each overlays ∈ S, a peerj may place its bids to
multiple upstream peers, that can supply innovative coded
blocks to it. As a common objective, it wishes to achieve
the required streaming rate for the overlay, and experiences
minimum costs. We consider two parts of costs when peerj
streams from peeri in overlays: streaming cost — denoted by
streaming cost functionDs

ij(x
s
ij) — represents the streaming

latency actually experienced byj; bidding cost — calculated
by ps

ijx
s
ij — represents the bid peerj submits to peeri in

overlays. The bidding cost reflects the degree ofcompetition
anddemandfor bandwidth in the auctions at upstream peers.
The overall cost at playerjs is the sum of the two parts from
all its upstream peers,∀i : (i, j) ∈ As.

In this way, the preference for playerjs in deciding its
bids in the auctions can be expressed by the following cost
minimization problem. Practically, each cost functionDs

ij

should be non-decreasing and its value increases more rapidly
when the requested bandwidthxs

ij is larger (i.e. the property of
convexity). Therefore, without loss of generality, we assume
the cost functions are non-decreasing, twice differentiable and
strictly convex.

Bidding js:

min
∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps

ijx
s
ij) (3)

subject to∑
i:(i,j)∈As

xs
ij ≥ Rs, (4)

xs
ij ≥ 0, ∀i : (i, j) ∈ As. (5)

The bidding strategy of playerjs consists of two main
components: bandwidth requests and price adjustments.

1) Bandwidth requests:If the bid pricesps
ij ’s are given, the

requested bandwidths at playerjs towards each of its upstream
peers in overlays, i.e., xs

ij ,∀i : (i, j) ∈ As, can be optimally
decided by solving the problemBidding js. This can be done
efficiently with a water-filling approach, in which playerjs

acquires the required streaming rateRs by requesting from
upstream peers that incur minimum marginal costs:

Let fs
j (x) denote the overall cost at playerjs, i.e., fs

j (x) =∑
i:(i,j)∈As

(Ds
ij(x

s
ij)+ps

ijx
s
ij). The marginal cost with respect

to xs
ij is

dfs
j (x)

dxs
ij

= D
′s
ij(x

s
ij) + ps

ij . Beginning withxs
ij = 0

(∀i : (i, j) ∈ As), the player identifies onexs
ij that achieves

the smallest marginal cost and increases the value of thisxs
ij .

As Ds
ij(x

s
ij) is strictly convex,D

′s
ij(x

s
ij) increases with the

increase ofxs
ij . The player increases thisxs

ij until its marginal
cost is no longer the smallest. Then it finds a newxs

ij with the
current smallest marginal cost and increases its value. This
process repeats until the sum of allxs

ij ’s (∀i : (i, j) ∈ As)
reachesRs. ⊓⊔

The water-filling approach can be illustrated in Fig. 3, in
which the height of each bin represents the marginal cost for



4

pij
s

Dij(0)
‘s

i

Dij(xij) - Dij(0)
‘s s ‘s

d fj(x)

 d xij

s

s

Fig. 3. Bandwidth requesting strategy at playerjs: an illustration of the
water-filling approach.

playerjs to stream from each upstream peeri. To fill water at
a total quantity ofRs into these bins, the bins with the lowest
heights are flooded first, until all bins reach the same water
level. Then the same water level keeps increasing until all the
water has been filled in.
Theorem 1. Given bid pricesps

ij ,∀i : (i, j) ∈ As, the water-
filling approach obtains a unique optimal requested bandwidth
assignment at playerjs, i.e., (xs∗

ij ,∀i : (i, j) ∈ As), which is
the unique optimal solution to the problemBidding js.

We postpone the proof of Theorem 1 to Appendix A.
2) Price adjustments:We next address how each player

is to determine the bid price to each of its desirable upstream
peers. A price adjustment scheme is designed for this purpose,
by which each player tactically adjusts its prices in participat-
ing auctions based on whether its bandwidth requirement is
achieved in the previous bidding round.

When a playerjs first joins an overlay, it initiates bid prices
ps

ij ’s towards all desired upstream peers to0. Then it calculates
the current optimal requested bandwidth assignment with the
water-filling approach, and sends its bids to the upstream
peers. After upstream peeri allocates its upload capacity with
the allocation strategy, it sends allocated bandwidth values to
corresponding players. Upon receiving an allocated bandwidth,
playerjs increases the corresponding bid price if its “demand”
is higher than the “supply” from the upstream peer, and
otherwise decreases the price. Meanwhile, it recomputes its
requested bandwidth assignment for all its upstream peers with
the water-filling approach. Such price adjustment is carried out
in an iterative fashion, until the player’s bandwidth requests
may all be granted at respective upstream peers if it is to bid
the new prices in the next round.

Using the water-filling approach as a building block, the
price adjustment scheme is summarized in thebidding strategy
to be carried out by playerjs in each round of its participating
auctions, as presented in Table I.

The intuition behind the bidding strategy is that, each
player places different bid prices to different upstream peers,
considering both the streaming cost and the overall demand
at each upstream peer. If the streaming cost is low from an
upstream peer, the player is willing to pay a higher price and
strives to acquire more upload bandwidth from this peer. On
the other hand, if the bandwidth competition at an upstream
peer is intense such that the bidding cost becomes excessive,
the player will forgo its price increases and request more
bandwidths from other peers. At all times, the marginal cost
of streaming from each upstream peer is kept the same, as
achieved by the water-filling process.

TABLE I
BIDDING STRATEGY AT PLAYER js

Input
–(pij , xij): bids submitted in previous bidding round
–allocated bandwidthas

ij in previous bidding round from all
upstream peersi, ∀i : (i, j) ∈ As.

Adjust prices and bandwidth requests
Repeat
(a) For each upstream peeri

– If xs
ij > as

ij , increase priceps
ij by a small amountδ;

– If xs
ij ≤ as

ij andps
ij > 0, decrease priceps

ij by δ.
(b) Adjust requested bandwidth assignment(xs

ij , ∀i :
(i, j) ∈ As) with the water-filling approach.

(c) For each upstream peeri
– Calculate new allocationas

ij that can be acquired from
i if the current priceps

ij is bid, based on Eqn. (2), with queried
bids of some other players in the previous round of auctioni.

Until: all requested bandwidthsxs
ij ’s, are to be achieved

with current pricesps
ij ’s, i.e., xs

ij ≤ as
ij , ∀i : (i, j) ∈ As, and

pricesps
ij ’s are the lowest possible to achieve it.

Submit new bids
Send new bidsbs

ij = (ps
ij , x

s
ij), ∀i : (i, j) ∈ As, to

respective upstream peers.

We note that to calculate the new achievable allocation
as

ij , player js needs to know bids placed by some of its
opponents in the previous bidding round in auctioni. Instead
of asking upstream peeri to send all received bids, playerjs

can query such information gradually only when necessary.
If ps

ij is to be increased, it asks for the bid of opponentms′

whose priceps′

im is immediately higher thanps
ij in auctioni.

While ps
ij is still belowps′

im, playerjs’s achievable bandwidth
is unchanged; only whenps

ij exceedsps′

im, its achievable
bandwidth is increased byas′

im, and playerjs queries upstream
peer i again for the bid containing the immediately higher
price than the current value ofps

ij . Similar bid inquiries can
be implemented for the case thatps

ij is to be reduced. In this
way, the price adjustments can be achieved practically with
little messaging overhead.

C. Game Theoretical Analysis

The distributed auction games in the coexisting streaming
overlays are carried out in a repeated fashion, as these are
dynamic games. They are correlated with each other as each
player optimally places its bids in multiple auctions. A critical
question is:Does there exist a stable “operating point” of
the decentralized games, that achieves efficient partitionof
network upload bandwidths?We now seek to answer this
question with game theoretical analysis.

We consider upload bandwidth competition in the entire
network as oneextendeddynamic non-cooperative strategic
game (referred to asGext), containing all the distributed
correlated auctions. The set of players in the extended game
can be represented as

I = {js,∀j ∈ Ns,∀s ∈ S}. (6)

The action profile taken by playerjs is a vector of bids,
in which each component is the bid to place to one upstream
peer. Formally, the set of action profiles for playerjs is defined
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as

Γs
j = {Bs

j |B
s
j = (bs

ij ,∀i : (i, j) ∈ As),

bs
ij = (ps

ij , x
s
ij) ∈ [0,+∞) × [0, Rs],

∑

i:(i,j)∈As

xs
ij ≥ Rs}. (7)

Then, letB denote the bid profile in the entire network,
i.e., B = (Bs

j ,∀j ∈ Ns,∀s ∈ S) ∈ ×j,sΓ
s
j . The preference

relation %s
j for player js can be defined by the following

overall cost function, which is the objective function in the
problemBidding js in (3)

Costsj(B) =
∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps

ijx
s
ij). (8)

Therefore, we say two bid profilesB %s
j B′ if Costsj(B) ≤

Costsj(B
′).

Definition 1. A bid profileB in the network,B = (Bs
j ,∀j ∈

Ns,∀s ∈ S) ∈ ×j,sΓ
s
j , is feasible if its bandwidth requests

further satisfy upload capacity constraints at all the upstream
peers, i.e.,

∑
s∈S

∑
j:(i,j)∈As

xs
ij ≤ Ui,∀i ∈ V ∪ N .

When a bid profile is feasible, from the allocation strategy
discussed in Sec. III-A, we can see the upload bandwidth
allocations will be equal to the requested bandwidths.

Using B̃s
j to represent action profiles of all players other

than playerjs in I, i.e., B̃s
j = (Bk

m,∀mk ∈ I \ {js}), we
have the following definition of Nash equilibrium.
Definition 2. A feasible bid profileB∗ = (Bs∗

j ,∀j ∈
Ns,∀s ∈ S) is a Nash equilibrium of the extended game
Gext〈I, (Γs

j), (%
s
j)〉 if for every player js ∈ I, we have

Costsj(B
s∗
j , B̃s∗

j ) ≤ Costsj(B
′s
j , B̃s∗

j ) for any other feasible bid

profile B′ = (B
′s
j , B̃s∗

j ).
We next show the existence of a Nash equilibrium for the

extended game. We focus on feasible streaming scenarios as
stated in the following assumption:
Assumption 1. The total upload bandwidth in the P2P net-
work is sufficient to support all the peers in all overlays to
stream at required rates,i.e., there exists a feasible bid profile
in the P2P network.
Theorem 2. In the extended gameGext〈I, (Γs

j), (%
s
j)〉 in

which distributed auctions are dynamically carried out with
the allocation strategy in (2) and the bidding strategy in Table
I, there exists a Nash equilibrium under Assumption 1.

We postpone the proof of Theorem 2 to Appendix B.
The next theorem shows that at equilibrium, the upload

bandwidth allocation in the network achieves the minimization
of the global streaming cost.
Theorem 3. At Nash equilibrium of the extended game
Gext〈I, (Γs

j), (%
s
j)〉, upload bandwidth allocation in the net-

work achieves streaming cost minimization, as achieved by the
following global streaming cost minimization problem:

min
∑

s∈S

∑

j∈Ns

∑

i:(i,j)∈As

Ds
ij(y

s
ij) (9)

subject to
∑

s∈S

∑
j:(i,j)∈As

ys
ij ≤ Ui, ∀i ∈ V ∪ N , (10)

∑
i:(i,j)∈As

ys
ij ≥ Rs, ∀j ∈ Ns,∀s ∈ S, (11)

ys
ij ≥ 0, ∀(i, j) ∈ As,∀s ∈ S.(12)

Theorem 3 can be proven by showing that the set of KKT
conditions for the global streaming cost minimization problem
is the same as that satisfied by the equilibrium bid profile
B∗ = ((ps∗

ij , xs∗
ij ),∀(i, j) ∈ As,∀s ∈ S), and the equilibrium

bid prices at each upstream peeri (i.e., ps∗
ij ,∀j : (i, j) ∈

As,∀s ∈ S) have the same value as the Lagrangian multiplier
associated with the upload capacity constraint (10) at peeri.
We postpone the detailed proof of Theorem 3 to Appendix C.
From the proof of Theorem 3, we can derive the following
corollary:
Corollary. At Nash equilibrium, the bid prices to each up-
stream peeri from all competing players that are allocated
non-zero bandwidths are the same,i.e., ∃t∗i , p

s∗
ij = t∗i if

xs∗
ij > 0, ∀j : (i, j) ∈ As,∀s ∈ S.
This corollary can also be intuitively illustrated: If a player

in auction i is paying a price higher than some other player
who is also allocated non-zero bandwidth, the former can
always acquire more bandwidth from the latter with a price
lower than its current price. Thus at equilibrium, when no one
can unilaterally alter its price, all players must be payingthe
same price.

IV. PRACTICAL APPLICATION OFPROPOSEDSTRATEGIES

We next discuss the practical deployment of the auction
strategies in realistic asynchronous and dynamic P2P stream-
ing networks, show the convergence of the dynamic auctions
to the Nash equilibrium, and discuss how such dynamic band-
width allocation can be seamlessly integrated with network
coding based media distribution.

A. Asynchronous play

In a practical P2P network, peers are inherently asyn-
chronous with different processing speeds. Besides, with var-
ious message passing latencies, bids and allocated bandwidth
updates may arrive at each upstream or downstream peer
at different times. All these make each auction completely
asynchronous. A practical deployment of the game theoretical
strategies should be able to practically handle such asyn-
chronous game play.

In our design, bids and allocation updates are passed by
messages sent over TCP, such that their arrival is guaranteed.
The strategies are to be carried out practically in each auction
in the following fashion:

Allocation. At each upstream peer, starting from the last
time it sends out allocation updates, the upstream peer collects
new bids until it has received them from all its existing
downstream peers in all the overlays it participates in, or a
timeout value,T , has passed since the previous allocation,
whichever is shorter. Then the upstream peer allocates its
upload bandwidth again with the allocation strategy discussed
in (2): for those downstream peers whose bids it has received,
it uses the new bids; for those slow ones that it has not heard
from in this round, it uses the most recent bids from them.
Then the upstream peer sends allocation updates to all the
downstream peers whose allocation has been changed, and
starts a new round of execution.

Bidding. At each downstream peer in each streaming over-
lay, since its last bidding round, it waits for bandwidth allo-
cation until all allocated bandwidth updates have arrived from
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all its requested upstream peers, or timeT has passed since
the last time it placed all the bids, whichever is shorter. Then it
adjusts prices towards those upstream peers from which it has
received allocation updates, retains its previous prices towards
those it has not heard from in this round, and recalculates its
new bids to all the upstream peers, using the bidding strategy
in Table I. It then submits new bids, that are different from the
ones submitted previously, to the respective upstream peers.

While we have established the existence of Nash equilib-
rium of the distributed auctions in Theorem 2, we have not yet
addressed another critical question:can the Nash equilibrium,
i.e., the stable operating point that achieves optimal bandwidth
allocation among peers in different overlays, be actually
reached with such dynamic asynchronous play of the auction
games?We now seek to justify such a convergence, based on
the following assumptions:
Assumption 2.a) Each downstream peer in each overlay will
communicate its new bids to its upstream peers within finite
time (until it has acquired the required streaming bandwidth
for the overlay at the lowest possible prices); b) Each up-
stream peer will communicate latest allocation updates to its
downstream peers within finite time.
Theorem 4. Under Assumption 1 and 2, the asynchronous
distributed auctions converge to the Nash equilibrium, whose
existence is established in Theorem 2.
Proof: We first note the following property of the extended
auction game, as modeled in Sec. III-C:

Claim 1.The total allocated upload bandwidth in the entire
network,Ualloc =

∑
s∈S

∑
(i,j)∈As

as
ij , grows monotonically

during the asynchronous play of the extended auction game.
The truth of the above claim lies in the fact that once

a unit of upload bandwidth is allocated during the auction,
it remains allocated throughout the rest of the game;i.e., a
unit of allocated bandwidth may switch its ownership from a
downstream peeri in overlays1 to another downstream peer
j in overlays2, but will never become idling again.

We further knowUalloc is bounded above by the total upload
bandwidth in the network,Uall =

∑
i∈V∪N Ui. SinceUalloc

is increasing and upper-bounded, it therefore converges. Let
U∗

alloc be its convergence value.
We now prove the theorem by contradiction. We assume

that the extended auction game does not converge and runs
for an infinitely long time. By Assumption 2, we know that
there must exist peers that do not obtain sufficient bandwidth
and thus bid infinitely often with updated prices. In this case,
U∗

alloc must be smaller than the aggregated bandwidth demand
at all peers in all the overlays, as otherwise peers stop bidding
and the auction terminates.

When the total allocated bandwidthU∗
alloc is not sufficient

to satisfy the bandwidth requirement at all the peers, based
on our price adjustment strategy, we know the bid prices
at all upstream peers will be growing unbounded. In this
case, there must not exist an upstream peer that still has
spare upload bandwidth,i.e., all upload bandwidth in the
network has been allocated. We thus deriveU∗

alloc = Uall.
Therefore,Uall is smaller than the total bandwidth demand
at all the peers in all the overlays, which contradicts with
assumption 1. Thus the extended auction game must converge.

In addition, the extended auction game must converge to
its Nash Equilibrium (since peers would otherwise continue
bidding), which achieves streaming cost minimization based
on Theorem 3. ⊓⊔

B. Peer dynamics

Peer asynchrony aside, the inherent dynamics of realistic
P2P network further leads to dynamics of auction participants.
The players in each auction may change dynamically, due to
new peers joining the network, existing peers joining another
overlay or switching upstream peers due to content availability,
or peer failures and departures; a distributed auction may start
or close due to the arrival or departure of an upstream peer.
With slightly more extra effort, our asynchronous deployment
can readily adapt to such dynamics.

At the downstream side, when a peer newly joins an auction
at an upstream peer,e.g., in the cases of arrival of a new
downstream or upstream peer, it initializes its bid price to0,
computes requested bandwidth together with its prices to other
upstream peers, and then forwards its bid to the upstream peer.
In the case that one of its upstream peers fails or departs, the
downstream peer can detect it based on the broken or closed
connections. Then it may exclude the upstream peer from its
bandwidth request calculation.

At the upstream side, when an upstream peer receives
the bid from a new peer, it immediately incorporates the
downstream peer into its bandwidth allocation. When it detects
the failure or departure of a downstream peer based on the
broken or closed connections, the upstream peer allocates
upload bandwidth to the remaining peers only in a new round,
excluding the departed peer from the auction game.

When peer dynamics are present in the network, the dy-
namic auction game progresses and strives to pursuit the
optimal bandwidth allocation in the latest overlay topology.
When peers continue to join and leave the overlays, the opti-
mal bandwidth allocation naturally becomes a moving target.
When such dynamics stop and overlay topology stabilizes,
if the overall bandwidth supply is sufficient in the current
topology, by results in Theorem 2, 3 and 4, we know there
exists a Nash Equilibrium which achieves global streaming
cost minimization, and the auction game converges to such an
optimal streaming topology.

C. Combining with network coding

So far we have presented and analyzed the bandwidth
auction strategies by assuming an existing mesh topology for
each overlay as part of the input. We now discuss how such
overlay meshes can be constructed and maintained in a P2P
system, and how the bandwidths allocated during the auctions
are utilized to stream media content. We present such input
construction and output utilization within the state-of-the-art
framework of streaming with network coding [4], [5], [6].

Network coding is a recent technique originated from in-
formation theory that allows encoding/decoding at every node
across the network [7], [8]. It has proven to increase data
diversity in a content distribution system, which facilitates
peer reconciliation, enhances failure resilience, and therefore
improves the overall system efficiency [4], [9]. Within the
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context of multi-overlay media streaming using network cod-
ing, for each overlays, its media bitstreamMs is separated
into segmentsg1

s , g2
s , . . ., each corresponding ton playback

seconds. Each segmentgi
s further consists ofk equal-sized

blocks, and bits in each block are viewed as a vector ofq-bit
symbols over the Galois FieldGF (2q). Encoding operations
are performed at both the servers and the upstream peers
in each overlays, by linearly combining multiple blocks of
a segment inMs in symbol-wise fashion overGF (2q). A
downstream peer in the overlay may recover a segment by
decoding from anyk innovative (linearly independent) blocks
received for that segment [4].

As presented in Sec. II, a bootstrapping server initializesand
maintains the neighbor list at each peer in each overlay. Based
on such initial connectivity, each peer periodically advertises
block availability to its neighboring peers in the overlay.An
advertisement consists of metadata that describes the segment
number and linear coefficients of coded blocks available in that
segment. Based on such block availability, each peer computes
whether a neighbor can provide it with innovative coded blocks
for a segment it desires, and how many new coded blocks
it can serve [9]. Then the peer bids for bandwidth at the
possible serving neighbors. In this way, the sets of overlay
links involved in the auctions,i.e., As,∀s ∈ S, are clearly
defined.

The upload bandwidth allocated to each downstream peer
in each overlay during an auction is utilized to deliver new
coded blocks produced by the upstream peer for the requested
segment in the respective overlay. Once the transmission of
a segment finishes, the allocated bandwidth can be used for
sending innovative coded blocks of another segment desired
by the downstream peer, if there exist. Otherwise the situation
is similar to a peer (upstream) departure, and the downstream
peer needs to bid elsewhere for additional bandwidth. Thanks
to the data diversity generated by network coding, content
scheduling policies such asrarest first are of less concern
here, as network coding essentially eliminates thelast block
problem[9] and maximally saturates the allocated bandwidth
with useful blocks.

V. PERFORMANCEEVALUATION

In this section, we conduct in-depth investigations of the
proposed auction strategies in practical scenarios. Usingsim-
ulations under real-world asynchronous settings, the focus of
our investigation is to show that, as an outcome of our pro-
posed strategies, coexisting overlay topologies can fairly share
network bandwidth, evolve under various network dynamics,
efficiently saturate the allocated bandwidth by using network
coding, and can be prioritized.

The general realistic settings for our forthcoming experi-
ments are as follows: Each network includes two classes of
peers,30% Ethernet peers with10 Mbps upload capacities
and 70% ADSL/Cable modem peers with heterogeneous up-
load capacities in the range of0.4 − 0.8 Mbps. Streaming
servers in a network are Ethernet peers as well. We use
delay-bandwidth products to represent streaming costs (M/M/1
delays), with streaming cost functions in the form ofDs

ij =

xs
ij/(Cij − xs

ij). Here,Cij is the available overlay link band-
width, chosen from the distribution of measured capacities
between PlanetLab nodes [10]. In asynchronous play of the
auction games, the timeout value for an upstream/downstream
peer to start a new round of bandwidth allocation/requested
bandwidth calculation,T , is set to1 second. The media stream
to be distributed in each overlay is partitioned into2-second
segments, and each segment is further divided into64 blocks.

A. Limited visibility of neighbor peers

In Assumption 1 of our game theoretical analysis in
Sec. III-C, we assume that upload capacities in the network
are sufficient to support all the peers to stream at required
rates. This is generally achievable when the neighbor list
maintained at each peer contains a lot of other peers in each
overlay it participates in. However, in practical scenarios, each
peer only has knowledge of a limited number of other peers,
much smaller than the size of the network. We first study
the convergence and optimality of the proposed strategies in
such practical cases with asynchronous play of the auctions.
As known neighbors constitute possible upstream peers in the
streaming, the neighbor list at a peer is henceforth referred to
as theupstream vicinityof the peer.

In our experiments, peers in upstream vicinity of each peer
are randomly selected by a bootstrapping server from the
set of all peers in the same overlay. The actual upstream
peers at which each peer bids for bandwidth are decided
by their content availability during streaming. In this setof
experiments, we focus on allocated streaming bandwidth at
each peer from the auctions, and will investigate the difference
between allocated bandwidth and actually achieved streaming
rate of media delivery with network coding in Sec. V-C.
Specifically, we seek to answer the following questions: First,
what is the appropriate size of the upstream vicinity, such that
the auctions converge and the required streaming bandwidth
can be achieved at all peers in an overlay? Second, if the
upstream vicinity is smaller, do the peers need to bid longer
before the auction games converge? Finally, how different is
the resulting optimal topologies when auction strategies are
used with upstream vicinities of various sizes, with respect to
streaming cost?

Evaluation. We investigate by experimenting in networks
with 100 to 10, 000 peers with various sizes of upstream
vicinities. In each network, we now consider a single overlay,
with one server serving a1 Mbps media stream to all peers.

Fig. 4 illustrates the outcome of our distributed auction
strategies, either when they converge, or when a maximum
bidding time,2 seconds, has been reached. In the latter case,
we assume the games have failed to converge, as there exist
peers that cannot achieve the required streaming bandwidth
with their current size of upstream vicinities. Decreasingthe
size of upstream vicinities fromn − 1 where n is the total
number of peers in each network, we discover that with20−30
peers in the upstream vicinity, the games can still converge
and the required streaming bandwidth can still be achieved at
all peers in most networks, as shown in Fig. 4(A) and (B).
Fig. 4(B) further reveals that convergence is always achieved
rapidly (in a few seconds) in all networks with different sizes
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Fig. 4. Outcomes of distributed auctions in networks of different sizes, and with various sizes of upstream vicinities.

of upstream vicinities, as long as these games converge at all
with a particular upstream vicinity size. A careful observation
exhibits that the auction games take slightly longer to converge
in larger networks. For a fixed network size, with larger
upstream vicinity, a peer may spend more time in receiving
bandwidth allocation and computing bandwidth requests, but
carry out fewer bidding rounds before it acquires the required
streaming bandwidth. Therefore, the total time to convergence
remains similar with different upstream vicinity sizes when
the auctions converge, and only distinguishes itself in larger
networks when they fail to converge.

Fig. 4(C) compares the optimality of resulting topologies in
terms of their global streaming costs computed with the allo-
cated bandwidths. Although each resulting topology achieves
streaming cost minimization with respect to its own input mesh
topology, the global streaming cost is less when the input
topology is denser with larger upstream vicinities. However,
compared to the ultimate minimum streaming cost achieved
when upstream vicinities contain all other peers in the overlay,
the cost experienced by using upstream vicinities of a much
smaller size (30) is only 10% higher.

Summary.From these observations, it appears that the
appropriate size of upstream vicinities is relatively independent
of network sizes, and the bandwidth allocation converges
quickly in most cases. Both are good news when our auction
strategies are to be applied in realistic large-scale networks.
Based on results in this section, in our following experiments,
the upstream vicinity size at each peer is set to30.

B. The case of multiple coexisting overlays

We now proceed to study how our game strategies re-
solve the bandwidth competition among multiple coexisting
streaming overlays. In particular, how does the topology of
each overlay evolve, if coexisting overlays are started in the
network? Do multiple coexisting overlays fairly share network
bandwidth, and experience similar streaming costs?

Evaluation 1. We introduce more and more streaming
overlays onto a1000-peer network: At the beginning, all peers
participate in one overlay and start to bid for their streaming
bandwidths. Then every10 seconds, the peers join one more
new streaming overlay. To clearly show the effects of an
increasing number of coexisting overlays on the allocated
streaming bandwidth of each existing overlay, the required
streaming rates for all overlays are set to the same1 Mbps.

Fig. 5 illustrates the evolution of the average allocated
peer streaming bandwidth in each overlay over time, when
5 overlays are sequentially formed in the network. We can see

when there are up to3 overlays coexisting in the network, the
upload capacities in the network are sufficient for each overlay
to achieve their required streaming bandwidth. When there are
4 or 5 overlays, the capacities become insufficient to support
all the overlays.

In the former case with1 − 3 overlays, every time a
new overlay is formed, the previous equilibrium bandwidth
allocation across overlays is disturbed, and the games quickly
converge to a new equilibrium, in which each overlay achieves
the required streaming bandwidth again. In addition, the costs
experienced by coexisting overlays when their topologies
stabilize are shown in Fig. 6. We observe both streaming and
bidding costs are very similar across the multiple coexisting
overlays.

In the latter case with4− 5 overlays in the network, Fig. 5
shows that the games fail to converge, and the streaming
bandwidth obtained by each overlay fluctuates over time. We
observed during the experiment that peers in each overlay
bid higher and higher prices at their upstream peers, but
were nevertheless unable to acquire the required streaming
bandwidth. Similar bandwidth deficits can be observed in all
coexisting overlays from Fig. 5.

In practical P2P applications, some streaming overlays
might expect to receive better service quality than others.For
example, live streaming of premium television channels should
enjoy a higher priority and better quality than regular ones.
Since our game strategies can achieve fairness among various
overlays (as observed from Fig. 5 and Fig. 6), we wonder
if it is further possible to introduce a practical prioritization
strategy in our games, such that differentiated service qualities
can be provided to different overlays.

In our previous experiment, we have observed that overlays
fairly share bandwidth for a simple reason: peers in different
overlays are not constrained by a biddingbudget, and they
can all raise bid prices at will to acquire more bandwidth
from their desired upstream peers, which leads to relative
fair bandwidth allocation at the upstream peers. Motivatedby
such insights, we introduce a budget-based strategy to achieve
service differentiation, by offering higher budgets to peers in
higher priority overlays. To introduce such budgets, we only
need to make the following minor modification to the bidding
strategy proposed in Sec. III-B:

When a peerj joins a streaming overlays, it obtains a bid-
ding budgetWs from its bootstrapping server. Such a budget
represents the “funds” peerj can use to acquire bandwidth
in overlays, and its total bidding costs to all upstream peers
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cannot exceed this budget,i.e.,
∑

i:(i,j)∈As
ps

ijx
s
ij ≤ Ws. All

peers in the same overlay receive the same budget, and the
bootstrapping server assigns different levels of budgets to
different overlays based on their priorities. During its price
adjustments in overlays, peer j may only increase its bid
prices if the incurred total bidding cost does not exceedWs.

Evaluation 2.Applying the budget-based bidding strategy,
we perform the previous experiment again and show our new
results in Fig. 7 and Fig. 8. The budgets assigned to peers in
overlay1 to 5 range from low to high.

Comparing Fig. 7 with Fig. 5 in the cases when1 to 3
overlays coexist, we see that overlays can still achieve their
required streaming bandwidth within their budgets. However,
when comparing Fig. 8 to Fig. 6(A), we observe that the
streaming costs are differentiated across overlays,i.e., overlays
with larger budgets are able to achieve lower streaming cost
than those with smaller budgets. This is because the former
can afford to pay higher prices and thus eclipse the latter in
auctions at their commonly desired upstream peers.

A further comparison between Fig. 7 and Fig. 5 (when4 or
5 overlays coexist) shows that, when upload capacities become
insufficient, the overlay with the highest budget, overlay4 or
overlay 5 in respective phases, always achieves the highest
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and most stable streaming rates, while those for overlays with
smaller budgets become less sufficient and less stable.

Summary.We have observed that, no matter if upload
capacities are sufficient or not, our game strategies achieve
fair bandwidth sharing among multiple coexisting overlays.
When overlays are able to achieve their required streaming
bandwidths, they also experience similarly costs, which further
reveal their fair share of lower latency paths. Further, we show
that by introducing budgets to our bidding strategy, we are able
to differentiate service qualities among coexisting overlays.

C. Overlay interaction under peer dynamics

In the following set of experiments, we study how coexisting
streaming overlays evolve with peer arrivals and departures,
with respect to how the allocated bandwidth and actually
achieved streaming rate in each overlay vary in such dynamics.
We investigate both cases that the overlays have or do not have
differentiated budgets.

Evaluation.We simulate a dynamic P2P streaming network,
in which 2 servers concurrently broadcast4 different 60-
minute live streaming sessions, at the streaming rate of300
Kbps,500 Kbps,800 Kbps and1 Mbps, respectively. Starting
from the beginning of the live broadcasts,1000 peers join the
network following a Poisson process. The inter-arrival times
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follow an exponential distribution with an expected lengthof
INTARRIVseconds. Upon arrival, each peer randomly selects
2 broadcast sessions and joins the respective overlays; then
the peer stays in the network for a certain period of time,
following an exponential lifetime distribution with an expected
length of LIFETIME seconds. In this way, we simulate4
dynamically evolving streaming overlays with approximately
the same number of participating peers at any time. Network
coding is implemented on each peer in each overlay, which
codes the blocks in each segment of the media stream over
GF (216). Similar to the previous experiments, each peer
maintains about30 neighbors in each overlay it participates
in, and bids at upstream peers that have innovative coded
blocks to serve it. All other settings of the experiments are
identical to those in previous experiments. We monitor both
the allocated bandwidths from the dynamic auctions and the
actually achieved streaming rates of receiving coded blocks at
existing peers in each dynamic overlay during the60-minute
broadcasts.

Fig. 9 and Fig. 10 show the results achieved when the
budget-based strategy is not applied. SettingINTARRIVand
LIFETIME to different values, we have repeated the exper-
iment, and made the following observations: With expected
inter-arrival time of1 second,1000 peers have all joined the
network in the first10 minutes; peer arrivals last for45 minutes
when INTARRIV is 3 seconds. With an expected lifetime of
10 minutes, most peers have left the network before the end
of streaming; whenLIFETIME is 30 minutes, approximately
half of all the peers remain till the end.

Therefore, the most severe peer dynamics occurs when1000
peers keep joining for45 minutes, but have almost all left
before 60 minutes, i.e., the cases shown in Fig. 9(C) and
Fig. 10(C), which represent the highest level of fluctuations
for both the allocated bandwidth and achieved streaming rate.
A longer peer lifetime brings better overlay stability, which
is illustrated by the smaller rate fluctuation in (B) and (D) of
Fig. 9 and Fig. 10. A careful comparison of the fluctuation
of the allocated bandwidth across different overlays in Fig. 9
reveals slightly larger fluctuations for overlays with larger
streaming rate requirements. This is because with our auction
strategies, different overlays fairly share upload capacities at
common upstream peers, and the larger the required bandwidth
is, the harder it is to achieve.

Comparing Fig. 10 to Fig. 9, we can see that the actually
achieved peer streaming rates in all overlays under all settings
are close to the bandwidths allocated to the respective overlays
in the dynamic auctions. This exhibits that the allocated
bandwidths can be efficiently utilized to deliver useful blocks,
based on the media distribution scheme using network coding.

On the other hand, when overlays with higher rate require-
ment are prioritized with higher budgets, Fig. 11 shows a
different outcome from that in Fig. 9. In Fig. 11, under all four
interval settings, the prioritized high-rate overlays arealways
guaranteed more stable bandwidths, while low-rate overlays
experience more severe bandwidth fluctuations. Similar to the
case without overlay prioritization, we have further observed
that the actually achieved streaming rates in all the overlays are
close to their allocated bandwidths, and thus omit the related

illustrations here.
Summary.We have clearly demonstrated the effectiveness of

our auction strategies under high degrees of peer dynamics,
which guarantee stable streaming bandwidth allocation for
all overlays at all times during such dynamics. We have
also shown that together with network coding based media
distribution, the allocated bandwidth can be maximally utilized
to actually achieve satisfactory streaming rates. Using the
budget-based bidding strategy, better streaming quality can be
further provided for prioritized overlays.

VI. RELATED WORK

There exists little literature that studies interactions and
competitions among multiple coexisting overlays in a same
P2P network. Recent work from Jianget al. [11] and Ker-
alapuraet al. [12] are the most related, focusing on multiple
overlay routing. In Jianget al. [11], interactions among multi-
ple selfish routing overlays are studied with a game theoretic
model, where each overlay splits its traffic onto multiple
paths and seeks to minimize its weighted average delay. In
Keralapuraet al. [12], route oscillations are investigated when
multiple routing overlays inadvertently schedule their own
traffic without knowledge of one another. Comparably, our
work is significantly different, as we consider multiple P2P
streaming overlays featuring many-to-many traffic, instead of
point-to-point traffic in routing overlays.

Mesh-based P2P streaming solutions have been designed
and successfully implemented in practice in recent years [1],
[13], [14], [2], [3]. While multi-overlay streaming is the norm
in these state-of-the-art mesh-based solutions, we are only
aware of two pieces of work that touch upon the topic of
coexisting live streaming overlays [15], [16]. These work
propose to encourage peers in different overlays to help each
other by relaying media belonging to other overlays. While
it is beneficial to improve network resource utilization at a
specific time, there are questions remaining to be answered:
How should each peer carefully allocate its upload capacity
among concurrently requesting peers from different overlays?
If new requests from peers in the same overlay come later,
should the bandwidth allocated to other overlays be deprived?
From a more practical perspective, our work considers the
case that each overlay consists of only receiving peers but
each peer may participate in multiple overlays, and investigates
bandwidth competition among the overlays at their common
upstream peers.

Auction-based approaches have been proposed to allocate
network bandwidth based on the demand and willingness to
pay from competing users [17], [18], [19], [20]. A majority
of such work are based on Progressive Second Price auctions,
in which competitors decide their bids based on their true
valuation. Aiming to solve the congestion problem on a single
link or path, such existing work deals with elastic traffic,
and competitors bid for their bandwidth share to maximize
their utilities. In comparison, we design bandwidth auctions
in a more complicated and practical scenario of constructing
multiple streaming overlay topologies. Demanding an inelastic
streaming rate at a lowest possible cost, each peer bids in
multiple auctions, and adjusts its bid prices and requested
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Fig. 10. Actually achieved streaming rates for4 coexisting overlays: under peer dynamics without budget.
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Fig. 11. Allocated streaming bandwidths for4 coexisting overlays: under peer dynamics with different budgets.

bandwidths judiciously based on the current marginal cost of
streaming from different upstream peers.

In P2P content distribution, game theory has been widely
used to characterize peer selfishness and to provide incentives
for peers to contribute their upload capacities (e.g., [21],
[22], [23], [24]). Different from previous work, incentive
engineering, selfishness and strategyproofness are not parts
of our focus in this paper. Instead, our work utilizes the
distributed and dynamical nature of auction games to design
effective mechanisms for demand-driven dynamic bandwidth
allocation, in which local games achieve globally optimal
topology construction.

In addition, pricing mechanisms [25], [26], [27] are pro-
posed for a bandwidth provider to establish bandwidth prices
to charge users, in order to regulate the behavior of selfish
users and achieve social welfare maximization. Such pricing
schemes are different from our auction games, in the sense
that bandwidth prices are determined solely by the provider,
rather than from bid prices placed by users.

Finally, network coding has been first proposed to achieve
the maximum capacity of a multicast network [7], [8]. Due
to its benefits of enhanced block diversity and bandwidth
efficiency, in recent years, network coding has been applied

to P2P content distribution applications [6], [9] and P2P
streaming [4], [5]. Our focus in this work is not to propose a
new P2P streaming protocol using network coding, but to show
the seamless integration of our bandwidth auction strategies
with the state-of-the-art framework of streaming with network
coding, in achieving maximal bandwidth utilization across
multiple streaming overlays.

VII. C ONCLUDING REMARKS

This paper considers conflict-resolving strategies among
multiple coexisting overlays for streaming in peer-to-peer
networks. Our objective is crystal clear: we wish to devise
practical and completely decentralized strategies to allocate
peer upload capacities and efficiently utilize the allocated
bandwidth, such that (1) the streaming rate requirement canbe
satisfied in each overlay; (2) streaming costs can be globally
minimized; and (3) overlays fairly share available upload
bandwidths in the network. Most importantly, we wish to
achieve global optimality using localized algorithms. We use
dynamic auction games to facilitate our bandwidth allocation,
use game theory in our analysis to characterize the conflict
among coexisting overlays, and discuss the integration of
our bandwidth auctions with network coding based media
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distribution to achieve most efficient utilization of network
bandwidth. Finally, we show that our proposed algorithm
adapts well to the dynamics in P2P networks, the optimally
allocated bandwidths can be fully utilized to deliver useful
blocks at all times, and service can be differentiated across
overlays with different bidding budgets.

APPENDIX A
PROOF OFTHEOREM 1

Proof: Let xs∗
ij ,∀i : (i, j) ∈ As be an optimal solution to the

problemBidding js in (3). Introducing Lagrangian multiplier
λ for the constraint in (4) andν = (νi,∀i : (i, j) ∈ As) for
the constraints in (5), we obtain the KKT conditions for the
problemBidding js as follows (pp. 244, [28]):

∑

i:(i,j)∈As

xs∗
ij ≥ Rs,

λ∗ ≥ 0,

xs∗
ij ≥ 0, ν∗

i ≥ 0,∀i : (i, j) ∈ As,

λ∗(Rs −
∑

i:(i,j)∈As

xs∗
ij ) = 0, (13)

xs∗
ij ν∗

i = 0,∀i : (i, j) ∈ As, (14)

D
′s
ij(x

s∗
ij ) + ps

ij − λ∗ − ν∗
i = 0,

∀i : (i, j) ∈ As. (15)

For xs∗
ij > 0, we haveν∗

i = 0 from (14). Then from (15),

we derive the marginal cost with respect toxs∗
ij ,

dfs
j (x∗)

dxs
ij

=

D
′s
ij(x

s∗
ij ) + ps

ij = λ∗. SinceDs
ij is strictly convex and twice

differentiable, the inverse function ofD
′s
ij , i.e., D

′s−1
ij , exists

and is continuous and one-to-one. Then we have∀i : (i, j) ∈
As)

xs∗
ij =

{
0 if λ∗ < D

′s
ij(0) + ps

ij ,

D
′s−1
ij (λ∗ − ps

ij) if λ∗ ≥ D
′s
ij(0) + ps

ij .
(16)

In deriving the optimal solution which achieves a same
marginal cost valueλ∗ for all the positivexs∗

ij ’s, we always
increase the smallest marginal costD

′s
ij(x

s
ij)+ ps

ij by increas-
ing the correspondingxs

ij . In this way, we are increasing the
marginal costs towards the same value ofλ∗. As λ∗ > 0, we
derive thatxs∗

ij ’s satisfy Rs −
∑

i:(i,j)∈As
xs∗

ij = 0 based on
(13). Therefore, this water-filling process continues until Rs is
used up, i.e.,

∑
i:(i,j)∈As

xs∗
ij = Rs, by which time we obtain

the unique optimal solution defined by (16). ⊓⊔

APPENDIX B
PROOF OFTHEOREM 2

Proof: Define B to be the set of all possible bid profiles
in the entire network,i.e., B ∈ B and B ⊂ ×j,sΓ

s
j . From

the definition ofΓs
j in (7), we knowB is convex andxs

ij ’s
are bounded. In addition, under Assumption 1, all peers in
all overlays can obtain enough streaming bandwidths, and
thus their bid prices to upstream peers will not be increased
infinitely in the respective auctions. Therefore, all prices ps

ij ’s
in a possible bid profile are bounded,i.e., ∃p̄ > 0, ps

ij ∈
[0, p̄],∀(i, j) ∈ As,∀s ∈ S. Altogether, we derive thatB is
a convex compact set.

The action profile for each playerjs — Bs
j = (bs

ij ,∀i :
(i, j) ∈ As) — can also be represented asBs

j = (P s
j ,Xs

j ),
whereP s

j = (ps
ij ,∀i : (i, j) ∈ As) is the vector of bid prices

toward all upstream peers of playerjs, andXs
j = (xs

ij ,∀i :
(i, j) ∈ As) is the vector of requested bandwidths towards all
upstream peers at playerjs.

The price adjustment strategy described in Table I defines
a mapping functionθs

j , from bid profile B in the previous
bidding round, to new prices to bid by playerjs, i.e., P s

j =
θs

j (B).
Given price vectorP s

j , Theorem 1 gives that the water-
filling approach uniquely decides the best requested bandwidth
assignmentXs

j at playerjs. This mapping from price vector
P s

j to requested bandwidth vectorXs
j can be defined as

function Xs
j = ϕs

j(P
s
j ).

Let gs
j (B) = (θs

j (B), ϕs
j(θ

s
j (B)) be the mapping function

from bid profile B in the previous bidding round to a new
action profile at playerjs. Let g(B) = (gs

j (B),∀j ∈ Ns, s ∈
S). Therefore,g(B) is a point-to-point mapping fromB to
B. The Nash equilibrium is a fixed-point of this mapping. We
next show the existence of such a fixed-point.

We first showϕs
j is a continuous mapping. GivenP s

j , Xs
j

is the optimal solution ofBidding js. Therefore,ϕs
j is defined

by (16) in Appendix A. SinceDs
ij is strict convex and twice

differentiable, we knowD
′s
ij is continuous. Thus based on the

water-filling process, we know the optimal marginal costλ∗

is continuous onP s
j . Furthermore, asD

′s−1
ij is continuous

too, from (16), we deriveXs
j is continuous onP s

j , i.e., ϕs
j is

continuous.
We next showθs

j is a continuous mapping fromB to vector
space of bid pricesP s

j at playerjs. Let ps
ij be the bid price

player js places to upstream peeri in the previous bidding
round, andqs

ij be the new bid price after the price adjustment
defined byθs

j . Without loss of generality, we simplify our
proof by showing that a small disturbance of the previous
price ps

ij to p
′s
ij = ps

ij + ǫ, ǫ > 0, ǫ → 0 results in little
disturbance at new priceqs

ij , i.e., letting q
′s
ij denote the new

price corresponding top
′s
ij , we haveq

′s
ij → qs

ij . We divide our
discussions into2 cases, and first give a result to be used in the
discussions: Ifps

ij is increased top
′s
ij and all other bid prices

at playerjs remain unchanged, the corresponding requested
bandwidth to upstream peeri is decreased,i.e., x

′s
ij ≤ xs

ij .
This can be directly obtained from the water-filling process
used to solveBidding js.

We now investigate the two cases:
A) At upstream peeri, there is no bid price from other

players right betweenps
ij and p

′s
ij , i.e., there does not exist

pk
im, such thatps

ij ≤ pk
im ≤ p

′s
ij .

Starting the price adjustment described in Table I fromps
ij

and p
′s
ij respectively, we consider two sub cases: (i) Ifps

ij is
to be reduced asxs

ij ≤ as
ij , we knowp

′s
ij is to be reduced too,

sincex
′s
ij ≤ xs

ij but a
′s
ij ≥ as

ij (due top
′s
ij > ps

ij). Whenp
′s
ij is

reduced, it will soon reachps
ij , and its following adjustments

will be the same as those forps
ij . (ii) Similarly, if ps

ij is
to be increased, it will soon reachp

′s
ij and their following

adjustments will be the same. In both cases, we have for the
new pricesq

′s
ij → qs

ij .
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B) At upstream peeri, there is a bid price from another
player which lies right betweenps

ij and p
′s
ij , i.e., ∃pk

im, such
that ps

ij ≤ pk
im ≤ p

′s
ij .

We again discuss three sub cases: (i) Ifps
ij is to be reduced

due toxs
ij ≤ as

ij , p
′s
ij is to be reduced too, sincex

′s
ij ≤ xs

ij but
a

′s
ij ≥ as

ij (due top
′s
ij ≥ pk

im ≥ ps
ij). During p

′s
ij ’s adjustments,

its value is continuously decreased, passingpk
im and reaching

ps
ij . Then its following adjustments will be the same as those

for ps
ij . (ii) If ps

ij is to be increased due toxs
ij > as

ij andp
′s
ij is

to be reduced asx
′s
ij ≤ a

′s
ij , they will both stop at a same value

nearpk
im. (iii) If both ps

ij and p
′s
ij are to be increased,ps

ij ’s
value will be continuously increased to passpk

im and reach
ps

ij . Then their following adjustments will be the same. In all
cases, the new pricesq

′s
ij → qs

ij .

Therefore, based on the continuity ofθs
j andϕs

j , we derive
that the mappinggs

j (B) = (θs
j (B), ϕs

j(θ
s
j (B)) is continuous.

Thus, g(B) = (gs
j (B),∀j ∈ Ns, s ∈ S) is a continuous

mapping fromB to itself. Based on Brouwer Fixed Point
Theorem, any continuous mapping of a convex compact set
into itself has at least one fixed point,i.e., ∃B∗ = g(B∗) ∈ B.
In addition, the fixed pointB∗ must be a feasible profile, as
otherwise the adjustments of prices and requested bandwidths
do not converge. Therefore, the fixed pointB∗ is a Nash
equilibrium of the extended game. ⊓⊔

APPENDIX C
PROOF OFTHEOREM 3

Proof: We prove by showing that at equilibrium, the KKT
conditions satisfied by the equilibrium bid profileB∗ =
((ps∗

ij , xs∗
ij ),∀(i, j) ∈ As,∀s ∈ S) are the same as KKT

conditions for the global streaming cost minimization problem
in (9).

At equilibrium, given ps∗
ij ’s, the requested bandwidths at

each playerjs, xs∗
ij ,∀i : (i, j) ∈ As, are the optimal solution

to the problemBidding js, and are also the same as allo-
cated bandwidths from respective upstream peers. Therefore,
altogether, we know the bandwidth allocations in the entire
network, xs∗

ij ,∀(i, j) ∈ As,∀s ∈ S, solve the following
optimization problem:

min
∑

s∈S

∑

j∈Ns

∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps∗

ij xs
ij) (17)

subject to∑
i:(i,j)∈As

xs
ij ≥ Rs, ∀j ∈ Ns,∀s ∈ S, (18)

xs
ij ≥ 0, ∀(i, j) ∈ As,∀s ∈ S, (19)

and also satisfy upload capacity constraints at all the upstream
peers:

∑

s∈S

∑

j:(i,j)∈As

xs∗
ij ≤ Ui, ∀i ∈ V ∪ N . (20)

Introducing Lagrangian multiplierλ = (λs
j ,∀j ∈ Ns,∀s ∈

S) for the constraints in (18) andν = (νs
ij ,∀(i, j) ∈ As,∀s ∈

S) for constraints in (19), we obtain the KKT conditions for

the optimization problem in (17) as follows:
∑

s∈S

∑

j:(i,j)∈As

xs∗
ij ≤ Ui,∀i ∈ V ∪ N ,

∑

i:(i,j)∈As

xs∗
ij ≥ Rs,∀j ∈ Ns,∀s ∈ S,

x∗ ≥ 0, λ∗ ≥ 0, ν∗ ≥ 0,

λs∗
j (Rs −

∑

i:(i,j)∈As

xs∗
ij ) = 0,∀j ∈ Ns,∀s ∈ S,

xs∗
ij νs∗

ij = 0,∀(i, j) ∈ As,∀s ∈ S, (21)

D
′s
ij(x

s∗
ij ) + ps∗

ij − λs∗
j − νs∗

ij = 0,

∀(i, j) ∈ As,∀s ∈ S. (22)

For xs∗
ij > 0, we haveνs∗

ij = 0 from (21), andD
′s
ij(x

s∗
ij ) +

ps∗
ij = λs∗

j from (22). SinceDs
ij is strictly convex and twice

differentiable, the inverse function ofD
′s
ij , i.e., D

′s−1
ij , exists.

Then we have∀(i, j) ∈ As,∀s ∈ S

xs∗
ij =

{
0 if λs∗

j < D
′s
ij(0) + ps∗

ij ,

D
′s−1
ij (λs∗

j − ps∗
ij ) if λs∗

j ≥ D
′s
ij(0) + ps∗

ij .
(23)

Similarly, for the global streaming cost minimization prob-
lem in (9), introducing Lagrangian multiplierq = (qi,∀i ∈ V∪
N ) for the constraints in (10),λ = (λs

j ,∀j ∈ Ns,∀s ∈ S) for
the constraint in (11) andν = (νs

ij ,∀(i, j) ∈ As,∀s ∈ S) for
constraints in (12), we obtain the following KKT conditions:

∑

s∈S

∑

j:(i,j)∈As

ys∗
ij ≤ Ui,∀i ∈ V ∪ N ,

∑

i:(i,j)∈As

ys∗
ij ≥ Rs,∀j ∈ Ns,∀s ∈ S,

y∗ ≥ 0, q ≥ 0, λ∗ ≥ 0, ν∗ ≥ 0,

q∗i (
∑

s∈S

∑

j:(i,j)∈As

ys∗
ij − Ui) = 0,∀i ∈ V ∪ N , (24)

λs∗
j (Rs −

∑

i:(i,j)∈As

ys∗
ij ) = 0,∀j ∈ Ns,∀s ∈ S,

ys∗
ij νs∗

ij = 0,∀(i, j) ∈ As,∀s ∈ S,

D
′s
ij(y

s∗
ij ) + q∗i − λs∗

j − νs∗
ij = 0,

∀(i, j) ∈ As,∀s ∈ S. (25)

And similarly, we can obtain∀(i, j) ∈ As,∀s ∈ S

ys∗
ij =

{
0 if λs∗

j < D
′s
ij(0) + q∗i ,

D
′s−1
ij (λs∗

j − q∗i ) if λs∗
j ≥ D

′s
ij(0) + q∗i .

(26)

To show the two sets of KKT conditions are actually the
same, we first demonstrate that at each upstream peeri, the
equilibrium bid prices from all competing players that are
allocated non-zero bandwidths are the same,i.e., ∃t∗i , p

s∗
ij = t∗i

if xs∗
ij > 0, ∀j : (i, j) ∈ As,∀s ∈ S. This can be illustrated as

follows: If a player in auctioni is paying a price higher than
some other player who is also allocated non-zero bandwidth,
the former can always acquire more bandwidth from the later
with a price lower than its current price. Thus at equilibrium,
when no one can unilaterally alter its price, all players must
be paying the same price.

In addition, we know from the price adjustment described
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in Table I that if upstream peeri’s upload capacity is large
enough to satisfy all bandwidth requests, the corresponding
bid prices in auctioni can all be lowered down to0. Therefore,
at equilibrium, ifUi >

∑
s∈S

∑
j:(i,j)∈As

xs∗
ij , we haveps∗

ij =
t∗i = 0,∀j : (i, j) ∈ As,∀s ∈ S. Thus we knowt∗i satisfies

t∗i (
∑

s∈S

∑

j:(i,j)∈As

xs∗
ij − Ui) = 0,∀i ∈ V ∪ N . (27)

From these results and comparing (27)(22) with (24)(25)
respectively, we can derivet∗i = p∗i ,∀i ∈ V ∪ N , and the
two sets of KKT conditions are actually the same. Therefore,
the equilibrium solution in (23) is the same as the optimal
solution to the global streaming cost minimization problemin
(26). Thus Theorem 3 is proven. ⊓⊔
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