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Abstract—To guarantee the streaming quality in live peer- to the practice of over-provisioning a fixed amount of server
to-peer (P2P) streaming channels, it is preferable to provision capacity to satisfy the streaming demand from peers insll it
adequate levels of upload capacities at dedicated streaming channels, counteracting the impact of volatile peer dynami
servers, compensating for peer instability and time-varying peer . . . S
upload bandwidth availability. Most commercial P2P streaming and time-varying peer upload b.andWIdth availability. Neve
systems have resorted to the practice of over-provisioning a fice theless, contrary to common belief, we have observed tieat th
amount of upload capacity on streaming servers. In this paper, deployed capacities on streaming servers are not able o kee
we have performed a detailed analysis on 10 months of run-time yp with the increasing demand from hundreds of channels in
traces from UUSee, a commercial P2P streaming system, andpractice, leading to degraded streaming quality in all cleés)

observed that available server capacities are not able to keepI d te to allocate limited . it
up with the increasing demand by hundreds of channels. We n response, we advocate 1o allocale imited server capacl

propose a novel online server capacity provisioning algorithm t0 €ach of the channels based on their popularity and priorit
that proactively adjusts server capacities available to each of #h in order to maximally utilize dedicated servers, and also to
concurrent channels, such that the supply of server bandwidth dynamically determine the minimum overall amount of server
in each channel dynamically adapts to the forecasted demand, capacity to be deployed in the system

;k(;n?hlentghzcr;;c:fn;rggﬁt; ujmhbeera?gop;ﬁﬁ:s ' itshzijtée;mllggrr?u:\g)r/, While it is certainly a (?hallenge tq Qetermlne the minimum
time, has full ISP awareness to maximally constrain P2P traffic amount of server bandwidth to provision to accommodate the
within ISP boundaries, and can provide differentiated streaming streaming demand of all concurrent channels, the challenge
qualities to different channels by manipulating their priorities.  js more daunting when we further consider the conflict of
To evaluate its effectiveness, our experiments are based on anjntarest petween P2P solution providers and Internet Gervi
implementation of the algorithm which replays real-world traces. Providers (ISPs). P2P applications have significantlyeased

Index Terms—Distributed applications, peer-to-peer streaming, the volume of inter-ISP traffic, which in some cases leads
server bandwidth provisioning, multiple channels to ISP filtering. We seek to design effective provisioning

algorithms on servers with the awareness of ISP boundaries
|. INTRODUCTION to minimize inter-ISP traffic.

Large-scale peer-to-peer (P2P) live streaming has rgcentl Towards these objectives, this paper presdrddion an
been successfully and commercially deployed [1], [2], [8], online server capacity provisioning algorithm to be catrie
in which hundreds of media channels are routinely broaddasbut on a per-ISP basisRation dynamically computes the
to hundreds of thousands of users at any given time. Thenimal amount of server capacity to be provisioned to
essence of P2P streaming is the use of peer upload bandwitich channel inside the ISP, in order to guarantee a desired
to alleviate the load on dedicated streaming servers [5ktMdevel of streaming quality for each channel, depending on
existing research has thus far focused on peer strategiés: popularity and priority. With the analysis of our real-
Should a mesh or tree topology be constructed? What inceverld traces, we have observed that the number of peers and
tives can be provisioned to encourage peer bandwidth eonthieir contributed bandwidth in each channel vary dynarical
bution? How do we cope with peer churn and maintain thever time, and significantly affect the required bandwidth
quality of live streams? We recognize the importance ofdheBom serversRationis designed to activelpredictthe server
open research challenges, as their solutions seek to mikimhandwidth demand in each channel in an ISP with time series
utilize peer upload bandwidth, leading to minimized servdorecasting and dynamic regression techniques, utilizivey
costs. number of active peers, the streaming quality, and the serve

In this paper, however, we shift our focus to the streanrandwidth usage within a limited window of recent histoty. |
ing servers. Such refocusing on servers is motivated by dhen proactively allocates server bandwidth to each cHanne
detailed analysis of 10 months and 800 GB worth of realespecting the predicted demand and priority of channels. T
world traces from hundreds of streaming channels in UUSshow the effectiveness @ation it has been implemented in
[3], a large-scale commercial P2P live streaming system $treaming servers serving a mesh-based P2P streamingisyste
China. As all other commercial live streaming systemg( In a cluster of dual-CPU servers, the system emulates real-
PPLive [2], PPStream [4]), in order to maintain a satisfactoworld P2P streaming by replaying the scenarios captured by
and sustained streaming quality, UUSee has so far resortédldSee traces.



The remainder of this paper is organized as follows. lpased on classification of different types of user connastin
Sec. Il, we motivate our focus on servers by showing oiis network, in order to maximize peer bandwidth contribnti
analysis of 10 months worth of traces from UUSee. In To inspect the run-time behavior of UUSee P2P streaming,
Sec. lll, we present the design &ation In Sec. IV, we we have implemented extensive measurement and reporting
discuss howRation may be deployed with ISP awareness toapabilities within its P2P client application. Each pedterts
serve real-world P2P streaming systems. Sec. V presents awet of its vital statistics, and reports to dedicated tszceers
experimental results evaluatifRationby replaying traces in a every5 minutes via UDP. The statistics include its IP address,
P2P streaming system running in a server cluster. We disctiss channel it is watching, its buffer map, its bufferingdkev
related work and conclude the paper in Sec. VI and Sec. Vis well as a list of all its partners, with their correspoigdin
respectively. IP addresses, TCP/UDP ports, and current sending/regeivin
throughput to/from each of them. Each dedicated streaming
server in UUSee utilizes a similar protocol as deployed gn re
ular peers, is routinely selected to serve the peers, armattsep

Why shall we refocus our attention to dedicated streamiritg related statistics periodically as well. A detailed ctgstion
servers in P2P live streaming systems? Starting SeptembrrUUSee protocol and the measurement methodologies for
2006, we have continuously monitored the performancesstatihe above metrics can be found in our previous work [6], [7].
tics of a real-world commercial P2P streaming platform, During a 10-month period from September 2006 to July
offered by UUSee Inc., a leading P2P streaming soluti@®07, we have collected more than 800 GB worth of traces
provider with legal contractual rights with mainstream it with more than 600 million unique IP addresses, represgntin
providers in China. As other systems such as PPLive, UUS#®me-continuous snapshots of the live channels sustained i
maintains a sizable array of abol50 dedicated streaming UUSee every five minutes in this long period of time. Each
servers, to support its P2P streaming topologies with hredslr snapshot captures the information on more th#, 000
of channels to millions of users, mostly #90 Kbps media concurrent peers in the entire UUSee network.
streams. With80% users in China, UUSee network spans
over 20 ISPs in China and aroungb countries in the world. A. Insufficient “supply” of server bandwidth
UUSee streaming protocol utilizes the “pull-based” design ~ What have we discovered from the traces? The first ob-
mesh P2P topologies, that allows peers to serve other pesgssation we made is related to the insufficient “supply” of
(“partners”) by exchanging media blocks in their playbackerver bandwidth, as more channels are added over time. Such
buffers, which represent a sliding window of the stream. Whensufficiency has gradually affected the streaming quality
a new peer joins a channel in UUSee, the initial set of goth popular and less popular channels.
number of partners (up t&0) is supplied by one of the In order to show bandwidth usage over 10 months and
tracker servers by randomly selecting from all the existingt different times of a day within one figure, we choose to
peers in the channel with available upload bandwidth. Thl#ow all our 5-minute measurements on representative thates
peer establishes TCP connections with these partners, aadh month. One such date, February 17 2007, is intentjonall
buffer availability bitmaps (also called “buffer maps”)ear chosen to coincide with the Chinese New Year event, with
periodically exchanged. The buffer size at each peer in WUSgpical flash crowds due to the broadcast of a celebration
is 500 media blocks, and each block represents 1/3 secondlodw on a number of the channels; April 2007 is skipped
media playback (about0 MB in total). due to lack of traces in the month caused by an upgrade of

To maximally utilize peer upload bandwidth and alleviat¢éhe trace servers. Fig. 1(A) shows the total server bantiwidt
server load, UUSee incorporates a number of algorithms usage onl50 streaming servers. We may observe that an
peer selection. Each peer applies an algorithm to estingteincreasing amount of server bandwidth has been consumed
maximum upload capacity, and continuously estimates its amyer time, but stabilizing starting January 2007. Thisngsi
gregate instantaneous sending throughput to its parttiéts. trend can be explained by the rapidly increasing number of
estimated sending throughput is lower than its upload dgpacchannels deployed during this period, as shown in Fig. 1(B).
for 30 seconds, it will inform one of the tracker servers that iThe interesting phenomenon that such bandwidth usage has
is able to receive new connections. The tracker servers &eegtabilized, even during the Chinese New Year flash crowd, has
list of such peers, and assign them upon requests of partrletsto the conjecture that the total uplink capacity of atvees
from other peers. In addition, the number of consecutivekdo has been reached. The daily variation of server bandwidth
received and cached in the current playback buffer, startinsage coincides with the daily pattern of peer population.
from the current playback time, is used in UUSee protocol to Our conjecture that server capacities have saturated is
represent the current streaming quality of each peer, whicbnfirmed when we investigate the streaming quality in each
is referred to as thdouffering level During the streaming channel. The streaming quality in a channel at each time
process, neighboring peers may also recommend partnersst@valuated as th@ercentage of high-quality peers in the
each other based on their current streaming quality. A pegranne] where a high-quality peer has a buffering level of
may contact a tracker server again to obtain additionalspeenore than80% of the total size of its playback buffer. The
with better qualities, once it has experienced a low buffgri criterion of buffering level i(e., the number of consecutive
level for a sustained period of time. Besides, UUSee hhtcks received and cached in the current playback buffer
implemented a number of NAT/firewall traversal techniquesf a peer), has been extensively used in UUSee system to

Il. MOTIVATION FROM REAL-WORLD TRACES



1000

W
o

N

e
(o)
o
o

WW’“\/"’“MWW WY

Server upload capacity
usage (Gbps)
Total number of channels

10F W
0 0
9/15/0610/15/06 11/15/06 12/15/06 1/15/07 2/17/07 3/15/07 5/19/07 6/15/07 7/15/07 9/06 10/06 11/06 12/06 1/07 2/07 3/07 507 6/07 7/07
Date Date
(A) Server capacity usage over time. (B) Number of channels deployed over time.
R W e 2 1
= ©
g w s
o
1 =205
205 Mo 2
IS €
IS s 0
2o L i
@D 9/15/0610/15/06 11/15/06 12/15/061/15/07 2/17/07 3/15/07 5/19/07 6/15/07 7115/07 n 9/15/0610/15/06 11/15/06 12/15/061/15/07 2/17/07 3/15/07 5/19/07 6/15/07 7/15/07
Date Date
(C)The streaming quality of a popular channel (CCTV1). (D) The streaming quality of a less popular channel (CCTV12).
5
o ,x10 £10000
[0 3 (9]
2 g
o
— 2F 5
S 25000 - 1
31| ] é M M
£ UJJL Wl
3o | L T = R LM
9/15/0610/15/06 11/15/06 12/15/061/15/07 2/17/07 3/15/07 5/19/07 6/15/07 7/15/07 9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3115/07 5/19/07 6/15/07 7115/07
Date Date
(E)The population of a popular channel (CCTV1). (F) The population of a less popular channel (CCTV12).

Fig. 1. The evolution of server bandwidth, channels, anelasting quality from September 2006 to July 2007.

evaluate the current streaming quality of a peer; and8t%¢ upload bandwidth at the peers.
benchmark has empirically been shown to be effective inIn addition, one may doubt if the downgrade of streaming
reflecting the playback continuity of a peer in the followingyuality during flash crowd scenarios could have been caused
few minutes, based on an internal performance monitority bandwidth bottlenecks within the Internet backbone at
system in UUSee. Accordingly, we also use the peer bufferitigose times. Our previous measurement studies in [7] have
level as our streaming quality criteridrRepresentative resultsrevealed that there does not exist significant differenteden
with a popular channeCCTV1and a less popular channelbandwidth availabilities on P2P links, that are decided by
CCTV12are shown in Fig. 1(C) and (D), respectively, witHnternet backbone bandwidths, at regular times and during
their population measurements plotted in Fig. 1(E) and (R)ash crowd scenarios, and have confirmed the common belief
respectively. The streaming quality of both channels h&s bethat bandwidth constraints in P2P streaming mainly lie at th
decreasing over time, as server capacities are saturateithgD last-mile upload links at the peers and servers in most cases
the Chinese New Year flash crowd, the streaming quality of All the above observations have led to the conclusion that
CCTV1 degraded significantly, due to the lack of bandwidtberver capacities have increasingly become a bottleneck in
to serve a flash crowd of users in the channel, as illustratedréal-world P2P live streaming solutions. When the server
Fig. 1(E). capacity usage by different channels is not regulated and is
Would it be possible that the lack of peer bandwidthargely random (as in the current UUSee protocol), the tesul
contribution has led to the overwhelming demand of thare less than satisfactory: Taking a typical streamingityual
servers? As we noted, the protocol in UUSee uses optimiziresult of 0.5 for both CCTV1 and CCTV12, there are many
algorithms to maximize peer upload bandwidth utilizatiormore peers experiencing a low buffering level in the popular
which represents one of the state-of-the-art peer stegdgi channel than in the less popular channel, considering tiye la
P2P streaming. The following back-of-the-envelope caleuldifference of their populations. In practice, we may wish to
tion with data from the traces may be convincing: At onprovide a good streaming experience to as many peers as
time on October 15, 2006, abol®0, 000 peers in the entire possible in the entire system, and therefore advocatedoza#
network have each achieved a streaming rate ard0d&bps, the limited server capacities to each of the channels based
by consuming a bandwidth level &f Gbps from the servers. on their popularity and priority, in order to maximally utié
The upload bandwidth contributed by peers can be comput#edicated servers.
as 100,000 x 400 — 2,000,000 = 38,000,000 Kbps, which
is 380 Kbps per peer on average. This represents quite Bn Increasing volume of inter-ISP traffic
achievement, considering that most of the UUSee clientéle a The current UUSee protocol is not aware of ISPs. We now
ADSL users in China with a maximum &f12 Kbps upload investigate the volume of inter-ISP traffic during the 10tho
capacity, and that many random factors influence the aveilaBeriod, computed as the throughput sum of all links acroBs IS
boundaries at each time. For each IP address in the traces, we
1I\!everthe'less, we have gvaluated a number qf other possii@lanihy derive the AS (Autonomous System) it belongs to using the
quality metrics, such as the instantaneous streaming dodmaie of a peer, . . .
Whois service provided by Cymru [8], and then map each

and still identified the one we use as the most effective in atifig the : - » )
streaming quality of peers/channels. China AS number to its affiliated ISP by making use of the
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official mapping data provided by CERNET, China f9fig. 2 Streaming quality O_SM
reveals that both the inter-ISP peer-to-peer and servpe¢o 0 Ww
traffic have been increasing, quadrupled over the 10-month 2n3 214 2115 D2a/t1e6 2n7 218 219
period, due to the increased number of channels and peers. A)

In China, the two nation-wide ISP$letcomand Telecom @
charge each other based on the difference of inter-ISPcdraffi 1 8582 0o @36 © o

volume in both directions, and regional ISPs are chargeddas Streaming quality 0,58
on traffic to and from the nation-wide ISPs. Both charging 05 04 08 1
mechanisms have made it important for ISPs to limit inter- Server upload capacity usage (Gbps)
ISP traffic. Considering the large and persistent bandwidth 1 @ [ 2/13]
consumption for live streaming, we believe that P2P stragmi Streaming quality 0.5 o o
. . . - . - EER (1@7’%&)00
systems should be designed to minimize inter-ISP traffic (to 0
. . . . . . [0} 10000 20000 30000 40000
avoid the fate of traffic filtering by ISPs), which remains one Number of peers
of our objectives in this paper. 1 ©)
) ) . Streaming quality 0.5
C. What is the required server bandwidth for each channel? P i,
. . (0] 100000 200000 300000
To determine the amount of server bandwidth needed to Number of peers
achieve a specific level of streaming quality in each channel (B)

we wish to explore the relation among server upload banelg. 3. Relationship among server upload bandwidth, numbgeefs, and
width, the number of peers, and the achieved streamingtgualitreaming quality in channel CCTV1.

n eagh channel. Fig. 3(A) illustrates the_evoluuon of theee further justifies the necessity of deploying server capaicit
guantities for channel CCTV1 over a period of one week, frot e system

February 13 to 19, 2007. We can observe a weak positive .

. . .All of our observations thus far point to the challenging
correlation between the server bandwidth and the streamqug[ure of our problem at hand: How much server bandwidth
quality, and a weak negative correlation between the pe )

. . . §Hould we allocate in each channel in each ISP to assist the
population and the streaming quality.

: . . _peers?
To further explore any evident correlation on a shorter tine

scale, we plot in Fig. 3(B)-1 the correlation between serve‘
upload bandwidth usage and the streaming quality on Fepruar
13 and that between the number of peers and the streamin§ur proposal isRation an online server capacity provi-
quality in Fig. 3(B)-2. We can observe an evident positivéioning algorithm to be carried out on a per-ISP basis, that
relation between the two quantities in the former figure anddynamically assigns a minimal amount of server capacity to
negative correlation in the latter. We have extensivelyi@en €ach channel to achieve a desired level of streaming quality
such correlation in many channels over different dates and

have observed that the correlation varies from one time 20 Problem formulation

another even in the same channel, which can be attributedys consider a P2P live streaming system with multiple
to the time-varying aggregate peer upload bandwidth in t@nnels (such as UUSee). We assume that the tracker server
channel over time. For example, Fig. 3(B)-3 plots the refati i, y,e system is aware of ISPs: when it supplies any requgstin
between the number of peers and the_ streaming quality yg@erwith information of new partners, it first assigns péers
February 17, which approximates a reciprocal curve. dedicated servers) with available upload bandwidth from th

Another interesting observation we have made here is that o |sp. Only when no such peers or servers exist, will the
contrary to common belief, we have observed a decreasifg.yor server assign peers from other ISPs.

trend of streaming quality in a streaming channel_ when theThe focus ofRationis the dynamic provisioning of server
number of peers increases, based on our extensive study. @l ity in each ISP,carried out by a designated server in
many streaming channels over many time intervals. We ®ligy,o |sp |n the ISP that we consider, there are a totalfof

the reason lies in that many peers cannot contribute Up dgncrrent channels to be deployed, represented as @ set
the level of their required streaming rate (abd0d Kbps) There arenc peers in channet, Ve € C. Let s¢ denote the
in such a practical P2P system over today’s Internet, which
3We note thatRation can be extended to cases that it is not feasible to
2The majority of UUSee users are in China and we focus on traeafa deploy servers in each ISP, by having servers in one ISP meige to serve
such users in producing Fig 2. peers from a number of nearby ISPs.

Il. RATION: ONLINE SERVER CAPACITY PROVISIONING
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NOTATION IN Ration 58
[ Symbol[ Definition 2% 0s e
U the total amount of server capacity £3 , o o 20 %
= Q lag k
C the set of channels 3= 1
M the number of channels i@ 1599 I3 I e
Fe streaming quality function of channel “° S5 ST B S 5T BE 5 »
5° server upload bandwidth assigned to channel Date 0 0 agk X %
c - ; (A) ®
q Str_e"’?m'”g quality of channed Fig. 4. ARIMA model identification for channel popularity &3 of CCTV1
p° priority level for channek in Fig. 3(A)-1.
¢ the number of peers in channel . .
T_lc - & : the optimal values of{ |, Vc € C are: (1) the uncertainty of
n the estimated number of peers in channel . . .
= — - the channel popularity?, ,, i.e., the number of peers in each
0 coefficient of the random error term in the : . ) .
channel in the future, and (2) the dynamic relationshjp,
ARIMA model for channele c . :
. SXDONENt ofs in Streaming qualitv funciion amongg®, s¢, andn® of each channet at timet + 1. In what
@ b . ng quaity . follows, we present our solutions to both challenges.
5 exponent ofn¢ in streaming quality function
~¢ weight parameter in streaming quality function , o .
G the objective function irProvision(t+1) B. Active prediction of channel popularity
B¢ the maximal server capacity required for chan-  We first estimate the number of active peers in each channel
nel ¢ to achieveg® = 1 c at the future timef + 1, i.e, nf,_,,Ve € C. Existing work

has been modeling the evolution of the number of peers in
server upload bandwidth to be assigned to channahd¢® P2P streaming systems based on Poisson arrivals and Pareto
denote the streaming quality of chanmei.e., the percentage life time distributions €.g, [10]). We argue that these models

of high-quality peers in the channel that have a bufferimglle represent simplifications of real-world P2P live streaming
of more than80% of the size of its playback buffer. Léf be systems, where peer dynamics are actually affected by many
the total amount of server capacity to be deployed in the ISBndom factors. To dynamically and accurately predict the
We assume a priority levgl® for each channet, that can number of peers in a channel, we employ time series forecast-
be assigned different values by the P2P streaming solutipig techniques. We treat the number of peers in each channel

provider to achieve service differentiation across thenaets. i.e, nf,t =1,2,..., as an unknown random process evolving
We list important notations in this paper in Table | for easever time, and use the recent historical values to foretest t
of reference. most likely values of the process in the future.

At each timet, Ration proactivelycomputes the amount As the time series of channel popularity is generally non-
of server capacityf,; to be allocated to each channefor stationary e, its values do not vary around a fixed mean),
time ¢ + 1, that achieves optimal utilization of the limitedwe utilize theautoregressive integrated moving averagedel,
overall server capacity across all the channels, basedein tARIMA (p, d, ¢), which is a standard linear predictor to tackle
priority and popularity (as defined by the number of peers imon-stationary time series with high accuracy [11]. With

the channel) at time + 1. Such an objective can be formallyARIMA (p, d, q), a time seriesz;,t = 1,2,. .., is differenced
represented by the optimization problerovision(t+1l) as d times to derive a stationary series;,t = 1,2,..., and
follows (V¢ = 1,2,...), in which astreaming quality function each value ofw; can be expressed as the linear weighted
Ff,, is included to represent the relationship amayig s© sum of p previous values in the seriegy_,...,w¢_,, and
andn¢ at timet + 1: g previous random errorsy;_1,...,a;—q. The employment
Provision(t+1): of an ARIMA(p, d, q) model involves two steps: (1) model
maprcnfﬂqu (1) Iidentification, i.e, the decision of model parameters d,
weC ¢, and (2) model estimation,e., the estimation ofp + ¢
: coefficients in the linear weighted summation.
subject to eecSiy1 <UL In model identification, to determine the degree of dif-
a5 = Ff(sfpq,nf,,), Veel, (2) ferencing,d, a standard technique is to difference the time
0<qf, <1s%,>0 VeeC. series as many times as is negded to produce_statlon:?\ry time
series. We have therefore derivéd= 2 for our time series
Weighting the streaming qualif, ; of each channelwith  n¢ ¢t = 1,2, ..., based on the observations that the 2nd-order

its priority p°, the objective function in (1) reflects our wish todifference of the original time series for all the channals i
differentiate channel qualities based on their prioritidéth largely stationary. For example, Fig. 4(A) shows the 2ndieor
channel popularitynf, ; in the weights, we aim to provide difference of the channel popularity time series of CCTV1,
better streaming qualities for channels with more peersinjo as given in Fig. 3(A)-1, which is stationary with the mean
that n°¢¢ represents the number of high-quality peers iof zero. To identify the values op and ¢, the standard
channele, in this way, we guarantee that, overall, more peetschnique is to study the general appearance of the estimate
in the network can achieve satisfying streaming qualities. autocorrelation and partial autocorrelation functions tioé
The challenges in solvinBrovision(t+1) at timet to derive differenced time series ([11], pp. 187). For example, F{@)4



plots the autocorrelatiom, and partial autocorrelationy, ¢° =~°(s%)" (n°)?", (5)
function values of the differenced channel popularity esin
Fig. 4(A) up to lagk = 30. We observe that only; is non-
zero and&kk tails off, which identifiesp = 0 andq = 1 ([11],
pp. 186). As we have generally made similar observatio . . ; . . .
regarding channel popularity series for other channels, we log(¢®) = log(v°) + a®log(s%) + 5% log(n°).
derive an ARIMA(0,2,1) model to use in our prediction in | Q¢ = log(q®), S¢ = log(s?), N¢ = log(n°), I¢ =
each streaming channel.

Having identified an ARIMAO,2,1) model, the channel

where~© > 0 is a weight parameter. Such a function model
is advantageousn that it can be transformed into a multiple
Iqgear regression problem, by taking logarithm at both side

log(~¢). We derive the following multiple linear regression

. o ; roblem
popularity prediction in channef at timet + 1, n¢,; can be P Q° =T° + acS° + B°N° + ¢, (6)
expressed as follows:
—c - 3 . . . C (& c g H
RSy =2 —nf | +ab,, — 0%, ©) where S¢ and N¢ are regressorgy° is the response variable,

ande¢© is the error termI'¢, o, and 3¢ are regression param-
where¢¢ is the coefficient for the random error temi and eters, which can be estimated with least squares algorithms
can be estimated with a least squares algorithm. When wqp order to accurately capture the relationship among the
use (3) for prediction in practice, the random error at thﬁjantities over time, we dynamically re-learn the regessi
future timet + 1, i.e, af,,, can be treated as zero, and thgyodel in (6) for each channel in the following manner.
random error at time can be approximated by; = nf — 1 To start, the designated server trains the regression niodel
[11]. Therefore, the prediction function is simplified toeth channelc with collected channel popularity statistics, server
following. We note that the derived model is desirably siepl handwidth usage and channel streaming quality during the
with only one coefficient” to be estimated: most recentV, time steps, and derives the values of regression
nyy1 = 2ng —ng_y — 0°(ny — ng). (4) parameters. At each following time, it uses the model
a9 estimate the streaming quality based on the used server
of the popularity of channel: over time, we propose to bandwidth and. the coIIepted number of peers in thg channel
carry out the forecasting in a dynamic fashion: To start, t t, and examines the fitness of the current regression model

ARIMA (0, 2, 1) model for channet is trained with its channel Y comparing Fhe estimated value with the collected gctual
popularity statistics in the most recel time steps, and the streaming quality. If_ the actual value exceeds the conf_lelenc
value of the coefficienf® is derived. Then at each subsequeﬁ?terv""I of the prefjlcted valu_e fafy _OUt of _T2 consecutve
time, 7¢, , is predicted using (4), and the confidence interv jmes, the regression model is retrained with the most tecen
of the predicted value (at a certain confidence leeey, Nstorical data. _ _
95%) is computed. When time + 1 comes, the actual In summary, we emphaS|ze t.hat f[he goal for the modeling
number of peersp¢, ,, is collected and tested against th@f the streaming quality function is to accurately capture
confidence bounds. If the real value lies out of the confident#e relationship among the streaming quality, server dgpac
interval and such prediction errors have occurfedut of 7, Usage, and the number of peers in a channel at each time.
consecutive times, the forecasting model is retrained,taad While one may consider using peer upload bandwidths as
above process repeats. We note that the valueg aind T variables, we choose to employ .the number Qf peers instead
represent a tradeoff between the accuracy of the model aM@ose values can be much easier collected in practical sys-
the computational overhead incurred. The empirical vabfes8ms, and to represent the influence of the supply/demand
T, = 8 and T, = 10 work well in our experiments to be of peer bandwidths on the streaming quality using both the

To dynamically refine the model for an accurate predicti

presented in Sec. V. number of peers:® and the dynamically learned parameters
~¢ and ¢ in (5). We further note that the signs of exponents
C. Dynamic |earning Of the Streaming qua"ty function af and 5C in (5) reﬂect pOSitive or negative Correlations

Next, we dynamically derive the relationship among streantf—ewveen the streaming quality and its two deciding vartable

ing quality, server bandwidth usage, and the number of peerz?g pectively. Intuitively, we should always hafle< of <1,

in each channet, denoted as the streaming quality functiorz;\fzre Cs;re;::rir:mgiqs quril\',?;i;:é);maggt itzeir;vorrs\?er\:]vgﬁp ST;SJE
F<in (2), with a statistical regression approach. pacity P ' P

From the trace study in Sec II-C, we have obsergedx down with more and more server capacity provided, until it
(Sc)ac in each specific channe) wher,ea“ is the exponent of finally reaches the upper bound bf On the other hand, the
5, €., ¢° o (s°)°* in Fig. 3(B)-1.4 We also observeg® o sign of 3¢ could vary over time, depending on the relationship
(n,c)fé“’\?vhereﬂc is the ex.ponent .ohc e.g, ¢° o (n°)~1 in between the demand for streaming bandwidth at peers and

Fig. 3(B)-3. As we have made similar relationship obseorati the supply of peer upload bandwidth at different times: on

from a broad trace analysis of different channels over difie one hand,_ th? streaming quality can be Impr oved with more
times, we model the streaming quality function as high-contribution peerse(g, Ethernet peefs) in the Char?”.e'
' (the case ofg¢ > 0); on the other hand, if more peers join
4A more accurate model for the relation in Fig. 3(B)-1 (derivesing the channel with an average upload bandwidth lower than the
0 H 7 igC  — c\0.37 . . . -
our algorithm that follows in the section) ig® = 1.15(s°)™"". The required streaming rate, a downgrade of the streamingtguali
goodness of fit tests applied over the converted linear ssgne model, Id h ¢ The diff oke
log ¢¢ = log 1.15+0.37 log s, validated the significance of the coefficientsWOUld OCCUr (the case qﬁ < 0) e Ifferent ce}ses .
1.15 and0.37. and 3¢ are to be further investigated in our experiments using



. TABLE I
the traces in Sec. V-A2. INCREMENTAL WATER-FILLING APPROACH

) ] ) 1. Initialize
D. Optimal allocation of server capacity 5 «— s, Ve e C.
c c/, ¢ ey — Lo
Based on the predicted channel popularity and the most2 gm — (¥ (nix)™) l‘* v\?CGC- .
recently derived streaming quality function for each cr@nn | = SS{E&E CUUieg Surscus of server capacity
we are now ready to proactively assign the optimal amount ¢y, 5 . c ¢ ceen

of server capacity to each channel for tithe 1, by solving if s¢> Bf 4
problemProvision(t+1) in (1). Replacingg® with its function surplus= surplus+ (s® — Bf,1)
model in (5), we transform the problem in (1) into: %”]9 if
- .. end for
Provision(t+1)" G . 3. Allocate surplus to channels
max (7) Compute(4¢)~! = pwca(f:gifjwﬁq Ve eC.
. - t+1
subject to ZCGC siv1 < U, 8 while surplus> 0 and not alls® has reached;, ;, Vc € C
s < B, VYeed, (9) ) fi|]13dcothe channet, with the smallest value af$<)~" and
50 < B,
$it1 2 0, Veed, (10) 50« 5% 4+ §, surpluse— surplus— 6.
dG \—1
where the objective function enL(ij\?v?]tillee( asea) -
_ : _ 148° e
G = XcecPMit1din = Z:CEC P () (s50) 4. Adjust channel capacity assignment towards the same
and Bf,; = (y¢(n§,1)? )~ =, denoting the maximal server | marginal utility
capacity requirement for channeht timet + 1, that achieves if not all s° has reached; ,, Ve € C
gy =1 find channelcmin with the current smallest value gf
. dG

-1 c c
. . L (gee)” ands® < Biy,.
The optimal server bandwidth provisioning for each chan find channel cma. With the current largest value of

nel, si1,,Ve € C, can be obtained with a water-filling | (dg)-1

c

approach. The implication of the approach is to maximally " while | (fdE )=t — (4 )=l ||> ¢

dsCmin dsCmax

allocate the server capacity, at the total amount/ofto the sfmin «— gfmin 4 § gomax  ghmax — g,

channels with the current largest marginal utility, as categ update(§Z)~" for channelscmin and Cmax.
with dc}cc; , as long as the upper bound ef,, indicated find channekyin with the current smallestyz) ™~ and
. St+1 . . G SC < Bg—‘—l'

in (9) has not been reached. The marginal utll@%, find channele., with the current largestag )"

represents how much the streaming quality in a chaamain end while
be enhanced by allocating one unit more server capacitygo th _ endif
channel, which is decided by the priority, the number of pger| > Si+1 — s Ve €C.
and the server capacity already allocated into the channel.
In Ration the server capacity assignment is periodically
carried out to adapt to the changing demand in each of th@rver capacity, that occurs when not all the server capacit
channels over time. To minimize the computation overheadgs been used with respect to the current allocatin,
we propose aincremental water-filling approaghhat adjusts U — >_.c¢ s© > 0, or the allocated capacity of some channel
server capacity shares among the channels from their previe €xceeds its maximal server capacity requirement for time
values, instead of a complete re-computation from the vefyt 1. i.e. s© > Bi, (e.g, the case that the water level
beginning. goes above the maximal bin height for binin Fig. 5(A).)
The incremental water-filling approach is given in Table IIf S0, the overall surplus is computed (Step 2 in Table )
To better illustrate the idea ofvater filling, we utilize the and allocated to the channels whose maximal server capacity
reciprocal of marginal utility-4—, i.e, (-9¢-)-1, in our requirement has not been reached, starting from the channel

. oY ds§, ds? 1 . . . G dG
algorithm description, and maximally assign server capaciw'th the current maximum marginal utilitgZ, i.e. lowest

to the channels with the current smallest valug( Ech )1, water level (Step 3 in Table Il). For the example in Fig. 5, the
“t4+1

equivalentl surplus portion of the water in bith in (A) is reallocated to
q Y- . - . g)in 2 and bin4, with the results shown in (B). After all the
We explain the incremental water-filling approach with a 5- . o

surplus has been allocated, the server capacity assigriment

channel example in Fig. 5. In this figure, each channel iseocepqc : .
; o ev(1—ac) - further adjusted among the channels towards a same marginal
sented by one bin. The volume of water in birs (s¢) ,

the width of binc is w. = p°y°a®(ng,,)+5), and thus tﬁlit);é\:\gt:tr I:n\gzll)légi/ :Te]zsrea_ltedly igl_entifying the chaatnvith _
e\(1—a®) ginal utility and the channel with
the water level of the bin represent§<)~! = &0 ——  ho cumrent largest marginal utility, and moving bandwidth
for channelc. As 0 < a“ < 1, each bin has a maximalfrom the former to the latteii.e, the water in the bin with
height, %, which is represented by the dashed linthe highest water level (largest value 0f<)~!) is flooded

in each bin. The incremental water-filling approach staits w into the bin that has the lowest water level (smallest value

the optimal server capacity allocation at the current time of (gf’;)*l) and has not reached its maximal bin height yet

ie, s¢ = s¢*,Ve € C (Step 1 in Table 1l). It first computes (Step 4 in Table II). This process repeats until all channels
whether there exists any surplus of the overall provisionddve reached the same marginal utility or have reached their
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Fig. 5. An illustration of the incremental water-filling ajmaich with5 channe

Is.

TABLE Il

respective maximum server bandwidth requirement. For therarion: THE ONLINE SERVER CAPACITY PROVISIONING ALGORITHM

example in Fig. 5(B), the water from bi® and 5 are filled
into bin 2 and 4, until bin 4 reaches its maximal height and
bins 2, 3, and5 achieve the same water level, as shown if
Fig. 5(C).
Such an incremental water-filling approach derives the-opt
mal server capacity provisioning for all channels at titrel,
as established by the following theorem:
Theorem 1. Given the channel popularity prediction
ng, 1, Ve € C, and the most recent streaming quality function
a1 = 7°(s§11)% (n§1)%", Ve € C, the incremental water-
filling approach obtains an optimal server capacity prowisi
ing across all the channels for time+ 1, i.e, s{i,,Vc € C,
which solves the optimization problemovision(t+1) in (1).
We postpone the proof of the theorem to Appendix A.

E. Ration: the complete algorithm

Our complete algorithm is summarized in Table Ill, which
is periodically carried out on a designated server in eaéh IS
The only peer participation required is to have each peer
the ISP send periodic heartbeat messages to the server, e
of which includes its current buffering level.

We note that in practice, the allocation interval is detewexi

At time ¢, the designated server in each ISP

' 1. Peer statistics collection
Collect the number of active peers in each channglyc €
i C, with peer heartbeat messages.
Collect per-peer buffering level statistics from the heartb
messages, and derive the streaming quality for each cha
qi,Ve e C.

2. Channel popularity prediction for each channet C

Test if ny is within the confidence interval aif, the value
predicted at time — 1.

If n¢ lies out of the confidence interval faF; out of Tb
consecutive times, retrain the ARIM®, 2, 1) model for channel
¢ with the most recentV; peer number statistics using lea
squares algorithm.

Predict the channel popularity at time-1 by 7§, = 2n§ —
ni_;—0°(nf—ng), wheref® is the parameter in ARIMA(0,2,1)
— Channel popularity predictions for all channels derived.

3. Learning streaming quality function for each channel C
n Estimate the streaming quality for tintewjth thg current
. ffeaming quality function modedy = ~°(s{)* (ng)"".

Test if the actualyy is within the confidence interval aff.
If ¢f lies outside of the confidence interval f6Y out of T

consecutive times, retrain the regression model in Eqg. (6)

eat
nnel,

vith

statistics in the most recerl¥, times, using the least squarg
pralgorithm.
— Current streaming quality functions for all channels deriv

by the P2P streaming solution provider based on neegl, 2S

every 30 minutes, and peer heartbeat intervals can be shortg

e.g, every5 minutes.
We further remark on the computational complexity of the

algorithm in Table Ill. The main computation for steps 2 and

3 lies in the training of ARIMA or the regression model,

with least squares algorithms @(N?3) where N is the size

of the training sample set. As both steps are carried out

for each of theM channels, their complexity are at mostinknown demand for server capacity in each IRRfionis

O(MN,?) andO(M N>*), respectively. We generally need ncable to fully utilize the currently provisioned server ceipg

more thar30 — 50 samples to train an ARIMA), 2, 1) model, U, and meanwhile provide excellent guidelines for the aejust

i.e, N; < 50, and even fewer to derive the regression modsient ofU, based on different relationships between the supply

[11], [12] (thus only a small amount of historical data needand demand for server capacity.

to be maintained at the server for the executionRattion.

Further considering that the training is only carried ouewh A. Service differentiation across channels in tight supply

necessaryie. when the accuracy of the models has fallen), wéemand relations

conclude that the two steps incur low computational ovethea |, 1ost typical scenarios, the system is operating in a

in reality. At step 4, we have designed the incremental watep,, e with tight supply-demand relatiori., the total server
filing approach, which only involves local adjustments fOpah4city can barely meet the demand from all channels to
channels that are affected. In summary, the algorithm el ,cpieye the best streaming qualities. In this c&stionguar-
low computational overhead, and can be carried out in @eeq the limited server capacity is most efficiently zei

completely online fashion to adapt to the dynamics of P2ft osq the channels, respecting their demand and priority.

systems. With its water-filling approach, the preference in capacity
assignment is based on the marginal utility of each channel,
A& _ penede”  as determined by the priority and popularity

(2]

2 4. Proactive server capacity provisioning for all the channel
|  Adjust server capacity assignment among all the chan
with the incremental water-filling approach in Table II.
— Optimal server capacity provisioning; ;, Ve € C, derived.

hels

IV. PRACTICAL IMPLICATIONS OF Ration 46 _ d
SC SC!

We now discuss the practical applicationRdtionin real- of the channel, and the marginal improvement of its stregmin
world P2P live streaming systems. In practical systems witjuality upon a unit increase of server capacity. Given the




limited server capacity deployed in the ISP, the streamimgsources. The extra amount to add can be computed with the
solution provider can differentiate the streaming quabfy current streaming quality function derived for the resjwect
the channels by manipulating the priority levels assigred thannels, according to the targeted streaming quality.

the channels. The following theorem states the proportiona If the system is operating at the over-provisioning mode
service differentiation across channels providedRation in an ISP, i.e, the total deployed server capacity exceeds
Theorem 2. The optimal server capacity provisioning inthe overall demand from all channels to achieve their best
Rationin (1) provides the following streaming quality differ-streaming quality,Ration allocates the necessary amount of
entiation between any two channelsand ¢, which do not server capacity needed for each chann@ achieve its best

achieve the best streaming quality bin the allocation: streaming qualitygf,, = 1. This is guaranteed by (9) in
o\ lzac el ey eotse Provision(t+1)’, as the server capacity provisioned to each
(i) = _ plat(y9)a (nip) = channel may not exceed the amouBf,,, that achieves

oC IR

— 1—
(qf41) =
Ve,c € C wheregy,, <1 andgy,, < 1.

péaé(yé)ﬁ(nfﬂ)% qf,1 = 1. When the P2P streaming solution provider discovers

(11) that the system is always operating at the over-provisgnin
mode, they may reduce their server capacity deployment in

We postpone the proof to Appendix B. Priority levels ofhe ISP to the necessary overall amount.

different channels can be set according to Eq. (11) to aehiev

desired relative streaming quality levels across the oblann

More specifically, ifa® ~ o ~ o (we have observed similar

ac values for many different channels in our trace studies), With Ration the P2P streaming solution provider can dy-

C. Channel deployment in each ISP

we have the following approximation: namically make decisions on channel deployment in each ISP,
. ) e when it is not possible or necessary to deploy every one of
a  (p9) T (y9)T=a (nfy ) T2 the hundreds or thousands of channels in each ISP. When a

@y (pa)ﬁ(vé)ﬁ(ng )%{' channel is not allocated any server capacity due to very low
s popularity or priority during a period of time, the channsl i

In this case, if the streaming solution provider wishes tqot to be deployed in the ISP during this time.

achieve a better streaming quality in channehan that in

channelg, i.e, ¢f., > ¢f.,, they may set the priorities for N .

the channelsp® and p®, to satisfy the following conditions: D. Server capacity implementation

pc Nt (an)‘*t"L Finally, we note that the server capacity provisioning in
> (Ge)e ; EEza A similar priority assignment method gach ISP can be implemented in practice with a number

can be applied to determine the priority levels of multiplef streaming servers deployed, with the number decided by
channels in the system. the total capacity to be provisioned and the upload capacity
of each server. Inside each ISP, the servers can be further
rieployed in different geographical areas, and the derived
server capacity provisioning for each channel can be dis-
tributed among several servers as well, in order to achieve
load balancing and streaming delay minimization.

B. Total server capacity adjustment in all supply-demal
relations

Rationis not only useful in optimal utilization of deployed
server capacity; the channel popularity prediction aneastr-
ing function learning modules iRation can further be used
to determine the minimum overall amount of server capacity’- EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY
to be deployed in each ISP, guaranteeing desired levels ofur evaluation ofRationis based on its implementation in
streaming qualities in all the channels. a multi-ISP mesh-based P2P streaming system, which replays

If the P2P streaming system is operating at the tight supplgal-world streaming scenarios captured by the traces.
demand mode in an ISP and if the streaming solution providerThe P2P streaming system is implemented in C++ over
wishes to boost the streaming quality of all the channels tcaaP2P emulation platform on a high-performance cluster of
best value around, they may compute how much more serves0 Dell 1425SC and Sun v20z dual-CPU servers, deployed
capacity to be added, by comparing the current provisionimy the networking research laboratory at the University of
with the overall required server capacity to achigye, = Toronto [13]. On this platform, we are able to emulate
1,Ve € C. The latter amount i$ _ . Bf,, WhereBtJrl is hundreds of concurrent peers on each server, and emulate all
the maximum server capacity needed for chamred in (9) in  network parameters, such as node capacities, link bandwidt
Provision(t+1)’, derived using the streaming quality functiorbottlenecks, messaging delays, etc. Actual media streaens a
in (5) by settinggy, ; = 1. delivered over TCP connections among the peers, and control

Similarly, if the system is operating with extremely tighimessages are sent by UDP. The platform supports multiple
supply-demand relation®,g, the flash crowd scenario, mostevent-driven asynchronous timeout mechanisms with @iffer
server capacity is assigned to one or few channels that sireeout periods, and peer joins and departures are emulated
involved in the flash crowd, and most of the other channels arith events scheduled at their respective times.
starving with no or very little server bandwidth. The chadnne The P2P streaming protocol we implemented includes both
popularity prediction inRation can be used to detect such dhe standard pull protocol and the unique algorithms engaloy
flash crowd, and to trigger the deployment of backup servey UUSee, as introduced in Sec. Il. Without loss of genegalit
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Fig. 6. Prediction of the number of peers with ARIN® 2, 1). Fig. 7. Dynamic learning of the streaming quality function @CTV1.

we deploy one server for each ISP, implementing both t§&CTV4 also captured the flash crowd scenario on February 17,
tracker server and streaming server functidRationis also when the Chinese New Year celebration show was broadcast
implemented on each of the servers, wih0 lines of C++ on the two channels.
code. The server capacity allocation for each channel isl) Prediction of the number of peersig. 6 presents the
implemented by limiting the total number of bytes sent oveesults of prediction with ARIMAO0,2,1) for the popular
the outgoing connections from the server for the channel ¢hannel CCTV1 and the less popular channel CCTV12, re-
each unit time. spectively. In the dynamic prediction, the training seesiz
Our experiments are carried out on realistic replays of tfé = 30, and the error count parameters &g = 8 and
traces. We emulate peer dynamics based on the evolutionZef= 10. The predicted numbers for both channels largely
the number of peers in each channel from the traces: when @eéncide with the actually collected number of peers, bdth a
number of peers rises between two consecutive time ingrvaegular times and during the flash crowd, no matter whether
we schedule a corresponding number of peer join evettie prediction confidence interval is large or small at déffet
during the interval; when the number of peers decreases, péges. This validates the correctness of our model ideatific
departure events are scheduled for a corresponding nurhbeti@n, as well as the accuracy of our dynamic prediction.
randomly selected peers. Upon arrival, each peer acgdires 2) Dynamic streaming quality functiorfig. 7(A) plots the
initial upstream peers, and the P2P topology evolves baseddgrived parameter values for the dynamic streaming quality
the same peer selection protocol as UUSee employs. The néigiection of CCTV1. In the dynamic regression, the training
upload capacities are emulated using values from the tracgst size isN, = 20, the error count parameters dfg = 8
which follow a heavy-tail distribution in the major range ofand 7> = 10. We see that/ is all positive, the values of¢
50 Kbps to 10 Mbps. The streaming rate of each channel @re always within the range 61, and3° may be positive or
400 Kbps, with the streams divided intbsecond blocks for negative at different times. We have observed similar tesul
distribution. The size of the playback buffer on the peers With the derived streaming quality functions of other chelan
set t030 seconds. Each peer reports its buffering level to thihis validates our analysis in the last paragraph of SecC.llI
server in its ISP everg0 seconds with heartbeat messages, aflring the flash crowd scenario, which hereinafter is marked
the server processes them and adjusts the capacity atlocatvith a vertical line in the figuresg© is significantly below
every60 seconds. We note that this represents much expedi#&fo, revealing a negative impact on the streaming quality w
settings, as these intervals can be much longer in reaidwod rapidly increasing number of peers in the channel.
systems. With this setting, we are not only able to accederat Fig. 7(B) plots the actually measured streaming quality in
our experiments that emulate real-world streaming oveng lothe channel against its estimated value, calculated wigh th
period of time, but also to demonstrate the speed and effigiertlerived streaming quality function at each time. The actual
of our algorithm even when it is executed in very short timgtreaming quality closely follows the predicted trajegtat

scales. most times, including the flash crowd scenario, which exgibi
) the effectiveness of our dynamic regression.
A. Performance of Ration components 3) Optimal provisioning among all channelsie now

We first examine the effectiveness of each composing algavestigate the optimal server capacity provisioned téediint
rithm in Ration In this set of experiments, we focus on thehannels over time. In this experiment, we focus on exarginin
streaming inside one ISP, with one server86fMbps upload the effects of channel popularity on capacity allocatiomd a
capacity ands channels. We use the peer number statistics &€t the priorities for alb channels to the same value bf
5 channels from the trace€CTV1 CCTV4 CCTVZ CCTV7, Fig. 8(A) and (B) show the server capacity allocated to
and CCTV12 in one ISP (Chinalelecom during the week each of the5 channels, and their actually achieved streaming
of February 13 — 19, 2087 The 5 channels have a regularquality at different times. We observe that, generally &jpen
instantaneous number of peers at the scale2@f0, 500, the higher the channel's popularity is, the more servercapa
400, 150 and 100, respectively. The statistics of CCTV1 andt is assigned. This can be explained by the marginal utility

. of the channels used in the water-filling allocationRuxtion
To expedite our experiments, each peer number time series f@maces g . .dg® _ p°yCac(n®)1 A9 ¢ .
is sampled, such that the evolution of the P2P system in eaclsadanulated dsc — P " qee — (se)i-a® - As 3% > —1is observed

within half an hour. in our previous experiment, the marginal utility is positiy
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Fig. 8. Server capacity provisioning far non-prioritized channels: (A) Fig. 9. Server capacity provisioning for 5 prioritized chats with Ration
Server capacity provisioning witlRation (B) Streaming quality achieved (A)(B) 5 streaming quality levels; (C)(D) 3 streaming qualiéyels.
with Ration (C) Streaming quality achieved with proportional allooati(D)

Comparison of objective function values. . . .
P ) those achieved by the proportional provisioning approash,

own in Fig. 8(D).

4) Effectiveness of channel prioritizatioim the next exper-

'Hpent, we study the effect of channel prioritization on serv
apacity provisioning wittRation We investigate two cases:
1) We wish to achieve differentiated streaming qualitie®as

correlated with the number of peers, and thus the more popu?g
channel is assigned more server capacity.

On the other hand, in Fig. 8(B), we do not observe evide
correlation between the channel popularity and its ackiev
streaming quality, as the latter is decided by both allatat .
server capacity (positively) and the number of peers (jvebjt ailctilg.hannels, withg®c?l > gttt > goett? > geetT >
or negatively at different times). Nevertheless, we shost th? : (2) We wish to achieve three sireaming quality levels,

- . ; . - with qcct'ul > qcctv4 ~ qcctv2 > qcctv7 ~ qcctv12. We set the
our water-filling assignment achieves the best utilizatbthe : o a L
limited overall server capacity at all times, with a compari fOHOV\QQ,?IChanne' prgglut‘ly levels in tr:i]t;/v 0 cases, rg!}):aty '
study to a proportional allocation approach. (1) pr = P00 = 200, pf = 200,p7F =

The proportional allocation approach implements the sam "~ = 100; (2) p"% = 500, p™™% = 220, p™* =
protocol as employed in UUSee, except its server capacﬁ O_’p = 5p - _110' These priority values are
allocation, which goes as follows: At each timethe server rived based on Eqn. (11) in Sec. IV to guarantee the tafgete

capacity is proportionally allocated to the channels, basdy strzanzlndg qua(ljn):c d|fferent|att_|on, l:1smg tlhe ?_?\pUIa”W" .O‘c tal
on their predicted number of peers for time- 1. Fig. 8(C) and ¢ derived for respective channels. The experimenta

; Its are plotted in Fig. 9.
shows that the most popular channel, CCTV1, achieves betier! . ) .
streaming quality with this proportional allocation as com Comparing Fig. 9(A) and (C) to Fig. 8(A), we observe

pared to that in Fig. 8(B), at the price of downgraded qualif rther differentiated server capacities among the chianne

for the other channels, especially during the flash crowds Th Iheret tge channels Wt'th Ihlglger Srgrlty gndeopuIarLt)y are
is because CCTV1 now obtains more than half of the tot§|f?gz§t.atrggretf;ﬁﬂ Y. in I'tlg.le(el) a;c 0( ),ﬂ\]/(\;ec?];er;/e
server capacity at regular times, and almost all during tehfl erent st INg quality 1Evels across an

crowd scenario. V\;hICh .meet o?: elxpelcta_nonFs_: wg Bcan (()jbzer.ve; dgf%rent
With the streaming quality results in Fig. 8(B) and (C), wi rr]eam|crj19 quat| yt e;/r:es :cp t'lg. (B) :;m h ml '9('1.‘.1.( )-
compute the values of the objective functiorRybvision(t+1) ese demonstrate the €etiecliveness ot channel pridrdiza

in (1), and plot them in Fig. 8(D). Given the same priority fol E_?:'On ){’_Vr]['Ch facilitates the Strr?amm? SolrL]JtlonthprowderI
all the channels, the value of the objective function at eact, merentiate SErvices across channeis, when the supply

time represents the total number of peers in all the chann %mand relation of server capacity is tight in the system.

that achieve satisfying buffering level at the time. Theuesl ) . o

from the proportional allocation are consistently lowearth B. Effectiveness of ISP-aware server capacity provisignin

those achieved with our water-filling approach, exhibitthg Next, we evaluatdRationin multi-ISP streaming scenarios.

optimality of the server capacity utilization witRation 4 ISPs are emulated by tagging servers and peers with their
In our experiments, we have also compaiedtion with ISP IDs. Again5 channelsCCTV1 CCTV4 CCTV2 CCTV7,

the original UUSee protocol, in which no allocation acros€CTV12 are deployed in the ISPs, with peer number statistics

channels is done at all. We have observed more unstable am@ach ISP extracted from those 4nChina ISPs,Telecom

lower streaming qualities in all the channels than thoseveho Netcom Unicom and Tietong from the traces. While a fixed

in Fig. 8(B) and (C), and lower objective function valuesrthaoverall server capacity is used in the previous experimeamts
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Fig. 10. P2P live streaming fdr channels int ISPs: without ISP awareness. Fig. 11.  P2P live streaming fdfig. 12. Server capacity provision-
5 channels in4 ISPs: with full ISPing vs. inter-ISP traffic: a tradeoff.
. . _awareness.
the following experiments, we do not cap the server capacity

but derive withRationthe minimal amount of overall serverresults in Fig. 12 show an increase of inter-ISP traffic wiité t

capacity needed to achieve the best streaming qualities ficrease of server capacity provisioning. Further compgari
all the channels in the systeme(, ¢° = 1,Vc € C), which is  the ¢ = 0 case in Fig. 12 to Fig. 10(B), we observe that while
referred to ag/p hereinafter. At each time during the dynamiqhe total server Capacity is the sarfig; ,,;,, in both cases, a
provisioning, U is derived by summing up the upper boun@maller amount of inter-ISP P2P traffic is involved with the

of server capacity required for each of the channBls,;, as |SP-aware peer selection than without any ISP awareness.
given in (9), at the time. Our focus is to compare the total

server capacity/g required when ISP awareness is in place
and not, and the inter-ISP traffic that is caused. The channel
are not prioritized in this set of experiments. With the successful Internet deployment of mesh-based

1) Without ISP awarenessin the first experiment, we P2P live streaming systems [14], [2], [3], [4], significant
deploy one server in the system, and stream with a peaesearch efforts have been devoted to their measuremets an
selection protocol that is not ISP-awarieg.,, each peer is improvements. With respect to measurements, existingestud
assigned partners that can be any other peers in the ends], [16], [17], [18], [19], [20] mostly focus on the behai
network. The overall server capacitys used on the server of peers, with little attention devoted to the streamingekes,
over time is shown in Fig. 10(A), and the total inter-ISP P2®hich nevertheless contribute significantly to the stabidif
traffic in the system is plotted in Fig. 10(B). P2P live streaming.

2) With full ISP awarenesstn the second experiment, we Since the seminal work of Coolstreaming [14], various
deploy one server in each ISP, and constrain all streamiimgprovements of peer strategies in such mesh-based P2P
traffic inside each ISP by fully ISP-aware peer selectian, live streaming have been proposedg, the enhancement of
peers are only assigned partners inside the ISP. There istine block pulling mechanism [21], the optimization of peer
inter-ISP traffic in this case. The server capacity used @onnectivity for content swarming [22], and the explorataf
the server in each ISP is illustrated with the area plot inter-overlay cooperation [23]. To the best of our knowledg
Fig. 11. Comparing Fig. 11 to Fig. 10(A), we can see thahis paper presents the first detailed measurements ofrserve
more overall server capacity is needed in the system when tapacity utilization in a live P2P streaming system, anditse
traffic is completely restricted inside each ISP with pdp-ISonline server capacity provisioning mechanism to address t
server capacity deployment, as peers now have fewer choidgaamic demand in multiple concurrent channels. A prelim-
of supplying neighbors and may have to resort more to theary report of this work appeared in INFOCOM 2008 [24].
server in their respective ISPs. However, the increase én thhis paper represents a substantial revision and extgnsion
total server capacity usage is non-significant. The diffeee with solid studies of the UUSee server capacity utilization
is only larger during the flash crowd, when it becomes veryer a longer trace period and complete discussions on the
difficult for peers to identify enough supplying peers witldesign, analysis and application of the online server dapac
available bandwidth inside the ISP. provisioning algorithm.

3) Tradeoff between server capacity and inter-ISP traffic: With respect to analytical work related to the subject of
In the final experiment, we provision a total server capaicity server capacity, Dagt al. [25] have shown, with a fluid
the system that is between the amount used in 1) and that usestlel, the effects of server upload capacities on the aver-
in 2), and examine the resulting inter-ISP traffic. Spediffcra age peer download time in BitTorrent-like P2P file sharing
let the overall server capacity usage shown in Fig. 10(A) laplications. Also based on fluid theory, Kumeir al. [10]

Up min and that shown in Fig. 11 bE g ,.x. We reduce the modeled streaming quality in a mesh-based P2P streaming
server capacity provisioned on each server in each ISP, seglstem in terms of both server and peer upload capacities.
that the overall server capacity at each time is at the value &s compared to these studies, our work focuses entirely on
U min + (U max — Usmin) @t the time. In this case, peersthe practicality of a dynamic server capacity provisioning
are allowed to connect to servers/peers across ISPs if #iley echanism. Other than using simplified modeling assumgtion
to acquire sufficient streaming bandwidth within the ISP.  such as Poisson arrivals, we employ time series forecasting

The experiment is repeated by settigto %, %,i or 0, techniques to derive the evolution of the number of peerd, an
that represent different levels of the total server cagatite use dynamic regression approaches to learn the relationgamo

VI. RELATED WORK
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the streaming quality, server capacity and the number afspeeFor s¢7;, > 0, we haveu®* = 0 from (16), and the% =

at different times. A* + v from (18). Therefore, if further we havef}, <

There have recently emerged a number of discussions on E'ﬁu we deriver®* = 0 from (17) and therdd%c = \*. As
St41

large amount of inter-ISP traffic brought by P2P applicatjon 4 PErat(ng, )1+ 4

with respect to BitTorrent file sharing [26], [27], P2P Videdis;,, = — (g1 o0+ 7° >0 and0 < a® <1, we can

on Demand [5], and P2P software update distribution [28]erive,Vc € C,

Approaches for the localization of P2P traffic inside ISP . (Be, )(1=o)

boundaries have been proposed, which mostly focus on ISR; B, if 5= = W,

aware peer selection strategies[27], [29], [30]. In costira S+l T prtal(ng ) N 1 i 1 (BE, )9

our study is the first to investigate the impact and evolution ( A AL peycac(ng, )T

of inter-ISP P2P live streaming traffic, and our proposal 19
g prop

e .
tice that for all the channels with < s¢%, < Bf,,, we

emphasizes on the dynamic provisioning at the server si
on a per-ISP basis to maximally guarantee the success of | bre L

aware P2P streaming ve & = (13¢-)~1, which is the final water level for those
. . t+1 7, . . .
bins whose maximal heights are not achieved, as illustrated
c (1—a®)
VIl. CONCLUDING REMARKS in Fig. 5(Cf. We also notice that—Ziet) " s the

) _ _ peyeac(ng, )Y

This paper focuses on dynamic server capacity provisioft@ximal height for binc. Therefore, the key _to, derive’
ing in multi-ISP multi-channel P2P live streaming systemé {0 derive the optimal water levef-. If a bin's maximal
In practice, we believe that it is important to refocus odreight is below the optimal water level, the optimal server
attention on dedicated streaming servers: based on oufedetac@Pacity share for the corresponding channel is its maximal
analysis of 10 months worth of traces from a large-scaf€Ver capacity requiremente., sy, = Bi,,; ot(rg_e([\cn)/lse, Its
P2P streaming system, available server capacities are aldcated server capacity is what aChie\z’ﬁevS%W =
able to keep up with the increasing demand in such real- o

world gommerlc;lal syste;]ms_, leading to a d(I)_wngrade of peeity gerive the optimal water level, from the starting water
streaming quality. Emphasizing on practicality, our pe@d o015 in the bins decided by the server capacity assignment
algorithm,Ration is able to dynamically predict the demand in; (ime 4 e first make sure the overall server capacity at
each channel, using an array of dynamic learning techniQUgs, amount oft7 is maximally filled into the bins, while no

and to proactively provision optimal server capacitiesoasr bin’s maximal height is exceeded. Then, we decrease the high

different channels. Wij[h full ISP awarene@ation is carried |\ ~ior levels by decreasing the server capacity assigneteto t
out on a per-ISP basis, and is able to guide the dEploym%'atrresponding bins (a8® < 1, (-99-)~1 decreases with
of server capacities and channels in each ISP to maximatl Chdsiy,

c i -
constrain P2P traffic inside ISP boundaries. Our performanlcr:] sr:aesci;ea?ﬁeoig\l/zrir;d ;r;ﬁrezssii ti;zdlotv(\)/ mztecrolrtra;/els r?élﬂ
evaluation ofRation is highlighted with the replay of real- 9 pactty 9 Y

; ; . bins, while guaranteeing the maximal height of each bin is

world streaming traffic from our traces. We show tiation .
. . . s never exceeded. When all bins reach the same water level,
lives up to our expectations to effectively provision serve . \
" . - except those whose maximal heights have been reached, we
capacities according to the demand and channel priority oyé . : : .
time ave derived the optimal server capacity allocation for all

channels for time + 1, as given in (19). O

APPENDIXA
PROOF OFTHEOREM 1

Proof: Let s¢%,,Ve € C, be an optimal solution to the

APPENDIXB
PROOF OFTHEOREM 2

optimization problem in (7). Introducing Lagrangian mpligr Proof: Both the incremental Wat_er-filling al_gorithm in Table

A for the constraint in (8)y = (v¢, Ve € C) for the constraints ! and the proof of theorem 1 in Appendix | show that at

in (9) andp = (u¢, Ve € C) for the constraints in (10), we optimality, the marginal utility for any channels, that aret
allocated their maximum server capacity requiremait

obtain the KKT conditions for the problem as follows (pp?. _ _ aG do
244, [31]): (ie, Ve, qf , < 1), is the samei.e = Ve, c € C,

_ 7 odsgyy o dsf+1’
wheregy, ; <1 andgf,, < 1(. "
ytac(ng )t

cx ; P
> s < U, (12) Since dj‘gl = e and
eec * dG  _ pa’)’aaa(nf+1)(l+gc> we have
AT >0, (13) dsf+1 - (Sf+1)17(za ’
0< 8511 < Bfyq, v > 0,47 > 0,Ve e, (14) .
CA/CnC [ C 143°) CA/CC (0 C (148°)
. ex rry pya (”t+1)( by (nt+1)
N st —U) =0, (15) = s = N D)
cec Sty1 St1
psiiy =0,Ve e C, (16) .
cxp ek pe N Note thats¢ ; = 0 only occurs at very special cases, suchgs, — 0
v7(si31 = Biva) =0, Ve €C, 17 or a® — 0. In this case, the width of the bin corresponding to chamnisl
_ dG N = S T =0,Ye € C. (18) zero, and thus no water (bandwidth) will be assigned to the\be omit this

dsg, special case in our discussions.
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Fromc a5 = WC(sf_H)“C (n§+1)ﬁc, we derive s{,; = [25] ? D?S,Ps_ vaalr(ij,"qrr]g L. Kll?iInErcE(églu;rhe tC_:asel ?r fSesvm a
diy1 TIC . c . . : eer-to-reer oria,” InProc. o nternationa onrerence on
(776(@“)/36) . Substitutesf, ; with this formula in Eq. (19), Communications (ICC 2006June 2006.

we can obtain [26] T. Karagiannis, P. Rodriguez, and K. Papagiannaki,otsth Internet

Service Providers Fear Peer-Assisted Content Distribyitia Proc. of

pc”ycac(n§+1)(l+ﬁc) pcvcac(nf_i_l)(Hﬂc) the Internet Measurement Conference (IMC’2Q0B}tober 2005.
G i N (20) (271 R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. Batesd
(W * (W) ot A. Zhang, “Improving Traffic Locality in BitTorrent via BiaseNeighbor
+ RN Selection,” in Proc. of the 26th IEEE International Conference on
A transformation of (20) will give Eq. (11). O Distributed Computing Systems (ICDCS 2Q0B)ly 2006.
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