
1

On Dynamic Server Provisioning in Multi-channel
P2P Live Streaming

Chuan Wu Baochun Li Shuqiao Zhao
Department of Computer Science Department of Electrical Multimedia Development Group

The University of Hong Kong and Computer Engineering UUSee, Inc.
Hong Kong, China University of Toronto, Canada China

cwu@cs.hku.hk bli@eecg.toronto.edu zhaoshq@uusee.com

Abstract—To guarantee the streaming quality in live peer-
to-peer (P2P) streaming channels, it is preferable to provision
adequate levels of upload capacities at dedicated streaming
servers, compensating for peer instability and time-varying peer
upload bandwidth availability. Most commercial P2P streaming
systems have resorted to the practice of over-provisioning a fixed
amount of upload capacity on streaming servers. In this paper,
we have performed a detailed analysis on 10 months of run-time
traces from UUSee, a commercial P2P streaming system, and
observed that available server capacities are not able to keep
up with the increasing demand by hundreds of channels. We
propose a novel online server capacity provisioning algorithm
that proactively adjusts server capacities available to each of the
concurrent channels, such that the supply of server bandwidth
in each channel dynamically adapts to the forecasted demand,
taking into account the number of peers, the streaming quality,
and the channel priority. The algorithm is able to learn over
time, has full ISP awareness to maximally constrain P2P traffic
within ISP boundaries, and can provide differentiated streaming
qualities to different channels by manipulating their priorities.
To evaluate its effectiveness, our experiments are based on an
implementation of the algorithm which replays real-world traces.

Index Terms—Distributed applications, peer-to-peer streaming,
server bandwidth provisioning, multiple channels

I. I NTRODUCTION

Large-scale peer-to-peer (P2P) live streaming has recently
been successfully and commercially deployed [1], [2], [3],[4],
in which hundreds of media channels are routinely broadcasted
to hundreds of thousands of users at any given time. The
essence of P2P streaming is the use of peer upload bandwidth
to alleviate the load on dedicated streaming servers [5]. Most
existing research has thus far focused on peer strategies:
Should a mesh or tree topology be constructed? What incen-
tives can be provisioned to encourage peer bandwidth contri-
bution? How do we cope with peer churn and maintain the
quality of live streams? We recognize the importance of these
open research challenges, as their solutions seek to maximally
utilize peer upload bandwidth, leading to minimized server
costs.

In this paper, however, we shift our focus to the stream-
ing servers. Such refocusing on servers is motivated by our
detailed analysis of 10 months and 800 GB worth of real-
world traces from hundreds of streaming channels in UUSee
[3], a large-scale commercial P2P live streaming system in
China. As all other commercial live streaming systems (e.g.,
PPLive [2], PPStream [4]), in order to maintain a satisfactory
and sustained streaming quality, UUSee has so far resorted

to the practice of over-provisioning a fixed amount of server
capacity to satisfy the streaming demand from peers in all its
channels, counteracting the impact of volatile peer dynamics
and time-varying peer upload bandwidth availability. Never-
theless, contrary to common belief, we have observed that the
deployed capacities on streaming servers are not able to keep
up with the increasing demand from hundreds of channels in
practice, leading to degraded streaming quality in all channels.
In response, we advocate to allocate limited server capacities
to each of the channels based on their popularity and priority
in order to maximally utilize dedicated servers, and also to
dynamically determine the minimum overall amount of server
capacity to be deployed in the system.

While it is certainly a challenge to determine the minimum
amount of server bandwidth to provision to accommodate the
streaming demand of all concurrent channels, the challenge
is more daunting when we further consider the conflict of
interest between P2P solution providers and Internet Service
Providers (ISPs). P2P applications have significantly increased
the volume of inter-ISP traffic, which in some cases leads
to ISP filtering. We seek to design effective provisioning
algorithms on servers with the awareness of ISP boundaries
to minimize inter-ISP traffic.

Towards these objectives, this paper presentsRation, an
online server capacity provisioning algorithm to be carried
out on a per-ISP basis.Ration dynamically computes the
minimal amount of server capacity to be provisioned to
each channel inside the ISP, in order to guarantee a desired
level of streaming quality for each channel, depending on
its popularity and priority. With the analysis of our real-
world traces, we have observed that the number of peers and
their contributed bandwidth in each channel vary dynamically
over time, and significantly affect the required bandwidth
from servers.Ration is designed to activelypredict the server
bandwidth demand in each channel in an ISP with time series
forecasting and dynamic regression techniques, utilizingthe
number of active peers, the streaming quality, and the server
bandwidth usage within a limited window of recent history. It
then proactively allocates server bandwidth to each channel,
respecting the predicted demand and priority of channels. To
show the effectiveness ofRation, it has been implemented in
streaming servers serving a mesh-based P2P streaming system.
In a cluster of dual-CPU servers, the system emulates real-
world P2P streaming by replaying the scenarios captured by
UUSee traces.

2

The remainder of this paper is organized as follows. In
Sec. II, we motivate our focus on servers by showing our
analysis of 10 months worth of traces from UUSee. In
Sec. III, we present the design ofRation. In Sec. IV, we
discuss howRation may be deployed with ISP awareness to
serve real-world P2P streaming systems. Sec. V presents our
experimental results evaluatingRationby replaying traces in a
P2P streaming system running in a server cluster. We discuss
related work and conclude the paper in Sec. VI and Sec. VII,
respectively.

II. M OTIVATION FROM REAL-WORLD TRACES

Why shall we refocus our attention to dedicated streaming
servers in P2P live streaming systems? Starting September
2006, we have continuously monitored the performance statis-
tics of a real-world commercial P2P streaming platform,
offered by UUSee Inc., a leading P2P streaming solution
provider with legal contractual rights with mainstream content
providers in China. As other systems such as PPLive, UUSee
maintains a sizable array of about150 dedicated streaming
servers, to support its P2P streaming topologies with hundreds
of channels to millions of users, mostly in400 Kbps media
streams. With80% users in China, UUSee network spans
over 20 ISPs in China and around35 countries in the world.
UUSee streaming protocol utilizes the “pull-based” designon
mesh P2P topologies, that allows peers to serve other peers
(“partners”) by exchanging media blocks in their playback
buffers, which represent a sliding window of the stream. When
a new peer joins a channel in UUSee, the initial set of a
number of partners (up to50) is supplied by one of the
tracker servers by randomly selecting from all the existing
peers in the channel with available upload bandwidth. The
peer establishes TCP connections with these partners, and
buffer availability bitmaps (also called “buffer maps”) are
periodically exchanged. The buffer size at each peer in UUSee
is 500 media blocks, and each block represents 1/3 second of
media playback (about10 MB in total).

To maximally utilize peer upload bandwidth and alleviate
server load, UUSee incorporates a number of algorithms in
peer selection. Each peer applies an algorithm to estimate its
maximum upload capacity, and continuously estimates its ag-
gregate instantaneous sending throughput to its partners.If its
estimated sending throughput is lower than its upload capacity
for 30 seconds, it will inform one of the tracker servers that it
is able to receive new connections. The tracker servers keepa
list of such peers, and assign them upon requests of partners
from other peers. In addition, the number of consecutive blocks
received and cached in the current playback buffer, starting
from the current playback time, is used in UUSee protocol to
represent the current streaming quality of each peer, which
is referred to as thebuffering level. During the streaming
process, neighboring peers may also recommend partners to
each other based on their current streaming quality. A peer
may contact a tracker server again to obtain additional peers
with better qualities, once it has experienced a low buffering
level for a sustained period of time. Besides, UUSee has
implemented a number of NAT/firewall traversal techniques

based on classification of different types of user connections in
its network, in order to maximize peer bandwidth contribution.

To inspect the run-time behavior of UUSee P2P streaming,
we have implemented extensive measurement and reporting
capabilities within its P2P client application. Each peer collects
a set of its vital statistics, and reports to dedicated traceservers
every5 minutes via UDP. The statistics include its IP address,
the channel it is watching, its buffer map, its buffering level,
as well as a list of all its partners, with their corresponding
IP addresses, TCP/UDP ports, and current sending/receiving
throughput to/from each of them. Each dedicated streaming
server in UUSee utilizes a similar protocol as deployed on reg-
ular peers, is routinely selected to serve the peers, and reports
its related statistics periodically as well. A detailed description
on UUSee protocol and the measurement methodologies for
the above metrics can be found in our previous work [6], [7].

During a 10-month period from September 2006 to July
2007, we have collected more than 800 GB worth of traces
with more than 600 million unique IP addresses, representing
time-continuous snapshots of the live channels sustained in
UUSee every five minutes in this long period of time. Each
snapshot captures the information on more than100, 000
concurrent peers in the entire UUSee network.

A. Insufficient “supply” of server bandwidth

What have we discovered from the traces? The first ob-
servation we made is related to the insufficient “supply” of
server bandwidth, as more channels are added over time. Such
insufficiency has gradually affected the streaming quality, in
both popular and less popular channels.

In order to show bandwidth usage over 10 months and
at different times of a day within one figure, we choose to
show all our 5-minute measurements on representative datesin
each month. One such date, February 17 2007, is intentionally
chosen to coincide with the Chinese New Year event, with
typical flash crowds due to the broadcast of a celebration
show on a number of the channels; April 2007 is skipped
due to lack of traces in the month caused by an upgrade of
the trace servers. Fig. 1(A) shows the total server bandwidth
usage on150 streaming servers. We may observe that an
increasing amount of server bandwidth has been consumed
over time, but stabilizing starting January 2007. This rising
trend can be explained by the rapidly increasing number of
channels deployed during this period, as shown in Fig. 1(B).
The interesting phenomenon that such bandwidth usage has
stabilized, even during the Chinese New Year flash crowd, has
led to the conjecture that the total uplink capacity of all servers
has been reached. The daily variation of server bandwidth
usage coincides with the daily pattern of peer population.

Our conjecture that server capacities have saturated is
confirmed when we investigate the streaming quality in each
channel. The streaming quality in a channel at each time
is evaluated as thepercentage of high-quality peers in the
channel, where a high-quality peer has a buffering level of
more than80% of the total size of its playback buffer. The
criterion of buffering level (i.e., the number of consecutive
blocks received and cached in the current playback buffer
of a peer), has been extensively used in UUSee system to

3

10

20

30

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

0

500

1000

T
o

ta
l
n

u
m

b
e

r
o

f
c
h

a
n

n
e

ls

0

DateS
e

rv
e

r
u

p
lo

a
d

 c
a

p
a

ci
ty

 u

sa
g

e
 (

G
b

p
s)

(A) Server capacity usage over time.

(C)The streaming quality of a popular channel (CCTV1).

(B) Number of channels deployed over time.

(F) The population of a less popular channel (CCTV12).

9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3/15/07 5/19/07 6/15/077/15/07

Date

9/06 10/06 11/06 12/06 1/07 2/07 3/07 5/07 6/07 7/07

Date

9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3/15/07 5/19/07 6/15/077/15/07

0

1

2

3
x 10

5

N
u

m
b

e
r

o
f
p

e
e

rs

(E)The population of a popular channel (CCTV1).

Date

9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3/15/07 5/19/07 6/15/077/15/07

0

5000

10000

N
u

m
b

e
r

o
f
p

e
e

rs

(D) The streaming quality of a less popular channel (CCTV12).

Date

9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3/15/07 5/19/07 6/15/077/15/07

Date

9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3/15/07 5/19/07 6/15/077/15/07

Fig. 1. The evolution of server bandwidth, channels, and streaming quality from September 2006 to July 2007.

evaluate the current streaming quality of a peer; and the80%
benchmark has empirically been shown to be effective in
reflecting the playback continuity of a peer in the following
few minutes, based on an internal performance monitoring
system in UUSee. Accordingly, we also use the peer buffering
level as our streaming quality criterion.1 Representative results
with a popular channelCCTV1 and a less popular channel
CCTV12are shown in Fig. 1(C) and (D), respectively, with
their population measurements plotted in Fig. 1(E) and (F),
respectively. The streaming quality of both channels has been
decreasing over time, as server capacities are saturated. During
the Chinese New Year flash crowd, the streaming quality of
CCTV1 degraded significantly, due to the lack of bandwidth
to serve a flash crowd of users in the channel, as illustrated in
Fig. 1(E).

Would it be possible that the lack of peer bandwidth
contribution has led to the overwhelming demand of the
servers? As we noted, the protocol in UUSee uses optimizing
algorithms to maximize peer upload bandwidth utilization,
which represents one of the state-of-the-art peer strategies in
P2P streaming. The following back-of-the-envelope calcula-
tion with data from the traces may be convincing: At one
time on October 15, 2006, about100, 000 peers in the entire
network have each achieved a streaming rate around400 Kbps,
by consuming a bandwidth level of2 Gbps from the servers.
The upload bandwidth contributed by peers can be computed
as 100, 000 × 400 − 2, 000, 000 = 38, 000, 000 Kbps, which
is 380 Kbps per peer on average. This represents quite an
achievement, considering that most of the UUSee clientele are
ADSL users in China with a maximum of512 Kbps upload
capacity, and that many random factors influence the available

1Nevertheless, we have evaluated a number of other possible streaming
quality metrics, such as the instantaneous streaming download rate of a peer,
and still identified the one we use as the most effective in reflecting the
streaming quality of peers/channels.

upload bandwidth at the peers.
In addition, one may doubt if the downgrade of streaming

quality during flash crowd scenarios could have been caused
by bandwidth bottlenecks within the Internet backbone at
those times. Our previous measurement studies in [7] have
revealed that there does not exist significant difference between
bandwidth availabilities on P2P links, that are decided by
Internet backbone bandwidths, at regular times and during
flash crowd scenarios, and have confirmed the common belief
that bandwidth constraints in P2P streaming mainly lie at the
last-mile upload links at the peers and servers in most cases.

All the above observations have led to the conclusion that
server capacities have increasingly become a bottleneck in
real-world P2P live streaming solutions. When the server
capacity usage by different channels is not regulated and is
largely random (as in the current UUSee protocol), the results
are less than satisfactory: Taking a typical streaming quality
result of 0.5 for both CCTV1 and CCTV12, there are many
more peers experiencing a low buffering level in the popular
channel than in the less popular channel, considering the large
difference of their populations. In practice, we may wish to
provide a good streaming experience to as many peers as
possible in the entire system, and therefore advocate to allocate
the limited server capacities to each of the channels based
on their popularity and priority, in order to maximally utilize
dedicated servers.

B. Increasing volume of inter-ISP traffic

The current UUSee protocol is not aware of ISPs. We now
investigate the volume of inter-ISP traffic during the 10-month
period, computed as the throughput sum of all links across ISP
boundaries at each time. For each IP address in the traces, we
derive the AS (Autonomous System) it belongs to using the
Whois service provided by Cymru [8], and then map each
China AS number to its affiliated ISP by making use of the

4

0

40

80
O

v
e

ra
ll

in
te

r−
IS

P

 t
ra

ff
ic

 (
G

b
p

s
)

 Peer−to−peer

 Server−to−peer

Date

9/15/0610/15/06 11/15/06 12/15/061/15/072/17/07 3/15/07 5/19/07 6/15/077/15/07

Fig. 2. The volume of inter-ISP traffic increases over time.

official mapping data provided by CERNET, China [9].2 Fig. 2
reveals that both the inter-ISP peer-to-peer and server-to-peer
traffic have been increasing, quadrupled over the 10-month
period, due to the increased number of channels and peers.

In China, the two nation-wide ISPs,Netcomand Telecom,
charge each other based on the difference of inter-ISP traffic
volume in both directions, and regional ISPs are charged based
on traffic to and from the nation-wide ISPs. Both charging
mechanisms have made it important for ISPs to limit inter-
ISP traffic. Considering the large and persistent bandwidth
consumption for live streaming, we believe that P2P streaming
systems should be designed to minimize inter-ISP traffic (to
avoid the fate of traffic filtering by ISPs), which remains one
of our objectives in this paper.

C. What is the required server bandwidth for each channel?

To determine the amount of server bandwidth needed to
achieve a specific level of streaming quality in each channel,
we wish to explore the relation among server upload band-
width, the number of peers, and the achieved streaming quality
in each channel. Fig. 3(A) illustrates the evolution of the three
quantities for channel CCTV1 over a period of one week, from
February 13 to 19, 2007. We can observe a weak positive
correlation between the server bandwidth and the streaming
quality, and a weak negative correlation between the peer
population and the streaming quality.

To further explore any evident correlation on a shorter time
scale, we plot in Fig. 3(B)-1 the correlation between server
upload bandwidth usage and the streaming quality on February
13 and that between the number of peers and the streaming
quality in Fig. 3(B)-2. We can observe an evident positive
relation between the two quantities in the former figure and a
negative correlation in the latter. We have extensively explored
such correlation in many channels over different dates and
have observed that the correlation varies from one time to
another even in the same channel, which can be attributed
to the time-varying aggregate peer upload bandwidth in the
channel over time. For example, Fig. 3(B)-3 plots the relation
between the number of peers and the streaming quality on
February 17, which approximates a reciprocal curve.

Another interesting observation we have made here is that:
contrary to common belief, we have observed a decreasing
trend of streaming quality in a streaming channel when the
number of peers increases, based on our extensive study of
many streaming channels over many time intervals. We believe
the reason lies in that many peers cannot contribute up to
the level of their required streaming rate (about400 Kbps)
in such a practical P2P system over today’s Internet, which

2The majority of UUSee users are in China and we focus on trace data of
such users in producing Fig 2.

0 100000 200000 300000

0 10000 20000 30000 40000

0 0.4 0.8 1.2

(B)

1

2

3

0
1
2
3

x 10
5

Number of peers

0
0.4
0.8
1.2

Server upload bw (Gbps)

0

0.5

1

Streaming quality

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

Streaming quality

Streaming quality

Streaming quality

0

0.5

1

0

0.5

1

0

0.5

1

2/13

2/13

2/17

Server upload capacity usage (Gbps)

Number of peers

Number of peers

Fig. 3. Relationship among server upload bandwidth, number ofpeers, and
streaming quality in channel CCTV1.

further justifies the necessity of deploying server capacity in
the system.

All of our observations thus far point to the challenging
nature of our problem at hand: How much server bandwidth
should we allocate in each channel in each ISP to assist the
peers?

III. R ATION : ONLINE SERVER CAPACITY PROVISIONING

Our proposal isRation, an online server capacity provi-
sioning algorithm to be carried out on a per-ISP basis, that
dynamically assigns a minimal amount of server capacity to
each channel to achieve a desired level of streaming quality.

A. Problem formulation

We consider a P2P live streaming system with multiple
channels (such as UUSee). We assume that the tracker server
in the system is aware of ISPs: when it supplies any requesting
peer with information of new partners, it first assigns peers(or
dedicated servers) with available upload bandwidth from the
same ISP. Only when no such peers or servers exist, will the
tracker server assign peers from other ISPs.

The focus ofRation is the dynamic provisioning of server
capacity in each ISP,3 carried out by a designated server in
the ISP. In the ISP that we consider, there are a total ofM

concurrent channels to be deployed, represented as a setC.
There arenc peers in channelc,∀c ∈ C. Let sc denote the

3We note thatRation can be extended to cases that it is not feasible to
deploy servers in each ISP, by having servers in one ISP responsible to serve
peers from a number of nearby ISPs.

5

TABLE I
NOTATION IN Ration

Symbol Definition
U the total amount of server capacity
C the set of channels
M the number of channels inC
F c streaming quality function of channelc

sc server upload bandwidth assigned to channelc

qc streaming quality of channelc
pc priority level for channelc
nc the number of peers in channelc

n̄c the estimated number of peers in channelc

θc coefficient of the random error term in the
ARIMA model for channelc

αc exponent ofsc in streaming quality function
βc exponent ofnc in streaming quality function
γc weight parameter in streaming quality function
G the objective function inProvision(t+1)’
Bc the maximal server capacity required for chan-

nel c to achieveqc = 1

server upload bandwidth to be assigned to channelc, andqc

denote the streaming quality of channelc, i.e., the percentage
of high-quality peers in the channel that have a buffering level
of more than80% of the size of its playback buffer. LetU be
the total amount of server capacity to be deployed in the ISP.
We assume a priority levelpc for each channelc, that can
be assigned different values by the P2P streaming solution
provider to achieve service differentiation across the channels.
We list important notations in this paper in Table I for ease
of reference.

At each timet, Ration proactivelycomputes the amount
of server capacitysc

t+1 to be allocated to each channelc for
time t + 1, that achieves optimal utilization of the limited
overall server capacity across all the channels, based on their
priority and popularity (as defined by the number of peers in
the channel) at timet + 1. Such an objective can be formally
represented by the optimization problemProvision(t+1) as
follows (∀t = 1, 2, . . .), in which astreaming quality function
F c

t+1 is included to represent the relationship amongqc, sc

andnc at time t + 1:
Provision(t+1):

max
∑

c∈C

pcnc
t+1q

c
t+1 (1)

subject to ∑

c∈C
sc

t+1 ≤ U,

qc
t+1 = F c

t+1(s
c
t+1, n

c
t+1), ∀c ∈ C, (2)

0 ≤ qc
t+1 ≤ 1, sc

t+1 ≥ 0, ∀c ∈ C.

Weighting the streaming qualityqc
t+1 of each channelc with

its priority pc, the objective function in (1) reflects our wish to
differentiate channel qualities based on their priorities. With
channel popularitync

t+1 in the weights, we aim to provide
better streaming qualities for channels with more peers. Noting
that ncqc represents the number of high-quality peers in
channelc, in this way, we guarantee that, overall, more peers
in the network can achieve satisfying streaming qualities.

The challenges in solvingProvision(t+1) at timet to derive

−1

−0.5

0

0.5

1
x 10

5

Date

2
n

d
−

o
rd

e
r

d
if
fe

re
n

c
e

 o
f

c
h

a
n

n
e

l
p

o
p

u
la

ri
ty

 s
e

ri
e

s

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

0 10 20 30
−1

0

1

lag k

r k

0 10 20 30
−1

0

1

lag k

φ
k
k

(B)

Fig. 4. ARIMA model identification for channel popularity series of CCTV1
in Fig. 3(A)-1.

the optimal values ofsc∗
t+1,∀c ∈ C are: (1) the uncertainty of

the channel popularitync
t+1, i.e., the number of peers in each

channel in the future, and (2) the dynamic relationshipF c
t+1

amongqc, sc, andnc of each channelc at timet+1. In what
follows, we present our solutions to both challenges.

B. Active prediction of channel popularity

We first estimate the number of active peers in each channel
c at the future timet + 1, i.e., nc

t+1,∀c ∈ C. Existing work
has been modeling the evolution of the number of peers in
P2P streaming systems based on Poisson arrivals and Pareto
life time distributions (e.g., [10]). We argue that these models
represent simplifications of real-world P2P live streaming
systems, where peer dynamics are actually affected by many
random factors. To dynamically and accurately predict the
number of peers in a channel, we employ time series forecast-
ing techniques. We treat the number of peers in each channelc,
i.e., nc

t , t = 1, 2, . . ., as an unknown random process evolving
over time, and use the recent historical values to forecast the
most likely values of the process in the future.

As the time series of channel popularity is generally non-
stationary (i.e., its values do not vary around a fixed mean),
we utilize theautoregressive integrated moving averagemodel,
ARIMA (p, d, q), which is a standard linear predictor to tackle
non-stationary time series with high accuracy [11]. With
ARIMA (p, d, q), a time series,zt, t = 1, 2, . . ., is differenced
d times to derive a stationary series,wt, t = 1, 2, . . ., and
each value ofwt can be expressed as the linear weighted
sum of p previous values in the series,wt−1, . . . , wt−p, and
q previous random errors,at−1, . . . , at−q. The employment
of an ARIMA(p, d, q) model involves two steps: (1) model
identification, i.e., the decision of model parametersp, d,
q, and (2) model estimation,i.e., the estimation ofp + q

coefficients in the linear weighted summation.
In model identification, to determine the degree of dif-

ferencing,d, a standard technique is to difference the time
series as many times as is needed to produce stationary time
series. We have therefore derivedd = 2 for our time series
nc

t , t = 1, 2, . . ., based on the observations that the 2nd-order
difference of the original time series for all the channels is
largely stationary. For example, Fig. 4(A) shows the 2nd-order
difference of the channel popularity time series of CCTV1,
as given in Fig. 3(A)-1, which is stationary with the mean
of zero. To identify the values ofp and q, the standard
technique is to study the general appearance of the estimated
autocorrelation and partial autocorrelation functions ofthe
differenced time series ([11], pp. 187). For example, Fig. 4(B)

6

plots the autocorrelationrk and partial autocorrelation̂φkk

function values of the differenced channel popularity series in
Fig. 4(A) up to lagk = 30. We observe that onlyr1 is non-
zero andφ̂kk tails off, which identifiesp = 0 andq = 1 ([11],
pp. 186). As we have generally made similar observations
regarding channel popularity series for other channels, we
derive an ARIMA(0, 2, 1) model to use in our prediction in
each streaming channel.

Having identified an ARIMA(0, 2, 1) model, the channel
popularity prediction in channelc at time t + 1, n̄c

t+1 can be
expressed as follows:

n̄c
t+1 = 2nc

t − nc
t−1 + ac

t+1 − θcac
t , (3)

whereθc is the coefficient for the random error termac
t and

can be estimated with a least squares algorithm. When we
use (3) for prediction in practice, the random error at the
future time t + 1, i.e., ac

t+1, can be treated as zero, and the
random error at timet can be approximated byac

t = nc
t − n̄c

t

[11]. Therefore, the prediction function is simplified to the
following. We note that the derived model is desirably simple,
with only one coefficientθc to be estimated:

n̄c
t+1 = 2nc

t − nc
t−1 − θc(nc

t − n̄c
t). (4)

To dynamically refine the model for an accurate prediction
of the popularity of channelc over time, we propose to
carry out the forecasting in a dynamic fashion: To start, the
ARIMA (0, 2, 1) model for channelc is trained with its channel
popularity statistics in the most recentN1 time steps, and the
value of the coefficientθc is derived. Then at each subsequent
time t, n̄c

t+1 is predicted using (4), and the confidence interval
of the predicted value (at a certain confidence level,e.g.,
95%) is computed. When timet + 1 comes, the actual
number of peers,nc

t+1, is collected and tested against the
confidence bounds. If the real value lies out of the confidence
interval and such prediction errors have occurredT1 out of T2

consecutive times, the forecasting model is retrained, andthe
above process repeats. We note that the values ofT1 and T2

represent a tradeoff between the accuracy of the model and
the computational overhead incurred. The empirical valuesof
T1 = 8 and T2 = 10 work well in our experiments to be
presented in Sec. V.

C. Dynamic learning of the streaming quality function

Next, we dynamically derive the relationship among stream-
ing quality, server bandwidth usage, and the number of peers
in each channelc, denoted as the streaming quality function
F c in (2), with a statistical regression approach.

From the trace study in Sec II-C, we have observedqc ∝

(sc)αc

in each specific channelc, whereαc is the exponent of
sc, e.g., qc ∝ (sc)0.4 in Fig. 3(B)-1.4 We also observedqc ∝

(nc)βc

, whereβc is the exponent ofnc, e.g., qc ∝ (nc)−1 in
Fig. 3(B)-3. As we have made similar relationship observations
from a broad trace analysis of different channels over different
times, we model the streaming quality function as

4A more accurate model for the relation in Fig. 3(B)-1 (derived using
our algorithm that follows in the section) isqc = 1.15(sc)0.37. The
goodness of fit tests applied over the converted linear regression model,
log q

c = log 1.15+0.37 log s
c, validated the significance of the coefficients

1.15 and0.37.

qc = γc(sc)αc

(nc)βc

, (5)

whereγc > 0 is a weight parameter. Such a function model
is advantageousin that it can be transformed into a multiple
linear regression problem, by taking logarithm at both sides:

log(qc) = log(γc) + αc log(sc) + βc log(nc).

Let Qc = log(qc), Sc = log(sc), N c = log(nc), Γc =
log(γc). We derive the following multiple linear regression
problem

Qc = Γc + αcSc + βcN c + ǫc, (6)

whereSc andN c are regressors,Qc is the response variable,
andǫc is the error term.Γc, αc, andβc are regression param-
eters, which can be estimated with least squares algorithms.

In order to accurately capture the relationship among the
quantities over time, we dynamically re-learn the regression
model in (6) for each channelc in the following manner.
To start, the designated server trains the regression modelfor
channelc with collected channel popularity statistics, server
bandwidth usage and channel streaming quality during the
most recentN2 time steps, and derives the values of regression
parameters. At each following timet, it uses the model
to estimate the streaming quality based on the used server
bandwidth and the collected number of peers in the channel
at t, and examines the fitness of the current regression model
by comparing the estimated value with the collected actual
streaming quality. If the actual value exceeds the confidence
interval of the predicted value forT1 out of T2 consecutive
times, the regression model is retrained with the most recent
historical data.

In summary, we emphasize that the goal for the modeling
of the streaming quality function is to accurately capture
the relationship among the streaming quality, server capacity
usage, and the number of peers in a channel at each time.
While one may consider using peer upload bandwidths as
variables, we choose to employ the number of peers instead
whose values can be much easier collected in practical sys-
tems, and to represent the influence of the supply/demand
of peer bandwidths on the streaming quality using both the
number of peersnc and the dynamically learned parameters
γc andβc in (5). We further note that the signs of exponents
αc and βc in (5) reflect positive or negative correlations
between the streaming quality and its two deciding variables,
respectively. Intuitively, we should always have0 < αc < 1,
as the streaming quality should not be worse when more
server capacity is provisioned, and its improvement slows
down with more and more server capacity provided, until it
finally reaches the upper bound of1. On the other hand, the
sign ofβc could vary over time, depending on the relationship
between the demand for streaming bandwidth at peers and
the supply of peer upload bandwidth at different times: on
one hand, the streaming quality can be improved with more
high-contribution peers (e.g., Ethernet peers) in the channel
(the case ofβc > 0); on the other hand, if more peers join
the channel with an average upload bandwidth lower than the
required streaming rate, a downgrade of the streaming quality
would occur (the case ofβc < 0). The different cases ofαc

andβc are to be further investigated in our experiments using

7

the traces in Sec. V-A2.

D. Optimal allocation of server capacity

Based on the predicted channel popularity and the most
recently derived streaming quality function for each channel,
we are now ready to proactively assign the optimal amount
of server capacity to each channel for timet + 1, by solving
problemProvision(t+1) in (1). Replacingqc with its function
model in (5), we transform the problem in (1) into:

Provision(t+1)’:
max G (7)

subject to
∑

c∈C
sc

t+1 ≤ U, (8)

sc
t+1 ≤ Bc

t+1, ∀c ∈ C, (9)

sc
t+1 ≥ 0, ∀c ∈ C, (10)

where the objective function
G =

∑

c∈C
pcnc

t+1q
c
t+1 =

∑

c∈C
pcγc(nc

t+1)
(1+βc)(sc

t+1)
αc

,
and Bc

t+1 = (γc(nc
t+1)

βc

)−
1

αc , denoting the maximal server
capacity requirement for channelc at timet+1, that achieves
qc
t+1 = 1.
The optimal server bandwidth provisioning for each chan-

nel, sc∗
t+1,∀c ∈ C, can be obtained with a water-filling

approach. The implication of the approach is to maximally
allocate the server capacity, at the total amount ofU , to the
channels with the current largest marginal utility, as computed
with dG

dsc
t+1

, as long as the upper bound ofsc
t+1 indicated

in (9) has not been reached. The marginal utility,dG
dsc

t+1
,

represents how much the streaming quality in a channelc can
be enhanced by allocating one unit more server capacity to this
channel, which is decided by the priority, the number of peers,
and the server capacity already allocated into the channel.

In Ration, the server capacity assignment is periodically
carried out to adapt to the changing demand in each of the
channels over time. To minimize the computation overhead,
we propose anincremental water-filling approach, that adjusts
server capacity shares among the channels from their previous
values, instead of a complete re-computation from the very
beginning.

The incremental water-filling approach is given in Table II.
To better illustrate the idea ofwater filling, we utilize the
reciprocal of marginal utility dG

dsc
t+1

, i.e., (dG
dsc

t+1
)−1, in our

algorithm description, and maximally assign server capacity
to the channels with the current smallest value of(dG

dsc
t+1

)−1,
equivalently.

We explain the incremental water-filling approach with a 5-
channel example in Fig. 5. In this figure, each channel is repre-
sented by one bin. The volume of water in binc is (sc)(1−αc),
the width of bin c is wc = pcγcαc(nc

t+1)
(1+βc), and thus

the water level of the bin represents(dG
dsc)−1 = (sc)(1−αc)

wc

for channelc. As 0 < αc < 1, each bin has a maximal

height,
(Bc

t+1)
(1−αc)

wc
, which is represented by the dashed line

in each bin. The incremental water-filling approach starts with
the optimal server capacity allocation at the current timet,
i.e., sc = sc∗

t ,∀c ∈ C (Step 1 in Table II). It first computes
whether there exists any surplus of the overall provisioned

TABLE II
INCREMENTAL WATER-FILLING APPROACH

1. Initialize
sc ← sc∗

t , ∀c ∈ C.
Bc

t+1 ← (γc(nc
t+1)

βc

)−
1

αc , ∀c ∈ C.
2. Compute current surplus of server capacity

surplus= U −
P

c∈C
sc.

for all c ∈ C
if sc > Bc

t+1

surplus= surplus+ (sc −Bc
t+1)

end if
end for

3. Allocate surplus to channels

Compute(dG
dsc)−1 = (sc)1−αc

pcγcαc(nc
t+1)(1+βc) , ∀c ∈ C.

while surplus> 0 and not allsc has reachedBc
t+1, ∀c ∈ C

find the channelc0 with the smallest value of(dG
dsc)−1 and

sc0 < B
c0
t+1.

sc0 ← sc0 + δ, surplus← surplus− δ.
update(dG

dsc0)−1.
end while

4. Adjust channel capacity assignment towards the same
marginal utility

if not all sc has reachedBc
t+1, ∀c ∈ C

find channel cmin with the current smallest value of
(dG
dsc)−1 andsc < Bc

t+1.
find channel cmax with the current largest value of

(dG
dsc)−1.

while ‖ (dG
dscmin)−1 − (dG

dscmax)−1 ‖> ǫ
scmin ← scmin + δ,scmax ← scmax − δ.
update(dG

dsc)−1 for channelscmin andcmax.
find channelcmin with the current smallest(dG

dsc)−1 and
sc < Bc

t+1.
find channelcmax with the current largest(dG

dsc)−1.
end while

end if
5. sc∗

t+1 ← sc, ∀c ∈ C.

server capacity, that occurs when not all the server capacity
has been used with respect to the current allocation,i.e.,
U −

∑

c∈C
sc > 0, or the allocated capacity of some channel

c exceeds its maximal server capacity requirement for time
t + 1, i.e., sc > Bc

t+1 (e.g., the case that the water level
goes above the maximal bin height for bin1 in Fig. 5(A).)
If so, the overall surplus is computed (Step 2 in Table II)
and allocated to the channels whose maximal server capacity
requirement has not been reached, starting from the channel
with the current maximum marginal utilitydG

dsc , i.e., lowest
water level (Step 3 in Table II). For the example in Fig. 5, the
surplus portion of the water in bin1 in (A) is reallocated to
bin 2 and bin4, with the results shown in (B). After all the
surplus has been allocated, the server capacity assignmentis
further adjusted among the channels towards a same marginal
utility (water level), by repeatedly identifying the channel with
the current smallest marginal utility and the channel with
the current largest marginal utility, and moving bandwidth
from the former to the latter,i.e., the water in the bin with
the highest water level (largest value of(dG

dsc)−1) is flooded
into the bin that has the lowest water level (smallest value
of (dG

dsc)−1) and has not reached its maximal bin height yet
(Step 4 in Table II). This process repeats until all channels
have reached the same marginal utility or have reached their

8

w5w1

(s)
1-a

d G
 d s

c()
-1

c

w2 w4w3 w5w1

(s)
1-a

d G
 d s

c()
-1

c

w2 w4w3 w5w1

(s)
1-a

d G
 d s

c()
-1

c

w2 w4w3

(A) (B) (C)

c
c c

Fig. 5. An illustration of the incremental water-filling approach with5 channels.

respective maximum server bandwidth requirement. For the
example in Fig. 5(B), the water from bin3 and 5 are filled
into bin 2 and 4, until bin 4 reaches its maximal height and
bins 2, 3, and 5 achieve the same water level, as shown in
Fig. 5(C).

Such an incremental water-filling approach derives the opti-
mal server capacity provisioning for all channels at timet+1,
as established by the following theorem:
Theorem 1. Given the channel popularity prediction
nc

t+1,∀c ∈ C, and the most recent streaming quality function
qc
t+1 = γc(sc

t+1)
αc

(nc
t+1)

βc

, ∀c ∈ C, the incremental water-
filling approach obtains an optimal server capacity provision-
ing across all the channels for timet + 1, i.e., sc∗

t+1,∀c ∈ C,
which solves the optimization problemProvision(t+1) in (1).

We postpone the proof of the theorem to Appendix A.

E. Ration: the complete algorithm

Our complete algorithm is summarized in Table III, which
is periodically carried out on a designated server in each ISP.
The only peer participation required is to have each peer in
the ISP send periodic heartbeat messages to the server, each
of which includes its current buffering level.

We note that in practice, the allocation interval is determined
by the P2P streaming solution provider based on need,e.g.,
every30 minutes, and peer heartbeat intervals can be shorter,
e.g., every5 minutes.

We further remark on the computational complexity of the
algorithm in Table III. The main computation for steps 2 and
3 lies in the training of ARIMA or the regression model,
with least squares algorithms atO(N3) whereN is the size
of the training sample set. As both steps are carried out
for each of theM channels, their complexity are at most
O(MN1

3) andO(MN2
3), respectively. We generally need no

more than30−50 samples to train an ARIMA(0, 2, 1) model,
i.e., N1 < 50, and even fewer to derive the regression model
[11], [12] (thus only a small amount of historical data needs
to be maintained at the server for the execution ofRation).
Further considering that the training is only carried out when
necessary (i.e., when the accuracy of the models has fallen), we
conclude that the two steps incur low computational overhead
in reality. At step 4, we have designed the incremental water-
filling approach, which only involves local adjustments for
channels that are affected. In summary, the algorithm involves
low computational overhead, and can be carried out in a
completely online fashion to adapt to the dynamics of P2P
systems.

IV. PRACTICAL IMPLICATIONS OF Ration

We now discuss the practical application ofRation in real-
world P2P live streaming systems. In practical systems with

TABLE III
RATION : THE ONLINE SERVER CAPACITY PROVISIONING ALGORITHM

At time t, the designated server in each ISP

1. Peer statistics collection
Collect the number of active peers in each channel,nc

t , ∀c ∈
C, with peer heartbeat messages.

Collect per-peer buffering level statistics from the heartbeat
messages, and derive the streaming quality for each channel,
qc

t , ∀c ∈ C.

2. Channel popularity prediction for each channelc ∈ C
Test if nc

t is within the confidence interval of̄nc
t , the value

predicted at timet− 1.
If nc

t lies out of the confidence interval forT1 out of T2

consecutive times, retrain the ARIMA(0, 2, 1) model for channel
c with the most recentN1 peer number statistics using least
squares algorithm.

Predict the channel popularity at timet+1 by n̄c
t+1 = 2nc

t−
nc

t−1−θc(nc
t−n̄c

t), whereθc is the parameter in ARIMA(0,2,1).
→ Channel popularity predictions for all channels derived.

3. Learning streaming quality function for each channelc ∈ C
Estimate the streaming quality for timet with the current

streaming quality function model:̄qc
t = γc(sc

t)
αc

(nc
t)

βc

.
Test if the actualqc

t is within the confidence interval of̄qc
t .

If qc
t lies outside of the confidence interval forT1 out of T2

consecutive times, retrain the regression model in Eq. (6) with
statistics in the most recentN2 times, using the least squares
algorithm.
→ Current streaming quality functions for all channels derived.

4. Proactive server capacity provisioning for all the channels
Adjust server capacity assignment among all the channels

with the incremental water-filling approach in Table II.
→ Optimal server capacity provisioning,sc∗

t+1, ∀c ∈ C, derived.

unknown demand for server capacity in each ISP,Ration is
able to fully utilize the currently provisioned server capacity,
U , and meanwhile provide excellent guidelines for the adjust-
ment ofU , based on different relationships between the supply
and demand for server capacity.

A. Service differentiation across channels in tight supply-
demand relations

In most typical scenarios, the system is operating in a
mode with tight supply-demand relations,i.e., the total server
capacity can barely meet the demand from all channels to
achieve the best streaming qualities. In this case,Rationguar-
antees the limited server capacity is most efficiently utilized
across the channels, respecting their demand and priority.
With its water-filling approach, the preference in capacity
assignment is based on the marginal utility of each channel,
dG
dsc = pcnc dqc

dsc , as determined by the priority and popularity
of the channel, and the marginal improvement of its streaming
quality upon a unit increase of server capacity. Given the

9

limited server capacity deployed in the ISP, the streaming
solution provider can differentiate the streaming qualityof
the channels by manipulating the priority levels assigned to
the channels. The following theorem states the proportional
service differentiation across channels provided byRation.
Theorem 2. The optimal server capacity provisioning in
Ration in (1) provides the following streaming quality differ-
entiation between any two channelsc and c̄, which do not
achieve the best streaming quality of1 in the allocation:

(qc
t+1)

1−αc

αc

(qc̄
t+1)

1−αc̄

αc̄

=
pcαc(γc)

1
αc (nc

t+1)
αc+βc

αc

pc̄αc̄(γ c̄)
1

αc̄ (nc̄
t+1)

αc̄+βc̄

αc̄

,

∀c, c̄ ∈ C whereqc
t+1 < 1 and qc̄

t+1 < 1. (11)

We postpone the proof to Appendix B. Priority levels of
different channels can be set according to Eq. (11) to achieve
desired relative streaming quality levels across the channels.
More specifically, ifαc ≈ αc̄ ≈ α (we have observed similar
αc values for many different channels in our trace studies),
we have the following approximation:

qc
t+1

qc̄
t+1

=
(pc)

α
1−α (γc)

1
1−α (nc

t+1)
α+βc

1−α

(pc̄)
α

1−α (γ c̄)
1

1−α (nc̄
t+1)

α+βc̄

1−α

.

In this case, if the streaming solution provider wishes to
achieve a better streaming quality in channelc than that in
channelc̄, i.e., qc

t+1 > qc̄
t+1, they may set the priorities for

the channels,pc and pc̄, to satisfy the following conditions:

pc

pc̄ > (γc̄

γc)
1
α

(nc̄
t+1)

α+βc̄

α

(nc
t+1)

α+βc

α

. A similar priority assignment method

can be applied to determine the priority levels of multiple
channels in the system.

B. Total server capacity adjustment in all supply-demand
relations

Ration is not only useful in optimal utilization of deployed
server capacity; the channel popularity prediction and stream-
ing function learning modules inRation can further be used
to determine the minimum overall amount of server capacity
to be deployed in each ISP, guaranteeing desired levels of
streaming qualities in all the channels.

If the P2P streaming system is operating at the tight supply-
demand mode in an ISP and if the streaming solution provider
wishes to boost the streaming quality of all the channels to a
best value around1, they may compute how much more server
capacity to be added, by comparing the current provisioning
with the overall required server capacity to achieveqc

t+1 =
1,∀c ∈ C. The latter amount is

∑

c∈C
Bc

t+1, whereBc
t+1 is

the maximum server capacity needed for channelc as in (9) in
Provision(t+1)’, derived using the streaming quality function
in (5) by settingqc

t+1 = 1.
Similarly, if the system is operating with extremely tight

supply-demand relations,e.g., the flash crowd scenario, most
server capacity is assigned to one or few channels that are
involved in the flash crowd, and most of the other channels are
starving with no or very little server bandwidth. The channel
popularity prediction inRation can be used to detect such a
flash crowd, and to trigger the deployment of backup server

resources. The extra amount to add can be computed with the
current streaming quality function derived for the respective
channels, according to the targeted streaming quality.

If the system is operating at the over-provisioning mode
in an ISP, i.e., the total deployed server capacity exceeds
the overall demand from all channels to achieve their best
streaming quality,Ration allocates the necessary amount of
server capacity needed for each channelc to achieve its best
streaming qualityqc

t+1 = 1. This is guaranteed by (9) in
Provision(t+1)’, as the server capacity provisioned to each
channel may not exceed the amountBc

t+1, that achieves
qc
t+1 = 1. When the P2P streaming solution provider discovers

that the system is always operating at the over-provisioning
mode, they may reduce their server capacity deployment in
the ISP to the necessary overall amount.

C. Channel deployment in each ISP

With Ration, the P2P streaming solution provider can dy-
namically make decisions on channel deployment in each ISP,
when it is not possible or necessary to deploy every one of
the hundreds or thousands of channels in each ISP. When a
channel is not allocated any server capacity due to very low
popularity or priority during a period of time, the channel is
not to be deployed in the ISP during this time.

D. Server capacity implementation

Finally, we note that the server capacity provisioning in
each ISP can be implemented in practice with a number
of streaming servers deployed, with the number decided by
the total capacity to be provisioned and the upload capacity
of each server. Inside each ISP, the servers can be further
deployed in different geographical areas, and the derived
server capacity provisioning for each channel can be dis-
tributed among several servers as well, in order to achieve
load balancing and streaming delay minimization.

V. EXPERIMENTAL EVALUATIONS WITH TRACE REPLAY

Our evaluation ofRation is based on its implementation in
a multi-ISP mesh-based P2P streaming system, which replays
real-world streaming scenarios captured by the traces.

The P2P streaming system is implemented in C++ over
a P2P emulation platform on a high-performance cluster of
50 Dell 1425SC and Sun v20z dual-CPU servers, deployed
in the networking research laboratory at the University of
Toronto [13]. On this platform, we are able to emulate
hundreds of concurrent peers on each server, and emulate all
network parameters, such as node capacities, link bandwidth
bottlenecks, messaging delays, etc. Actual media streams are
delivered over TCP connections among the peers, and control
messages are sent by UDP. The platform supports multiple
event-driven asynchronous timeout mechanisms with different
timeout periods, and peer joins and departures are emulated
with events scheduled at their respective times.

The P2P streaming protocol we implemented includes both
the standard pull protocol and the unique algorithms employed
by UUSee, as introduced in Sec. II. Without loss of generality,

10

0

1

2

3

4
x 10

4
N

u
m

b
e

r
o

f
p

e
e

rs

 Actual number

 Predicted number

 95% confidence interval

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A) CCTV1

0

500

1000

1500

N
u

m
b

e
r

o
f
p

e
e

rs

 Actual number
 Predicted number
 95% confidence interval

Date
2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B) CCTV12

-400

Fig. 6. Prediction of the number of peers with ARIMA(0, 2, 1).

we deploy one server for each ISP, implementing both the
tracker server and streaming server functions.Ration is also
implemented on each of the servers, with800 lines of C++
code. The server capacity allocation for each channel is
implemented by limiting the total number of bytes sent over
the outgoing connections from the server for the channel in
each unit time.

Our experiments are carried out on realistic replays of the
traces. We emulate peer dynamics based on the evolution of
the number of peers in each channel from the traces: when the
number of peers rises between two consecutive time intervals,
we schedule a corresponding number of peer join events
during the interval; when the number of peers decreases, peer
departure events are scheduled for a corresponding number of
randomly selected peers. Upon arrival, each peer acquires30
initial upstream peers, and the P2P topology evolves based on
the same peer selection protocol as UUSee employs. The node
upload capacities are emulated using values from the traces,
which follow a heavy-tail distribution in the major range of
50 Kbps to 10 Mbps. The streaming rate of each channel is
400 Kbps, with the streams divided into1-second blocks for
distribution. The size of the playback buffer on the peers is
set to30 seconds. Each peer reports its buffering level to the
server in its ISP every20 seconds with heartbeat messages, and
the server processes them and adjusts the capacity allocation
every60 seconds. We note that this represents much expedited
settings, as these intervals can be much longer in real-world
systems. With this setting, we are not only able to accelerate
our experiments that emulate real-world streaming over a long
period of time, but also to demonstrate the speed and efficiency
of our algorithm even when it is executed in very short time
scales.

A. Performance of Ration components

We first examine the effectiveness of each composing algo-
rithm in Ration. In this set of experiments, we focus on the
streaming inside one ISP, with one server of80 Mbps upload
capacity and5 channels. We use the peer number statistics of
5 channels from the traces,CCTV1, CCTV4, CCTV2, CCTV7,
and CCTV12, in one ISP (ChinaTelecom) during the week
of February 13 – 19, 20075. The 5 channels have a regular
instantaneous number of peers at the scale of2000, 500,
400, 150 and100, respectively. The statistics of CCTV1 and

5To expedite our experiments, each peer number time series from the traces
is sampled, such that the evolution of the P2P system in each day is emulated
within half an hour.

0
2
4 gamma

0

0.5

1 alpha

−0.5
0

0.5
1 beta

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

 Actual quality
 Predicted quality
 95% confidence interval

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

Fig. 7. Dynamic learning of the streaming quality function forCCTV1.

CCTV4 also captured the flash crowd scenario on February 17,
when the Chinese New Year celebration show was broadcast
on the two channels.

1) Prediction of the number of peers:Fig. 6 presents the
results of prediction with ARIMA(0, 2, 1) for the popular
channel CCTV1 and the less popular channel CCTV12, re-
spectively. In the dynamic prediction, the training set size is
N1 = 30, and the error count parameters areT1 = 8 and
T2 = 10. The predicted numbers for both channels largely
coincide with the actually collected number of peers, both at
regular times and during the flash crowd, no matter whether
the prediction confidence interval is large or small at different
times. This validates the correctness of our model identifica-
tion, as well as the accuracy of our dynamic prediction.

2) Dynamic streaming quality function:Fig. 7(A) plots the
derived parameter values for the dynamic streaming quality
function of CCTV1. In the dynamic regression, the training
set size isN2 = 20, the error count parameters areT1 = 8
andT2 = 10. We see thatγc is all positive, the values ofαc

are always within the range of0−1, andβc may be positive or
negative at different times. We have observed similar results
with the derived streaming quality functions of other channels.
This validates our analysis in the last paragraph of Sec. III-C.
During the flash crowd scenario, which hereinafter is marked
with a vertical line in the figures,βc is significantly below
zero, revealing a negative impact on the streaming quality with
a rapidly increasing number of peers in the channel.

Fig. 7(B) plots the actually measured streaming quality in
the channel against its estimated value, calculated with the
derived streaming quality function at each time. The actual
streaming quality closely follows the predicted trajectory at
most times, including the flash crowd scenario, which exhibits
the effectiveness of our dynamic regression.

3) Optimal provisioning among all channels:We now
investigate the optimal server capacity provisioned to different
channels over time. In this experiment, we focus on examining
the effects of channel popularity on capacity allocation, and
set the priorities for all5 channels to the same value of1.

Fig. 8(A) and (B) show the server capacity allocated to
each of the5 channels, and their actually achieved streaming
quality at different times. We observe that, generally speaking,
the higher the channel’s popularity is, the more server capacity
it is assigned. This can be explained by the marginal utility
of the channels used in the water-filling allocation ofRation,
dG
dsc = pcnc dqc

dsc = pcγcαc(nc)(1+βc)

(sc)1−αc . As βc > −1 is observed
in our previous experiment, the marginal utility is positively

11

1200

1400

1600

1800

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

 Optimal provisioning
 Proportional provisioning

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(C)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(D)

S
e

rv
e

r
c
a

p
a

c
it
y
 p

ro
v
is

io
n

in
g

 (
M

b
p

s
)

12

16

20

24
 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

 UUSee

Fig. 8. Server capacity provisioning for5 non-prioritized channels: (A)
Server capacity provisioning withRation, (B) Streaming quality achieved
with Ration, (C) Streaming quality achieved with proportional allocation, (D)
Comparison of objective function values.

correlated with the number of peers, and thus the more popular
channel is assigned more server capacity.

On the other hand, in Fig. 8(B), we do not observe evident
correlation between the channel popularity and its achieved
streaming quality, as the latter is decided by both allocated
server capacity (positively) and the number of peers (positively
or negatively at different times). Nevertheless, we show that
our water-filling assignment achieves the best utilizationof the
limited overall server capacity at all times, with a comparison
study to a proportional allocation approach.

The proportional allocation approach implements the same
protocol as employed in UUSee, except its server capacity
allocation, which goes as follows: At each timet, the server
capacity is proportionally allocated to the channels, based only
on their predicted number of peers for timet + 1. Fig. 8(C)
shows that the most popular channel, CCTV1, achieves better
streaming quality with this proportional allocation as com-
pared to that in Fig. 8(B), at the price of downgraded quality
for the other channels, especially during the flash crowd. This
is because CCTV1 now obtains more than half of the total
server capacity at regular times, and almost all during the flash
crowd scenario.

With the streaming quality results in Fig. 8(B) and (C), we
compute the values of the objective function ofProvision(t+1)
in (1), and plot them in Fig. 8(D). Given the same priority for
all the channels, the value of the objective function at each
time represents the total number of peers in all the channels
that achieve satisfying buffering level at the time. The values
from the proportional allocation are consistently lower than
those achieved with our water-filling approach, exhibitingthe
optimality of the server capacity utilization withRation.

In our experiments, we have also comparedRation with
the original UUSee protocol, in which no allocation across
channels is done at all. We have observed more unstable and
lower streaming qualities in all the channels than those shown
in Fig. 8(B) and (C), and lower objective function values than

0

16

48

32

S
e

rv
e

r
c
a

p
a

c
it
y
 p

ro
v
is

io
n

in
g

 (
M

b
p

s
)

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

64

80

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

0

16

48

32

S
e

rv
e

r
c
a

p
a

c
it
y
 p

ro
v
is

io
n

in
g

 (
M

b
p

s
)

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

64

80

0

0.5

1

S
tr

e
a

m
in

g
 q

u
a

lit
y

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

 CCTV1

 CCTV4

 CCTV2

 CCTV7
 CCTV12

(C) (D)

Fig. 9. Server capacity provisioning for 5 prioritized channels withRation:
(A)(B) 5 streaming quality levels; (C)(D) 3 streaming qualitylevels.

those achieved by the proportional provisioning approach,as
shown in Fig. 8(D).

4) Effectiveness of channel prioritization:In the next exper-
iment, we study the effect of channel prioritization on server
capacity provisioning withRation. We investigate two cases:
(1) We wish to achieve differentiated streaming qualities across
all 5 channels, withqcctv1 > qcctv4 > qcctv2 > qcctv7 >

qcctv12; (2) We wish to achieve three streaming quality levels,
with qcctv1 > qcctv4 ≈ qcctv2 > qcctv7 ≈ qcctv12. We set the
following channel priority levels in the two cases, respectively:
(1) pcctv1 = 500, pcctv4 = 250, pcctv2 = 200, pcctv7 =
75, pcctv12 = 100; (2) pcctv1 = 500, pcctv4 = 220, pcctv2 =
200, pcctv7 = 75, pcctv12 = 110. These priority values are
derived based on Eqn. (11) in Sec. IV to guarantee the targeted
streaming quality differentiation, using the popularity,γc, αc

and βc derived for respective channels. The experimental
results are plotted in Fig. 9.

Comparing Fig. 9(A) and (C) to Fig. 8(A), we observe
further differentiated server capacities among the channels,
where the channels with higher priority and popularity are
allocated more capacity. In Fig. 9(B) and (D), we observe
differentiated streaming quality levels across the channels,
which meet our expectations: we can observe 5 different
streaming quality levels in Fig. 9(B) and 3 in Fig. 9(D).
These demonstrate the effectiveness of channel prioritization
in Ration, which facilitates the streaming solution provider
to differentiate services across channels, when the supply-
demand relation of server capacity is tight in the system.

B. Effectiveness of ISP-aware server capacity provisioning

Next, we evaluateRation in multi-ISP streaming scenarios.
4 ISPs are emulated by tagging servers and peers with their
ISP IDs. Again,5 channels,CCTV1, CCTV4, CCTV2, CCTV7,
CCTV12, are deployed in the ISPs, with peer number statistics
in each ISP extracted from those in4 China ISPs,Telecom,
Netcom, Unicom and Tietong, from the traces. While a fixed
overall server capacity is used in the previous experiments, in

12

0

80

160

240

320

400
O

v
e

ra
ll

s
e

rv
e

r
c
a

p
a

c
it
y
 (

M
b

p
s
)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(A)

0

0.8

1.6

2.4

3.2

O
v
e

ra
ll

in
te

r−
IS

P
 P

2
P

 t
ra

ff
ic

 (
G

b
p

s
)

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

(B)

Fig. 10. P2P live streaming for5 channels in4 ISPs: without ISP awareness.

the following experiments, we do not cap the server capacity,
but derive withRation the minimal amount of overall server
capacity needed to achieve the best streaming qualities for
all the channels in the system (i.e., qc = 1,∀c ∈ C), which is
referred to asUB hereinafter. At each time during the dynamic
provisioning,UB is derived by summing up the upper bound
of server capacity required for each of the channels,Bc

t+1, as
given in (9), at the time. Our focus is to compare the total
server capacityUB required when ISP awareness is in place
and not, and the inter-ISP traffic that is caused. The channels
are not prioritized in this set of experiments.

1) Without ISP awareness:In the first experiment, we
deploy one server in the system, and stream with a peer
selection protocol that is not ISP-aware,i.e., each peer is
assigned partners that can be any other peers in the entire
network. The overall server capacityUB used on the server
over time is shown in Fig. 10(A), and the total inter-ISP P2P
traffic in the system is plotted in Fig. 10(B).

2) With full ISP awareness:In the second experiment, we
deploy one server in each ISP, and constrain all streaming
traffic inside each ISP by fully ISP-aware peer selection,i.e.,
peers are only assigned partners inside the ISP. There is no
inter-ISP traffic in this case. The server capacity used on
the server in each ISP is illustrated with the area plot in
Fig. 11. Comparing Fig. 11 to Fig. 10(A), we can see that
more overall server capacity is needed in the system when the
traffic is completely restricted inside each ISP with per-ISP
server capacity deployment, as peers now have fewer choices
of supplying neighbors and may have to resort more to the
server in their respective ISPs. However, the increase in the
total server capacity usage is non-significant. The difference
is only larger during the flash crowd, when it becomes very
difficult for peers to identify enough supplying peers with
available bandwidth inside the ISP.

3) Tradeoff between server capacity and inter-ISP traffic:
In the final experiment, we provision a total server capacityin
the system that is between the amount used in 1) and that used
in 2), and examine the resulting inter-ISP traffic. Specifically,
let the overall server capacity usage shown in Fig. 10(A) be
UB min and that shown in Fig. 11 beUB max. We reduce the
server capacity provisioned on each server in each ISP, such
that the overall server capacity at each time is at the value of
UB min + φ(UB max − UB min) at the time. In this case, peers
are allowed to connect to servers/peers across ISPs if they fail
to acquire sufficient streaming bandwidth within the ISP.

The experiment is repeated by settingφ to 3
4 , 1

2 , 1
4 or 0,

that represent different levels of the total server capacity. The

0

80

160

240

320

400

480

O
v
e

ra
ll

s
e

rv
e

r
c
a

p
a

c
it
y
 (

M
b

p
s
)

 ISP1

 ISP2

 ISP3

 ISP4

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

Fig. 11. P2P live streaming for
5 channels in4 ISPs: with full ISP
awareness.

0

0.8

1.6

2.4

3.2

O
v
e

ra
ll

in
te

r−
IS

P
 P

2
P

 t
ra

ff
ic

 (
G

b
p

s
)

 Phi=3/4

 Phi=1/2

 Phi=1/4

 Phi=0

Date

2/13 2/14 2/15 2/16 2/17 2/18 2/19

Fig. 12. Server capacity provision-
ing vs. inter-ISP traffic: a tradeoff.

results in Fig. 12 show an increase of inter-ISP traffic with the
decrease of server capacity provisioning. Further comparing
theφ = 0 case in Fig. 12 to Fig. 10(B), we observe that while
the total server capacity is the sameUB min in both cases, a
smaller amount of inter-ISP P2P traffic is involved with the
ISP-aware peer selection than without any ISP awareness.

VI. RELATED WORK

With the successful Internet deployment of mesh-based
P2P live streaming systems [14], [2], [3], [4], significant
research efforts have been devoted to their measurements and
improvements. With respect to measurements, existing studies
[15], [16], [17], [18], [19], [20] mostly focus on the behavior
of peers, with little attention devoted to the streaming servers,
which nevertheless contribute significantly to the stability of
P2P live streaming.

Since the seminal work of Coolstreaming [14], various
improvements of peer strategies in such mesh-based P2P
live streaming have been proposed,e.g., the enhancement of
the block pulling mechanism [21], the optimization of peer
connectivity for content swarming [22], and the exploration of
inter-overlay cooperation [23]. To the best of our knowledge,
this paper presents the first detailed measurements of server
capacity utilization in a live P2P streaming system, and thefirst
online server capacity provisioning mechanism to address the
dynamic demand in multiple concurrent channels. A prelim-
inary report of this work appeared in INFOCOM 2008 [24].
This paper represents a substantial revision and extension,
with solid studies of the UUSee server capacity utilization
over a longer trace period and complete discussions on the
design, analysis and application of the online server capacity
provisioning algorithm.

With respect to analytical work related to the subject of
server capacity, Daset al. [25] have shown, with a fluid
model, the effects of server upload capacities on the aver-
age peer download time in BitTorrent-like P2P file sharing
applications. Also based on fluid theory, Kumaret al. [10]
modeled streaming quality in a mesh-based P2P streaming
system in terms of both server and peer upload capacities.
As compared to these studies, our work focuses entirely on
the practicality of a dynamic server capacity provisioning
mechanism. Other than using simplified modeling assumptions
such as Poisson arrivals, we employ time series forecasting
techniques to derive the evolution of the number of peers, and
use dynamic regression approaches to learn the relation among

13

the streaming quality, server capacity and the number of peers
at different times.

There have recently emerged a number of discussions on the
large amount of inter-ISP traffic brought by P2P applications,
with respect to BitTorrent file sharing [26], [27], P2P Video
on Demand [5], and P2P software update distribution [28].
Approaches for the localization of P2P traffic inside ISP
boundaries have been proposed, which mostly focus on ISP-
aware peer selection strategies[27], [29], [30]. In contrast,
our study is the first to investigate the impact and evolution
of inter-ISP P2P live streaming traffic, and our proposal
emphasizes on the dynamic provisioning at the server side
on a per-ISP basis to maximally guarantee the success of ISP-
aware P2P streaming.

VII. C ONCLUDING REMARKS

This paper focuses on dynamic server capacity provision-
ing in multi-ISP multi-channel P2P live streaming systems.
In practice, we believe that it is important to refocus our
attention on dedicated streaming servers: based on our detailed
analysis of 10 months worth of traces from a large-scale
P2P streaming system, available server capacities are not
able to keep up with the increasing demand in such real-
world commercial systems, leading to a downgrade of peer
streaming quality. Emphasizing on practicality, our proposed
algorithm,Ration, is able to dynamically predict the demand in
each channel, using an array of dynamic learning techniques,
and to proactively provision optimal server capacities across
different channels. With full ISP awareness,Ration is carried
out on a per-ISP basis, and is able to guide the deployment
of server capacities and channels in each ISP to maximally
constrain P2P traffic inside ISP boundaries. Our performance
evaluation ofRation is highlighted with the replay of real-
world streaming traffic from our traces. We show thatRation
lives up to our expectations to effectively provision server
capacities according to the demand and channel priority over
time.

APPENDIX A
PROOF OFTHEOREM 1

Proof: Let sc∗
t+1,∀c ∈ C, be an optimal solution to the

optimization problem in (7). Introducing Lagrangian multiplier
λ for the constraint in (8),ν = (νc,∀c ∈ C) for the constraints
in (9) andµ = (µc,∀c ∈ C) for the constraints in (10), we
obtain the KKT conditions for the problem as follows (pp.
244, [31]):

X

c∈C

s
c∗
t+1 ≤ U, (12)

λ
∗ ≥ 0, (13)

0 ≤ s
c∗
t+1 ≤ B

c
t+1, ν

c∗ ≥ 0, µ
c∗ ≥ 0, ∀c ∈ C, (14)

λ
∗(

X

c∈C

s
c∗
t+1 − U) = 0, (15)

µ
c∗

s
c∗
t+1 = 0, ∀c ∈ C, (16)

ν
c∗(sc∗

t+1 −B
c
t+1) = 0, , ∀c ∈ C, (17)

−
dG

dsc
t+1

+ λ
∗ − µ

c∗ + ν
c∗ = 0, ∀c ∈ C. (18)

For sc∗
t+1 > 0, we haveµc∗ = 0 from (16), and then dG

dsc
t+1

=

λ∗ + νc∗ from (18). Therefore, if further we havesc∗
t+1 <

Bc
t+1, we deriveνc∗ = 0 from (17) and then dG

dsc
t+1

= λ∗. As

dG
dsc

t+1
=

pcγcαc(nc
t+1)

(1+βc)

(sc
t+1)

1−αc , γc > 0 and 0 < αc < 1, we can
derive,∀c ∈ C,

sc∗
t+1 =











Bc
t+1 if 1

λ∗
≥

(Bc
t+1)

(1−αc)

pcγcαc(nc
t+1)

(1+βc) ,

(
pcγcαc(nc

t+1)
1+βc

λ∗
)

1
1−αc if 1

λ∗
<

(Bc
t+1)

(1−αc)

pcγcαc(nc
t+1)

(1+βc) .

(19)

Notice that for all the channels with0 < sc∗
t+1 < Bc

t+1, we
have 1

λ∗
= (dG

dsc
t+1

)−1, which is the final water level for those
bins whose maximal heights are not achieved, as illustrated

in Fig. 5(C)6. We also notice that
(Bc

t+1)
(1−αc)

pcγcαc(nc
t+1)

(1+βc) is the
maximal height for binc. Therefore, the key to derivesc∗

t+1

is to derive the optimal water level1
λ∗

. If a bin’s maximal
height is below the optimal water level, the optimal server
capacity share for the corresponding channel is its maximal
server capacity requirement,i.e., sc∗

t+1 = Bc
t+1; otherwise, its

allocated server capacity is what achieves
(sc∗

t+1)
(1−αc)

pcγcαc(nc
t+1)

(1+βc) =
1

λ∗
.
To derive the optimal water level, from the starting water

levels in the bins decided by the server capacity assignment
at time t, we first make sure the overall server capacity at
the amount ofU is maximally filled into the bins, while no
bin’s maximal height is exceeded. Then, we decrease the high
water levels by decreasing the server capacity assigned to the
corresponding bins (asαc < 1, (dG

dsc
t+1

)−1 decreases with
the decrease ofsc

t+1), and increase the low water levels by
increasing the server capacity assigned to the corresponding
bins, while guaranteeing the maximal height of each bin is
never exceeded. When all bins reach the same water level,
except those whose maximal heights have been reached, we
have derived the optimal server capacity allocation for all
channels for timet + 1, as given in (19). ⊓⊔

APPENDIX B
PROOF OFTHEOREM 2

Proof: Both the incremental water-filling algorithm in Table
II and the proof of theorem 1 in Appendix I show that at
optimality, the marginal utility for any channels, that arenot
allocated their maximum server capacity requirementBc

t+1

(i.e., ∀c, qc
t+1 < 1), is the same,i.e., dG

dsc
t+1

= dG
dsc̄

t+1
,∀c, c̄ ∈ C,

whereqc
t+1 < 1 andqc̄

t+1 < 1.

Since dG
dsc

t+1
=

pcγcαc(nc
t+1)

(1+βc)

(sc
t+1)

1−αc and

dG
dsc̄

t+1
=

pc̄γc̄αc̄(nc̄
t+1)

(1+βc̄)

(sc̄
t+1)

1−αc̄ , we have

pcγcαc(nc
t+1)

(1+βc)

(sc
t+1)

1−αc =
pc̄γ c̄αc̄(nc̄

t+1)
(1+βc̄)

(sc̄
t+1)

1−αc̄ . (19)

6Note thatsc∗
t+1 = 0 only occurs at very special cases, such asn

c
t+1 → 0

or α
c
→ 0. In this case, the width of the bin corresponding to channelc is

zero, and thus no water (bandwidth) will be assigned to the bin. We omit this
special case in our discussions.

14

From qc
t+1 = γc(sc

t+1)
αc

(nc
t+1)

βc

, we derive sc
t+1 =

(
qc

t+1

γc(nc
t+1)

βc)
1

αc . Substitutesc
t+1 with this formula in Eq. (19),

we can obtain

pcγcαc(nc
t+1)

(1+βc)

(
qc

t+1

γc(nc
t+1)

βc)
1−αc

αc

=
pc̄γ c̄αc̄(nc̄

t+1)
(1+βc̄)

(
qc̄

t+1

γc̄(nc̄
t+1)

βc̄)
1−αc̄

αc̄

. (20)

A transformation of (20) will give Eq. (11). ⊓⊔

REFERENCES

[1] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and Challenges
of Peer-to-Peer Internet Video Broadcast,”Proceedings of the IEEE,
Special Issue on Recent Advances in Distributed MultimediaCommuni-
cations, 2007.

[2] PPLive, http://www.pplive.com/.
[3] UUSee, http://www.uusee.com/.
[4] ppStream, http://www.ppstream.com/.
[5] C. Huang, J. Li, and K. W. Ross, “Can Internet Video-on-Demand Be

Profitable?” inProc. of ACM SIGCOMM 2007, August 2007.
[6] C. Wu, B. Li, and S. Zhao, “Exploring Large-Scale Peer-to-Peer Live

Streaming Topologies,”ACM Transactions on Multimedia Computing,
Communications and Applications, vol. 4, no. 3, August 2008.

[7] ——, “Characterizing Peer-to-Peer Streaming Flows,”IEEE Journal
on Selected Areas in Communications, vol. 25, no. 9, pp. 1612–1626,
December 2007.

[8] Cymru Whois service, http://www.cymru.com/BGP/asnlookup.html.
[9] Cernet BGP View, http://bgpview.6test.edu.cn/bgpview/curana/ipv4cn

/chinaasnlist.shtml.
[10] R. Kumar, Y. Liu, and K. W. Ross, “Stochastic Fluid Theoryfor P2P

Streaming Systems,” inProc. of IEEE INFOCOM, May 2007.
[11] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel,Time Series Analysis:

Forecasting and Control (Third Edition). Prentice Hall, 1994.
[12] D. C. Montgomery, e. A. Peck, and G. G. Vining,Introduction to Linear

Regression Analysis, Third Edition. John Wiley and Sons, Inc., 2001.
[13] M. Wang, H. Shojania, and B. Li, “Crystal: An Emulation Framework

for Practical Peer-to-Peer Multimedia Streaming Systems,” inProc. of
the 28th International Conference on Distributed Computing Systems
(ICDCS 2008), June 2008.

[14] X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DONet: A Data-
Driven Overlay Network for Live Media Streaming,” inProc. of IEEE
INFOCOM 2005, March 2005.

[15] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement
Study of a Large-Scale P2P IPTV System,”IEEE Trans. on Multimedia,
vol. 9, no. 8, pp. 1672–1687, December 2007.

[16] X. Hei, Y. Liu, and K. W. Ross, “Inferring Network-Wide Quality
in P2P Live Streaming Systems,”IEEE Journal on Selected Areas in
Communications, Special Issue on Advances in Peer-to-PeerStreaming
Systems, vol. 25, no. 9, pp. 1640–1654, December 2007.

[17] A. Ali, A. Mathur, and H. Zhang, “Measurement of Commercial
Peer-To-Peer Live Video Streaming,” inProc. of Workshop in Recent
Advances in Peer-to-Peer Streaming, August 2006.

[18] T. Silverston and O. Fourmaux, “Measuring P2P IPTV Systems,” in
Proc. of the 17th International workshop on Network and Operating
Systems Support for Digital Audio & Video (NOSSDAV’07), June 2007.

[19] B. Li, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, andX. Zhang,
“An Empirical Study of the CoolStreaming+ System,”IEEE Journal on
Selected Areas in Communications, Special Issue on Advances in Peer-
to-Peer Streaming Systems, vol. 25, no. 9, pp. 1627–1639, December
2007.

[20] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang,“Inside
the New Coolstreaming: Principles, Measurements and Performance
Implications,” in Proc. of IEEE INFOCOM, April 2008.

[21] M. Zhang, J. Luo, L. Zhao, and S. Yang, “A Peer-to-Peer Network for
Live Media Streaming - Using a Push-Pull Approach,” inProc. of ACM
Multimedia 2005, November 2005.

[22] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven
MEsh-based Streaming,” inProc. of IEEE INFOCOM 2007, May 2007.

[23] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer
Live Streaming,” inProc. of IEEE INFOCOM 2006, March 2006.

[24] C. Wu, B. Li, and S. Zhao, “Multi-channel Live P2P Streaming:
Refocusing on Servers,” inProc. of IEEE INFOCOM 2008, April 2008.

[25] S. Das, S. Tewari, and L. Kleinrock, “The Case for Servers in a
Peer-to-Peer World,” inProc. of IEEE International Conference on
Communications (ICC 2006), June 2006.

[26] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
Service Providers Fear Peer-Assisted Content Distribution,” in Proc. of
the Internet Measurement Conference (IMC’2005), October 2005.

[27] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. Bates, and
A. Zhang, “Improving Traffic Locality in BitTorrent via Biased Neighbor
Selection,” in Proc. of the 26th IEEE International Conference on
Distributed Computing Systems (ICDCS 2006), July 2006.

[28] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnovic, “Planet
Scale Software Updates,” inProc. of ACM SIGCOMM, September 2006.

[29] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs and P2P
systems cooperate for improved performance?” inProc. of ACM CCR,
July 2007.

[30] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz,
“P4P: Provider Portal for Applications,” inProc. of ACM SIGCOMM,
August 2008.

[31] S. Boyd,Convex Optimization. Cambridge University Press, 2004.

Chuan Wu. Chuan Wu received her B.Engr. and
M.Engr. degrees in 2000 and 2002 from Department
of Computer Science and Technology, Tsinghua
University, China, and her Ph.D. degree in 2008
from the Department of Electrical and Computer
Engineering, University of Toronto, Canada. She is
currently an assistant professor in the Department
of Computer Science, the University of Hong Kong,
China. Her research interests include measurement,
modeling, and optimization of large-scale peer-to-
peer systems and online/mobile social networks. She

is a member of IEEE and ACM.

Baochun Li. Baochun Li received the B.Engr. de-
gree from the Department of Computer Science and
Technology, Tsinghua University, China, in 1995
and the M.S. and Ph.D. degrees from the Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, in 1997 and 2000.
Since 2000, he has been with the Department of
Electrical and Computer Engineering at the Univer-
sity of Toronto, where he is currently a Professor. He
holds the Nortel Networks Junior Chair in Network
Architecture and Services from October 2003 to

June 2005, and the Bell University Laboratories Endowed Chair in Computer
Engineering since August 2005. His research interests include large-scale
multimedia systems, cloud computing, peer-to-peer networks, applications of
network coding, and wireless networks. Dr. Li was the recipient of the IEEE
Communications Society Leonard G. Abraham Award in the Field of Com-
munications Systems in 2000. In 2009, he was a recipient of the Multimedia
Communications Best Paper Award from the IEEE Communications Society,
and a recipient of the University of Toronto McLean Award. Heis a member
of ACM and a senior member of IEEE.

Shuqiao Zhao. Shuqiao Zhao received his B.Engr.
degree from Department of Computer Science,
Shandong University, China, in 2001. He is currently
the managing director in the Multimedia Develop-
ment group in UUSee Inc., Beijing, China, where
he is in charge of the development of the core
techniques of UUSee’s peer-to-peer live streaming
solution.

