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Scheduling Frameworks for Cloud
Container Services
Ruiting Zhou, Zongpeng Li, Chuan Wu

Abstract—Compared to traditional virtual machines, cloud
containers are more flexible and lightweight, emerging as the
new norm of cloud resource provisioning. We exploit this new
algorithm design space, and propose scheduling frameworks
for cloud container services. Our offline and online sched-
ulers permit partial execution, and allow a job to specify
its job deadline, desired cloud containers, and inter-container
dependence relations. We leverage the following classic and
new techniques in our scheduling algorithm design. First, we
apply the compact-exponential technique to express and handle
nonconventional scheduling constraints. Second, we adopt the
primal-dual framework that determines the primal solution based
on its dual constraints in both the offline and online algorithms.
The offline scheduling algorithm includes a new separation oracle
to separate violated dual constraints, and works in concert
with the randomized rounding technique to provide a near-
optimal solution. The online scheduling algorithm leverages the
online primal-dual framework with a learning based scheme for
obtaining dual solutions. Both theoretical analysis and trace-
driven simulations validate that our scheduling frameworks are
computationally efficient and achieve close-to-optimal aggregate
job valuation.

Index Terms—Cloud Computing; Scheduling; Compact Expo-
nential Optimization; Approximation Algorithms.

I. INTRODUCTION

Cloud computing provides shared computing resources on
demand with minimum management overhead. Cloud re-
sources, including CPU, RAM, disk storage and bandwidth,
used to be packed into different types of virtual machines
(VMs) to serve different computing jobs. Launching a VM
instance requires running of a full, dedicated operating system,
which often consumes extra resources and takes minutes or
even longer [31]. More recently, cloud containers offer an al-
ternative to VMs. Containers are more flexible and lightweight,
promising a streamlined, easy-to-deploy method of resource
management. Relying on encapsulated applications, container
service requires no dedicated operating system. A cloud con-
tainer is able to operate with the minimum amount of resources
and start in microseconds [32]. Container services available on
the cloud market today include Google Container Engine [15],
Amazon EC2 Container service (ECS) [5], Aliyun Container
Service [4], and Azure Container Service [23].
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A complex computing job consists of multiple subtasks,
each requiring a different configuration of cloud resources. A
customized cloud container can be created accordingly to serve
each subtask based on a user-defined resource profile. A sub-
task may depend on another, and can start execution only after
the latter is completed. Such dependencies can be captured by
a dependence graph. For example, a service chain in Network
Function Virtualization (NFV) is composed of a sequential
chain of virtualized network functions (VNFs) [16]. An image
rendering job creates a 2D raster representation of a 3D model.
As shown in its dependence graph in Fig. 1, it is composed of
four subtasks to be executed sequentially: vertex processing,
clipping and primitively assembling, rasterizing and fragment
processing [30]. Tailor-made cloud services are available to
such jobs. For instance, Azure Batch [24] is a service from
Microsoft Azure, for batch processing in the cloud. A user first
creates a batch job in its account and then initializes the job,
including creating subtasks, configuring the container for each
subtask, defining schedules and dependencies of subtasks.

While some computing jobs are time-sensitive, requiring
full execution before the deadline, other jobs are elastic,
and can be partially executed to obtain partial values. For
example, a partially completed web searching job may return
the top search results in a short time period, which is often
good enough for the users [35]. After finishing the first
subtask in an image rendering job, the shape of the 3D model
has been outlined by vertices [30], which already provides
useful information to the user. The new model of partial
value for partial execution is first described as a Quality-of-
Service (QoS) problem concerning the visualization of large
images across a network [10]. It has applications in numerical
computation, heuristic search, and database query processing
[11]. Scheduling of computing jobs with partial values in the
cloud has attracted recent attention from the literature [22],
[7], [36], [35].

We extend the existing literature in cloud resource provi-
sioning, and propose the first offline and online scheduling
frameworks for cloud container services. We simultaneously
target the following goals. First, we require the schedulers
to be time efficient, running in polynomial time. Second,
the aggregate value of jobs that are completed before their
deadlines should be maximized. Third, the schedulers permit
partial execution and can handle general type of jobs, i.e., jobs
with multiple subtasks, defined by i) the dependence graph that
captures the dependence of subtasks; ii) the resource profile
of each container, which is dedicated to each subtask; iii) the
deadline for job completion; iv) the value of each subtask.

We formulate the offline optimization problem into a natural
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Integer Linear Program (ILP). While polynomial in size, this
ILP involves non-conventional scheduling constraints that are
hard to be handled by the classic primal-dual framework. We
apply the compact-exponential technique [37] to reformulate
the problem into a compact-exponential ILP, which is a
conventional packing-type ILP with an exponential number
of variables corresponding to valid schedules. This compact-
exponential ILP and its dual form the foundation of our offline
and online scheduling algorithm design. We will show that
the substantially amplified ILP size can be managed through
the primal-dual technique, for computing a close-to-optimal
aggregate job valuation in polynomial time.

We first assume job information is known in advance and fo-
cus on the offline scheduling algorithm design under resource
capacity and job scheduling constraints. Besides serving as
a benchmark for our online algorithm, the offline algorithm
is also applicable to a limited near-future time window for
which job information can be predicted. We leverage the
classic randomized rounding technique [26]. Given a fractional
solution to the LP relaxation of the compact-exponential ILP,
we round the fractional solution to an integer solution by
interpreting the fractional values as probabilities of schedules.
The obstacle is that the compact-exponential LP relaxation is
exponential in size. We resort to its dual that has a polynomial
number of variables and an exponential number of constraints.
We then employ the ellipsoid algorithm [9] and design a new
separation oracle to separate violated constraints. The primal
variables corresponding to the violated dual constraints can be
selected. Consequently, we derive a new polynomial-sized LP
from the original compact-exponential LP, which can be solved
in polynomial time. We show that the obtained integer solution
guarantees an expected (1−ε1)-optimal objective value, where
ε1 can be arbitrarily close to 0.

We proceed to consider the practical online scheduling
version of the problem with stochastic input, and determine
the schedule upon the arrival of each job without future
information. We apply the primal-dual framework of algorithm
design for such online decision making, with dual variables
indicating resource prices. To address the experiential size of
the compact-exponential LP, we first convert the optimization
problem in the online stochastic model into a deterministic
fractional program, exploiting the job arrival process. This
new program removes the time domain and has a polynomial
number of variables. It serves as an upper-bound of the optimal
objective value in expectation, and its dual variables act as
threshold of job admission. To approximately obtain a dual
solution close to the offline dual optimum, we gradually learn
it based on past jobs, and refine it as more jobs arrive.
Our online scheduling framework guarantees computational
efficiency, and produces a near-optimal expected objective
value with a competitive ratio of (1 − O(ε2)), where ε2 can
be arbitrarily close to 0.

In the rest of the paper, we discuss related work in Sec. II.
We introduce the system model and formulate the optimization
problem in Sec. III. Sec. IV and Sec. V present the offline
and online scheduling frameworks, respectively, which are
evaluated in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Recent literature on cloud computing witnessed a plethora
of studies on dynamic VM provisioning, in both offline and
online settings [33][27][34]. Zhang et al. [33] apply a convex
decomposition technique to design a randomized algorithm
for dynamic cloud resource provisioning, achieving a small
approximation ratio. Shi et al. [27] further extend the study
to an online scenario, where each cloud user is subject to
its budget constraint. Zhang et al. [27] propose an online
algorithm for the stochastic job arrival model. They aim to
optimize the packing of VMs to satisfy each job’s demand
in a fixed time window. The above studies do not consider
the scheduling dimension in their solution space. Furthermore,
they focus on the allocation of VMs, while we describe a
richer model where each job runs over containers confined by
a dependence graph.

Towards job scheduling under the full execution mode,
Baruah et al. [8] study the traditional all-or-no-value model,
and prove a tight bound on the competitive ratio for the online
scheduling problem. Koren et al. [21] propose D-over, an
algorithm that achieves the same competitive ratio. The above
literature consider only one type of resource. Zhou et al. [37]
develop online scheduling algorithms for cloud computing jobs
with soft deadlines. Their design relies on information of the
maximum and the minimum unit value of resources, which
can be hard to obtain in the online setting.

Earlier studies on partial job execution mode often assume
no resource sharing and focus on preemptive scheduling [13]
[12]. Recent studies start to investigate cloud jobs with partial
values. Navendu et al. [19] design two scheduling mechanisms
for computing jobs with deadlines in the offline scenario.
They consider only one type of resource, and guarantee an
approximation ratio that is relatively weak. Lucier et al. [22]
propose online scheduling algorithms for deadline-sensitive
jobs in a simple model, where each job contains a single
subtask. Azar et al. [7] further improve the algorithm and
analyze its competitive ratio. Both studies assume that one
server can only execute one job at each time slot. Zhang et al.
[36] design online multi-resource allocation algorithms that
allow partial execution of jobs and achieve low competitive
ratios. Their model assume that all subtasks of a job are
identical and have no inter-dependence. This work aims to
design general scheduling frameworks for cloud container
services, targeting small approximation ratio and competitive
ratio in the offline and online settings, respectively.

Our offline algorithm combines the ellipsoid algorithm
[9] with the randomized rounding technique [26], which is
partially inspired by Fleischer et al.’s work [14]. However, they
focus on rather different problems – maximum general assign-
ment problems. For theoretical research on online stochastic
algorithm design, Agrawal et al. [2] study a general online
packing problem, and propose a simpler and fast primal-dual
algorithm for it. They reply on a one-time learning process
while our work performs a dynamic learning process. Kessel-
heim et al. [20] study online packing LPs in the random order
model. They solve an LP in every step and round the fractional
solution to an integer solution. Gupta et al. [17] consider the
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problem of solving packing/covering LPs online, and construct
primal solutions based on dual solutions through a regret-
minimizing online learning algorithm. Jaillet et al. [18] study
the online dynamic resource allocation problem, and propose
a learning-base algorithm. Agrawal et al. [3] apply a similar
idea on the general online optimization problem. Different
from above literature [2][20][17][18][3], we do not require the
number of inputs to be known in advance. Furthermore, prior
work considers a more general form of the problem but limits
the number of schedules for each job to a small number. Those
techniques can suffer from exponential blowup in problem
size when considering jobs with subtasks, as each job has an
exponential number of possible schedules. In this work, we
focus on a particular form of packing problem that formulates
the scheduling problem for cloud container services, develop
methods that are more computationally tractable and better
tailored to those settings, and then evaluate those methods
empirically.

III. SYSTEM MODEL

We consider a cloud service provider, which hosts a pool
of K types of resources, as exemplified by CPU, RAM and
disk storage. Cloud resources can be dynamically packed to
different containers on demand. Let [X] denote the integer set
{1, 2, . . . , X}. For each type-k (k ∈ [K]) resource, there is a
total of ck units in the cloud.
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Fig. 1. Dependence graphs for cloud computing jobs.

Assume the job arrival process during a large time span
[T ] = 1, 2, . . . , T is a Poisson process with rate λ. Recall
that a Poisson process has the following properties [29]: i) the
total number of job arrivals in T time slots, I , is a random
variable following Poisson distribution with an expected value
of λT ; ii) the arrival time of each job can be uniformly
and independently mapped to a slot in [T ]. Note that our
online algorithm design relies on this assumption. However,
we don’t require that the job arrival process must follow a
Poisson process. Our online algorithm can work on more
general arrival processes, as long as the expectation of I can
be estimated and property ii) holds. Based on ii), we assume
the arrival time of each job is uniformly and independently
drawn from [T ], and index jobs according to their order of
arrival in any fixed realization of the arrival process. Let
[I] = {1, 2, . . . , I} be the set of jobs. Each job i consists
of multiple subtasks, and is expressed by a tuple

Γi = {ai, di, Ni, Gi, {Lin}n∈[Ni], {Rin}n∈[Ni], {bin}n∈[Ni]},

where ai and di is the arrival time and the deadline of job i.
Ni is the number of subtasks in job i. Gi is the dependence
graph that captures the dependencies among subtasks in job
i. Example dependence graphs are illustrated in Fig 1. The

execution of job i’s nth subtask doesn’t need to be continuous;
we only require that the total execution time accumulates
to Lin. Rin = {rkin}k∈[K] is the resource profile of the
container that serves job i’s nth subtask, where rkin is the
amount of type-k resource required. If job i’s nth subtask is
completed by di, a partial value bin is obtained. Let rkmax =
maxi∈[I],n∈[Ni]{rkin} denote the maximum type-k resource
demand. We refer to C = mink∈[K]{ ck

rkmax
} as the capacity

ratio. Let N = maxi∈[I]{Ni}, D = maxi∈[I]{di − ai} and
Lmax = maxi∈[I],n∈[Ni]{Lin}. Table I summarizes notation
for easy reference. Each job i ∈ [I] is drawn indepen-
dently from a set of job types, D, following an unknown
distribution, i.e., job types are i.i.d. A job type defines the
configuration of a job, including the profiles of its subtasks,
i.e., {Ni, Gi, {Lin}n∈[Ni], {Rin}n∈[Ni], {bin}n∈[Ni]}, and the
duration of the job, i.e,. di − ai. Note that a job’s ar-
rival time ai and deadline di are not part of the job type.
For example, an access service chain job is configured by
“Firewall→IDS→Proxy” with di − ai = 20, where instances
of firewall, IDS and proxy are encapsulated into containers
with predefined resource demands, and it must be deployed
within 20 time slots following its arrival.

In practice, there are jobs that render an atomic value Bi
only upon completion of all its subtasks before the deadline.
This type of jobs can be viewed as a special case of our model,
by setting bi1 = bi2 = · · · = biNi−1 = 0 and biNi = Bi.

Our objective is to maximize the total valuation obtained
from all jobs, subjected to resource capacity and job schedul-
ing constraints. A binary number xin ∈ {0, 1} indicates
whether job i’s nth subtask is completed (1) or not (0). Let
another binary number yin(t) encode the scheduling of job i’s
nth subtask, where yin(t) = 1 if job i’s nth subtask is executed
at time slot t and 0 otherwise. Under a fixed realization of the
job arrival process, the offline optimization problem can be
formulated into the following integer linear program (ILP):

maximize
∑
i∈[I]

∑
n∈[Ni]

binxin (1)

subject to: di∑
t=ai

yin(t) ≥ Linxin,∀i ∈ [I], ∀n ∈ [Ni], (1a)

tyin(t) < t′yin′(t
′),∀t : yin(t) = 1,∀t′ : yin′(t

′) = 1,

∀i : n is n′’s ancestor, (1b)∑
i∈[I]

∑
n∈[Ni]

rkinyin(t) ≤ ck,∀k ∈ [K],∀t ∈ [T ], (1c)

xin, yin(t) ∈ {0, 1}, ∀i ∈ [I],∀n ∈ [Ni],∀t ∈ [ai, di]. (1d)

Constraints (1a) guarantee that the number of allocated time
slots between job i’s arrival time and deadline is sufficient to
serve its nth subtask. Constraints (1b) enforce the execution
sequence of job i’s subtasks based on its dependence graph.
The capacity of type-k resource is formulated in constraints
(1c).

Even in the offline setting, with complete knowledge of the
system given, the polynomial-sized ILP (1) without constraints
(1a) and (1b) is still a NP-hard problem, which degrades to the
classic knapsack problem known to be NP-hard. The challenge
further escalates when we involve unconventional job schedul-
ing constraints (constraints (1a) and (1b). To address these
challenges, we first apply the compact-exponential technique
[37] to reformulate ILP (2) into an equivalent conventional
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ILP with packing structure, at the price of introducing an
exponential number of variables:

P : maximize
∑
i∈[I]

∑
l∈ζi

bilxil (2)

subject to:∑
i∈[I]

∑
l:t∈T (l)

fkil(t)xil ≤ ck, ∀k ∈ [K], ∀t ∈ [T ], (2a)

∑
l∈ζi

xil ≤ 1, ∀i ∈ [I], (2b)

xil ∈ {0, 1}, ∀i ∈ [I],∀l ∈ ζi. (2c)

In the above compact-exponential ILP, ζi is the set of feasible
time schedules for job i. A feasible time schedule is a vector
l = {yin(t)} that satisfies constraints (1a) and (1b). bil is
the value based on the number of completed subtasks. T (l)
records the set of time slots in l. fkil(t) denotes the total type-k
resource occupation of job i’s schedule l in t. Constraints (2a)
are equivalent to (1c). Constraints (2b) ensure that each job is
executed according to at most one schedule.

We relax xil ∈ {0, 1} to xil ≥ 0, and introduce dual
variables pk(t) and ui to constraints (2a) and (2b). The dual
of the relaxed problem (2) is:

D : minimize
∑
t∈[T ]

∑
k∈[K]

ckpk(t) +
∑
i∈[I]

ui (3)

subject to:

ui ≥ bil −
∑
k∈[K]

∑
t∈T (l)

fkil(t)pk(t), ∀i ∈ [I],∀l ∈ ζi, (3a)

pk(t), ui ≥ 0,∀i ∈ [I], ∀k ∈ [K], ∀t ∈ [T ]. (3b)

It is clear that a feasible solution to ILP (2) has a corre-
sponding feasible solution in ILP (1), and the two ILPs have
the same optimal objective value. Our offline algorithm design
doesn’t reply on any assumption on the job arrival process
and job types, while our online algorithm design resorts to
the help of them and considers the expected version of the
original problem. We first focus on the offline scenario where
all jobs are known in advance.

IV. OFFLINE SCHEDULING FRAMEWORK

In this section, we design a randomized scheduling algo-
rithm for the offline setting, when future job information are
available or can be predicted. We first solve the LP relaxation
of compact-exponential ILP (2) approximately in Sec. IV-A,
and then round a fractional solution of it to a feasible integer
solution of ILP (1) in Sec. IV-B.

A. Solving the Compact-exponential LP
ILP (2) has an exponential number of variables, each

corresponding to a possible schedule for job i. To solve ILP
(2), we first solve its dual problem (3), which has a polynomial
number of variables but an exponential number of constraints.
We rewrite LP (3) to the following covering problem:

minimize
∑
t∈[T ]

∑
k∈[K]

ckpk(t) +
∑
i∈[I]

ui (4)

subject to: (ui, {pk(t)}k∈[K],t∈[T ]) ∈ Pi, ∀i ∈ [I], (4a)
pk(t), ui ≥ 0, ∀i ∈ [I], ∀k ∈ [K], ∀t ∈ [T ]. (4b)

TABLE I
SUMMARY OF NOTATIONS

I # of jobs [X] integer set {1, . . . , X}
T # of time slots K # of types of resources
λ job arrival rate D job types set
ai job i’s arrival time di job i’s deadline
C mink∈[K]{ ck

rkmax
} rkmax maxi∈[I],n∈[Ni]{r

k
in}

N maxi∈[I]{Ni} D maxi∈[I]{di − ai}
S log2( 1

ε2
)− 1 Lmax maxi∈[I],n∈[Ni]{Lin}

ck capacity of type-k resource
Ni # number of subtasks/containers of job i
Gi job i’s dependence graph
Lin # of time slots requested by job i’s nth subtask
rkin demand of type-k resource by job i’s nth subtask
bin value of job i’s nth subtask
xin job i’s nth subtask is completed (1) or not (0)
yin(t) whether or not to allocate job i’s nth subtask in t
fkil(t) type-k resource occupation of job i’s schedule l in t

Where Pi is the polytope for job i defined by constraints of the
form ui ≥ bil −

∑
k∈[K]

∑
t∈T (l) f

k
il(t)pk(t) for all ∀l ∈ ζi.

We resort to a separation oracle for Pi, i.e., an algorithm
that, given an input of dual variables (ui, {pk(t)}k∈[K],t∈[T ]),
returns either a violated constraint, or guarantees that (ui,
{pk(t)}k∈[K],t∈[T ]) is feasible for Pi.

If we interpret pk(t) as the marginal price of type-k resource
at time t, then bil −

∑
k∈[K]

∑
t∈T (l) f

k
il(t)pk(t) is the utility

of job i executed by schedule l. We can use a scheduling
algorithm for the utility maximization problem for job i to
design a separation oracle for Pi, as follows. Given the
marginal price {pk(t)}k∈[K],t∈[T ], utility maximization for job
i requires finding a schedule l∗ with value u∗i such that for any
schedule l ∈ ζi, u∗i = bil∗ −

∑
k∈[K]

∑
t∈T (l∗) f

k
il∗(t)pk(t) ≥

bil−
∑
k∈[K]

∑
t∈T (l) f

k
il(t)pk(t). Then either ui < u∗i or ui ≥

u∗i . If ui < u∗i , a violated constraint with schedule l∗ is found,
or otherwise, ui ≥ u∗i ≥ bil−

∑
k∈[K]

∑
t∈T (l) f

k
il(t)pk(t) for

any l ∈ ζi. In the later case, (ui, {pk(t)}k∈[K],t∈[T ]) is feasible
for Pi.

We focus on a special type of jobs with a sequential
chain structure, which are usually adopted by service chains
in the recent paradigm of NFV [16]. Generalization to jobs
with general directed acyclic graphs is left as future work.
Algorithm 1 is a separation oracle for Pi, which exactly solves
the utility maximization problem for job i. The construction
of the best schedule which maximizes job i’s utility is based
on a dynamic programming approach. We first calculate the
price of container n running at time t in line 1. Because job
i consists of Ni subtasks each with a partial value bin, we
use a for loop (lines 2-20) to compute the best schedule lη
if η subtasks are completed before the deadline. For the nth
subtask, we calculate the cheapest schedule τn(ts, te) to finish
it within a given time period [ts, te] and its corresponding price
in lines 4-9. Because the (n−1)th subtask must be completed
before nth subtask (n > 1), we also fix the schedule of the
(n−1)th subtask when considering nth subtask’s schedule, by
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choosing the cheapest schedule which completes the (n−1)th
subtask before ts in lines 10-16. Lines 18-19 compute the best
schedule and job i’s utility if η subtasks are completed. Lines
21-25 figure out job i’s final utility and output the result.

Algorithm 1 A Separation Oracle for Polytope Pi - Service
Chain
Input: (ui, {pk(t)}k∈[K],t∈[T ]),Γi

1: Calculate cn(t) =
∑
k∈[K] r

k
inpk(t),∀n ∈ [Ni], t ∈

[ai, di];
2: for η = 1, . . . , Ni do
3: for n ∈ [η] do
4: for ts ∈ [ai +

∑n−1
1 Lin, di −

∑η
n Lin + 1] do

5: for te ∈ [ts + Lin − 1, di −
∑η
n+1 Lin] do

6: Select Lin slots between ts and te with
minimum cn(t), and save them to τn(ts, te);

7: Pn(ts, te) =
∑
t∈τn(ts,te)

cn(t);
8: end for
9: end for

10: if n > 1 then
11: for ts ∈ [ai +

∑n−1
1 Lin, di−

∑η
n Lin + 1] do

12: t∗s, t
∗
e = arg mint′e<ts{Pn−1(:, t′e)};

13: Pn(ts, te) = Pn(ts, te)+Pn−1(t∗s, t
∗
e),∀te;

14: τn(ts, te) = τn−1(t∗s, t
∗
e) ∪ τn(ts, te),∀te;

15: end for
16: end if
17: end for
18: tηs , t

η
e = arg mints,te{Pη(ts, te)};

19: lη = τη(tηs , t
η
e); Uη =

∑η
n=1 bin − Pη(tηs , t

η
e);

20: end for
21: η∗ = arg maxη{Uη}, l∗ = lη∗ ;
22: if Uη∗ ≥ 0 then
23: Output: (ui, {pk(t)}k∈[K],t∈[T ]) ∈ Pi;
24: else Output: A violated constraint with l∗.
25: end if

Lemma 1: The time complexity of the separation oracle in
Algorithm 1 is polynomial.
Proof: Please refer to Appendix A. ut

Lemma 2: For any α > 0, given a polynomial-time sepa-
ration oracle for Pi, we can design an (1− α)-approximation
algorithm to solve the LP (3) and hence the LP relaxation of
ILP (2) in polynomial time.
Proof: We run the ellipsoid method on LP (3), using Algorithm
1 as a separation oracle. More precisely, we start with an
estimate of the maximum objective value of LP (3), v0 (e.g.,
v0 =

∑
i∈[I]

∑
n∈[Ni]

bin), and use the ellipsoid algorithm to
check the feasibility of the following linear constraints:∑

t∈[T ]

∑
k∈[K]

ckpk(t) +
∑
i∈[I]

ui ≤ v0,

ui ≥ bil −
∑
k∈[K]

∑
t∈T (l)

fkil(t)pk(t), ∀i ∈ [I], ∀l ∈ ζi,

pk(t), ui ≥ 0, ∀i ∈ [I], ∀k ∈ [K], ∀t ∈ [T ].

If this LP is feasible, we know that the optimal objective
value of LP (3) is at most v0. We now decrease v0 to v0/2,
and check the feasibility again. If this is true, we know the
optimum lies in (0, v0/2]. This is essentially a binary search

to find the smallest feasible objective value. Let D∗ denote the
optimal objective value of LP (3). Suppose v0 ≤ h ·D∗, then
after blog2 hc + dlog2

1
αe steps, we terminate at an interval

(v∗−αv∗, v∗], with a solution ({ui}, {pk(t)}) such that v∗ =∑
t∈[T ]

∑
k∈[K] ckpk(t)+

∑
i∈[I] ui. Let D be the current dual

objective value and D = v∗. Furthermore, we have v∗−αv∗ ≤
D∗ ≤ v∗. To check the feasibility of one point, the ellipsoid
method calls the separation oracle O(I3L) times where each
job is encoded in L bits [9]. Thus, we obtain a solution to
LP (3) after O(I3(log h+ log 1

α )) iterations of the separation
oracle. Because the running time of the separation oracle in
Algorithm 1 is polynomial, the overall running time to solve
LP (3) is also polynomial.

In the execution of the ellipsoid algorithm to check the
feasibility of v∗ − αv∗, only a polynomial number of dual
constraints (3a) are involved. This set of constraints is suf-
ficient to show the objective value of LP (3) is greater than
v∗−αv∗. To solve the LP relaxation of ILP (2), we only need
to consider a polynomial number of variables corresponding
to this set of dual constraints (by setting all other variables
to zero). Thus, this polynomial-sized LP can be solved in
polynomial time (e.g., using Karmarkar’s algorithm [28], its
running time is O(I3.5)L). Let P be the objective value
of it and P > v∗ − αv∗ by LP duality. Let P ∗ be the
optimal objective value of the relaxed LP (2). By LP duality,
P
P∗ ≥

P
D > v∗−αv∗

v∗ = (1 − α), we obtain an (1 − α)-
approximation algorithm. The running time of this algorithm
is polynomial, which is O(I3.5(log h+log 1

α )KN2D3LmaxL)
with N = maxi∈[I]{Ni} and D = maxi∈[I]{di − ai}. ut

B. A Randomized Offline Scheduling Algorithm

Given a fractional solution to ILP (2), we continue to design
a near-optimal offline algorithm to schedule jobs based on the
randomized rounding technique [26]. Aoffline in Algorithm
2 is our offline scheduling algorithm. We first solve the LP
relaxation of ILP (2) in line 1 using the ellipsoid method
introduced in the previous subsection. Then we round the
fractional solution xfil to an integer solution in lines 2-5. In
order to increase the feasibility of the integer solution, we
choose a schedule l∗ with probability (1 − ε′

2 )xfil∗ for job i,
where 0 < ε′ < 1. We will show that with high probability (see
Theorem 2), our integer solution is feasible. We first bound
the probability that one of constraints (2a) is violated during
the rounding of the fractional solution.

Theorem 1: Chernoff Bound [6] [26]. Let X1, . . . , XN

be independent Poisson trials such that, for 1 ≤ n ≤ N,
Pr[Xn = 1] = pn, where 0 ≤ pn ≤ 1. Then for X =∑N
n=1Xn, µ ≥ E[X] =

∑N
n=1 pn and 0 < δ < 2e − 1, we

have Pr[X > (1 + δ)µ] < e−µδ
2/4.

Lemma 3: In our cloud system, assume the capacity ratio
C ≥ 16(c+1)

ε′2 ln(KT ) with c > 0. Let Φ denote the event that
the amount of allocated type-k resource at time t exceeds ck,
then the probability that event Φ happens is at most 1

(KT )c+1 .

Proof: Recall that C is defined as mink∈[K]{ ck
rkmax
} and Φ is

the event that constraint (2a) is violated. For given k and t,
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Algorithm 2 A Randomized offline Algorithm Aoffline

Input: {Γi}i∈[I], {ck}k∈[K], 0 < ε′ < 1

1: Solve the LP relaxation of ILP (2) using the ellipsoid
method. Let the solution be {xfil}i∈[I],l∈ζi ;

2: for each job i do
3: Choose A schedule l∗ with probability (1− ε′

2 )xfil∗ ;
4: Set xil∗ = 1; Update the corresponding {xin}n∈[Ni]

and {yin(t)}n∈[Ni],t∈[T ] according to schedule l∗;
5: Schedule job i accord to yin(t);
6: end for

we have

Pr[Φ] = Pr[
∑
i∈[I]

∑
l:t∈T (l)

fkil(t)xil > ck]

≤ Pr[
∑
i∈[I]

∑
l:t∈T (l)

rkmaxxil > ck]

= Pr[
∑
i∈[I]

∑
l:t∈T (l)

xil >
ck
rkmax

] ≤ Pr[X > C],

where X =
∑
i∈[I]

∑
l:t∈T (l) xil. Instead of constraints

(2a), we consider the following LP with new constraints∑
i∈[I]

∑
l∈ζi xil ≤ C:

maximize
∑
i∈[I]

∑
l∈ζi

bilxil (5)

subject to:
∑
i∈[I]

∑
l∈ζi

xil ≤ C, ∀k ∈ [K], ∀t ∈ [T ], (5a)

∑
l∈ζi

xil ≤ 1, ∀i ∈ [I], (5b)

xil ≥ 0, ∀i ∈ [I], ∀l ∈ ζi. (5c)

Let x̂f be the solution to LP (5) obtained by the ellipsoid
method, and x′ be an integer solution to LP (5) computed by
the same method in lines 3-4 in Algorithm 2. Then Pr[x′il =

1] = (1 − ε′

2 )x̂fil. Let X ′i =
∑
l∈ζi x

′
il and X ′ =

∑
i∈[I]X

′
i .

Then by the union bound, Pr[X ′i = 1] ≤
∑
l∈ζi Pr[x

′
il =

1] = (1 − ε′

2 )
∑
l∈ζi x̂

f
il. Hence, E[X ′] =

∑
i∈[I] Pr[X

′
i =

1] ≤ (1 − ε′

2 )C. Let µ = (1 − ε′

2 )C and δ =
ε′
2

1− ε′2
. Because

C ≥ 16(c+1)
ε′2 ln(KT ), µ ≥ E[X ′] and 0 < δ < 2e − 1, the

following inequality holds by applying the Chernoff bound in
Theorem 1:

Pr[X ′ > C] < exp

(
−(1− ε′

2
)C(

ε′

2

1− ε′
2

)2/4

)

≤ exp

(
− c+ 1

1− ε′
2

ln(KT )

)
= (KT )

− c+1

1− ε′
2 ≤ 1

(KT )c+1
.

Therefore, we obtain Pr[Φ] ≤ Pr[X > C] ≤ Pr[X ′ > C]

≤ 1
(KT )c+1 . ut
Theorem 2: If C ≥ 16(c+1)

ε′2 ln(KT ), with probability at
least 1− 1

(KT )c , Aoffline in Algorithm 2 can output a feasible
solution to ILP (1) and ILP (2) in polynomial running time.
The expected value returned by it is at least (1− ε1)-optimal,
where ε1 = α+ ε′

2 −
αε′

2 + 1
(KT )c − (α+ ε′

2 −
αε′

2 ) 1
(KT )c .

Proof: We first examine the feasibility and the running time.
Taking a union bound on K types of resources and T time
slots, the probability that the integer solution generated at line

4 in Algorithm 2 is feasible is at least 1 − KT 1
(KT )c+1 =

1− 1
(KT )c by Lemma 3. By Lemma 2, line 1 in Algorithm 2

takes polynomial time to compute a fractional solution. The
running time of the for loop in lines 2-5 is linear. Thus, the
running time of Algorithm 2 is polynomial.

Let AS denote the event that Aoffline outputs a feasible
solution. Let OPT f be the optimal objective value of the
relaxed problem of (2), the expected objective value returned
by Algorithm 2 is:

E[
∑
i∈[I]

∑
l∈ζi

bilxil] ≥ E[
∑
i∈[I]

∑
l∈ζi

bilxil|AS]

≥
∑
i∈[I]

∑
l∈ζi

bilE[xil]Pr[AS] ≥
∑
i∈[I]

∑
l∈ζi

bil(1−
ε′

2
)xfil · (1−

1

(KT )c
)

≥ (1− ε′

2
)(1− α)(1− 1

(KT )c
)OPT f = (1− ε1)OPT f .

Because the optimal objective value of ILP (2) is at most
OPT f , we can conclude that Algorithm 2 returns a (1− ε1)-
optimal solution in expectation with ε1 = α + ε′

2 −
αε′

2 +
1

(KT )c − (α+ ε′

2 −
αε′

2 ) 1
(KT )c . ut

V. ONLINE SCHEDULING FRAMEWORK

A practical scheduling algorithm needs to work in the online
fashion, without relying on knowledge of future job arrivals.
In this section, we design an online algorithm that runs as jobs
arrive to the system, and processes each job immediately upon
its arrival. We next introduce the primal-dual framework that
guides our online algorithm design in Sec. V-A. We propose
an online algorithm for jobs with chain structure in Sec. V-B
and analyze its performance in Sec. V-C. Sec. V-D shows that
the algorithm proposed in Sec. V-B can also handle general
jobs with directed acyclic graph structures.

A. Primal and Dual Framework
Upon each job arrival, the cloud service provider needs to

determine whether to serve this job, and if so, how to schedule
it. This process is equivalent to choosing a feasible solution
to ILP (1). To solve ILP (1), we resort to the classic primal-
dual framework, and apply it to the compact-exponential ILP
(2) and its dual (3). We observe that for each primal variable
xil, there is a dual constraint associated to it. Complementary
slackness indicates the update of the primal variable is based
on its dual constraint. xil remains zero unless its associated
dual constraint (2a) is tight. Let p∗ denote the optimal solution
of dual variables {pk(t)∗}∀k∈[K],t∈[T ] for LP (3). Upon the
arrival of the ith job, we assign dual variable ui to the
maximum of 0 and the right hand side (RHS) of (2a),

ui = max{0,max
l∈ζi
{bil −

∑
k∈[K]

∑
t∈T (l)

fkil(t)pk(t)∗}}. (6)

If ui > 0, the cloud service provider serves job i according
to the schedule that maximizes the RHS of constraint (2a); If
ui ≤ 0, the cloud service provider rejects it. The rationale
is as follows: The dual variable pk(t)∗ can be interpreted
as the marginal price per unit of type-k resource at time t,
then

∑
k∈[K]

∑
t∈T (l) f

k
il(t)pk(t)∗ is the price to execute job i

according to schedule l. RHS of (2a) can be viewed as job i’s
utility with schedule l. The assignment of ui in (6) effectively
maximizes job i’s utility, towards achieving the maximum
value obtained from all jobs.
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However, the problem is that we cannot obtain the optimal
dual solution p∗ in the online setting. We only have infor-
mation on past jobs. Thus, we consider the first ε2 ∈ (0, 1)
fraction of jobs and hope to obtain an approximation dual solu-
tion in expectation, and progressively refine our dual solution
as more jobs arrive. By adopting this idea, we next design an
online algorithm, and show that it has good performance in
both theoretical analysis and simulation studies.

B. An Online Algorithm with Stochastic Input

We first focus on service chain type of jobs where the
dependence graph is of a sequential chain structure.
Expected offline optimization problem. The offline problem
in (2) is defined under a fixed and stochastic realization
of the job arrival process. Next, we consider all possible
realizations of the job arrival process in expectation, and define
the expected offline problem in LP (7). We refer it as the
expected offline program. It guides our online algorithm design
and the optimal objective value of it servers as an upper bound
of the expected optimal objective value of the offline problem
in (2) in the competitive ratio analysis.

We use j to denote a job of type-j instead of job j in LPs
(7), (8) and (9). Let ρj be the probability that type-j job is
drawn from the job types set D. Since the expected number
of jobs is λT , the expected number of type-j job appearing in
the realized jobs is λTρj . Let xjl be the probability of type-j
job served according to schedule l, over a random realization
of jobs. Then λTρj

∑
l∈ζj bjlxjl is the contribution of type-j

jobs to the expected overall obtained value. Summing over all
job types, the objective function of (7) represents the expected
value obtained from all jobs. Note that we assume the same
type of jobs has the same value of di − ai regardless of job
arrival time, under the assumption that T is much larger the
value of di − ai. Because the probability of di > T is very
small and the overall obtained value in expectation barely
changes without considering these extreme jobs.

maximize
∑
j∈D

λTρj
∑
l∈ζj

bjlxjl (7)

subject to:∑
j∈D

∑
l∈ζj

λTρj

∑
t∈T (l) f

k
il(t)

T
xjl ≤ ck, ∀k ∈ [K], (7a)

∑
l∈ζj

xjl ≤ 1, ∀j ∈ D, (7b)

xjl ≥ 0, ∀j ∈ D, ∀l ∈ ζj . (7c)

Next, we examine the constraints in LP (7). Constraints (7a)
are the expected capacity constraints, which guarantee the
average consumption of one type of resource at each slot
is below its capacity. The rationale is as follows: If a type-
j job is scheduled according to l, then it consumes total∑
t∈T (l) f

k
il(t) units of type-k resource over the entire system

time (T slots). Recall that the arrival time of a job is uniformly
distributed within [T ], then the slot t ∈ T (l) is also uniformly
distributed within [T ]. On average over time, a type-j job

served with schedule l consumes at most
∑
t∈T (l) f

k
il(t)

T units of
type-k resource at each time slot, as the probability of this job

occupying any slot is 1/T .
∑
j∈D

∑
l∈ζj λTρj

∑
t∈T (l) f

k
il(t)

T xjl
is the average consumption of type-k resource at each slot
contributed by all types of jobs. Note that it is a non-trivial

transformation of the capacity constraints (2a) as we remove
the time dimension here. Constraints (7b) ensures that one job
of a specific type can only be served according to at most one
schedule. Based on the above expected offline program, we
are able to design an online algorithm that obtains 1−O(ε2)
fraction of the expected optimal value obtained from all jobs,
under the assumption that each job only consumes a small
fraction of the capacity of any resource.

Although it seems that the number of variables in LP (7) is
still exponential, we observe that there are only Nj possible
values of bjl and

∑
t∈T (l) f

k
il(t) for each j. This is because

a type-j job contains Nj subtasks that need to be executed
sequentially, and each of the subtask has its own value and the
resource demand. Let η ∈ [Nj ] denote the ηth execution option
for type-j job, bjη =

∑
n∈[η] bjn and ωkjη =

∑
n∈[η] r

k
inLin

represent the value and the resource consumption for this
option. We can rewrite LP (7) to the following LP:

PΣ : maximize
∑
j∈D

λTρj
∑
η∈[Nj ]

bjηxjη (8)

subject to: ∑
j∈D

∑
η∈[Nj ]

λTρj
ωkjη
T
xjη ≤ ck, ∀k ∈ [K], (8a)

∑
η∈[Nj ]

xjη ≤ 1, ∀j ∈ D, (8b)

xjη ≥ 0, ∀j ∈ D, ∀η ∈ [Nj ]. (8c)

By introducing dual variables pk and uj to constraints (8a)
and (8b), the dual problem of (8) is:

DΣ : minimize
∑
k∈[K]

ckpk +
∑
j∈D

λTρjuj (9)

subject to:
uj ≥ bjη −

∑
k∈[K]

ωkjη
T
pk, ∀j ∈ D, ∀η ∈ [Nj ], (9a)

pk, uj ≥ 0, ∀k ∈ [K],∀j ∈ D. (9b)

If we can solve the dual problem in (9) exactly to obtain
the optimal dual solution pΣ, we can apply the primal-dual
technique discussed in Sec. V-A to derive the primal solution
for the expected offline program (8), achieving a close-to-
optimal objective value. The barrier is still that we do not have
complete knowledge of all job types in the online setting. Our
main idea is to produce an approximate dual solution based
on past jobs, and gradually refine this dual solution with the
accumulation of past jobs. The intuition is that because the
types of jobs are i.i.d., the average resource consumption of
the past jobs can approximately reflect the average resource
consumption of all jobs in expectation, especially when more
and more jobs are processed. More specifically, we divide
the job arrival process into log2( 1

ε2
) stages, and index each

stage with an integer s. Let S = log2( 1
ε2

) − 1 and then s ∈
[0, 1, . . . , S]. For each stage, we consider the first 2sbε2λT c
jobs in set Is = [1, . . . , 2sbε2λT c], and formulate an empirical
version of (8) in Ps in (10) for these sample jobs. We replace
the expectations over all jobs in the objective function and
constraints (8a) with the sum over these jobs, and shrink the
capacity limits accordingly by a factor of (1 − Fs)2sε2. Let
Is = |Is| = 2sbε2λT c and Fs = ε2

√
λT

2sε2λT
=

√
ε2
2s . Then

2sε2 ≈ Is
λT is the proportion of first 2sbε2λT c jobs to all jobs,

and (1 − Fs) handles the sampling error to make sure the
overall resource consumption does not exceed the capacity.
Note that ε2 ≤ Fs ≤

√
ε2 and we convert each job type j

back to job i. The dual of the relaxed (10) is formulated in
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(11).
Ps : maximize

∑
i∈Is

∑
η∈[Ni]

biηxiη (10)

subject to:∑
i∈Is

∑
η∈[Ni]

ωkiη
T
xiη ≤ (1−Fs)2sε2ck, ∀k ∈ [K], (10a)

∑
η∈[Ni]

xiη ≤ 1, ∀i ∈ Is, (10b)

xiη ∈ {0, 1}, ∀i ∈ Is, ∀η ∈ [Ni]. (10c)

Ds : minimize
∑
k∈[K]

(1−Fs)2sε2ckpk +
∑
i∈Is

ui (11)

subject to:
ui ≥ biη −

∑
k∈[K]

ωkiη
T
pk, ∀i ∈ Is, ∀η ∈ [Ni], (11a)

pk, ui ≥ 0, ∀k ∈ [K],∀i ∈ Is. (11b)

Upon the arrival of the 2sbε2λT cth job, we exactly solve
the dual problem in (11) to obtain the optimal dual solution
ps. The size of the dual problem (11) is polynomial, and
hence it can be solved efficiently by Karmarkar’s algorithm
[28]. By involving more and more jobs in solving (11), we
progressively learn a dual solution that is close to the optimal
dual solution pΣ of the offline dual problem in (9).

We next discuss the decision making and the scheduling
process, based on the learned dual solution ps. Upon the
arrival of each job, we let ui be the maximal of 0 and the
RHS of constraints (11a), i.e.,

ui = max{0, max
η∈[Ni]

{biη −
∑
k∈[K]

ωkiη
T
pk,s}}.

If ui ≤ 0, the cloud service provider rejects this job; If ui >
0, the cloud service provider accepts this job, and serves it
according to the following schedule: Let ηi = arg maxη∈[Ni]

{biη −
∑
k∈[K]

ωkiη
T pk,s}, subtasks 1, . . . , ηi in job i will be

allocated sequentially to slots from ai to ai+
∑
n∈[ηi]

Lin−1.
Although we didn’t check the resource capacity constraints
(2a) here, we show that with high probability (see Lemma 7),
our algorithm satisfies the capacity limit in expectation for any
type of resource at any time.
Aonline in Algorithm 3 is our online algorithm, with the

scheduling algorithm Acore in Algorithm 4 running for each
job. Lines 1-2 in Aonline define variable Is and initialize
primal and dual variables. Lines 4-5 reject the first bε2λT c
jobs as price p0 is not ready yet. Upon the arrival of the
ith job (i ≥ bε2λT c + 1), lines 6-13 determine whether to
serve this job, and if so how to schedule it. More specifically,
Acore in line 7 is run for job i ∈ [2s−1bε2λT c+ 1, 2sbε2λT c]
with the input ps−1. In Acore, lines 1-4 determine the utility
variable ui. If ui > 0, we accept job i, compute its schedule l
in line 7 and update all primal variables in lines 6-14. On the
arrival of 2sbε2λT cth job, line 15 in Aonline solves the dual
LP (11) exactly using all jobs from job 1 to job 2sbε2λT c.
Line 16 updates pk and s. Note that the last time we update
price ps is the arrival time of job 2log2( 1

ε2
)−1bε2λT c. This

process is repeated until the last job arrives. Note that our
algorithm doesn’t require any information about the job type
distribution. Furthermore, we can use an estimated value of

Algorithm 3 An Online Algorithm Aonline

Input: {Γi}, {ck}, ε2, λ, T
1: Define Is = 2sbε2λT c;
2: Initialize s = 0; Let xin = 0, yin(t) = 0, xil = 0, ui =

0, pk = 0,∀i ∈ [I],∀n ∈ [Ni],∀t ∈ [T ],∀l ∈ ζi,∀k ∈ [K]
by default;

3: while the arrival of the ith job do
4: if i ≤ bε2λT c then
5: Reject job i;
6: else
7:

(
{xin}, {yin(t)}}

)
= Acore

(
Γi, {ck}, {pk}}

)
;

8: if ∃n ∈ [Ni], xin = 1 then
9: Schedule job i according to yin(t);

10: else
11: Reject job i.
12: end if
13: end if
14: if i = Is and s ≤ log2( 1

ε2
)− 1 then

15: Solve the dual LP (11) exactly to obtain ps;
16: Let {pk} = ps; s = s+ 1;
17: end if
18: end while

Algorithm 4 A Scheduling Algorithm Acore

Input: Γi, {ck}, {pk}
Output: {xin}, {yin(t)}

1: for η = 1, 2, . . . , Ni do
2: uiη =

∑
n∈[η] bin −

∑
k∈[K]

∑
n∈[η] r

k
inLin

T pk;
3: end for
4: ui = max{0,maxη∈[Ni]{uiη}};
5: if ui > 0 then
6: ηi = arg maxη∈[Ni]{uiη};
7: li = {ai, . . . , ai +

∑
n∈[ηi]

Lin − 1};xili = 1;
8: xin = 1,∀n ∈ [ηi]; t = ti;
9: for n = 1, . . . , ηi do

10: index = 1;
11: while index ≤ Lin do
12: yin(t) = 1; t = t+ 1; index = index+ 1;
13: end while
14: end for
15: end if
16: Return {xin}, {yin(t)}

λ instead of the accurate one. We will show that inaccurate
estimation has rather mild impact on the performance in the
simulations. We next use a simple example to illustrate the
process of Aonline. Suppose the online system spans 32 time
slots. Let λ = 0.5 and ε2 = 1

4 . We reject the first 4 jobs, and
solve (11) with the input of the first 4 jobs to obtain p0. From
job 4 to job 8, we use p0 as the price to make decision and
solve (11) again with the input of the first 8 jobs to obtain
p1. From job 8 to the last job, p1 serves as the threshold to
determine the winner.

C. Theoretical Analysis

i) Polynomial running time.



9

Theorem 3: The time complexity of Aonline in Algorithm
3 is polynomial.
Proof: Please refer to Appendix B. ut
ii) Feasibility of the original problem.

We next show that with high probability, our online al-
gorithm Aonline can compute a feasible solution to original
problem (2). Constraints (2b) and (2c) are satisfied trivially.
When summing over all s ∈ [0, . . . , S], Lemma 7 shows that
with probability at least 1 − 2ε2, accepted jobs consume at
most the maximum capacity in expectation for any type of
resource at any time (i.e., Constraints (2a) are satisfied).

Let xiη(ps) be the primal solution output by Aonline, which
is a function of ps. We have

xiη(ps) =



1, if η = arg max
η′∈[Ni]

{biη′ −
∑
k∈[K]

ωkiη′

T
pk,s}

and biη >
∑
k∈[K]

ωkiη
T
pk,s,

0, otherwise.

(12)

We next define two random variables Xk
i and Yk

i (t), which
will be used in the following analysis.

Xk
i =

∑
η∈[Ni]

ωkiη
T
xiη(ps). (13)

Yk
i (t) =


∑
l∈ζi

fil(t)xil, if t ∈ T (l),

0, otherwise.
(14)

Note that the value of xil in Yk
i (t) is output by Aonline and

computed according to the value of xiη(ps).
Lemma 4: The expectation of Yk

i (t) on t is upper bounded
by Xk

i when job i’s arrival time ti is uniformly disturbed in
[T ].
Proof: Please refer to Appendix C. ut

Lemma 5: Let E1 denote the event that the total number of
jobs arrived in [T ], I , is within the range of [(1− Fs2 )λT, (1+
Fs
2 )λT ], ∀Fs, the probability of E1 happens is at least 1− ε2,

given λT ≥ 4
(ε2)3 .

Proof: Pr[E1] ≥ 1− Pr[|I − λT | ≥ Fs
2
λT ]

≥ 1− Pr[|I − λT | ≥ ε2
2
λT ].

The last inequity holds because Fs ≥ ε2. According to
Chebyshev’s inequality [26], we can obtain

Pr[|I − λT | ≥ ε2
2
λT ] = Pr[|I − E[I]| ≥ ε2

2
λT ]

≤ V ar[I]

( ε2
2
λT )2

=
4λT

ε22λ
2T 2

=
4

ε22λT
.

Given λT ≥ 4
(ε2)3 , we have 4

ε22λT
≤ ε2 and therefore

Pr[E1] ≥ 1− ε2. ut
We define a new variable B, and let

B = max

12 ln
(

2(IN)KKT log2( 1
ε2

)/ε2
)

ε22
,

4λT

ε22

 .

Lemma 6: Let E2 denote the event that
∑
i∈Is+1\Is X

k
i ≥

2sε2ck,∀k ∈ [K], s ∈ [0, 1, . . . , S]. On the condition of E1,
i.e., (1 − Fs2 )λT ≤ I ≤ (1 + Fs

2 )λT , the probability of E2

happens, Pr[E2|E1], is at most ε2
T , given ck

rkmax
≥ B.

Proof: Consider a fixed price p, we say a random sample
Is+1\Is is bad for this p if p = ps but

∑
i∈Is+1\Is

∑
η∈[Ni]

ωkiη
T xiη(p) ≥ 2sε2ck, for some k and s. We first show that the

probability of bad samples is small for every fixed p, s and
k. Then we take union bound over all “distinct” prices, all s,
and all k to prove with small probability,

∑
i∈Is+1\Is

∑
η∈[Ni]

ωkiη
T xiη(ps) ≥ 2sε2ck,∀k, ∀s with price ps.

We first fix p, s and k. Recall the definition of Xk
i in (12).

Since ps is the optimal solution for LP (11), they by com-
plementary conditions, we have

∑
i∈Is X

k
i ≤ (1−Fs)2sε2ck.

We define events A = {
∑
i∈Is X

k
i ≤ (1 − Fs)2sε2ck}, B =

{
∑
i∈Is+1\Is X

k
i ≥ 2sε2ck}, Therefore, the probability of bad

samples is bounded by:

Pr[B] = Pr[
∑

i∈Is+1

Xk
i −

∑
i∈Is

Xk
i ≥ 2sε2ck]

= Pr[
∑

i∈Is+1

Xk
i ≥ (2−Fs)2sε2ck|A]

≤ Pr[|
∑
i∈Is

Xk
i −

Is
Is+1

∑
i∈Is+1

Xk
i | ≥ β] (15)

Because Is
Is+1

= 1
2 ≥

1
2(1+Fs/2) or Is

Is+1
= λT/2

I ≥ 1
2(1+Fs/2)

as I ≤ (1 + Fs
2 )λT , thus,

|
∑
i∈Is

Xk
i −

Is
Is+1

∑
i∈Is+1

Xk
i | ≥

(
1

1 + Fs/2
(1−Fs/2)− (1−Fs))2sε2ck

=

F2
s

2

1 + Fs/2
2sε2ck ≥

F2
s

4
2sε2ck.

Then β =
F2
s

4 2sε2ck.
We normalize rkmax such that Xk

i ∈ [0, 1], and replace ck
with ck

rkmax
. We define random variables:

σ2(X) =
1

Is+1

∑
i∈Is+1

(Xk
i −

1

Is+1

∑
i∈Is+1

Xk
i )2 ≤ 1.

∆(X) = max
i∈Is+1

Xk
i − min

i∈Is+1

Xk
i ≤ 1.

According to Hoeffding-Berstein Inequality (Appendix A.1
in [3]), we have

(15) ≤ 2 exp

(
− β2

2Isσ2(X) + β∆(X)

)
≤ 2 exp

(
−

F4
s

16
22sε22c

2
k

2Is +
F2
s

4
2sε2ck

)
. (16)

Is ≤ 2sε2λT ≤ λT . Because ck/rkmax = ck ≥ 4λT/ε22, we
have Is ≤ λT ≤ ε22ck/4 =

F2
s

4 2sε2ck. Thus,

(16) ≤ 2 exp

(
−
F2
s

4
2sε2ck

2 + 1

)
≤ 2 exp

(
− ε

2
2ck
12

)
≤ ε2

K(IN)KT log2( 1
ε2

)
.

The last inequality holds because ck/r
k
max = ck ≥ B.

Next, we take a union bound over all “distinct” p. Two price
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vectors p1 and p2 are distinct if and only if they result in
distinct solution, i.e., xiη(p1) 6= xiη(p2). By results from
computational geometry [25], the total number of such distinct
prices is at most (IN)K . Taking union bound over all distinct
prices, K types of resources and log2( 1

ε2
) stages, we get the

desired result. ut
Lemma 7: With probability at least 1− 2ε2, we have∑

i∈Is+1\Is

E[Yk
i (t)] ≤ 2sε2ck,∀k ∈ [K], t ∈ [T ], s ∈ [0, 1, . . . , S],

given λT ≥ 4
(ε2)3 and ck

rkmax
≥ B.

Proof: We first prove that, for a fixed t, on the condition of
E1, the probability of

∑
i∈Is+1\Is E[Yk

i (t)] ≥ 2sε2ck,∀k,∀s
is small.

According to Lemma 4, the expectation of Yk
i (t) on t is

upper bounded by Xk
i . Therefore,

Pr[
∑

i∈Is+1\Is

E[Yk
i (t)] ≥ 2sε2ck, ∀k, ∀s|E1]

≤ Pr[
∑

i∈Is+1\Is

Xk
i ≥ 2sε2ck∀k, ∀s|E1]

= Pr[E2|E1] ≤ ε2
T
. (Lemma 6)

We take union bound over T slots and have

P [
∑

i∈Is+1\Is

E[Yk
i (t)] ≤ 2sε2ck,∀k, ∀s, ∀t]

≥ P [
∑

i∈Is+1\Is

E[Yk
i (t)] ≤ 2sε2ck,∀k, ∀s, ∀t|E1]Pr[E1]

≥ (1− T · Pr[
∑

i∈Is+1\Is

E[Yk
i (t)] ≥ 2sε2ck, ∀k, ∀s|E1])Pr[E1]

≥ (1− ε2)2 ≥ 1− 2ε2. (Lemma 5)

ut
iii) Competitive Ratio.

Finally, we show that our algorithm Aonline is a 1−O(ε2)
competitive in expectation in Theorem 4.

Lemma 8: Let OPT denote the optimal objective value of
the offline problem in (2). E[OPT ] is the expectation of OPT
over all possible realizations of the job arrival process. The
optimal objective value of LP (8) is at least E[OPT ].
Proof: We observe that the average of the optimal solutions
of the offline problem in (2), computed over all possible
realizations of the job arrival process, achieves the expected
offline social welfare E[OPT ]. Furthermore, it also provides
a feasible solution to the expected offline problem in (8).
Therefore, the optimal objective value of LP (8) must be at
least E[OPT ]. ut

As |Is| ≤ 2Sbε2λT c ≤ λT
2 < λT , we have the following

observation.
Observation 1. The inputs of the problem in (10) have the

following property: for the optimal dual solution ps derived
by solving the dual problem (11), there can be at most λT
equations such that biηi =

∑
k∈[K]

ωiηi
k pk,s,∀i ∈ Is, where

ηi denote the best option for job i.
Lemma 9: Let {xiη,s}i∈[I],η∈[Ni] be the optimal solution of

(10), and xs be the solution vector.
∑
i∈Is

∑
η∈[Ni]

xiη,s −
λT ≤

∑
i∈Is

∑
η∈[Ni]

xiη(ps) ≤
∑
i∈Is

∑
η∈[Ni]

xiη,s,∀s ∈
[0, 1, . . . , S].

Proof: Let ηi denote the best option for job i, i.e., ηi =

arg maxη′∈[Ni]{biη′ −
∑
k∈[K]

ωk
iη′

T pk,s}. By complementary
slackness, the optimal solution of (10) satisfies xiηi,s = 0

if biηi <
∑
k∈[K]

ωkiηi
T pk,s, and xiηi,s > 0 if biηi =∑

k∈[K]

ωkiηi
T pk,s. Compared with (12), the only difference is

xiηi(ps) = 0 when biηi =
∑
k∈[K]

ωkiηi
T pk,s. These imply that

jobs accepted by Aonline are also accepted by the optimal so-
lution, while some jobs rejected by Aonline are accepted by the
optimal solution. Since Observation 1 indicates that there are
at most λT equation satisfy biηi =

∑
k∈[K]

ωiηi
k pk,s,∀i ∈ Is,

there are at most λT jobs that are rejected by Aonline but
accepted by the optimal solution. ut

Lemma 10: On the condition of (1 − Fs2 )λT ≤ I ≤ (1 +
Fs
2 )λT , with probability at least 1− ε2, ∀s ∈ [0, . . . , S],∑

i∈Is+1

∑
η∈[Ni]

biηxiη(ps) ≥ (1− 3Fs)P ∗s+1(xs+1),

where
∑
i∈Is+1

∑
η∈[Ni]

biηxiη(ps) is the objective value
of Ps+1 in (10) achieved by our solution xiη(ps), and
P ∗s+1(xs+1) is the optimal objective value of Ps+1 in (10)
under optimal solution xs+1, given ck

rkmax
≥ B.

Proof: Please refer to Appendix D. ut

Lemma 11: E[P ∗s (xs)] ≤ 2sε2P
∗
Σ, ∀s ∈ [0, . . . , S], where

E(P ∗s (xs)) is the expectation of the optimal objective value
of Ps in (10) achieved by the optimal solution xs over all
possible realizations of the job arrival process, and P ∗Σ is the
optimal objective value of (8).

Proof: Let (xs,ps,us) denote the optimal primal-dual solution
to (10) and (11), and (xΣ,pΣ,uΣ) denote the optimal primal-
dual solution to (8) and (9). Comparing the two dual programs
(11) and (9), we can observe that (pΣ,uΣ) is a feasible
solution to program Ds in (11) as any realization of job i ∈ Is
can be found in the distribution D. Then the objective value
of (11) with solution (pΣ,uΣ), Ds(pΣ,uΣ), is at least the
optimal objective value D∗s(ps,us). Furthermore, according
to weak duality, P ∗s (xs) ≤ D∗s(ps,us) ≤ Ds(pΣ,uΣ). Then
we have

E[P ∗s (xs)] ≤ E[D∗s (ps,us)] ≤ E[Ds(pΣ,uΣ)]

= E[
∑
k∈[K]

(1−Fs)2sε2ckpk,Σ +
∑
i∈Is

ui,Σ]

≤ E[2sε2
∑
k∈[K]

ckpk,Σ +
∑
i∈Is

ui,Σ]

≤ 2sε2
∑
k∈[K]

ckpk,Σ +
∑
j∈D

Isρjuj,Σ

≤ 2sε2(
∑
k∈[K]

ckpk,Σ +
∑
j∈D

λTρjuj,Σ)

= 2sε2D
∗
Σ(pΣ,uΣ) = 2sε2P

∗
Σ. ut

Lemma 12: On the condition of (1 − Fs
2 )λT ≤ I ≤

(1 + Fs
2 )λT , (1− ε2)P ∗Σ ≤ E[P ∗S+1(xS+1)] ≤ (1 +Fs/2)P ∗Σ

where S + 1 = log2( 1
ε2

), E(P ∗S+1(xS+1)) is the expectation
of the optimal objective value of PS+1 and P ∗Σ is the optimal
objective value of (8).
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Proof: We first prove that E[P ∗S+1(xS+1)] ≤ (1 + Fs/2)P ∗Σ.
Similar to the proof in Lemma 11, we have

E[P ∗S+1(xS+1)] ≤ E[D∗S+1(pS+1,uS+1)] ≤ E[DS+1(pΣ,uΣ)]

≤ E[
∑
k∈[K]

ckpk,Σ +
∑
i∈[I]

ui,Σ]

≤
∑
k∈[K]

ckpk,Σ +
∑
j∈D

(1 +
Fs
2

)λTρjuj,Σ

≤ (1 +
Fs
2

)(
∑
k∈[K]

ckpk,Σ +
∑
j∈D

λTρjuj,Σ)

= (1 +
Fs
2

)D∗Σ(pΣ,uΣ) = (1 +
Fs
2

)P ∗Σ.

Next, we show (1 − ε2)P ∗Σ ≤ E[P ∗S+1(xS+1)]. When S +
1 = log2( 1

ε2
), constraints (10a) in program PS+1 becomes∑

i∈Is
∑
η∈[Ni]

ωkiη
T xiη ≤ (1− ε2)ck. Consider a new version

of LP (8) by replacing constraints (8a) with
∑
j∈D

∑
η∈[Nj ]

λTρj
ωkjη
T xjη ≤ (1 − ε2)ck, and denote this new program by

PΣ′ . Let P ∗Σ′ be the optimal objective value of PΣ′ , and xΣ

be the optimal solution of (8). Then (1 − ε2)xΣ must be a
feasible solution to PΣ′ , and the objective value under this
solution is at most P ∗Σ′ , i.e., PΣ′(xΣ) = (1− ε2)P ∗Σ ≤ P ∗Σ′ . In
addition, compare PS+1 and PΣ′ , we found the expectation of
optimal objective value of PS+1 is equal to P ∗Σ′ . Therefore,
E[P ∗S+1(xS+1)] = P ∗Σ′ ≥ (1− ε2)P ∗Σ. ut

Theorem 4: For any 0 < ε2 < 1, our online scheduling
algorithm Aonline is (1−23ε2)-competitive in expectation with
i.i.d. job types and uniform job arrival time distribution, as
compared to the expected optimal objective value of offline
problem in (2), given λT ≥ 4

(ε2)3 and ck
rkmax

≥ B.

Proof: Combining Lemma 5, Lemma 7, and Lemma 10,
we have with probability at least (1 − ε2) × (1 −
ε2) × (1 − 2ε2) ≥ 1 − 4ε2, events (1 − Fs

2 )λT ≤
I ≤ (1 + Fs

2 )λT ,
∑
i∈Is+1\Is E[Yk

i (t)] ≤ 2sε2ck,∑
i∈Is+1

∑
η∈[Ni]

biηxiη(ps) ≥ (1−3Fs)P ∗s+1(xs+1), happen
simultaneously for all k ∈ [K], t ∈ [T ] and s ∈ [0, . . . , S]. Let
Ψ denote the event that three events happen simultaneously.
Then we can have:

E[

S∑
s=0

∑
i∈Is+1\Is

∑
η∈[Ni]

biηxiη(ps)|Ψ]

≥ E[
∑
s

∑
i∈Is+1

∑
η∈[Ni]

biηxiη(ps)|Ψ]

− E[
∑
s

∑
i∈Is

∑
η∈[Ni]

biηxiη(ps)|Ψ]

≥
∑
s

(1− 3Fs)E[P ∗s+1(xs+1)|Ψ]−
∑
s

E[P ∗s (xs)|Ψ] (17)

Combining Lemma 11 and Lemma 12, we have

(17) ≥ (1− ε2)P ∗Σ −
1

Pr[Ψ]

(
E[P ∗0 (x0)] +

∑
s

3FsE[P ∗s+1(xs+1)]

)

≥ (1− ε2)P ∗Σ −
1

1− 4ε2

(
ε2 +

S−1∑
s=0

3εFs2s+1
2 + 3FS(1 +

Fs
2

)

)
P ∗Σ

≥ (1− ε2)P ∗Σ −
1

1− 4ε2
(1 + 6× 1.8 + 3×

√
2× (1 +

√
0.5

2
)ε2P

∗
Σ

≥ (1− ε2)P ∗Σ −
1

1− 4ε2
18ε2P

∗
Σ.

The last two inequalities hold because
∑S−1
s=0 Fs2sε2 ≤

1.8ε2,Fs ≤
√
ε2 ≤

√
0.5.

E[

S∑
s=0

∑
i∈Is+1\Is

∑
η∈[Ni]

biηxiη(ps)|Ψ]

≥ Pr[Ψ]× E[

S∑
s=0

∑
i∈Is+1\Is

∑
η∈[Ni]

biηxiη(ps)]

≥ (1− 4ε2)

(
(1− ε2)P ∗Σ −

1

1− 4ε2
18ε2P

∗
Σ

)
≥ (1− 23ε2)P ∗Σ ≥ (1− 23ε2)E[OPT ]. ut

D. Discussions

Aonline can be generalized to handle general jobs with ar-
bitrary dependence graph topology. Upon the arrival of the ith
job, we first compute a topological ordering of its dependence
graph. Such ordering ensures that if job i’s subtask j must be
executed before subtask k, j precedes k in the ordering. It can
be accomplished in linear time, e.g., by Kahn’s algorithm or
depth-first search [30]. We then re-index its subtasks according
to the output ordering. The rest of the algorithm design is the
same as the counterpart in Sec. V-B, and we omit the details.
Because the expected offline optimization problem for general
jobs can also be formulated to LP (8) and our online algorithm
design is based on this LP, the online algorithm for general
jobs can achieve the same performance as Aonline does, with
regard to optimality and feasibility. The theoretical analysis is
similar to the counterpart in Sec. V-C, and is omitted here.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our offline and online scheduling
algorithms through trace-driven simulation studies. We further
compare our scheduling algorithms with two related algo-
rithms from recent literature [19] [37]. They study the similar
cloud scheduling problem under simplified offline and online
scenarios by assuming that each job contains only one subtask.
We first introduce the simulation setup. We configure each
job according to Google Cluster Date (version 1 [1]) which
contains each job’s information including number of subtasks,
execution duration, and resource demands (CPU and RAM).
We assume each subtask occupies [1, 12] slots, and each slot
is 5 minutes. By default, the maximum number of subtasks
(N ) is 5, λ = 0.5 and T = 500. The total number of jobs I is
decided according to a Poisson distribution with expectation
of λT . The arrival time of each job is independently and
uniformly chosen within [1, T ] to simulate a Poisson process.
Each job’s deadline is also generated uniformly at random
between its arrival time and T . The value of each subtask
(bin) is computed as: its overall resource demand times unit
prices randomly picked in the range [1, 50]. The capacity of
each type of resource is normalized to 1. The default value
of C = mink∈[K]{ ck

rkmax
} in our experiments is 1, which is

much smaller than the value in our assumption. Although a
lower bound of C is required for our theoretical analysis, it
can be observed that even when the assumption is violated,
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Fig. 2. Performance ratio of Aoffline, and Jain
et al.’s algorithm [19].
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Fig. 4. Aoffline: objective value and percentage
of winners.

our offline and online algorithms can still achieve a close-to-
optimal performance in practice.

A. Performance of Aoffline
Performance Ratio. We first examine the performance of
our offline algorithm, measured by the ratio of the average
objective value of ILP (1) generated by Aoffline to the optimal
objective value of ILP (1). The average objective value is
obtained by running lines 2-6 in Algorithm 2 20 times. We
also implement Jain et al.’s offline algorithm [19], which
proposes a greedy strategy to select winners, for comparison
with Aoffline. Fig. 2 shows that the performance ratio of
Aoffline decreases slightly when we increase the total number
of jobs. In addition, the ratio is inversely related to the input
parameter ε′ to Algorithm 2, as confirmed by the analysis in
Theorem 2. Aoffline achieves a close-to-optimal performance
with a small ε′ (0.02) and has a better performance than Jain
et al.’s algorithm even when ε′ is relatively large (0.2). We
next fix ε′ to 0.2 and the number of jobs to 300, and vary the
number of slots and the maximum length of subtasks. Fig. 3
illustrates that both T and Lmax have relatively small impact
on the performance of Aoffline. This is because our offline
solution is derived from the fractional solution rather than the
input of the problem.
Objective Value, Winner Satisfaction. and Time Complex-
ity. Fig. 4 compares the objective value produced by Aoffline
to the optimal value. Again, there is just a small gap between
theses two values. The objective value grows with the increase
of number of jobs because Aoffline can select more high-value
jobs from a large set of jobs. The performance of Aoffline in
terms of winner satisfaction, as measured by the percentage of
winning jobs, is also demonstrated in Fig. 4. The percentage
of winners drops when there is a large number of jobs. This is
because the number of winners is relatively fixed and is limited
by the resource capacity. Therefore, only a small percentage of
jobs can be served from a large set of jobs. Next, we apply the
tic and toc functions in MATLAB to measure the execution
time of the main program without counting the initialization
stage. We run 20 tests on a laptop computer (Intel Core i7-
6700HQ/16GB RAM) and present the average result in Fig. 5.
We can observe that the running time of Aoffline remains at a
low level (< 20 seconds) even when we input a large number
of jobs and a long time span. It increases linearly with the
increases of jobs and slots, and runs faster than the theoretical
result indicated in Lemma 2.

B. Performance of Aonline
Performance Ratio. The expected offline objective value is
estimated by exactly solving ILP (1) 20 times under different
realization of the bid arrival process. The performance ratio of
Aonline is the ratio of the average objective value produced by
Aonline (over different realization of the bid arrival process)
to the expected offline objective value. Fig. 6 shows that a
better performance ratio comes with a smaller ε2, while the
arrival rate λ doesn’t affect the ratio much. Comparing to
the the performance ratio of Aoffline in Fig. 2, we observe
that both Aonline and Aoffline can achieve a close-to-optimal
performance and our online algorithm performs slightly worse
than our offline algorithm as it doesn’t have access to future
job information. In the following figures, we fix the value
of ε2 to 0.02 and examine the impact of other parameters.
We vary the total number of slots, use the estimated λ as
input to Aonline and plot the performance ratio in Fig. 7. We
observe that the ratio remains relatively steady with the growth
of T . Over-estimation causes a worse performance than under-
estimation, as compared to the real λ (labelled by 100%). This
is because Aonline rejects more jobs with an over-estimated
λ. The good news is the ratio is still close to 0.9 even when
we input an inaccurate λ.

We further compare our online algorithm with Zhou et
al.’s online algorithm [37], which also conducts job admission
based on the current resource prices. Their price is a function
of Uk/Lk, where Uk (Lk) is the maximum (minimum) value
per unit of type-k resource per unit of time. Fig. 8 and
Fig. 9 show that Aonline consistently outperforms Zhou et al.’s
online algorithm over a wide range of Uk/Lk and number of
slots (T ). In Fig. 9, we set ε2 to 0.2 and still observe the
superiority of our online algorithm.
Objective Value and Winner Satisfaction. Next, we inves-
tigate the performance of Aonline, in the aspects of achieved
objective value and winner satisfaction. In Fig. 10, there is
a upward trend in the objective value with the increment of
the number of jobs. When ε2 decreases, the solution output
by Aonline is closer to optimum, leading to a higher overall
obtained value. Fig. 11 reflects that the percentage of winners
also goes down with the increase of the number of jobs, similar
to that of Aoffline. Moreover, more jobs can be severed when
the number of subtasks in each job raises since there is larger
selection space for each job’s execution.
Time Complexity and Feasibility. We test the running time
of Aonline under different input scales, and plot the result
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Fig. 13. Feasibility test for Aoffline and Aonline
when T = 500.

in Fig. 12. We can see that the worst case running time of
Aonline is shorter than 0.12 second, which is much smaller
than that of Aoffline. Moreover, its runtime slightly increases
with the growths of the number of jobs and the number of
time slots. The value of ε2 determines its runtime. This is
because ε2 is used to compute the number of times to solve
dual LP (11). Finally, we run feasibility test for Aoffline and
Aonline. In Theorem 2 and Lemma 7, we proved that with high
probability, both Aoffline and Aonline can produce feasible
solutions. Therefore, we vary the value of C and the number
of jobs (determined by λT ). We run each algorithm 100 times,
and count the number of successes, i.e., the number of feasible
solutions returned. As shown in Fig. 13, although we require
C to be a large number in the theoretical proof, our simulation
results show that both algorithms work well when C > 10,
In addition, a larger number of jobs results in a lower success
rate.

VII. CONCLUSION

We presented scheduling frameworks for cloud container
services under both offline and online settings. Our problem
model is expressive enough to accommodate complex cloud
computing jobs. Our offline and online algorithms achieve
computational and economical efficiencies. A natural direction
for future research is to study the offline scheduling problem
for general directed acyclic dependence graphs. It may also be
promising to extend the application of our framework to other
scheduling problems, e.g., in 5G networks and smart grids.
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APPENDIX

A. Proof of Lemma 1

Line 1 takes O(KNi(di − ai)) steps to calculate the price
in each time slot. The first for loop iterates Ni times and the
second for loop iterates at most Ni times. Within the second
for loop, lines 4-9 include two for loops to select the best
schedule within a given time period and compute its price,
which can be done in O((di−ai)3Lin) steps as the execution
time in line 6 is O((di − ai)Lin). Lines 10-16 update the
schedule and its price, taking O((di − ai)3) steps. Therefore,
the execution time for the second for loop (lines 3-17) is
O(Ni(di − ai)

3Lmax) with Lmax = maxi∈[I],n∈[Ni]{Lin}.
Lines 18-19 takes O((di − ai)

2) steps to compute the best
schedule. Hence, the running time from line 2 to 20 is
O(N2

i (di−ai)3Lmax). The if statement in lines 21-25 returns
the final output within O(Ni) steps. In summary, the overall
running time of Algorithm 1 is O(KN2

i (di − ai)3Lmax). ut

B. Proof of Theorem 3

We first examine the running time of Acore. Lines 1-4 takes
O(NiK) steps to compute ui. The running time of the if
statement in lines 5-15 is O(

∑
n∈[ηi]

Lin). In summary, the
running time of Acore is O(NiK +

∑
n∈[ηi]

Lin).
We next analyze the running time of Aonline. Lines 1-2 de-

fine and initialize variables in O(1) steps. There are I jobs, and
the running time to handle each job (lines 4-13) is dominated
by the running time of Acore. The body of the if statement in
lines 15-16 is executed blog2( 1

ε2
)c times, each iteration solves

the dual problem in (11) in O(I3.5)L steps using Karmarkar’s
algorithm [28], where each job is encoded in L bits. Recall
that N = maxi∈[I]{Ni} and Lmax = maxi∈[I],n∈[Ni] Lin.
Give the above, the time complexity of our online algorithm
Aonline is O(blog2( 1

ε2
)cI3.5L+ IN(K + L)). ut

C. Proof of Lemma 4

If job i is rejected by the cloud provider, i.e., xiη(ps) =
0,∀η ∈ [Ni], then Yk

i (t) = Xk
i and the lemma follows.

Otherwise, let ηi = arg maxη∈[Ni] xiη(ps). According to
Aonline, job i is scheduled within [ai, ai +

∑ηi
n=1 Lin), and

let li be the corresponding schedule. For a fixed t ∈ [T ], we
have

E(Yk
i (t)) = Pr[ai ≤ t < ai +

ηi∑
n=1

Lin)]fkili(t)

= Pr[t−
ηi∑
n=1

Lin < ai ≤ t]fkili(t).

Because ai is is uniformly disturbed in [T ], Pr[ai = t] =
1
T . Moreover, since 1 ≤ t ≤ T , Pr[t −

∑ηi
n=1 Lin < ai ≤

t] has two different values when 1 ≤ t <
∑ηi
n=1 Lin and∑ηi

n=1 Lin ≤ t ≤ T . For both cases, we have

E(Yk
i (t)) ≤ 1

T

ηi∑
n=1

rkinLin =
ωkiηi
T

= Xk
i . ut

D. Proof of Lemma 10

We first define an auxiliary primal problem as follows:

PA : maximize
∑

i∈Is+1

∑
η∈[Ni]

biηxiη (18)

subject to: ∑
i∈Is+1

∑
η∈[Ni]

ωkiη
T
xiη ≤ Ak, ∀k ∈ [K], (18a)

∑
η∈[Ni]

xiη ≤ 1, ∀i ∈ Is+1, (18b)

xiη ≥ 0, ∀i ∈ Is+1, ∀η ∈ [Ni]. (18c)

where Ak =
∑
i∈Is+1

∑
η∈[Ni]

ωkiη
T xiη(ps) if pk,s > 0

and Ak = max{
∑
i∈Is+1

∑
η∈[Ni]

ωkiη
T xiη(ps), 2

s+1ε2ck} if
pk,s = 0. Its dual problem is:

DA : minimize
∑
k∈[K]

Akckpk +
∑

i∈Is+1

ui (19)

subject to:

ui ≥ biη −
∑
k∈[K]

ωkiη
T
pk, ∀i ∈ Is+1, ∀η ∈ [Ni], (19a)

pk, ui ≥ 0, ∀k ∈ [K], ∀i ∈ Is+1. (19b)

Note that {xiη(ps)}i∈[i],η∈[Ni] and ps satisfy all complemen-
tarity conditions, and therefore they are the optimal primal and
dual solutions to LP (18) and LP (19). The optimal objective
value of (18) is

∑
i∈Is+1

∑
η∈[Ni]

biηxiη(ps). In order to prove
the lemma, we need show that with probability at least 1− ε2,
(1−3Fs)xs+1 is a feasible solution to auxiliary program (18).

First, we show that with probability at least 1− ε2,

Ak ≥ (1− 3Fs)2s+1ε2ck,∀k ∈ [K], s ∈ [0, . . . , S]. (20)

If pk,s = 0, then by definition we have Ak ≥ 2s+1ε2ck. It
remains to prove the case where pk,s > 0 that, with probability
at least 1 − ε2, Ak ≥ (1 − 3Fs)2s+1ε2ck,∀k ∈ [K], s ∈
[0, . . . , S]. This is proven by showing that with probability
at most ε2, Ak =

∑
i∈Is+1

∑
η∈[Ni]

ωkiη
T xiη(ps) ≤ (1 −

3Fs)2s+1ε2ck,∀k ∈ [K], s ∈ [0, . . . , S]. The detailed proof
is as follows: Recall that {xiη,s}i∈[I],η∈[Ni] and {pk,s}k∈[K]
are the optimal solutions to programs (10) and (11). Then,
by complementary slackness, if pk,s > 0, we have

∑
i∈Is+1∑

η∈[Ni]

ωkiη,s

T xiη,s = (1 − Fs)2sε2ck. We normalize rkmax
such that rkmax = 1. Given ck/r

k
max ≥ 4λT

ε22
≥ λT

2sε22
, and the

observation in Lemma 9, we have for any k and s,∑
i∈Is

∑
η∈[Ni]

ωkiη
T
xiη(ps) ≥

∑
i∈Is

∑
η∈[Ni]

ωkiη
T
xiη,s − λT

≥ (1−Fs − ε2)2sε2ck ≥ (1− 2Fs)2sε2ck.

For a fixed k, s and a distinct price vector p, when p = ps,
we define events G1 = {

∑
i∈Is+1

Xk
i ≤ (1− 3Fs)2s+1ε2ck}

and G2 = {
∑
i∈Is X

k
i ≥ (1− 2Fs)2sε2ck}.

Pr[G1] = Pr[G1|G2] ≤ Pr[|
∑
i∈Is

Xk
i −

Is
Is+1

∑
i∈Is+1

Xk
i | ≥ β′].

(21)

Because Is
Is+1

= 1
2 ≤

1
2(1−Fs/2 ) or Is

Is+1
= λT/2

I ≤ 1
2(1−Fs/2)
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as I ≥ (1− Fs2 )λT , thus,∑
i∈Is

Xk
i −

Is
Is+1

∑
i∈Is+1

Xk
i ≥

(1− 2Fs −
1

1−Fs/2
(1− 3Fs))2sε2ck

=
Fs + 2F2

s

2−Fs
2sε2ck ≥

Fs
2

2sε2ck.

Then β′ = Fs
2 2sε2ck. Note that Xk

i ∈ [0, 1] as rkmax = 1.
Next, similar to the proof of Lemma 6, we define two random
variables:

σ2(X) =
1

Is+1

∑
i∈Is+1

(Xk
i −

1

Is+1

∑
i∈Is+1

Xk
i )2 ≤ 1.

∆(X) = max
i∈Is+1

Xk
i − min

i∈Is+1

Xk
i ≤ 1.

According to Hoeffding-Berstein Inequality [3], we have

(21) ≤ 2 exp

(
− β′2

2Isσ2(X) + β∆(X)

)
≤ 2 exp

(
−

F2
s

4
22sε22c

2
k

2Is + Fs
2

2sε2ck

)
. (22)

Because ck/rkmax = ck ≥ λT , we have 2Is ≤ 2 · 2sε2λT ≤
2 · 2sε2ck. Hence,

(22) ≤ 2 exp

(
−
F2
s

4
2sε2ck

2 + Fs
2

)
≤ 2 exp

(
− ε

2
2ck
12

)
≤ ε2

K(IN)K log2( 1
ε2

)
.

The last inequality holds because ck/rkmax = ck ≥ B. Taking
union bound over (IN)K distinct prices, K types of resources
and log2( 1

ε2
) stages, we prove that with probability at least

1− ε2, Ak ≥ (1− 3Fs)2s+1ε2ck,∀k ∈ [K], s ∈ [0, . . . , S].
We observe that i) constraints (10b) and (10c) are the same

as (18b) and (18c); ii) constraints (10a) and (18a) only differ in
the RHS. Following the result of (20), we have with probability
at least 1−ε2, (1−3Fs)xs+1 is a feasible solution to LP (18).
Therefore, with probability at least 1−ε2, the optimal objective
value of (18), i.e.,

∑
i∈Is+1

∑
η∈[Ni]

biηxiη(ps), is at least the
objective value of (18) under the solution (1−3Fs)xs+1, i.e.,
(1− 3Fs)P ∗s+1(xs+1). ut


