
REGULAR PAPER

InstantLeap: an architecture for fast neighbor discovery
in large-scale P2P VoD streaming

Xuanjia Qiu • Wei Huang • Chuan Wu •

Francis C. M. Lau • Xiaola Lin

Published online: 16 May 2010

� Springer-Verlag 2010

Abstract In large-scale peer-to-peer (P2P) video-on-

demand (VoD) streaming applications, a fundamental

challenge is to quickly locate new supplying peers when-

ever a VCR command is issued, in order to achieve smooth

viewing experiences. For many existing commercial sys-

tems which use tracker servers for neighbor discovery, the

increasing scale of P2P VoD systems has overloaded the

dedicated servers to the point where they cannot accurately

identify the suppliers with the desired content and band-

width. To avoid overloading the servers and achieve instant

neighbor discovery over the self-organizing P2P overlay,

we design a novel method of organizing peers watching a

video. The method features a light-weight indexing archi-

tecture to support efficient streaming and fast neighbor

discovery at the same time. InstantLeap separates the

neighbors at each peer into a streaming neighbor list and a

shortcut neighbor list, for streaming and neighbor discov-

ery respectively, which are maintained loosely but effec-

tively based on random neighbor list exchanges. Our

analysis shows that InstantLeap achieves an O(1) neighbor

discovery efficiency upon any playback ‘‘leap’’ across the

media stream in streaming overlays of any size, and low

messaging costs for overlay maintenance upon peer join,

departure, and VCR operations. We also verify our design

with large-scale simulation studies of dynamic P2P VoD

systems based on real-world settings.

Keywords P2P streaming � Video-on-demand �
Fast neighbor discovery � Indexing overlay

1 Introduction

Peer-to-peer (P2P) video-on-demand (VoD) streaming has

been successfully deployed over the Internet [1–3], pro-

viding an abundance of online videos to hundreds of

thousands of users. Unlike the traditional client–server

approach which tends to incur enormous server costs [4],

P2P VoD applications allow peers watching the same video

to exchange available media blocks among themselves, and

can therefore dramatically alleviate the server load [5–7].

Most state-of-the-art P2P VoD streaming applications

adopt mesh-pull based P2P protocols. Each application

typically consists of multiple mesh overlays, each of which

connects the peers watching the same video. The peers in

an overlay request available video blocks in their local

buffers from each other, based on the exchanged buffer

availability bitmaps (i.e., buffer maps). The buffer at each

peer represents a sliding window of the video stream,

containing the block it is currently playing (referred to as

its playback position hereinafter) and a number of blocks

the peer has just watched or is about to watch in the near

future.

When compared to P2P live streaming which has more

mature applications in deployment, P2P VoD streaming

X. Qiu (&) � W. Huang � C. Wu � F. C. M. Lau

Department of Computer Science,

The University of Hong Kong, Hong Kong, Hong Kong

e-mail: xjqiu@cs.hku.hk

W. Huang

e-mail: whuang@cs.hku.hk

C. Wu

e-mail: cwu@cs.hku.hk

F. C. M. Lau

e-mail: fcmlau@cs.hku.hk

X. Lin

Department of Computer Science, Sun Yat-Sen University,

Guangzhou, People’s Republic of China

e-mail: linxl@mail.sysu.edu.cn

123

Multimedia Systems (2010) 16:183–198

DOI 10.1007/s00530-010-0185-x

presents a fundamental technical challenge to the design-

ers: Given a certain video, the users (peers) could be

watching different parts of the video, and may issue VCR

commands (e.g., pause, random seek) at will to ‘‘leap’’ to

new playback positions (referred to as the target playback

positions), which leads to a polarization of the buffered and

needed contents among the peers and consequently the

necessity to frequently search for new supplying peers. In

order to provide the user with a smooth playback experi-

ence, the re-buffering delay from the time when a VCR

command is issued to the time when playback resumes

needs to be minimized, to a level comparable to that of

VCR operations with a videocassette recorder, or to the

channel switching delay when watching TV. In existing

P2P VoD systems, this re-buffering delay can be as long as

18 s on average [8], which certainly needs improving in the

future.

The re-buffering delay in P2P VoD streaming is typi-

cally composed of the time to search for new supplying

peers and the time for downloading and buffering new

blocks from them. While existing research work by others

have investigated reducing the block downloading delay

using such methods as optimized block scheduling algo-

rithms [9], this paper aims at minimizing the neighbor

discovery delay which in most situations is the dominant

component in the re-buffering delay. In particular, we

propose the design of a novel overlay architecture, with

which given any target playback position, a set of new

supplying peers can be found as fast as possible; these

supplying peers (1) have the available blocks around the

target playback position and (2) can aggregately provide

the leaping peer (i.e., the peer that is switching to a new

playback position) with sufficient upload bandwidth to

match the required streaming rate.

For neighbor discovery upon playback ‘‘leaps’’, exist-

ing commercial P2P VoD systems have largely resorted to

tracker servers which keep track of the block availability

at all the peers, and the peers would query the server for

available serving peers. The disadvantages of such a

centralized mechanism are as follows: first, the tracker

server can easily become a bottleneck if peers join,

depart, and issue VCR commands frequently; second, in

order to return a set of serving peers that can provide

sufficient upload bandwidth to a requesting peer, the load

on each individual peer needs to be periodically reported

to the tracker server as well, which may further overload

the server.

A few recent P2P VoD proposals construct different

overlay structures for neighbor discovery in a decentralized

fashion, using Distributed Hash Tables (DHTs) [10–12],

dynamic skip list [13], and ring-based overlays [14]. These

schemes typically involve logðNÞ complexity (where N is

the total number of peers) for each lookup of supplying

peers with the required blocks, without taking their upload

bandwidth sufficiency into consideration.

In this paper, we propose InstantLeap, a new architec-

ture of organizing peers watching the same video in a P2P

VoD application. The overlay structure is simple but effi-

cient, supporting both effective streaming and instant

neighbor lookup due to playback ‘‘leaps’’. In InstantLeap,

peers are grouped according to their playback locality.

Each peer strategically maintains connections to a number

of peers with similar playback progress, as well as some

selected peers watching different parts of the video. The

neighbors with similar playback progress provide efficient

streaming of media blocks the peer is currently watching

and are referred to as streaming neighbors; the neighbors

watching other parts of the video facilitate fast discovery of

new supplying peers with sufficient aggregate upload

bandwidth to serve the leaping peer, which are named as

shortcut neighbors. The list of shortcut neighbors is

maintained loosely but effectively based on random

neighbor list exchanges, which effectively pushes the

neighbor discovery delay to the shortest possible.

The highlights of our overlay architecture design are as

follows.

• We show an O(1) efficiency for discovering new

supplying neighbors upon peer joins and playback leaps

across the video stream. In most cases, the identified

supplying peers in the target playback position can

provide sufficient aggregate upload bandwidths and are

ready to transmit media blocks immediately after the

new connections are established.

• We show an O(m) overlay maintenance overhead for

dealing with peer dynamics, including joins, failures/

departures, and any playback leaps upon various VCR

operations, where m is the number of peer groups. We

show that such an increment of control overhead in a

typical mesh-pull based P2P VoD protocol is negligi-

ble, as compared to the overhead in the basic protocol.

• InstantLeap can be seamlessly integrated into the

mesh-pull protocol employed in prevailing P2P VoD

systems, as a simple add-on component for overlay

management, which is implemented based on random

exchanges of neighbor information to build shortcuts

among peers watching different parts of a video.

The remainder of this paper is organized as follows:

Sect. 2 discusses related work on P2P VoD streaming and

indexing overlay design. In Sect. 3, we present our network

model and the architecture of InstantLeap overlay. In Sect.

4 , we discuss the detailed protocols in InstantLeap. In

Sect. 5, we analyze the performance and overhead of the

protocols. We evaluate InstantLeap by extensive simula-

tions and comparisons against existing schemes in Sect. 6,

and conclude the paper in Sect. 7.

184 X. Qiu et al.

123

2 Related work

Riding on the prevailing success of P2P file sharing and

live streaming applications, a number of studies have

been proposed to take the advantage of the P2P paradigm

to provide VoD service. Most existing P2P VoD stream-

ing protocols fall into two main categories: one of them is

tree-push based protocols which organize peers into

multiple multicast trees, and distribute the media streams

by pushing data from the tree root downward [15–18].

However, such tree-push based protocols suffer from their

low resilience to volatile peer dynamics. The other cate-

gory includes the mesh-pull based protocols, such as Bi-

tOS [19], BASS [20], Toast [5], and Redcarpet [21],

which are based on block ‘‘swarming’’ [22] over mesh

overlay topologies. PPLive [1], UUSee [2], and PPStream

[3] are early successful deployments of such mesh-pull

based P2P VoD service.

In contrast to P2P live streaming, many problems related

to peer asynchrony and VCR operations in P2P VoD

streaming are more challenging [10, 13, 14, 23, 24]. One of

the fundamental challenges is to minimize the re-buffering

delay after a VCR command is issued.

Some studies propose to use prefetching to minimize the

re-buffering delay [10, 23], which may require placing

anchors throughout the media stream. VOVO [24] explores

the association rules between two segments—the one a

user is playing and another one the user might jump to—

and prefetches the potential destination segments. In gen-

eral, prefetching takes up extra bandwidth which may

otherwise be used to improve streaming quality, which may

not be accurate due to the difficulty in predicting a future

segment to watch. Other efforts on minimizing the re-

buffering delay focus on the improvement of the block

selection and source selection algorithms [9].

For new supplying peer discovery without prefetching,

existing commercial P2P VoD systems [1–3] have largely

resorted to tracker servers. In P2P file sharing applications,

a peer only reports to a tracker server when it joins or

departs. In responding to a request for neighbors, the

tracker server provides a random subset of peers in the

system to the requesting peer, which may work well since

each peer is interested in the entire file. The case in P2P

streaming applications is quite different: to ensure a low

streaming delay, tracker servers have to receive more fre-

quent updates from all peers in the system on their current

segment availability, in order to provide a refined list of

neighbors to the requesting peers. CollectCast [25] and

oStream [18] require peers to report their playback pro-

gress to the tracker server periodically. Kangaroo [9]

designs an algorithm to estimate the playback progress of

peers, which may introduce inaccuracy. In addition, the

protocol does not guarantee that the peers found may have

sufficient upload bandwidth to serve the leaping peer,

which is one of the focuses in our design.

To alleviate the load on tracker servers, DHT has been

adopted in a number of recent P2P VoD proposals [10–12]

to map block locations to peers. In general, each DHT

lookup takes log(N) steps, where N is the number of peers

in the system, and DHT updates are required whenever the

cached blocks are changed at the peers as their playback

progresses.

A few recent proposals suggest different overlay struc-

tures to implement neighbor lookup without the complexity

and cost of constructing a DHT. Wang et al. [13] utilize a

dynamic skip list (DSL) to construct a P2P VoD overlay,

where all the peers are connected sequentially according to

their playback progress at the base layer of the skip list, and

each peer may also randomly connect to a few non-adjacent

peers in the higher layers. A log(N) complexity is shown for

each lookup over the skip list. Chi et al. [26] suggest the use

of an AVL tree for peer indexing, which can achieve a

search efficiency sublinear to the number of peers. Cheng

et al. [14] propose a ring-assisted overlay management

scheme, where each peer maintains a set of concentric rings

with power-law radius and places neighbors on the rings

based on how similar their cached contents are. This overlay

structure promises to achieve an O(log(T/w)) lookup com-

plexity (T and w are the video size and the buffer size,

respectively), but a rigorous proof is missing.

RanSub [27] is one of the earliest work to achieve load

balancing among network nodes via random peer selec-

tions. We also make use of the general idea of biased

random neighbor selection at peers. Nevertheless, RanSub

provides a general scalable mechanism for delivering state

about a random subset of global participants in large-scale

networks, while InstantLeap makes use of random peer

selection to implement fast neighbor discovery and load

balancing at VoD peers at the same time.

In this paper, we aim to design an efficient overlay

architecture and associated protocols which can achieve

O(1) lookup efficiency upon any playback leaps and which

can provide sufficient streaming bandwidth for any new

playback position with high probability.

3 Architecture

Unlike live streaming where a peer’s playback position can

only move continuously forward, VoD streaming allows

the users to freely change their playback position to any

random point in the video stream. Such random playback

leaps necessitates quick discovery of new supplying peers

which are able to provide video blocks at the target play-

back position and have the upload bandwidth to actually

serve these blocks. To achieve the fastest possible neighbor

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 185

123

discovery, InstantLeap presents a simple but efficient P2P

overlay architecture, corresponding to the streaming of one

video to N peers.

3.1 Peer grouping with playback locality

We partition the video stream into m consecutive segments

along the time axis. Each segment consists of multiple

media blocks. A peer is marked as a member of group i if

its current playback position falls into the ith segment.

Peers in the same group (e.g., group i), and those in the two

adjacent groups (e.g., groups i - 1, i ? 1), may have

overlapping buffer contents and are thus potential supply-

ing peers for one another.

Each peer in group i maintains two neighbor lists: the

first list (referred to as the streaming neighbor list) contains

a subset of peers within the same group i as well as those in

the two adjacent groups i - 1 and i ? 1; the second list

(referred to as the shortcut neighbor list) includes peers

that are not in group i nor the two groups adjacent to group

i, the connections to which serve as shortcuts to reach other

parts of the video stream upon playback leaps. A concep-

tual model of the overlay design is illustrated in Fig. 1a.

The discovery of peers to be maintained in the neighbor

lists is based on a random exchange protocol, to be dis-

cussed in Sect. 4.

The two neighbor lists at a peer facilitate efficient

streaming from neighbors in the same group or adjacent

groups, and meanwhile enable fast discovery of new sup-

plying peers in other destination groups whenever a play-

back leap occurs, by following connections to the shortcut

neighbors. By maintaining neighbors in a random subset

of all groups at each peer, we decouple the complexity of

inter-group neighbor discovery from the total number of

peers in the overlay, N; the complexity is reduced to at

most a simple function of the number of segments in the

video, m. What is more, in the following, we show that the

complexity of neighbor discovery can be independent of m

as well.

3.2 Inter-group connectivity

We can represent each group of peers in Fig. 1a by one

graph node and merge all the connections across groups

into one; the condensed overlay graph is shown in Fig. 1b.

In practical large-scale P2P VoD applications, a streaming

overlay of a video can be populated by thousands of peers

or more, with a large number of peers in each group. The

node degrees in the condensed overlay graph in Fig. 1b can

be much larger than the number of inter-group connections

at a single peer. Therefore, given a reasonable number of

neighbors at each peer, the condensed overlay graph can

turn out to be a dense graph, or even a complete graph.

Hence, the number of hops between any two nodes in the

condensed graph would tend to be small, i.e., O(1) with

high probability. For a peer currently at segment i who

initiates a playback leap to a non-adjacent segment j, the

complexity of finding a neighbor in the destination group j

is proportional to the number of hops between the nodes

concerned in the condensed graph, i.e., O(1) with high

probability. After a neighbor in the destination group is

located, the leaping peer can acquire more streaming

neighbors that can aggregately provide sufficient band-

width for its media streaming, by exchanging neighbor lists

with the established neighbor in the group.

We present the detailed protocols for realizing the

architecture in the Sect. 4, and extensive analysis of the

protocols in Sect. 5, which shows that when each peer has a

reasonable number of shortcut neighbors (i.e., O(m)), an

O(1) complexity for discovering supplying peers in any

new playback position with sufficient upload bandwidth

can be achieved with high probability.

Group 1

Group i

Segm
ents in a video

Group i-1

Peer

(A)

Group
 1

(B)

Group m

Group
 m

Connection between
streaming neighbors

Connection between
shortcut neighbors

Group i+1

1

i-1

i-1
i

m

Group
 i+1

Group
 i-1

Group
 i

... ...

... ...

... ...

... ...

Fig. 1 P2P VoD overlay

architecture in InstantLeap

186 X. Qiu et al.

123

4 InstantLeap: protocols

InstantLeap assumes a P2P VoD streaming framework

similar to that of most state-of-the-art mesh-pull based P2P

streaming protocols (e.g., CoolStreaming [28], UUSee [2],

PPLive [8]): New peers are introduced into a streaming

overlay by a bootstrapping tracker server; they then stream

the video by retrieving needed blocks from neighbors

based on exchanges of buffer maps, and may request

neighbor lists from each other to learn about more peers in

the overlay.

One of the original features of InstantLeap is the con-

struction of streaming and shortcut neighbor lists based on

simple exchanges of known neighbors among the peers.

These lists facilitate efficient streaming and fast neighbor

discovery upon playback leaps with low additional proto-

col overhead. In this section, we first discuss the core

neighbor list construction protocols in InstantLeap and then

present the detailed procedures to handle peer join,

departure, and playback leap.

4.1 Neighbor list construction

Based on random neighbor list exchanges between peers,

the core procedures of constructing the streaming neighbor

list and the shortcut neighbor list at a peer, respectively, are

given in Algorithm 1. The notations used in Algorithm 1

and those hereinafter are summarized in Table 1.

In InstantLeap, the number of neighbors in the streaming

neighbor list of a peer is a constant, e.g., 30–50, as typically

used in prevailing P2P streaming protocols [1–3]. The num-

ber of groups the peer has shortcut neighbors in is in the

range of [b1m, b2m], where 0 B b1 \b2 B 1: our Con-

structShortcutNeighborList procedure would stop finding

neighbors in new groups when the shortcut neighbors the peer

has obtained spanb2m different groups; this procedure will be

restarted when the number of groups has fallen under b1m.

In our design, a peer may maintain multiple shortcut

neighbors from the same group, for two purposes: (1) to

maximally guarantee a sufficient aggregate streaming

bandwidth when its playback ‘‘leaps’’ to the destination

group, such that the peer can immediately start playback with

satisfactory smoothness; (2) as our shortcut neighbor lists are

maintained loosely (i.e., with a low update frequency in cases

of peer departures and playback leaps to incur low mainte-

nance overhead), such a redundancy in shortcut neighbors

maintained for each group provides robustness in fast

neighbor discovery, i.e., with high probability at least one

neighbor can be successfully identified that still caches the

segment corresponding to the destination group.

The number of shortcut neighbors from the same group

that a peer maintains is decided by the streaming quality

the peer aims to obtain, the available upload bandwidth of

peers from the group, and the upper limit L on the number

of neighbor list exchanges a peer can carry out. In parti-

cular, peer pi decides whether it should obtain more

shortcut neighbors from group k by examining the

following Shortcut Neighbor Maintenance Condition (SNM

Condition):

Algorithm 1 Basic Procedures at Peer in InstantLeap
1: procedure CONSTRUCTSTREAMNEIGHBORLIST()
2: while my streaming neighbor list is not full
3: randomly select a peer
4: obtain the streaming neighbor list from
5: merge into my streaming neighbor list
6: end while
7: end procedure
1: procedure CONSTRUCTSHORTCUTNEIGHBORLIST()
2: while the number of groups my current shortcut neighbors belong to is smaller than
3: randomly select a peer from my streaming or shortcut neighbor list
4: obtain the shortcut neighbor list from
5: merge into my shortcut neighbor list
6: end while
7: for each group I have shortcut neighbor(s) in
8: if the SNM Condition has not been satisfied and the number of times for neighbor list requests

has not exceeded
9: randomly select a peer from my shortcut neighbor list that belongs to group

10: obtain the streaming neighbor list from
11: merge into my shortcut neighbor list
12: end if
13: end for
14: end procedure

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 187

123

X

pj2NscðpiÞ\GðkÞ

UðpjÞ
1þ jNuðpjÞj

�RðpiÞ: ð1Þ

The left side of inequality (1) represents an estimate of

the aggregate upload bandwidth peer pi can obtain from its

current shortcut neighbors if its playback ‘‘leaps’’ to group

k, where G(k) represents the set of peers in group k, U(pj)

denotes the upload capacity at peer pj, and Nu(pj) is the set

of neighbors pj is concurrently uploading to. Here we

estimate the available supplying bandwidth from pj to pi by

evenly dividing the upload capacity of pj among all its

receivers. Information on the upload capacity and the

number of concurrent uploading peers can all be exchanged

among peers with their neighbor list exchanges and status

probing at low frequencies. R(pi) denotes the desired

streaming bandwidth at peer pi. For constant rate video

streams, the streaming bandwidth is equivalent to the

streaming rate of the video; in cases that layered coding or

multiple description coding is employed [29], R(pi) can be

set to different levels according to the number of layers/

descriptions the peer may retrieve. Using the SNM

condition, peer pi wishes to maximally guarantee a

sufficient streaming bandwidth when its playback ‘‘leaps’’

to a new group, within the limit of L neighbor exchanges.

By limiting the number of groups and the number of

shortcut neighbors per group, we aim to achieve a good

tradeoff between neighbor discovery efficiency and main-

tenance overhead. Further discussions and appropriate

values of these parameters will be presented in Sect. 5.

Main protocols in InstantLeap can be implemented

based on the procedures in Algorithm 1.

4.2 Peer join

With InstantLeap, we seek to minimize the load on the

tracker servers. When a peer first joins a streaming overlay,

the number of existing peers assigned to it can be as small

as one or a few. These bootstrapping peers are added to the

new peer’s streaming or shortcut neighbor lists, according

to their group membership. Following the procedure of

PeerJoin in Algorithm 2, if none of the assigned neighbors

is in the group where the peer’s desired playback position

falls into, the new peer discovers a peer in the destination

group by exchanging neighbor lists with the few known

neighbors. Then the new peer executes UpdateStream-

NeighborList() to obtain more neighbors with similar

playback progress for video streaming, and Update-

ShortcutNeighborList() to establish shortcuts to segments

across the entire video stream, as described in Algorithm 1.

Table 1 Notations in InstantLeap protocols

N The total number of peers in the overlay

pi A peer in the overlay, i = 1, ..., N

m The total number of groups

G(k) The set of peers in Group k, k [{1, ..., m}

U(pi) Upload capacity of peer pi

Nu(pi) The set of neighbors pi is uploading to

Nsc(pi) The shortcut neighbor list at pi

Nst(pi) The streaming neighbor list at pi

R(pi) Streaming bandwidth requirement at pi

b1 Minimum fraction of groups a peer’s shortcut neighbors span

b2 Maximum fraction of groups a peer’s shortcut neighbors span

T Upper limit on the number of times a peer exchanges

neighbor lists with others, in order to discover a peer in a

destination group

L Upper limit on the number of times a peer exchanges

neighbor lists with others, in order to obtain more shortcut

neighbors in one group

Algorithm 2 Join Procedure at Peer in InstantLeap
1: procedure PEERJOIN

2: Calculate group ID corresponding to
3: Request a few neighbors from the tracker server and add them into and according

to their group membership
4: while my streaming neighbor list is empty, , and the number of times for

neighbor list requests has not exceeded
5: Randomly select a peer from my shortcut neighbor list
6: Obtain the shortcut neighbor list from peer
7: Merge peers in into my streaming neighbor list or shortcut neighbor list

8: end while
9: if no neighbor with group ID has been discovered

10: Request a neighbor with group ID from a tracker server
11: end if
12: ConstructStreamNeighborList()
13: ConstructShortcutNeighborList()
14: end procedure

188 X. Qiu et al.

123

4.3 Continuous playback

When a peer watches the video continuously, its group

membership changes whenever it moves on to play the next

video segment. The peer notifies all its neighbors in the two

lists with its new group membership. Nevertheless, there

would be little changes to its streaming neighbor list, when

most of its streaming neighbors are pursuing a continuous

playback and they can continue serve media blocks to each

other. In addition, most of its shortcut neighbors remain

intact as well, except the few that have switched to the

streaming neighbor list. Only when the number of groups

its shortcut neighbors span falls below b1m will the Con-

structShortcutNeighborList procedure be invoked again.

4.4 Playback leap

When there is a playback leap due to a VCR operation, the

procedure of PlaybackLeap in Algorithm 3 is executed. In

the procedure, a peer pi looks for neighbors in the desti-

nation group by exchanging neighbor list with its existing

neighbors. When it still fails to discover such a neighbor

peer after T exchanges of neighbor lists, it queries the

tracker server as the last resort. T is a protocol parameter,

which represents the maximum number of times a peer

exchanges neighbor lists with others, in its attempt to

discover a supplying peer in the destination group, before it

resorts to the tracker server. We discuss an appropriate

choice of T based on our analysis in Sect. 5.

After connecting to discovered peers in the destination

group, the peer starts retrieving video blocks right away,

since the shortcut neighbors maintained at each peer

maximally guarantee a sufficient streaming bandwidth to a

new requesting peer, based on the procedure of

ConstructShortcutNeighborList. Meanwhile, the peer exe-

cutes ConstructStreamNeighborList to obtain more new

streaming neighbors, and ConstructShortcutNeighborList

to update its shortcut neighbor list.

The leaping peer pi may reside in the streaming or

shortcut neighbor lists of other peers. When peer pi has

changed its group membership, those peers can still keep

peer pi in their respective streaming or shortcut neighbor

lists, as long as pi still caches the segment corresponding to

its previous group. In this way, a peer which has cached

multiple segments in its local buffer can effectively serve

peers in multiple groups, leading to maximal utilization of

peer cache and bandwidth resources.

4.5 Peer departure and failure

When a peer pi leaves a P2P VoD overlay gracefully, it will

notify its streaming neighbors and shortcut neighbors,

which remove the peer from their neighbor lists and

may invoke ConstructStreamNeighborList or Construct-

ShortcutNeighborList to rebuild the respective list when

necessary.

When a peer pi unexpectedly fails, its information may still

be cached at the streaming neighbor lists or shortcut neighbor

lists of some other peers. Such outdated information will be

purged out of the streaming neighbor list of a peer when it

notices the connection to the streaming neighbor pi has been

shut down, and can be removed from the shortcut neighbor

list of a peer when it tries to connect to peer pi upon playback

leaps. The redundancy provided by ConstructShortcut

NeighborList, in that typically more than one shortcut

neighbor from the same group is maintained in a peer’s

shortcut neighbor list, guarantees there may still be available

neighbors to resort to in case of such lagged updates.

Algorithm 3 Playback Leap Procedure at Peer in InstantLeap
1: procedure PLAYBACKLEAP

2: Calculate group ID corresponding to
3: while there is no peer with group ID on my shortcut neighbor list and the number of

times for neighbor list requests has not exceeded
4: Randomly select a peer from my streaming neighbor list or shortcut neighbor

5: Obtain the shortcut neighbor list from peer
6: Merge peers in into my shortcut neighbor list
7: end while
8: if no neighbor with group ID has been discovered
9: Request a neighbor with group ID from a tracker server

10: end if
11: Clear my streaming neighbor list
12: Add the discovered neighbors with group ID into my streaming neighbor list
13: Start streaming from the current streaming neighbors
14: ConstructStreamNeighborList()
15: ConstructShortcutNeighborList()
16: end procedure

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 189

123

5 Analysis

Although InstantLeap protocols appear to be simple add-

ons to the existing typical mesh-based streaming protocols,

we show in the following that an O(1) neighbor discovery

efficiency can be achieved upon any playback leap. We

also carefully analyze the overlay maintenance overhead

upon various peer operations in InstantLeap and explain

the tradeoff between neighbor discovery robustness and

maintenance overhead.

5.1 Neighbor discovery efficiency

We first show that a peer can obtain shortcut neighbors

across O(m) groups by only a small number of neighbor list

exchanges. In our analysis, we focus on the simplified case

for each peer to obtain one shortcut neighbor from a group.

To acquire more neighbors from the same group, we know

at most a constant number L of neighbor list exchanges are

involved, based on Algorithm 1.

Let si
t denote the average number of groups the shortcut

neighbor list at peer i spans (referred to as ‘‘group span’’

hereinafter) after t times of random neighbor list exchan-

ges. We first prove a lemma.

Lemma 1 Let peer pi and peer pj be two randomly

selected peers from all N peers in the streaming overlay,

with an initial group span of the shortcut neighbor list of

s0
i ¼ a and s0

j ¼ b, respectively. The average group span

of pi’s shortcut neighbor list after pi exchanges neighbor

list with pj is s1
i ¼ s1

j ¼ aþ b� a�b
m .

Proof The average group span of the merged shortcut

neighbor list is the sum of the group span of the shortcut

neighbor list of pi (i.e., a) and that of the shortcut neighbor

list of pj (i.e., b), minus the expected number of overlap-

ping groups which is a
m� b

m� m. h

Based on Lemma 1, we have the following theorem:

Theorem 2 Assuming si
0 [[K, (1 ? a)K], where K C 1

and 0 B a « 1, for any peer pi in the streaming overlay.

After t times of shortcut neighbor list exchanges with

randomly selected other peers in the overlay, the average

group span of the shortcut neighbor list of pi is

st
i�m½1� e�

2t�K
m �.

Proof Given that each peer’s shortcut neighbor list has a

similar group span, based on Lemma 1, the average group

span of shortcut neighbor list at peer pi after one exchange

for neighbors with another random peer is s1
i ¼ 2s0

i �
ðs0

i Þ
2

m .

After t ? 1 times of exchanges between pi and other

peers, we can derive that

stþ1
i ¼ 2st

i �
ðst

iÞ
2

m
; ðt� 0Þ;

Let Q(t) = si
t - m. We have

Qðt þ 1Þ ¼ stþ1
i � m ¼ 2st

i �
ðst

iÞ
2

m
� m ¼ � 1

m
½st

i � m�2

¼ � 1

m
½QðtÞ�2

We then have QðtÞ ¼ � ½Qð0Þ�
2t

m2t�1 ¼ �mð1� s0
i

mÞ
2t

, and thus we

derive the expression for st
i:

st
i ¼ QðtÞ þ m ¼ m½1� ð1� s0

i

m
Þ2

t

�

Since 1� s0
i

m � e�
s0
i

m with 0� s0
i �m, we have

st
i�m½1� e�

2t�s0
i

m � �m½1� e�
2t�K

m �

h

Corollary 3 Assuming initially s0
i ¼ 1 for any peer i in

the streaming overlay, after log(m) times of shortcut

neighbor list exchanges with randomly selected other

peers, the average group span of the shortcut neighbor list

of peer i is slog m
i �ð1� 1

eÞm�0:63m.

This corollary tells us that even in the extreme cases that

each peer is assigned with only one neighbor initially, after

a small number (log(m)) of neighbor list exchanges, the

peer can obtain shortcut neighbors covering more than half

(0.63) of all the groups.

log(m) is generally a very small value. Based on the

corollary, we know that a peer will have a shortcut

neighbor list spanning no less than ð1� 1
eÞm groups after a

few exchanges after joining the overlay. As a side note, in

our protocol design discussed in Sect. 4.1, parameter b2 can

be set to a value of 2
3

considering this effect. In addition, we

can set the maximum number of neighbor list exchanges in

order to build the shortcut neighbor list, T, to be

logðmÞ � 1
ð1�1

eÞ
¼ e

e�1
logðmÞ, representing the expected

number of neighbor list exchanges in order to obtain a

neighbor in each group.

In this case, when a peer, which has finished the joining

procedure, initiates a playback leap, the probability that it

already has a neighbor belonging to its destination group is

at least 1� 1
e. If there is no such a neighbor, according to

our protocol in Algorithm 3, the peer will exchange

neighbor lists with its current neighbors. The probability it

can successfully obtain a shortcut neighbor within a spe-

cific destination group after v times of neighbor list

exchanges is at least ð1� 1
eÞð1eÞ

v
. Therefore, we can derive

the following theorem on the expected number of neighbor

list exchanges a peer needs upon a playback leap, in order

to discover a shortcut neighbor in the destination group:

190 X. Qiu et al.

123

Theorem 4 The expected number of neighbor list

exchanges, for a peer which has finished its joining pro-

cedure, to find a shortcut neighbor to a destination group

upon any playback leap, is O(1).

Proof Consider any peer pi in the overlay who makes a

playback leap to destination group k. Let q denote the

average probability that a peer’s shortcut neighbor list

includes a peer in the destination group. This probability

equals the ratio of the average size of the shortcut neighbor

list at a peer over the total number of groups (i.e., m). In the

case that pi’s shortcut neighbor list does not contain such a

neighbor, the probability that pi can obtain such a peer by

one neighbor list exchange with another peer pj, randomly

selected from the overlay, is q, i.e., the probability that pj

has a neighbor in group k. Therefore, the probability that a

peer successfully obtains a neighbor in the destination

group after v times of random neighbor list exchanges is

(1 - q)v 9 q, and the expected number of exchanges isP1
v¼0 v� ð1� qÞv � q ¼ 1�q

q .

Considering that the peers involved in the exchanges are

not new joiners (i.e., they have all finished their joining

procedures), we have q� 1� 1
e, and the expected number

of exchanges is 1�q
q � 1

e�1
� 0:58. Therefore, in general,

the expected number of neighbor list exchanges upon any

playback leap is O(1). h

In our analysis, we have assumed that all neighbor list

exchanges occur between two peers randomly selected

from the overlay. The random exchange in InstantLeap

between a peer and one of its randomly selected neighbors

represents the best possible approximation to the expected

randomness in a practical P2P VoD system.

5.2 Overlay maintenance overhead

The overhead in InstantLeap protocols is due mainly to the

exchange, construction, and maintenance of neighbor lists

in case of various peer operations, including peer joins,

departures, and various VCR operations. We next analyze

such overlay maintenance overhead.

(1) Peer join: As shown in Corollary 3, a new joining peer

to the overlay carries out at most logðmÞ þ ð1� 1
eÞmL

neighbor list exchanges in order to construct its

shortcut neighbor list, in which log(m) represents the

number of times it requests neighbor lists to obtain at

least one neighbor in each of ð1� 1
eÞm groups, and

ð1� 1
eÞmL is the upper bound for further neighbor list

exchanges in order to acquire a few more neighbors in

each group to satisfy the SNM condition.

For streaming neighbor list construction, a new

joining peer carries out an expected number of
e

e�1
logðmÞ neighbor list exchanges in order to obtain

at least one neighbor in the group it belongs to, and

then a small number of exchanges to obtain more

streaming neighbors, that is much smaller than the

total number of streaming neighbors (i.e., 30–50) a

peer can maintain.

(2) Continuous playback: When a peer is continuously

playing the video stream, the overlay maintenance

overhead includes sending updates of its group

membership to neighbors when it crosses group

boundaries, and updating its neighbor lists to purge

outdated neighbor information and adding new neigh-

bors. Such overhead is generally much smaller than

that for new neighbor list construction upon peer joins.

(3) Playback leap: After a peer’s playback ‘‘leaps’’ to a

new segment and it is connected to at least one

neighbor in the destination group k, the peer recon-

structs its streaming neighbor list and updates its

shortcut neighbor list. The overhead in streaming

neighbor list construction involves a small number of

neighbor list exchanges with its known neighbors in

group k (much smaller than 30–50) to obtain suffi-

cient streaming neighbors. The update to its shortcut

neighbor list is little as well, as the peer may only

need to take the neighbors in group k out of its

shortcut neighbor list and place a few of its previous

streaming neighbors into the shortcut neighbor list

instead.

(4) Peer departure/failure: In cases of peer departures

and failures, the overlay maintenance overhead is

proportional to the size of the leaving peer’s stream-

ing and shortcut neighbor lists at O(m), unless

ConstructStreamNeighborList or ConstructShortcut-

NeighborList is invoked to rebuild the respective list

at a neighbor.

5.3 Tradeoff between neighbor discovery robustness

and overlay maintenance overhead

As discussed in Sect. 4.1, for each group a peer’s shortcut

neighbors span, it may maintain more than one shortcut

neighbors, in order to provide robustness into the neighbor

discovery process in practical systems with possibly out-

dated neighbor group membership information. We now

analytically show the tradeoff between such robustness and

neighbor list maintenance overhead in this case.

Let g denote the probability that a neighbor pj peer pi

obtains for destination group k by neighbor list exchanges

can no longer serve pi the segment corresponding to group

k, e.g., in cases of pj’s playback leap and buffer replace-

ment, or pj’s failure from the system. The probability that

peer pi has at least one valid neighbor in group k by

maintaining l shortcut neighbors for the group is 1 - gl.

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 191

123

To maintain more than one shortcut neighbors for a

group, there are additional L neighbor list exchanges (at

most) at each peer to acquire more neighbors in the group

upon peer join based on Algorithm 1 and O(l) more

overhead for shortcut neighbor list maintenance in cases of

peer failure, departure, and playback leaps, when the

number of shortcut neighbors maintained for the group is l.

As outdated neighbor information is mainly caused by

unexpected failures of peers and segment replacement in

peers’ buffers, in a system with large buffer sizes (thus

lower chances of segment replacement) and a low proba-

bility of unexpected failures (e.g., wired networks), we

may choose to maintain fewer shortcut neighbors per group

at the peers; otherwise, more neighbors per group is more

desirable. In this way, a best tradeoff between neighbor

discovery robustness and overlay maintenance overhead

can be achieved in systems of different scenarios.

6 Performance evaluation

We present evaluations of InstantLeap based on a P2P

simulator we have developed. The simulator is imple-

mented using Java, featuring a multi-threaded high-per-

formance architecture, with supports for multiple event-

driven timeouts. All peer dynamics, including playback

leaps, joins and departures, are simulated with events

scheduled at their respective times. With careful optimi-

zations, our simulator can simulate large-scale P2P systems

with 10,000 or more simultaneous peers, distinguishing

itself from representative existing P2P simulators [30]

which may support 3,000 peers at most.

In our evaluations, the streaming rate of videos

via the overlay is 450 Kbps. The upload bandwidth

at the peers ranges between 300 and 10,000 Kbps,

following a Pareto distribution with shape parameter

K = 2, which corresponds to a resource index (RI ¼
average upload capacity per peer

streaming rate
) of 1.3. Peers’ lifetime

follows an exponential distribution with an expected

length of 30 min. Peers join the overlay following a

Poisson arrival model, whose inter-arrival times follow

an exponential distribution. The expectation of the inter-

arrival times differs across the experiments where we

tried different overlay sizes, in order to keep the total

number of online peers at a similar level over time in

each experiment. The interval between two playback

leaps at each peer follows an exponential distribution

with an expected length of 200 s. We experiment with

videos of different lengths, varying from 40 to 200 min.

Each peer’s buffer can cache media segments up to 3

min of playback. The number of groups (m) thus ranges

from 40 to 200, accordingly. By default, b1 ¼ 1
3
, b2 ¼ 2

3
,

and T = 10. Other than neighbor list exchanges upon

different peer operations such as playback leap, we also

implement periodical exchanges of neighbor lists among

peers to update neighbor status during a peer’s contin-

uous playback: streaming neighbor lists are exchanged

among streaming neighbors every 5 s; the default inter-

val for shortcut neighbor list exchanges and shortcut

neighbor status probing among peers is 60 s. These

parameters are carefully selected to be consistent with

the measurement results in some existing representative

P2P VoD systems [8, 23].

For streaming block scheduling in our simulations, peers

exchange buffer maps every 5 s. A peer requests blocks

needed from its multiple neighbors, following a hybrid

deadline-rarest-first block selection policy, as is done in [5].

6.1 Performance of neighbor discovery

Figures 2 and 3 show the average number of neighbor list

exchanges upon peer joins and playback leaps, respec-

tively, in overlays of different sizes and for videos of dif-

ferent lengths. These numbers translate into the delay for

neighbor discovery, when the protocols are implemented in

practice. From both figures, we observe that the numbers of

exchanges are fewer than four, and little change with the

increase of the overlay size. This clearly confirms that

InstantLeap achieves a constant neighbor discovery per-

formance of O(1), independent of the number of peers in

the overlay. When a peer joins or its playback leaps, it can

get a ready collection of streaming neighbors in the desti-

nation group from its neighbors or its own shortcut

neighbor list. This provides users with short re-buffering

delay and satisfactory viewing experience.

Figure 4 further shows the average number of neighbor

list exchanges under different resource indices in overlays

of different sizes (with m = 60). Streaming neighbor

2000 4000 6000 8000 10000
0

5

10

15

20

25

number of peers

N
um

be
r

of
 n

ei
gh

bo
r

lis
t e

xc
ha

gn
es

m = 40
m = 80
m = 120
m = 160
m = 200
DSL

Fig. 2 Average number of neighbor list exchanges upon peer joins

192 X. Qiu et al.

123

discovery is faster when the upload bandwidth in an

overlay is more abundant. We observe that even when the

upload capacity supply barely meets the demand (RI is

around 1), a peer can still find sufficient suppliers with an

average of 6 times of neighbor list exchanges in large

overlays of up to 10,000 peers.

In addition, we have also implemented the Dynamic

Skip List (DSL) algorithm [13] for comparison purpose.

In Figs. 2 and 3, the numbers corresponding to the DSL

case represent the average numbers of search steps to

discover a supplying peers in a DSL. We observe that In-

stantLeap generally requires just a few steps for neighbor

discovery as compared to DSL, while DSL apparently

requires many more steps with the increase of the overlay

size.

6.2 Overlay maintenance overhead

In this subsection, we show that although InstantLeap

maintains O(m) shortcut neighbors and a constant number

of streaming neighbors at each peer, the additional

maintenance traffic incurred is indeed negligible, as com-

pared to other control overhead, and the streaming traffic in

a typical mesh-based P2P VoD system.

6.2.1 Overhead at peers

Figures 5 and 6 plot the control messaging overhead for

overlay maintenance upon peer joins and playback leaps,

which depends on the number of control messages and the

sizes of the neighbor list exchange messages. We have

observed that upon peer joins, the total number of message

bytes to build both the streaming neighbor list and the

shortcut neighbor list is no more than a mere 1,000 bytes. A

comparison between Figs. 5 and 6 shows that control

messages incurred by a playback leap is much fewer than

those caused by a peer join, as a leaping peer only needs to

rebuild its streaming neighbor list while updating its

shortcut neighbor list slightly.

Besides messaging overhead caused by a peer join or

leap, Fig. 7 shows the messaging overhead incurred by

periodical exchanges of neighbor lists and status probing

2000 4000 6000 8000 10000
0

5

10

15

20

25

number of peers

N
um

be
r

of
 n

ei
gh

bo
r

ex
ch

an
ge

s m = 40
m = 80
m = 120
m = 160
m = 200
DSL

Fig. 3 Average number of neighbor list exchanges upon playback

leaps

2000 4000 6000 8000 10000
0

2

4

6

8

number of peers

N
um

be
r

of
 n

ei
gh

bo
r

ex
ch

an
ge

s RI is slightly more than 1
RI = 1.2
RI = 1.33

Fig. 4 Average number of neighbor list exchanges upon playback

leaps with different resource indices

2000 4000 6000 8000 10000
0

500

1000

1500

2000

number of peers

C
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d

(B
yt

es
)

m = 40
m = 80
m = 120
m = 160
m = 200

Fig. 5 Maintenance overhead upon peer joins

2000 4000 6000 8000 10000
0

100

200

300

400

500

number of peers

C
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d

(B
yt

es
)

m = 40
m = 80
m = 120
m = 160
m = 200

Fig. 6 Maintenance overhead upon playback leaps

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 193

123

among the peers. We observe that such messaging over-

head is lower than 2.5 Kbps, equivalent to 0.5% of the

streaming rate.

Comparing the overhead of InstantLeap to that of an

existing protocol, such as DSL [13] and the ring-assisted

solution [14], we find by comparing our results with those

given in their respective papers, that those protocols

generally incur larger messaging overhead in cases of peer

joins and leaps, while InstantLeap requires more control

message exchanges for maintenance of the overlay during

playback.

6.2.2 Load on the tracker server

InstantLeap minimizes the requests to tracker servers,

which are only used as the last resort when a peer fails to

identify a streaming or shortcut neighbor in the destination

group after T times of neighbor list exchanges. In our

implementation, the tracker server maintains information

about 100 peers only in all the overlays of different sizes.

Figure 8 shows that the control messaging overhead on the

tracker server is \100 Kbps, which is very low indeed.

6.3 Streaming quality

We evaluate the streaming quality at the peers in Instant-

Leap by calculating a continuity index, which represents

the percentage of blocks a peer receives before their

respective playback deadlines during playback. In Fig. 9

we observe that the average continuity index is always

larger than 0.9, showing that the new neighbors a peer

connects to upon its playback leaps can provide a sufficient

streaming bandwidth most of the times.

We are also interested to explore whether the overlay

can adapt to severe peer dynamics. In this experiment, we

have a large portion of peers leap to other playback posi-

tions simultaneously in an overlay of 10,000 peers while

watching a 60-min video. In Fig. 10, we see that if 10% of

all the peers leap concurrently, there is little impact on the

average streaming quality of the peers, as most of them can

find new neighbors very quickly. In the case that 50% of all

the peers leap simultaneously, the average continuity index

drops to 0.8, but picks up quickly again in \10 s.

6.4 Load balance among peers

We next investigate the load on each peer to serve as

shortcut neighbors for peers in other groups. In this

experiment, we stream over an overlay of 5,000 peers

watching a 80-min video, and count the number of

occurrence of each peer in other peers’ shortcut neighbor

lists in the entire system. In Fig. 11, we observe that most

peers serve as shortcut neighbors at a similar number of

other peers. As peers with larger IDs join the overlay later,

we also observe from Fig. 11 that peers with longer online

time tend to be known by more other peers.

In Fig. 12, we plot the results again, against the average

bandwidth that each peer can upload to each of its

receivers. We find that if a peer can allocate more upload

2000 4000 6000 8000 10000
0

2

4

6

8

10

number of peers

C
on

tr
ol

 tr
af

fic
 b

an
dw

id
th

 (
kb

ps
) m = 40

m = 80
m = 120
m = 160
m = 200

Fig. 7 Regular overlay maintenance overhead

2000 4000 6000 8000 10000
0

100

200

300

400

500

number of peers

C
on

tr
ol

 tr
af

fic
 b

an
dw

id
th

 (
kb

ps
) m = 40

m = 80
m = 120
m = 160
m = 200

Fig. 8 Load on the tracker server

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

number of peers

C
on

tin
ut

iy
 in

de
x

m = 40

m = 80

m = 120

m = 160

m = 200

Fig. 9 Average streaming quality at peers

194 X. Qiu et al.

123

bandwidth to each of its streaming neighbors, it tends to be

known by more peers. This helps the leaping peers to find

new supplying peers with sufficient bandwidth more

quickly. We also observe that the average bandwidth per

upload link at the majority of peers lies within a relatively

small range, which is due to the effective load balancing

using the SNM condition: Based on SNM, peers tend to

select potential shortcut neighbors from those that are

currently uploading at high bandwidth to each of their

streaming neighbors. In this way, a high-capacity peer will

have a higher chance to be selected as a shortcut neighbor

and subsequently to serve as a streaming neighbor; with the

increase of streaming neighbors, its average upload band-

width per link decreases, and thus its chance to be further

selected as shortcut and streaming neighbors decreases,

resulting in the relatively similar bandwidth per upload link

at the majority of the peers.

6.5 Impact of parameters

6.5.1 Impact of the number of groups maintained

In InstantLeap, we impose a range on the number of groups

spanned by shortcut neighbors at each peer, i.e., [b1m,

b2m]. We now investigate whether the number of groups

affects the performance and overhead in InstantLeap.

Figure 13 plots the neighbor discovery performance and

overlay maintenance overhead for different values of b2,

respectively. In all these experiments, we set b1 = 0.5b2,

and the size of the overlay is 10,000. We observe that the

neighbor discovery performance becomes better when

peers have shortcut neighbors in more groups (with the

increase of b2), which is at the cost of increased overlay

maintenance overhead. A closer look reveals that the

optimal value of b2 is achieved at around 0.6, where there

is a good balance between the performance and the over-

head. This also explains our choice of using b2 ¼ 2
3

by

default in all of the experiments.

6.5.2 Impact of the number of shortcut neighbors

maintained per group

We have analyzed the tradeoff between neighbor discov-

ery performance and overlay maintenance overhead when a

peer keeps different numbers of shortcut neighbors for each

group in Sect. 5.3. We verify our analysis by experiment:

We stream over an overlay of 10,000 peers watching a

40-min video. There are 40 groups in this overlay and each

group contains 250 peers on average. In Fig. 14, the

number of shortcut neighbors shown is the maximum

number of shortcut neighbors a peer can maintain per

group. SNM conditions are applied for dynamic shortcut

neighbor maintenance. We observe that increasing the

maximum number of shortcut neighbors per group reduces

the re-buffering delay upon playback leaps and improves

the average streaming quality, with slight sacrifice in terms

of messaging overhead.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time after the simultaneously leaping (seconds)

C
on

tin
ut

iy
 in

de
x

Ratio of all peers = 10%
Ratio of all peers = 50%

Fig. 10 Average streaming quality upon severe peer dynamics

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

Peer’s ID

N
um

be
r

of
 o

cc
ur

re
nc

e
of

 e
ac

h
pe

er
in

 o
th

er
 p

ee
rs

’ s
ho

rt
cu

t n
ei

gh
bo

r
lis

ts

a peer

Fig. 11 Number of occurrence of each peer in other peers’ shortcut

neighbor lists (sorted by peer ID)

0 200 400 600 800 1000
0

50

100

150

200

250

Average upload bandwidth per receiver (kbps)

N
um

be
r

of
 o

cc
ur

re
nc

e
of

 e
ac

h
pe

er
in

 o
th

er
 p

ee
rs

’ s
ho

rt
cu

t n
ei

gh
bo

r
lis

ts

a peer

Fig. 12 Number of occurrence of each peer in other peers’ shortcut

neighbor lists (sorted by the peer’s average upload bandwidth per

receiver)

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 195

123

0.2 0.4 0.6 0.8
0

2

4

6

8

β
2

N
um

be
r

of
 n

ei
gh

bo
r

lis
t e

xc
ha

ng
e

(1)

m = 40
m = 80
m = 120
m = 160
m = 200

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

β
2

C
on

tit
ui

ty
 in

de
x

(2)

m = 40
m = 80
m = 120
m = 160
m = 200

0.2 0.4 0.6 0.8
0

100

200

300

400

500

β
2C

on
tr

ol
 m

es
sa

gi
ng

 o
ve

rh
ea

d
up

on
 le

ap
s

(B
yt

es
)

(3)

m = 40
m = 80
m = 120
m = 160
m = 200

0.2 0.4 0.6 0.8
0

2

4

6

8

10

β
2

C
on

tr
ol

 tr
af

fic
 b

an
dw

id
th

 (
kb

ps
)

(4)

m = 40
m = 80
m = 120
m = 160
m = 200

Fig. 13 Impact of different

values of b2

1 2 3 4 5
0

1

2

3

4

5

N
um

be
r

of
 n

ei
gh

bo
r

lis
t e

xc
ha

ng
e

up
on

 le
ap

s

Number of shortcut neighbors
maintained per group

(1)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

C
on

tin
ui

ty
 in

de
x

Number of shortcut neighbors
maintained per group

(2)

1 2 3 4 5
0

100

200

300

400

500

C
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d

up
on

 le
ap

s(
B

yt
es

)

Number of shortcut neighbors
maintained per group

(3)

1 2 3 4 5
0

2

4

6

8

10

C
on

tr
ol

 tr
af

fic
 b

an
dw

id
th

 (
kb

ps
)

Number of shortcut neighbors
maintained per group

(4)

Fig. 14 Impact of the number

of shortcut neighbors in each

group

196 X. Qiu et al.

123

7 Concluding remarks

This paper proposes InstantLeap, a scalable light-weight

indexing architecture to achieve efficient streaming and

fast neighbor discovery for P2P VoD streaming applica-

tions. The highlight of InstantLeap is its neighbor discov-

ery method which has a performance of O(1) upon any

playback leap with low overlay maintenance overhead.

After each playback leap, the identified supplying peers can

provide sufficient aggregate streaming bandwidth to the

leaping peer with high probability and would be ready to

start transmitting media blocks immediately after the new

connections are established.

InstantLeap can be implemented on top of the basic

framework of prevailing mesh-pull based P2P VoD pro-

tocols, by adding the simple function of random neighbor

list exchanges to maintain shortcut neighbors. The seem-

ingly simple protocol achieves unexpectedly good neigh-

bor discovery performance, thus providing good support

for various VCR operations, which is validated by both

theoretical analysis and extensive simulations with large-

scale overlays and intense peer dynamics.

In the future, we may extend the current framework to

solve the problem of bandwidth imbalance across the

groups. This problem more likely occurs in overlays of

small size. During shortcut neighbor list construction, peers

can estimate the bandwidth situation of each group, so that

a peer belonging to a group with sufficient bandwidth can

help distribute the blocks belonging to a group with limited

bandwidth.

References

1. PPLive, http://www.pplive.com/

2. UUSee, http://www.uusee.com/

3. PPStream, http://www.ppstream.com

4. Huang, C., Li, J., Ross, K.W.: Can internet video-on-demand Be

profitable? In: Proceedings of ACM SIGCOMM (2007)

5. Choe, Y.R., Schuff, D.L., Dyaberi, J.M., Pai, V.S.: Improving

VoD server efficiency with BitTorrent. In: Proceedings of ACM

Multimedia (2007)

6. Huang, C., Li, J., Ross, K.: Peer-assisted VoD: making internet

video distribution cheap. In: Proceedings of the Sixth Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS 2007) (2007)

7. Chen, Y.-F., Huang, Y., Jana, R., Jiang, H., Rabinovich, M.,

Rahe, J., Wei, B., Xiao, Z.: Towards capacity and profit opti-

mization of video-on-demand services in a peer-assisted IPTV

platform. Multimed. Syst. 15, 19–32 (2009)

8. Huang, Y., Fu, T.Z.J., Chiu, D.-M., Lui, J.C.S., Huang, C.:

Challenges, design and analysis of a large-scale P2P-VoD sys-

tem. In: Proceedings of ACM SIGCOMM (2008)

9. Yang, X., Gjoka, M., Chhabra, P., Markopoulou, A., Rodriguez,

P.: Kangaroo: video seeking in P2P systems. In: Proceedings of

the Eighth International Workshop on Peer-to-Peer Systems

(IPTPS 2009) (2009)

10. Vratonjic, N., Gupta, P., Knezevic, N., Kostic, D., Rowstron, A.:

Enabling DVD-like features in P2P video-on-demand systems.

In: Proceedings of the SIGCOMM Peer-to-Peer Streaming and

IP-TV Workshop (2007)

11. Yin, Z., Jin, H.: DHT based collaborative multimedia streaming

and caching service. In: Proceedings of the IEEE International

Region 10 Conference (TENCON 2005) (2005)

12. Yiu, W.-P., Jin, X., Chan, S.-H.: VMesh: distributed segment

storage for peer-to-peer interactive video streaming. IEEE J.

Select. Areas Commun. Special Issue Adv. Peer-to-Peer Stream.

Syst. 25(9), 1717–1731 (2007)

13. Wang, D., Liu, J.: A dynamic skip list-based overlay for on-

demand media streaming with VCR interactions. IEEE Trans.

Parallel Distrib. Syst. 19(4), 503–514 (2008)

14. Cheng, B., Jin, H., Liao, X.: Supporting VCR functions in P2P

VoD services using ring-assisted overlays. In: Proceedings of the

IEEE International Conference on Communications (ICC 2007)

(2007)

15. Guo, Y., Suh, K., Kurose, J., Towsley, D.: P2Cast: peer-to-peer

patching scheme for VoD service. In: Proceedings of the 12th

ACM International World Wide Web Conference (WWW 2003)

(2003)

16. Do, T., Hua, K.A., Tantaoui, M.: P2VoD: providing fault tolerant

video-on-demand streaming in peer-to-peer environment. In:

Proceedings of the IEEE International Conference on Commu-

nications (ICC 2004) (2004)

17. Guo, Y., Suh, K., Kurose, J., Towsley, D.: A peer-to-peer on-

demand streaming service and its performance evaluation. In:

Proceedings of the IEEE International Conference on Multimedia

and Expo 2003 (ICME 2003) (2003)

18. Cui, Y., Li, B., Nahrstedt, K.: oStream: asynchronous streaming

multicast in application-layer overlay networks. IEEE J. Select.

Areas Commun. Special Issue Recent Adv. Service Overlay

Networks 22(1), 99–106 (2004)

19. Vlavianos, A., Iliofotou, M., Faloutsos, M.: BiToS: enhancing

BitTorrent for supporting streaming applications. In: Proceedings

of the Ninth IEEE Global Internet Symposium (2006)

20. Dana, C., Li, D., Harrison, D., Chuah, C.-N.: BASS: BitTorrent

assisted streaming system for video-on-demand. In: Proceedings

of the 7th IEEE Workshop on Multimedia Signal Processing

(MMSP) (2005)

21. Annapureddy, S., Guha, S., Gkantsidis, C., Gunawardena, D.,

Rodriguez, P.R.: Is high-quality VOD feasible using P2P

swarming? In: Proceedings of the 16th International Conference

on World Wide Web (WWW 2007) (2007)

22. Annapureddy, S., Guha, S., Gkantsidis, C., Gunawardena, D.,

Rodriguez, P.: Exploring VoD in P2P swarming systems. In:

Proceedings of the 26th Annual IEEE Conference on Computer

Communications Mini Symposiums (INFOCOM 2007 Mini

Symposium) (2007)

23. Cheng, B., Liu, X., Zhang Z., Jin, H.: A measurement study of a

peer-to-peer video-on-demand system. In: Proceedings of the 6th

International Workshop on Peer-to-Peer Systems (IPTPS 2007)

(2007)

24. He, Y., Liu, Y.: VOVO: VCR-oriented video-on-demand in

large-scale peer-to-peer networks. IEEE Trans. Parallel Distrib.

Syst. 20(4), 528–539 (2009)

25. Hefeeda, M., Habib, A., Botev, B., Xu, D., Bhargava, B.:

PROMISE: peer-to-peer media streaming using CollectCast. In:

MULTIMEDIA’03: Proceedings of the Eleventh ACM Interna-

tional Conference on Multimedia, pp. 45–54. ACM Press (2003)

26. Chi, H., Zhang, Q., Jia, J., Shen, X.: Efficient search and

scheduling in P2P-based media-on-demand streaming service.

IEEE J. Select. Areas Commun. 25(1), 119–130 (2007)

27. Kostic, D., Rodriguez, A., Albrecht, J., Abhijeet, B., Vahdat, A.:

Using random subsets to build scalable network services. In:

InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming 197

123

http://www.pplive.com/
http://www.uusee.com/
http://www.ppstream.com

Proceedings of the 4th USENIX Symposium on Internet Tech-

nologies and Systems (USITS) (2003)

28. Zhang, X., Liu, J., Li, B., Yum, T.P.: CoolStreaming/DONet: a

data-driven overlay network for live media streaming. In: Pro-

ceedings of IEEE INFOCOM (2005)

29. Goyal, V.K.: Multiple description coding: compression meets the

network. IEEE Signal Process. Mag. 18(5), 74–93 (2001)

30. Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman,

I., Chalmers D.: The state of peer-to-peer simulators and simu-

lations. ACM SIGCOMM Comput. Commun. Rev. 37(2), 95–98

(2007)

198 X. Qiu et al.

123

	InstantLeap: an architecture for fast neighbor discovery in large-scale P2P VoD streaming
	Abstract
	Introduction
	Related work
	Architecture
	Peer grouping with playback locality
	Inter-group connectivity

	InstantLeap: protocols
	Neighbor list construction
	Peer join
	Continuous playback
	Playback leap
	Peer departure and failure

	Analysis
	Neighbor discovery efficiency
	Overlay maintenance overhead
	Tradeoff between neighbor discovery robustness and overlay maintenance overhead

	Performance evaluation
	Performance of neighbor discovery
	Overlay maintenance overhead
	Overhead at peers
	Load on the tracker server

	Streaming quality
	Load balance among peers
	Impact of parameters
	Impact of the number of groups maintained
	Impact of the number of shortcut neighbors maintained per group

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

