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Abstract—State-of-the-art cloud platforms adopt pay-as-you-go
pricing, where users pay for the resources on demand according
to occupation time. Simple and intuitive as it is, such a pricing
scheme is a mismatch for new workloads today such as large-
scale machine learning, whose completion time is hard to estimate
beforehand. To supplement existing cloud pricing schemes, we
propose an occupation-oblivious online pricing mechanism for
cloud jobs without pre-specified time duration and for users who
prefer a pre-determined cost for job execution. Our strategy
posts unit resource prices upon user arrival and decides a fixed
charge for completing the user’s job, without the need to know
how long the job is to occupy the requested resources. At the
core of our design is a novel multi-armed bandit based online
learning algorithm for estimating unknown input by exploration
and exploitation of past resource sales, and deciding resource
prices to maximize profit of the cloud provider in an online
setting. Our online learning algorithm achieves a low regret sub-
linear with the time horizon, in terms of overall provider profit,
compared with an omniscient benchmark. We also conduct trace-
driven simulations to verify efficacy of the algorithm in real-world
settings.

I. INTRODUCTION

Cloud computing has revolutionized industries by democ-
ratizing data centers and enabling easy resource access for
everyone. Lying at the core of a cloud business model is
its resource pricing scheme. State-of-the-art cloud platforms
adopt various pay-as-you-go pricing options. Google Cloud [1]
and Microsoft Azure [2] employ per-minute billing to charge
various types of virtual machine (VM) instances. Amazon Web
Services (AWS) [3] adopt hourly charges for on-demand, Spot
or the new burstable instances [4], and joint upfront and hourly
payment for reserved instances during their terms. Different
pricing plans are recommended for users with different work-
loads, budgets, and service requirements. For example, users
with steady, persistent resource usage may prefer reserved
instances, and users with transient workload would choose
on-demand instances, or opt for spot or burstable instances
if preemption is tolerable. However, a key question remains:

Are these pricing models suitable for jobs with spiky work-
load, non-preemption requirement, and uncertain completion
time, such as training jobs in machine learning?

Nowadays large-scale machine learning (e.g., deep learning
[5][6][7]) has been widely adopted in the industry for pro-
cessing big datasets and learning prediction/inference models.
Many cloud platforms have started to provision tailored prod-
ucts to support machine learning (ML) jobs, exemplified by
the new virtual GPU servers or GPU instances. Amazon EC2

announced the new P2 instances in September 2016 [8], and
Google enabled GPUs on Google cloud in February 2017 [9].
These GPU instances are purchased in a similar way as other
types of VMs at a per-hour or minute rate [3][2], or by adding
the price per GPU per unit time [6].

Computation-intensive jobs that need to be run on GPU
servers (e.g., ML training jobs) often take hours or days to
complete, and the job owner is typically uncertain of the time
it may take. It can be quite costly for running an ML training
job on existing cloud platforms under such uncertainties. For
example, it takes about 4.8 days to train a convolutional neural
network on a server with 4 NVIDIA TITAN GPUs and 6GB
of RAM [10], and would cost more than $103 by using a
p2.xlarge instance from Amazon EC2 [3]. For such jobs,
preemption is less than favorable, since it further prolongs their
completion. Consequently, spot or burstable instances, often
adopted for cost saving, are inadequate. For such jobs, it is
desirable to let users know a one-off price for job completion,
in order to assure users that the costs are within their budgets.

The history of modern economics suggests that customers
often prefer price certainty upon committing to a transaction,
especially when on a budget. Examples can be found in driving
schools where a flat-fee tuition is available for training until
passing the road test, and in the telecom market where a flat
monthly fee covers voice and data communication regardless
of usage patterns. In doing so, the service provider moves the
onus of price risk management away from their customers to
themselves, who are both more capable (with more informed
decision making based on historic job execution of similar
types) and inclined to do the job (for customer satisfaction
and retention in the growingly more fierce cloud market).

To supplement the current cloud charging models, we pro-
pose a novel occupation-oblivious pricing option: the cloud
provider charges a lump-sum price for completing a user’s ML
job, depending on the amount of resources the job requires,
but not the usage time of those resources. Especially, our
pricing mechanism is suitable for jobs (i) that are intolerable to
preemption during execution and (ii) for which the job owner
does not have a good knowledge of the runtime needed in
advance, but (iii) has a budget and hence prefers to know a
pre-determined cost for completing the job.

Our pricing scheme works in an online fashion: when a
user arrives and submits a job request (specifying job details
and resource demand, but not the usage duration or budget),
the cloud provider informs the user of unit resource prices on



the spot, and confirms a total charge for completing its job,
regardless of how long the job will run till completion. The
user decides if the charge is acceptable according to its budget,
and runs the job in the cloud if accepted.

The unit price of each resource may vary upon arrivals of
different users, carefully computed using an online algorithm
based on resource availability, to achieve cloud provider profit
maximization over the long run. Maximizing provider’s profit
is more desirable in practice, but in general harder than social
welfare maximization in online algorithm design. Without
assuming knowledge of user budgets and job runtimes, the
cloud provider’s profit maximization problem cannot be for-
mulated as a standard online optimization problem, e.g., an
integer linear program (ILP) as in most existing work on social
welfare maximization [11][12].

The critical challenge is how to strategically decide the
occupation-oblivious resource prices, such that more jobs
with high budgets (tolerant to higher prices), and reasonable
resource occupation durations (adequate to the budgets) will
be accepted. Our answer to this call is to employ a novel
multi-armed bandit (MAB) based online learning strategy,
to meticulously estimate an expected budget for jobs using
the same type of resources and the inverse of job duration
in expectation, assuming an unknown underlying distribution
of the run times and budgets. In classical MAB problems,
decisions are not related to those in the future through global
constraints, while in our problem decisions at different times
are tightly coupled due to resource constraints. In addition,
the feedback of an online pricing decision (i.e., job’s actual
runtime) is not known upon decision making, but until the job
ends; such delayed feedback heavily undermines efficiency of
an online learning method, which always assumes receiving
feedback immediately when a decision is made. To address
these challenges, we further combine the MAB based online
learning with an online algorithmic framework, which together
produce resource prices over time. Our detailed technical
contributions are as follows.
. We carefully derive a price-profit relationship to approx-

imate the expected total profit achievable with each candidate
set of resource prices, and design reward functions in the MAB
method based on this relationship. Different from existing
MAB algorithms where the reward in each round is only
relevant to the current decision, our reward functions respect
global resource capacity constraints and estimate the expected
overall profit, and fit our MAB online learning nicely within
an online algorithm framework.
. We borrow the high-level idea of exploration and exploita-

tion trade-off from existing MAB algorithms, but apply it in
a new way. We divide our online algorithm into two stages:
exploration at the beginning, when we set nil prices and accept
all jobs, to cumulate inputs for run time and budget learning;
exploitation after the exploration phase, when we decide best
resource prices maximizing estimated overall profit upon job
arrivals, using job run time and budget learned from all the
history. Duration of the exploration phase is carefully set by
trading off between profit lost due to zero prices and estimation

error in the exploitation phase due to lack of job samples.
. We compare our pricing mechanism with an offline

strategy which adopts the best fixed resource prices computed
using full knowledge of the system, and rigorously prove a
regret bound for our algorithm, which is sublinear with system
timespan, resource capacities and total number of users.

II. RELATED WORK

Dynamic pricing for cloud resources has been studied in
recent years, following the initiative of Amazon EC2 Spot
Instances [13]. Many studies propose offline or online auc-
tion mechanisms for allocating and pricing cloud resources,
targeting social welfare or profit maximization [11][14]. In
these auctions, users submit resource demand, usage time slots,
and valuation of their jobs. Some studies focus on posted-
price mechanisms [11][15], where users arrive over time and
a take-it-or-leave-it price is offered to each user for the asked
resources, and a user accepts the price if its true valuation is
higher than the price. Zhang et al. [11] design price functions
to update posted prices according to resource utilization levels.
Zhang et al. [15] further prove optimal forms of the price
update functions. These mechanisms require users to submit
resource usage durations. Our mechanism is essentially a
posted-price scheme, while we do not require knowledge of
job durations for deciding resource prices, but still guarantee
completion of a submitted job.
Multi-armed bandit (MAB) optimization is an effective
online learning and optimization framework with partial feed-
back [16]. In an MAB problem, an agent faces a set of arms
(actions) and selects one arm in each round. After pulling an
arm, the agent receives a reward (or incurs a loss) on the
pulled arm (but not on all arms, a.k.a partial feedback), which
is a realization of some unknown, underlying reward (or loss)
distribution associated with that arm. The goal is to obtain the
maximal cumulative reward (or incur the minimal cumulative
loss) over multiple rounds. MAB algorithm design pursues
a good trade-off between exploration and exploitation, i.e., to
try less attempted arms to collect more feedback (exploration),
or stick to the arm that brings the highest reward (or lowest
loss) based on already learned information (exploitation). The
performance of a bandit algorithm is commonly evaluated by
regret, which is the gap between the overall reward obtained
(or loss incurred) by an offline omniscient strategy and the
expected reward (or loss) of the bandit algorithm.

MAB optimization has been applied to ad-display optimiza-
tion [17] and scheduling in multichannel wireless networks
[18]. In conventional settings of MAB problems, decision
variables in different rounds are related to each other only
through continuous learning of the unknown distributions. In
our problem, cloud resources are shared by jobs arriving at
different times and hence our online decisions made upon
arrivals of different jobs are restricted by global resource
capacity constraints. Moreover, feedback (resource occupation
time of each job) is not received until job completion.
Non-clairvoyant job scheduling. Job scheduling without
knowing the job size (i.e., runtime) has been studied in the



theory community [19][20]. The aim is to design competitive
algorithms for minimizing the sum of completion times of all
jobs, or minimizing the maximum completion time among all
jobs, which is different from our goal. Moreover, their online
algorithms assume extra resources available in online schedul-
ing while such extra resources are not used in computing the
offline optimum, in order to prove a good competitive ratio,
which is not practical in our setting.

III. PROBLEM MODEL

We consider a cloud platform offering computational re-
sources in the form of various preconfigured virtual instances.
A virtual instance can represent the following: (i) a virtual
machine (VM) or a virtual server equivalently, such as the
typical VMs provided on Amazon EC2 [3], Google Cloud [1],
or Microsoft Azure [2]; or (ii) a virtual cluster, consisting of
multiple VMs. Representative examples of virtual clusters are
the scale tiers in Google cloud machine learning (ML) engine
[6]. A scale tier consists of a number of ML training units.
A training unit can be a worker or a parameter server in the
ML framework [21] logically; physically it is a combination
of computing resources such as GPU, CPU, and memory. For
example, a BASIC scale tier consists of one ML training unit
(i.e., one worker) and a PREMIUM 1 scale tier consists of 75
ML training units (i.e., many workers and parameter servers)
[6]. Users can choose among the scale tiers to run their ML
training jobs on the Google Cloud.

Suppose there are K types of virtual instances in total. The
maximum number of available type-k instances is Ck, ∀k ∈
1, · · · ,K. The system works in a time slotted fashion, with
a total timespan of T time slots. n users arrive at different
times during 1, . . . , T . Each user i requests one or multiple
virtual instances of type ki to run his job, e.g., to train a
deep learning model with a few GPU virtual servers of the
same configuration, or a chosen scale tier. Let dik denote the
number of type-k virtual instances that user i requests, such
that dik ∈ (0, Ck] if k = ki, and dik = 0, otherwise. User i
has a budget vi for completing his job. Throughout the paper,
we refer to jobs requesting type-k virtual instances as type-k
jobs, for ease of presentation.

Upon the arrival of user i, he submits to the cloud the virtual
instance type ki he wants and the demand diki . The budget
is private information of user i and will not be revealed to
the cloud provider. After receiving the user request, the cloud
provider informs user i of the current price piki for each type-
ki virtual instance. User i accepts the deal and runs his job in
the cloud if and only if his overall payment, piki × diki , is no
larger than budget vi; otherwise, the user can leave without
purchasing the resources. Let yik denote the total number of
type-k virtual instances that have been allocated and are still
occupied at the time of arrival of job i. We use an indication
function to denote whether user i would accept the deal:
1{diki +yiki ≤ Cki , pikidiki ≤ vi} equals 1 if diki +y

i
ki
≤ Cki

and pikidiki ≤ vi, and 0, otherwise. Once a user has made a
payment and started to run his job, the cloud provider ensures
that the allocated resources will not be preempted and the job

will run to completion.1 Let τi denote the runtime of job i,
which is not known by the cloud provider until the job is done.

The cloud provider targets overall profit maximization over
the system timespan through online resource pricing. The
offline optimization problem can be formulated as follows.
Key notation is summarized in Table I, for ease of reference.

max
p

n∑
i=1

K∑
k=1

pikdik1{dik + yik ≤ Ck,
K∑
k=1

pikdik ≤ vi,∀k} (1)

subject to:

yik =
∑

j∈{1,··· ,i−1}:
tj+τj≥ti

djk1{djk + yjk ≤ Ck,
K∑
k=1

pjkdjk ≤ vj , ∀k},

∀k ∈ [1,K], i ∈ [1, n] (1a)

pik ≥ 0, ∀k ∈ [1,K], i ∈ [1, n] (1b)

The objective function maximizes total profit obtained from
users that run their jobs in the cloud. (1a) computes the number
of type-k virtual instances occupied upon arrival of user i.

Using problem (1) as a reference, we design an online
pricing scheme for the cloud provider to decide price piki upon
arrival of each user i, without knowing vi nor τi. We make
the following stochastic model assumptions for algorithm
design and analysis, which are nonetheless not followed in our
empirical studies of the algorithm performance in Sec. VI. For
each type of virtual instance k, the (budget, demand) pairs of
type-k user jobs, i.e., (vi, dik), are i.i.d. (independently and
identically distributed), drawn from an underlying unknown
distribution Fk. This essentially tells that budgets and demands
of jobs requiring the same type of virtual instances follow a
joint unknown static distribution, which can generalize budgets
and demands of these jobs each of which follows an unknown
static distribution. For each user i, the arrival time ti falls
uniformly randomly within the system timespan [1, T ].2 Let
U(T ) denote the discrete uniform distribution with random
variable generated from interval [1, T ]. We have ti ∼ U [T ].
Users are indexed according to their order of arrivals in
any fixed realization of the arrival process. The runtimes
of all type-k jobs are i.i.d., drawn from an unknown static
distribution Tk, with an expectation of τ̄k.

IV. PRICING MECHANISM FOR PROFIT MAXIMIZATION

A. Design Rationale

To set prices for profit maximization, the key is for the cloud
provider to estimate how likely a user may accept the offered
price and the runtime of user job, such that it can set the
best price that a user would accept, which is also adequate for
the duration of user resource occupation. We adopt an online
learning approach: the cloud provider estimates distributions
of user budgets, demands and job runtimes over time, making

1There are special cases that a job does not automatically stop, e.g., due
to program bugs. It is reasonable to assume that normal users will check out
status of their jobs from time to time and kill a job if a mistake is found.

2This assumption holds true in common stochastic arrival processes. For
example with a Poisson process, the total number of arrivals within a period of
time is drawn from the Poisson Distribution and each arrival time is uniformly
sampled from the corresponding timespan.



TABLE I: Notation

n total # of users/jobs nk # of type-k jobs
τi duration of job i T distribution of τi
τ̄ = Eτi∼T [τi] T # of time slots
K # of virtual instance types vi budget of job i
Fk distribution of (vi, dik) ti arrival time of i
vmaxk upper-bound of per-type-k-instance budget
ki job i’s required type of virtual instances
dik demand of type-k virtual instance of job i
Ck total # of type-k virtual instances
pik unit price of type-k virtual instances to job i

Dk(pk) expected # of type-k instances sold at pk
yik # of type-k instances occupied upon job i

Rev(~p) expected total profit under a fixed price vector ~p
R̂ik(pk) reward of choosing price pk for job i
ηi equals 1

τi
η̄k the expectation of ηi for jobs with ki = k

ηUik UCB of η̄k before job i where ki = k

DU
ik(pk) UCB of Dk(pk) before job i where ki = k

use of price acceptance/rejection by users and runtimes of
completed jobs in the past, and decides prices to new jobs
based on learned distributions.

We discretize all possible prices of each type of instances
and let the cloud provider choose from a set of prices Pk
in our algorithm (note that the optimum prices we compare
our algorithm with in the analysis may not fall into the
discretized price set). To set a price which contributes to profit
maximization over the long run, we analyze an upper-bound
of the overall profit, and choose a price that maximizes the
upper-bound. Suppose the same price pk ∈ Pk is offered to
all type-k jobs that arrive in 1, . . . , T , which can be considered
as the expectation of realized prices to type-k jobs. Let Dk(pk)
denote the expected number of type-k virtual instances sold
at price pk to any user i who requests type-k instances. That
is, Dk(pk) = E(vi,dik)∼Fk

[d̂ik], where random variable d̂ik
equals dik if vi ≥ pkdik, and zero, otherwise. Let nk denote
the total number of type-k users in [1, T ]. Intuitively, if the
total number of type-k virtual instances is sufficient to serve
demands of all these nk jobs, expected total profit under fixed
price pk should be pknkDk(pk). However, when considering
the resource capacity limitation, at most Ck type-k virtual
instances can be allocated at any time; each instance may
be occupied by a job for multiple time slots, and can be
re-allocated to a new job if that job has been completed at
the arrival time of the new job. Recall that user arrival times
are uniformly distributed in [1, T ]. Since T is much larger
than τi, the probability that for any given user, the probability
that t ∈ [T ] is his arrival time can be approximated as 1

τi
.

Hence, at each time t, if type-k resource is exhausted, the
maximum expected number of instances that are released and
reused by new arrivals is CkEi:ki=k[ 1

τi
]. Let ηi = 1

τi
, and

η̄k = Ei:ki=k[ηi]. Thus, the maximum number of type-k
jobs that the system can take by exhausting all type-k virtual
instances is TCkη̄k in expectation. Therefore, the maximum
overall profit collected at price pk is pkTCkη̄k in expectation.

Let Rev(~p) denote the expected overall profit under price
vector ~p = {p1, . . . , pK}, where pk is the fixed unit price for
all type-k virtual instances. Revk(pk) is the expected profit
obtained from type-k jobs at pk. We have

Rev(~p) =

K∑
k=1

Revk(pk) ≤
K∑
k=1

min{pkTCkη̄k, pknkDk(pk)}

(2)

The above inequality provides an upper-bound on the expected
overall profit achieved by using a fixed price for each type
of virtual instances throughout [1, T ], which we refer to as a
price-profit relationship. Over time, we seek to estimate a best
(expected) unit price pk for each type of virtual instances, ∀k ∈
[1,K], which maximizes the upper-bound in the right-hand
side (RHS) of (2), in order to boost the overall profit Rev(~p).
However, since the distributions of user budget, demand and
job runtime are unknown in the online setting, we seek prices
that maximize an estimate of the upper-bound instead.

We employ a multi-armed bandit (MAB) based online
learning method for estimating those unknown distributions,
and decide prices that maximize the estimated upper-bound.
We prepare a set of price candidates (arms) for each type k of
virtual instances, and select a price pk from the set with the
highest reward computed, upon arrival of each type-k job. The
reward for choosing price pk for a type-k job i, denoted by
R̂ik(pk), is an estimate of the upper-bound of expected profit
in RHS of (2):

R̂ik(pk) = pk ·min{TCkηUik, nkDU
ik(pk)} (3)

Here, ηUik is the Upper Confidence Bound (UCB) of the
expected runtime τ̄k estimated before the arrival of job i.
Similarly, DU

ik(pk) is the UCB of the expected number of
type-k instances sold to a type-k user at pk, Dk(pk), estimated
before arrival of job i. We have

ηUik = η̂ik + ri(η̂ik) (4)

DU
ik(pk) = D̂ik(pk) + ri(D̂ik(pk)) (5)

where η̂ik (D̂ik(pk)) is the average of all the realizations of
η̄k (Dk(pk)) that have been seen before the arrival of job
i, and ri(·) denotes the confidence radius of the respective
random variable (which upper-bounds the deviation of an
empirical average from its expectation with high probabil-
ity). Therefore, ηUik is the upper-bound of confidence interval
[η̂ik − ri(η̂ik), η̂ik + ri(η̂ik)] for estimating η̄k, and DU

ik(pk)
is the upper-bound of the confidence interval [D̂ik(pk) −
ri(D̂ik(pk)), D̂ik(pk) + ri(D̂ik(pk))] to estimate Dk(pk).

Let random variable Xi denote whether user i accepts
price piki (Xi = 1) or not (Xi = 0). We have
Evi∼Fki

[dikiXi | {djkjXj}j<i,kj=ki ] = Dki(pki). We can
compute empirical averages and confidence radiuses in a
standard way [16]:

η̂ik =

∑
j<i:kj=k ηjXj1(tj + τj < ti)∑
j<i:kj=kXj1(tj + τj < ti)

, (6)



D̂ik(pk) =
total # of type-k instances sold at pk

# of times that pk is used
(7)

ri(η̂ik) =
α

1 +
∑
j<i:kj=kXj1(tj + τj < ti)

+

√
αη̂ik

1 +
∑
j<i:kj=kXj1(tj + τj < ti)

(8)

ri(D̂ik(pk)) =
α

1 +Ni(pk)
+

√
αD̂ik(pk)

1 +Ni(pk)
(9)

Here, we set α = O(log nk) to guarantee the high probability
in Lem. 1 and relatively small confidence radiuses. Ni(pk) is
the number of times pk is used to price type-k jobs before
arrival of job i. Thus, using ηUik and DU

ik(pk) as the estimate
of η̄k and Dk(pk) to calculate R̂ik(pk), we guarantee that with
high probability, Revk(pk) is upper-bounded by R̂ik(pk).

Lemma 1. With probability at least 1− n−2k , we have

R̂ik(pk) ≥ Revk(pk) (10)

Proof of Lem. 1 is given in our technical report [22].

B. Pricing Mechanism

Our online pricing mechanism, TOP, is summarized in
Alg. 1. In the algorithm, vmaxk denotes the upper-bound of per-
instance budget of users requesting type-k instances. Naturally,
price pik should fall in [0, vmaxk ]. We discretize [0, vmaxk ] into
the price set Pk, where the candidate prices form a geometric
sequence with common ratio 1 + δk. Here δk determines the
discretization granularity, which should be carefully decided:
if δk is too small, the number of prices (arms) to choose among
in the MAB algorithm would be very large, affecting algorithm
performance; if δk is too large, the difference between the
real optimal price and the best among our candidates will
be large. The value of δk that we use in Alg. 1 has been
carefully derived, supporting our analysis towards a sublinear
regret bound of TOP in Sec. V.

In our system, the feedback of job runtime is received after
a job is completed, not at the time of pricing the job. We
adopt an exploration phase to handle delayed feedback: at
the beginning, the cloud takes in θknk arrived jobs of type
k, ∀k ∈ [1,K], by setting nil prices, and collects runtimes
of these jobs (lines 2-4). The collected runtimes are used to
compute estimate of η̄k (lines 16-18). The value of θk decides
the duration of the exploration phase. A longer exploration
phase leads to more profit loss due to zero charges, but brings
more samples of job runtimes; and a shorter exploration phase
risks larger estimation errors of (4) and (8) with fewer runtime
samples. The value of θk in Alg. 1 has been carefully derived,
to achieve a good tradeoff between profit lost and estimation
error. It supports our proof that the estimation error of (4)
and (8) (due to delayed feedback of job runtimes) in the later
exploitation phase can be upper-bounded by the estimation
error by the end of the exploration phase (Sec. V); then
the reward obtained in the exploitation stage by choosing
the best price as in (3) can well approximate the RHS of

Algorithm 1: Occupation-Oblivious Pricing Mecha-
nism – TOP

Input: K, T , n, C, vmax, θ, δ
Output: pik,∀i ∈ {1, · · · , I}, k = ki
Initialize: D0k(pk) = η̂0k = y0k = 0, ∀k ∈ {1, · · · ,K}
Initialize: δk = (TCk)−

1
3 log

2
3 nk,

θk = (TCk)
2
3 log

2
3 nk

nk
,

Pk = {δk(1 + δk)j ∩ [0, vmaxk ], j ∈ Z}

Upon: arrival of job i
1 Set k = ki;
2 if

∑i
j=1 1(kj = k) ≤ θknk then

3 pik = 0 /* Allocate resource to job i*/;
4 Update allocated resource amount yi+1

k = yik + dik;
5 else
6 if dik + yik ≤ Ck /* Available virtual instances are

sufficient to serve job i */ then
7 Choose pik ∈ argmaxpk∈Pk

R̂ik(pk), where
R̂ik(pk) is computed using (3)-(5) /* Choose
price with highest reward*/;

8 else
9 Post the unavailability of type-k virtual

instances;
10 end
11 if user i accepts the price then
12 Update allocated resource amount

yi+1
k = yik + dik;

13 Update empirical average number of instances
sold D̂ik(pk) and confidence radius
ri(D̂ik(pk)) according to (7) and (9);

14 end
15 end

Upon: completion of job i
16 k = ki;
17 yi+1

k = yi+1
k − dik /* virtual instances released*/;

18 Update η̂ik and ri(η̂ik) according to (6) and (8);

(2). After the exploration stage, the algorithm proceeds to
the exploitation phase (lines 6-14). Upon the arrival of a
user, if the virtual instances he requires are available, a price
achieving the highest reward will be chosen and sent to the
user. Whenever a user accepts the offered price (lines 11-14)
or a job completes (lines 16-18), we obtain more samples to
reshape the estimation of Dk(pk) and η̄k, respectively.
Discussions. Though we compute the reward functions based
on the upper-bound of expected overall profit in (2) assuming
fixed price pk used for all type-k jobs, in the online algorithm,
unit prices for type-k jobs arriving at different times may well
be different. Each price pik is chosen as one maximizing the
reward computed using the up-to-date estimates of ηUik and
DU
ik(pk). In our MAB online learning framework, we respect

global resource capacity constraints to update rewards over
time, based on the RHS of (2). By always choosing prices



maximizing expected overall profit using all resources, we
avoid early exhaustion of resources by jobs of low charges.

In practice, there could be malicious users who purposely
let their jobs run for a much longer time than the normal
behavior of the job, e.g., by creating a non-stopping loop. Such
runtime samples would enlarge estimated η̄k, misleading the
cloud provider to choose sub-optimal resource prices, which
repel normal users and harm provider profit. As commonly
handled in statistical modeling, we can adopt outlier detec-
tion procedures [23] to exclude suspicious samples from the
estimation of η̄k. On the other hand, we note that rationale,
non-malicious users have no intent to deliberately prolong their
job runtimes, e.g., a customer would like its ML model to be
trained as soon as possible for usage in their inference services.

We note that nk and vmaxk are needed as input to the
algorithm, whose exact values are not known in the online
setting. We can adopt an estimation of nk when running the
algorithm, e.g., by calculating the empirical arrival rate of
type-k users based on history and multiplying the arrival rate
by T . We also use an estimated upper-bound of per-instance
user budget as vmaxk , and will evaluate the impact of inaccurate
estimation on algorithm performance in Sec. VI.

V. THEORETICAL ANALYSIS

We now analyze our online learning based pricing mech-
anism in terms of time complexity and overall profit. All
missing proofs can be found in our technical report [22].

Theorem 1 (Polynomial Runtime). Upon arrival of a user
i, TOP produces price piki in O(T

1
3C

1
3
max log

1
3 nmax) time,

where Cmax = maxk∈[1,K] Ck, nmax = maxk∈[1,K] nk.

We next evaluate the regret of TOP, a common metric to
evaluate performance of an online learning algorithm. The
regret is defined to be the difference between the overall profit
that our online algorithm obtains and that achieved by a best
static pricing strategy. The best static pricing strategy knows
all information of distributions Fk and Tk, computes the best
pricing vector ~p = {p1, . . . , pK} that maximizes the expected
overall profit based on the distributions, and uses pk ∈ ~p
for pricing all type-k virtual instances in the entire timespan,
∀k ∈ [1,K]. Such a best static solution has been widely used
as benchmarks in regret analysis of online learning algorithms
[16]. Our regret is defined as follows:

Regret = max
~p�0

(Rev(~p))− E[Rev(A)]

= Rev(~p∗)− Eti∼U(T ),(vi,dik)∼Fk,τk∼Tk [Rev(A)] (11)

Here Rev(A) is the overall profit obtained by TOP under any
realized input job sequence. Recall Rev(~p) denotes the ex-
pected overall profit at price vector ~p, Rev(~p∗) represents the
expected overall profit achieved by the best static price vector
~p∗, with Rev(~p∗) = max~p�0(Rev(~p)). We have Rev(~p∗) =∑
k∈[1,K]Rev

k(p∗k), Rev(A) =
∑
k∈[1,K]Rev

k(A), and
Revk(A) =

∑
i:ki=k

pikdikXi (recall that Xi is a 0 − 1
variable indicating whether user i accepts price pik).

We next upper-bound the regret in (11). The proof comprises
three main parts: (1) upper-bound the discrepancy between the
expected overall profit obtained by the best static price vector,
where prices for different types of virtual instances are chosen
from the respective candidate price sets in Alg. 1 (referred to
as the best static candidate prices), and the expected overall
profit obtained by running a revised version of TOP: prices are
still computed as in line 7 in Alg. 1 and posted to users even if
resource capacity is exceeded (i.e., the condition in line 6 is not
used); (2) upper-bound the discrepancy between the expected
overall profit obtained by the best static candidate prices and
that by TOP (considering resource constraint); and then (3)
upper-bound the profit discrepancy between the actual best
static pricing strategy (prices chosen from all possible prices
instead of candidate sets in Alg. 1) and TOP (considering
resource constraint).

Let Rev(A′) denote the expected overall profit obtained
at prices calculated by running the revised version of TOP.
We have Rev(A′) =

∑
k∈[1,K]Rev

k(A′) and Revk(A′) =∑
i:ki=k

pikDk(pk). In addition, we define Rev(~p∗c) =∑
k∈[1,k]Rev

k(p∗ck) to represent the expected overall profit
obtained by the best static candidate price vector.

(1) Upper-bound of Revk(p∗ck)−Revk(A′)
The following lemma establishes a connection between

Revk(p∗ck) and prices pik’s chosen in TOP, which enables
us to further compare the upper-bound with the profit of TOP.

Lemma 2. With high probability 1 − n−2k , we have the
following inequality for all i with ki = k:

Revk(p∗ck) ≤ pik min{TCk(η̄k + 2ri(η̂ik)),

nk(Dk(pk) + 2ri(D̂ik(pk)))} (12)

where pik is the price offered to i, computed by TOP.

Lemma 3 is a straightforward corollary of Lemma 2, which
is the key of algorithm TOP and will be used later. It guar-
antees that if the actual allocated number of type-k instances
is at least maxnk

i=1 TCk(η̄k + 2ri(η̂ik)), the profit obtained by
selling type-k instances with TOP is at least Revk(p∗ck).

Lemma 3. With high probability 1− n−2k , we have

pik ≥
Revk(p∗ck)

TCk(η̄k + 2ri(η̂ik))
, ∀i : ki = k (13)

where pik is the price for i, computed by the revised TOP.

Proof. According to Lemma 2, we have

Revk(p∗ck) ≤ pikTCk(η̄k + 2ri(η̂ik)), (14)

Let ∆(pik) denote the difference between the expected
profit per type-k job derived by the best static candidate prices
and the profit obtained by offering pik job i.

∆(pik) = max{0, Revk(p∗ck)/nk − pikDk(pk)} (15)

Let ∆(pk) be defined by (15) at any candidate price pik = pk
and ∆(pk) = 0 if pk is never chosen. Let N(pk) denote the



number of times that pk is chosen in T time slots (the largest
number of Ni(pk) over all i as used in (9). We have

Revk(p∗ck)−Revk(A
′
) ≤

∑
pk∈Pk

∆(pk)N(pk) (16)

We next upper-bound ∆(pk)N(pk) in Lemma 6, which
is based on Lemmas 4 and 5. Intuitively, if we exactly
know Dk(pk) for all pik ∈ Pk,∀i : ki = k, we have an
accurate estimate for the second term in the reward, i.e.,
pknkD

U
ik(pk) in (3). Then, we can use piknkDk(pk) to upper-

bound Revk(p∗ck) (see the second term in (12)). Therefore,
such an upper-bound exactly equals pikDk(pk). Briefly, it
means that if we know Dk(pk), ∆(pik) will be zero (see the
definition of ∆(pik) in (15)). Thus, the existence of non-zero
∆(pik) results from inaccurate estimation of Dk(pk). That is
why ∆(pik) is upper-bounded by ri(D̂ik(pk)), as below:

Lemma 4. For each i : ki = k, we have
∆(pik) ≤ pikO

(
ri(D̂ik(pk))

)
(17)

Lemma 5 upper-bounds the confidence radiuses.

Lemma 5. With high probability at least 1 − n−2k , for each
i : ki = k, we have

ri(η̂ik) ≤ max
( O(lognk)

1 +
∑
j<i:kj=kXj1(tj + τj < ti)

,√
O(lognk)η̄k

1 +
∑
j<i:kj=kXj1(tj + τj < ti)

)
(18)

ri(D̂ik(pk)) ≤ max
( O(lognk)

Ni(pk) + 1
,

√
O(lognk)Dk(pk)

Ni(pk) + 1

)
(19)

Lemma 6. Let N(pk) denote the number of times that price
pk is chosen in the entire timespan [1, T ] and ηUk denote the
UCB of η̄k at the last time when pk is chosen. We have

∆(pk)N(pk) ≤ O(pk lognk)
(
1 +

TCkη
U
k

nk∆(pk)

)
(20)

Note that the profit loss due to using prices chosen by
TOP , compared to Revk(p∗ck) comprises two parts. One is∑
pk∈Pk

∆(pk)N(pk) which can be calculated by (20). The
other is due to the exploration phase, where prices are set to
zero. Given pk ∈ [δk, v

max
k ], the profit loss in the exploration

phase can be upper-bounded by vmaxk θknk. Therefore, we have
the following based on (16) and Lemma 6:

Revk(p∗ck)−Revk(A
′
)

≤
∑

pk∈Pk:
∆(pk)≥εk

∆(pk)N(pk) +
∑

pk∈Pk:
∆(pk)<εk

∆(pk)N(p) + vmaxk θknk

≤ vmaxk

(
|Pk|O(lognk)

(
1 +

TCkη
U
k

εknk

)
+ εknk + θknk

)
, (21)

(2) Upper-bound of Revk(p∗ck)−E[Revk(A)]
We have E[dikXi | {djkXj}j<i:kj=ki=k] = Dk(pk), at

price pik chosen in TOP for job i (with resource constraints).
The profit of TOP can be calculated as:
Revk(A) =

∑
i:ki=k

pikdikXi,

conditioned on
∑

i:ki=k
ti≤t<ti+τi

dikXi ≤ Ck, ∀t = 1, · · · , T (22)

Lemma 7. Let dmaxk be the maximum number of type-k
instances required per user and rmax(τ̄k) be the maximum
confidence radius on τ̄k after the exploration phase. The
expected profit collected by TOP for selling type-k virtual
instances can be lower-bounded as

E[Revk(A)] ≥ min
(
Revk(p∗ck)

(
1−O(

2rmax(η̄k)

η̄k + 2rmax(η̄k)
+
dmaxk

Ck
)
)

− vmaxk θknk, Rev
k(A

′
)−O(vmaxk

√
nk lognk)

)
(23)

Basically, we prove Lem. 7 by lower-bounding the profit
gained by TOP in two cases and use the smaller one to
lower-bound E[Revk(A)]. In the first case, the expected
allocated number of type-k instances by TOP is at least
T (Ck − dmaxk )η̄k, which approaches the upper-bound of the
total allocation number by the best static candidate price.
Moreover, the prices chosen by TOP are high enough to
satisfy (13), thus the total profit can be lower-bounded. The
profit loss in the exploration phase is at most vmaxk θknk.s In
the other case, we resort to using Revk(A′) to lower-bound
E[Revk(A)], the second term in (23). Note Revk(p∗ck) ≤
vmaxk TCkη̄k. Based on Lemma 7 and (21), we have
Revk(p∗ck)− E[Revk(A)]

≤ vmaxk

(
|Pk|O(lognk)

(
1 + TCkη

U
k /(nkεk)

)
+ εknk + θknk

)
+O

(
vmaxk [

√
nk lognk + TCkη̄k(

2rmax(η̄k)

η̄k + 2rmax(η̄k)
+
dmaxk

Ck
)]
)

(24)
(3) Upper-bound of Rev(~p∗)−E[Rev(A)]

Recall that our candidate prices in TOP satisfy pk ∈
[δk, v

max
k ],∀pk ∈ Pk. If p∗k ≤ δk, then we have Revk(p∗k) −

Rev(p∗ck) ≤ δkTCkη̄k. Otherwise, suppose p̃k is the highest
candidate price for type-k virtual instances that is no higher
than p∗k, i.e., p̃k = max{pk ∈ Pk : p̃k ≤ p∗k}. Since p∗ck is the
best candidate price which leads to the largest profit collected
from selling type-k instances among all the price candidates
in the best static pricing strategy, we have

Rev(~p∗c) =

K∑
k=1

Revk(p∗ck) ≥
K∑
k=1

Revk(p̃k) = Rev(~̃p )

Moreover, we have p̃k ≥ p∗k
1+δk

, ∀k ∈ 1, · · · ,K, according
to definitions of p̃k and Pk in Alg. 1. Since Dk(pk) is non-
increasing with respect to pk, we further have

Rev(~p∗c) ≥
∑K

k=1
Revk(p̃k) ≥

∑K

k=1
Revk(p∗k)/(1 + δk)

≥
K∑
k=1

Revk(p∗k)(1− δk) ≥ Rev(~p∗)−
K∑
k=1

vmaxk δkTCkη̄k (25)

Summing (24) over all k ∈ [1,K] and combining with (25),
we upper-bound Rev(~p∗)− E[Rev(A)].

Theorem 2 (Regret). Let τ̄maxk be the largest possible
value of the expected runtime of type-k jobs. Recall that
dmaxk is the maximum number of type-k instances required

per user. If τ̄maxk ≤ max{T, T
5
3C

2
3
k log

2
3 nk

2nk
} and dmaxk ≤

(Ck log nk)
2
3T−

1
3 , with δk = (TCk)−

1
3 log

2
3 nk and θk =

(TCk)
2
3 log

2
3 nk

nk
, the regret of TOP is upper-bounded by

O
(∑K

k=1 v
max
k

(
(TCk)

2
3 log

2
3 nk +

√
nk log nk

))
.



In Theorem 2, a condition on τ̄maxk to guarantee that the
expected number of completed jobs in the exploration phase
is lower bounded, whose runtimes we need for estimating η̄k
before start of the exploitation stage. The condition on dmaxk

to upper bound the maximum resource demand per user is
for upper-bounding the maximum discrepancy between the
allocated number of instances by TOP and Ck, such that the
profit loss due to the extreme case that remaining resources
are not sufficient to serve one more user is bounded (see dmax

k

Ck

part in (23)). Let M(θknk) be the expected number of jobs
requiring type-k instances that complete in the exploration
phase. Basically, a larger τmaxk leads to a smaller M(θknk).
Moreover, we can upper-bound rmax(η̄k) by ri(η̄k) with
i = M(θknk). Because the total number of realized ηi we
collect is at least that aggregated in the exploitation phase.
With more realizations revealed, the estimate of η̄k is improved
and rmax(η̄k) becomes smaller. The regret bound is sublinear
with the time horizon (T ), resource capacity (Ck), and the
total number of users that enter the system (nk). It ensures
that when time grows, the average difference between TOP
and the best static pricing strategy goes to zero. Moreover, a
regret sublinear w.r.t. resource capacity and total number of
users is desirable; otherwise, the algorithm is trivial since a
regret linear with Ck can be easily achieved even when the
algorithm always chooses nil prices.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate our online pricing scheme using trace-driven
simulations, exploiting Spark data analytics traces [24] (we
identify a lack of ML job traces with GPU usage of each
job). We extract from the traces jobs whose duration is larger
than 30 minutes, given that typical machine learning jobs
may take hours or days to finish. The job runtimes from
the traces roughly follow a heavy-tailed distribution, which
is representative in practice. There are in total T = 105

time slots and each time slot is 10 seconds long, simulat-
ing a period of roughly 10 days. We set job arrival times
according to job start times in the traces (instead of fol-
lowing any i.i.d. assumption). There are 5 types of virtual
instances, configured following p2.xlarge, g3.8xlarge,
g3.16xlarge, p2.8xlarge and p2.16xlarge on
Amazon EC2. The resources used by jobs in the traces,
together with a randomly generated number of GPUs within
[1, 100], are mapped to these 5 types of instances to produce
resource demands of jobs. The total number of jobs is about
105, and the number of jobs requesting each type of instances
is around 17000, 19000, 27000, 20000, 17000, respectively.
Note that the job durations and resource demands may not
satisfy the assumptions in Theorem 2. The overall number of
each type of instances is set to be the total number of instances
demanded by users multiplied by a random factor in [0.1, 1] by
default. We produce the budget per instance (vi/dik) for each
user by multiplying a random factor from [1, 300] by per-hour
price of the requested type of GPU instances in Amazon EC2.

B. Impact of Parameters

We compute the upper-bound of profit of the best static
pricing strategy by finding the best prices maximizing RHS
of (2) with the Nelder-Mead Simplex algorithm [25], and the
profit achieved by TOP . Each is computed for 50 times over
different realizations of vik/dik, to derive the expectation used
in computing an upper bound of the regret of TOP in (11).

Fig. 1 shows the regret obtained when the system runs for
different timespans with different values of nk,∀k (at different
ratios of their default values). The regret is smaller when nk’s
are smaller, consistent with our analysis in Theorem 2. Next,
we evaluate the impact of δk by multiplying its value used
in Alg. 1 by different factors. Fig. 2 shows that our choice
of δk in Alg. 1 achieves the smallest regret. We next present
the regret obtained under different resource capacity levels by
multiplying the default Ck’s by 1, 0.1, 5, and 10. Fig. 3 shows
that TOP performs better when the capacity is more scarce.
which is consistent with our theoretical analysis. In Fig. 4, we
further vary the ranges of resource demands of jobs, dik’s, by
multiplying the range generated from the traces by 1, 5, 0.5,
and 0.2. The influence of dik on the regret is not obvious.

We next investigate the influence of inaccurate estimates
of vmaxk ’s on the regret in Fig. 5. We observe that over-
estimation may incur a larger regret while under-estimation
is more desirable. An over-estimation may produce price
candidates higher than the budgets of users, leading to lower
overall profit, while lower candidate prices may not achieve
the highest profit but are more likely acceptable by users.

Interestingly, we observe that the change of the regret
with the growth of T is not monotonic (but definitely not
a linear increase). Also the regret is negative in most cases,
implying that our algorithm, a dynamic pricing strategy, in
fact outperforms the best static pricing strategy. This reveals
in practice, if the cloud provider fixes a set of prices (even
set with knowledge of all upcoming jobs) and uses it on all
incoming jobs, the profit obtained is worse than using our
dynamic pricing strategy.

C. Comparison with Alternative Algorithms

We next compare TOP with three alternatives: (i) RPD,
adapted from the online pricing mechanism in [11], where the
prices are calculated by the price functions given in [11]; (ii)
TOP -simp, where the exploration phase is omitted; and (ii)
TOP (n̂k), where the number of each type k of users used in
Alg. 1 is always estimated by calculating the empirical arrival
rate of type-k users based on history and multiplying the
arrival rate by T . Fig. 4 shows that TOP always outperforms
other pricing algorithms. The performance of TOP (n̂k) is
close to TOP , demonstrating the efficiency of the method we
use to estimate nk in an online setting. We also observe that
it takes around 0.04s for our algorithm to produce the price
upon arrival of each user, on a computer with a 1.3 GHz Intel
Core i5 processor and 16 GB 1867 MHz LPDDR3 memory.
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VII. CONCLUSION

This paper proposes an occupation-oblivious pricing option
for a cloud provider to charge a pre-determined lump-sum
price to user jobs with uncertain completion times. Our pricing
mechanism is based on a multi-armed bandit online learning
framework, with novel designs of exploration and exploitation
phases. Targeting provider profit maximization over the long
run, we fit the online estimations into an online algorithm
for dynamical pricing over time. Theoretical analysis shows
a regret bound of our algorithm sublinear with the time
horizon, resource capacities and user numbers. Trace-driven
simulations also verify good performance of our algorithm
under realistic settings.
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