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Indexing Useful Structural Patterns for
XML Query Processing

Wang Lian, Nikos Mamoulis, David Wai-lok Cheung, Member, IEEE Computer Society, and S.M. Yiu

Abstract—Queries on semistructured data are hard to process due to the complex nature of the data and call for specialized
techniques. Existing path-based indexes and query processing algorithms are not efficient for searching complex structures beyond
simple paths, even when the queries are high-selective. We introduce the definition of minimal infrequent structures (MIS), which are
structures that 1) exist in the data, 2) are not frequent with respect to a support threshold, and 3) all substructures of them are frequent.
By indexing the occurrences of MIS, we can efficiently locate the high-selective substructures of a query, improving search
performance significantly. An efficient data mining algorithm is proposed, which finds the minimal infrequent structures. Their
occurrences in the XML data are then indexed by a lightweight data structure and used as a fast filter step in query evaluation. We
validate the efficiency and applicability of our methods through experimentation on both synthetic and real data.

Index Terms—Query processing, XML/XSL/RDF, mining methods and algorithms, document indexing.

1 INTRODUCTION

THE efficient support of queries on semistructured data is
one of the hottest research topics in the database
community, as XML is becoming the standard for informa-
tion exchange over the Internet. As opposed to relational
data, which are flattened into tables, the key feature of XML
data is their loosely defined structure, which is usually
represented by trees or graphs.

Typical queries on semistructured data ask for
documents which contain a query structure and are
expressed in a language such as XPath. An example path
query //conference/author retrieves information from
documents containing an element conference, with a child
element author in their hierarchical representation. Query
//con ferencelauthor and title], as another example, re-
trieves information from documents containing a small
tree (twig) with parent element conference and two
children author and title.

Several indexes [6], [10], [13], [14], [19], [20] have been
proposed to answer path queries, however, they have
certain drawbacks: 1) their sizes are usually large and 2)
they are designed for path queries only. Thus, in order to
answer tree-structured queries, they have to split the
query into paths, join the result sets from each path, and
finally validate the join results to remove false hits. This
can be a time consuming process, especially when the
intermediate results from each path are large. For
example, consider a database with 25,000 documents
extracted randomly from the DBLP XML archive [30].
Assume that a query asks for the titles of all
inproceedings papers which have two crossref subele-
ments. If we use a path index to evaluate this query, we
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have to split it in two paths: //inproceedings/title and
//inproceedings/crossref, retrieve the partial results and
join them to generate results, as illustrated in Fig. 1.
However, the selectivity of the two path queries is very
low' (i.e., inproceedings/title appears in 12,052 documents
and inproceedings/crossref in 6,402 documents). On the
other hand, the query is high-selective since it has only
two answers. It would be convenient to have an index for
subtree structures of high selectivity, which can be used
to quickly evaluate arbitrary structural queries.

In general, it is impractical to explicitly index the
locations of all possible structures found in a database of
XML documents. We observe that typical queries retrieve
only a small portion of the data, generating, however, a
large number of intermediate results, when path indexes
are used. Therefore, a good idea would be to index
structures which are infrequent in the database. Never-
theless, we cannot index all infrequent structures since the
number of these structures could be huge.

Notice that all superstructures of an infrequent structure
(IS) are also infrequent. Moreover, it would not give us
much benefit to index an IS s; if it has a substructure s;
which is also infrequent because s; is contained in every
query that contains s;, and it already has high selectivity.
Thus, there is a set of interesting structures, which are
infrequent and whose substructures are all frequent. We
call these Minimal Infrequent Structures (MIS). Note that if a
query has high selectivity, it has to contain at least one MIS.
Thus, by indexing all MIS, we can quickly evaluate queries
of high selectivity even if they contain low-selective
components. We just need to find the MIS contained in
the query and merge-join their document_id lists. Our index
will not help the evaluation of low-selective queries, but it
can serve as a tool to indicate the fact that they are low-
selective. Such queries are expensive anyway and left to be
handled by conventional techniques. Users may even
withdraw submitted queries once they know that they
produce a large set of results.

1. Throughout the paper, we use “high-selective” or “very selective” to
characterize a query with few results and “low-selective” to characterize a
query with many results.
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Fig. 1. A case where path indexes fail.

Another reason for indexing MIS is that if a query itself is
an MIS, it would be expensive to be processed by a path
index, since all substructures (i.e., paths) of it will have low
selectivity (otherwise, the whole query structure would not
be an MIS). In this case, the path index will have to merge a
large part of intermediate results, which join to only few
final results.

An additional advantage of the proposed index is that it
is lightweight. The number of MIS is usually small enough
to be held in memory. We organize them into a specialized
inverted file and use their edges to quickly identify the MIS
contained in a query. Query processing is restricted to a
small range of data which bound the MIS in the query.

To find the set of MIS in a set of documents, we use a
data mining algorithm. Our method discovers MIS by
mining frequent structures and deriving extensions of them,
which are not frequent. The problem of mining frequent
tree structures in semistructured data has been studied
before and several methods have been proposed [3], [16],
[25], [28]. Most of them are based on the classic Apriori
technique [2], which generates candidate frequent struc-
tures and validates them level by level. However, because
these methods are rather slow when applying to find MIS
(the number of MIS is rather small, whereas the number of
frequent structures is very large, a lot of time is spent on
counting the support of frequent structures).

In order to accelerate the discovery of MIS, we apply
data mining in three phases. In phase one, we scan the data
to derive an edge-based summary (signature) of each XML
document. In phase two, we run Apriori on the summaries
to quickly generate a set of large candidate frequent
structures. In phase three, we run Apriori on the actual
frequent structures, but at each level we do not need to
count the support of structures that are contained in the
frequent structures discovered in the second phase; we
already know that they are frequent. To avoid sequential
scan in phase two counting, we employ the SG-tree [18], an
R-tree-like structure for indexing signatures. Experimental
results demonstrate that this three-phase data mining
algorithm achieves a significant speed improvement com-
pared to the direct use of the Apriori algorithm.

We also evaluate the effectiveness of the MIS index. Our
method shows an order of magnitude speed-up compared
to path indexes and relational database approaches, for
queries that contain MIS. Finally, we discuss and experi-
mentally evaluate the effectiveness of MIS indexing, when
values (not only elements) are considered. Putting every-
thing together, the contribution of this paper is two-fold:

e We introduce the framework of indexing minimal
infrequent structures for efficient query processing
on XML data. Our method is not a generic index for
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structural queries, but serves as a fast filter that
guides the evaluation of high-selective queries and
identifies low-selective ones.

e We propose an efficient three-phase data mining
process that discovers frequent structures (and MIS)
in XML data. The algorithm is independent and can
be used as a generic graph-mining tool that, for
instance, can discover frequent compounds in
chemical structures [9].

The rest of the paper is organized as follows: Section 2
discusses previous work related to the XML data indexing,
mining, and query processing. In Section 3, we formally
define the minimal infrequent structures and present the
mining algorithm that finds all MIS in a collection of
documents. Section 4 describes the in-memory index for
MIS and shows how it can be used for query evaluation. In
Section 5, we discuss a simple extension to process values in
MIS. In Section 6, we evaluate our proposed methods on
both synthetic and real data. Finally, Section 7 concludes the
paper with a discussion about future work.

2 RELATED WORK

Previous work on structured XML data indexing has mainly
focused on paths. DataGuide [19] and the 1-index [20]
summarize the path information of every absolute path
starting from the root element. These indexes have two
major limitations; first, they are suitable only for absolute
path queries, where the first element in the path query is the
root element of the documents. Second, their sizes are
usually very large, comparable to the size of the indexed
data. The F&B-Index [14] is a similar structure, which
summarizes XML data to allow both forward and backward
traversal, as opposed to DataGuide and the 1-index, which
allow only forward traversal. In [13] another path index,
called A(k)-index, which provides accurate results to all
path queries of length up to k, is proposed. This parameter
trades off between accuracy and space. However, the
A(k)-index is still path-based, which means that it cannot
efficiently process queries beyond simple paths. The
D(k)-index [6] is similar to the A(k)-index, but, in addition,
it can be updated according to the change of query load.
APEX [8] is yet another path index that can be updated with
the change in the query load.

The above path indexes can provide answers for simple
path queries. More complex queries (e.g., tree queries) must
be decomposed into a set of paths in order to utilize the
index. Optimization of such queries is based on defining a
good execution plan, which evaluates the most selective
paths first. However, by applying path-based query
evaluation, we might not be able to find a high-selective
path of the query in many cases, simply because the high-
selective parts may be trees. Therefore, path indexes can
produce many large intermediate results, which signifi-
cantly increase the query execution cost.

In this paper, we index only the Minimal Infrequent
Structures (MIS) whose substructures are all frequent. To
find all MIS, we first find the maximal frequent structures.
For these, we need to apply a data mining (i.e., counting)
algorithm. There are several algorithms for mining frequent
structures in graphs [3], [16], [25], [28], based on Apriori [2].
Starting from frequent vertices, the occurrences of more
complex structures are counted by adding an edge to the
frequent structures of the previous level. The major
difference among these algorithms is on the candidate
generation and the counting processes.
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Fig. 2. Candidate generation.

A mining technique that enumerates subtrees in semi-
structured data efficiently, and a candidate generation
procedure that ensures no misses, was proposed in [3].
The tree enumeration works as follows: For each frequent
structure s, the next-level candidate subtrees with one more
edge, are generated by adding frequent edges to its
rightmost path. Thus, we first locate the right most leaf r,
traverse back to the root and extend each node visited
during the backward traversal. For example, in Fig. 2, edge
a/b which is denoted by (a(b)), is first extended to (a(b(d)))
(assuming that (b(d)) is a frequent edge), then (a(b)) is
extended on a to form (a(b)(c)) (assuming (a(c)) is also
frequent).” In the next level, frequent structures with two
edges (e.g., (a(b)(c)), (a(b(d)))) are extended to generate the
new candidates.

This technique enumerates the occurrences of trees
relatively quickly, but fails to prune candidates early, since
the candidate generation is based only on frequent edges. A
similar candidate generation technique is applied in TREE-
MINER [28]. This method also fails to prune candidates early,
although the counting efficiency for each candidate is
improved with the help of a special encoding schema.

In [16], simple algorithms for canonical labeling and
graph isomorphism are used, but they do not scale well and
cannot be applied to large graphs. In [25], complicated
pruning techniques are incorporated to reduce the size of
candidates, however, the method discovers only trees
starting from the root, rather than arbitrary frequent trees.
Our work is also related to FastXMiner [27], which
intelligently arranges frequently asked query patterns in
the system cache for enhancing query performance. This
method is also Apriori-like, however, it only discovers
frequent query patterns rooted at the root of DTD, whereas
our mining algorithm discovers patterns rooted at any level
of a DTD.

Our data mining method uses the enumeration method in
[3] to generate the candidates level-by-level, but we apply
more effective pruning techniques to reduce the number of
candidates; a generated candidate is pruned if any of its
substructures are not in the set of frequent structures
generated in previous level. Furthermore, we use a novel
approach which employs a tree of document signatures [18]
to quickly identify possible large frequent structures of a
particular size. The mining algorithm on the exact structures
then counts only candidates which are not substructures of

2. Note that there is a one-to-one mapping from a tree s to a string ¢s(s),
where parentheses are used to denote the nesting of elements in a structure.
We will extensively use this kind of presentation in this paper. For example,
the leftmost candidate with three edges in Fig. 2 can be represented as

(a(d)(c(e))):

the frequent structures already discovered. This greatly
reduces the number of candidates that need to be counted
and speeds up the mining process significantly. The next
section describes the new data mining method in detail.

Even though relational database technology is not well-
tuned for semistructured data such as XML, it may still be a
practical approach to manage XML documents and support
XML queries. Relational database techniques decompose
XML documents into tables, and queries are processed by
joining tables using the structural relationships between
elements and values [4], [12], [15], [23], [24], [29]. In [23], the
DTD is used to generate the database schema, whereas four
tables: element, path, attribute, and text are used to store
decomposed information from documents in [24]. Queries
are translated to SQL before evaluation.

In [29], only two tables, ELEMENTS and TEXT, are
used to store all element and value information, respec-
tively. A simple, preorder-based, numbering scheme is
introduced to capture the element-element and element-
value containment relationships. This scheme allows the
direct validation of ancestor-descendant relationships and
facilitates the use of efficient sort-merge join algorithms in
query processing. In the same direction, several, progres-
sively more efficient merge-join algorithms were proposed
in [4], [12], [15]. In [15], a stack is used to optimize the cost
for evaluating an ancestor-descendant relationship. This
algorithm was further extended for path and twig queries in
[4], whereas [12] employs an index to selectively scan only
parts of the tables that match with the partial result of the
queries. The efficiency of all these methods still depends on
the selectivity of the paths that are involved in the query,
thus high-selective queries which contain low-selective
paths are still expensive to process.

Our work is also related to query optimization methods
for XML data management systems. In [1], Markov-based
methods are used to estimate the selectivity of path queries.
Chen et al. [5] propose techniques that probabilistically
count the occurrences of twig patterns in XML files.
Polyzotis and Garofalakis [21] are the first to construct
statistical synopses of graph-structured XML data, in
contrast to previous work, which only handles tree-
structured data. Lim et al. [17] collects the query results to
produce online statistics, which can be used to estimate the
selectivity of path expressions. The above methods focus on
summarizing statistics about frequent structures of XML
documents to be used in query selectivity estimation, while
ignoring infrequent structures to save space. On the other
hand, we extract MIS, to speed-up the processing of the
high-selective queries containing them. Our work is also
related to ViST [26]. This approach builds a complicated
index based on a number of BT-trees. Queries can be
answered by only traversing these B'-trees, avoiding
expensive joins on tables required by most other methods.
However, the number of B*-trees that might be traversed for
a query are usually large (except for every simple queries).
Our method is very efficient, no matter how complex a query
is; a simple access to a lightweight MIS-based index brings
fast all possible documents that satisfy it.

3 DiscovERY oF MIS

In this section, we formally define the minimal infrequent
structures (MIS) which occur in a collection of XML
documents. Then, we propose a three-phase methodology
that extracts the patterns as well as their occurrences
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followed by some optimizations on the mining process.
Finally, we discuss the complexity of the overall mining
process.

3.1 Problem Definition

Let L be the set of labels found in an XML database. A
structure is a node-labeled tree, where nodes are labels from
L. Given two structures, s; and sy, if s; can be derived by
removing recursively [ >0 nodes (which are either leaf
nodes or root nodes) from s, then sy is a substructure of ss.
In this case, we also say that sy contains s;, or that s, is a
superstructure of s;. Finally, the size of a structure s is
defined by the number of edges in it. If a structure contains
only one element, we assume the size of it is zero.
Assuming that L = {a,b,c,d,e}, two potential structures
with respect to L are s; = (a(b)(c(a))) and s3 = (a(c)); s2is a
substructure of s; or s; contains ss.

Definition 1. Given a set D of structures, the support sup(s) of
a structure s in D is defined as the number of structures in D,
which contain s. Given a user input threshold p, if
sup(s) > p x |D|, then s is frequent in D, otherwise, it is
infrequent. A structure s is a Minimal Infrequent
Structure (MIS) if sup(s) < p x |D| and: 1) size(s) > 1
and for each substructure s, of s, sup(s;) > p X |D|, or
2) size(s) = 0.

Our data mining task is to discover all MIS in a
document collection D. Therefore, the set D in Definition 1
can be regarded as a set of documents. Since some MIS
could be arbitrarily large and potentially not very useful for
query evaluation, we restrict our search to structures up to a
maximum number of k edges. Thus, we define our problem
formally as follows.

Definition 2 (problem definition). Given a document set D
and two user input parameters p and k, find the set S of all
MIS with respect to D, such that for each s € S, size(s) < k.

The following theorem implies that the set of MIS can be
used to answer any high-selective query with up to & edges.

Theorem 1. Let D be a document set and S be the set of MIS in
D with respect to p and k. If a query q contains at most k edges
and it is an infrequent structure with respect to p, then it
contains at least one MIS.

Proof. In the cases where size(q) = 0 or all substructures of
q are frequent, ¢ itself is an MIS, thus it should be
contained in the set of MIS. Now, let us examine the case
where ¢ has at least one infrequent proper substructure
¢d. If ¢ is MIS, then we have proven our claim.

Otherwise, we can find a proper substructure of ¢

which is infrequent and apply the same test recursively,

until we find an MIS (recall that a single node that is

infrequent is an MIS of size 0). ]

Finally, in order to accelerate the data mining process,
we use document abstractions, called signatures, which are
defined as follows.

Definition 3. Assume that the total number of distinct edges in
D is E, and consider an arbitrary order on them from 1 to E.
Let order(e) be the position of edge e in this order. For each
d € D, we define an E-length bitmap, sig(d), called signature;

sig(d) has 1 in position order(e) if and only if e is present in
d. Similarly, the signature of a structure s is defined by an E-
length bitmap sig(s), which has 1 in position order(e) iff e is
present in s.

The definition above applies not only to documents, but
also to structures. Observe that if s; is a substructure of s»,
then sig(s) C sig(s2) (or else sig(si) A —sig(se) = 0). Thus,
signature can be used as a fast check on whether or not a
structure can be contained in a document. On the other
hand, it is possible that sig(s1) C sig(s2) and s; is not a
substructure of s,. For instance, s; = (a(b(c))(b(d))) and sy =
(a(b(c)(d))) contain the same set of edges {a/b,b/c,b/d}
(and, therefore, have identical signatures), however, s; is
not a substructure of s, (as s; contains two bs and s, only
one). As a result, we can only use the signature to find an
upper bound of a structure’s support in the database.

3.2 Mining MIS

We solve the problem of mining MIS by a three-phase
process. The first preprocessing phase is simple; the document
collection D is scanned once for two tasks. The first task is to
count the frequencies of all elements and edges. After reading
the database, all infrequent elements and edges together with
all frequent edges become available. All MIS of size zero and
one are inserted into M, the set for storing all MIS. The set of
frequent edges F'E is stored separately, which will be used in
the next phases of the algorithm for generating more complex
candidate frequent structures. The second task of the
preprocessing phase is to compute the signatures of the
documents. We do not store the signature of each document,
but rather compress this information by increasing a counter
for every signature we encounter. By doing so, documents
which share the same signature are encoded together. This
resultsin a set SG, of signatures g, which exist in the database,
and a counter sup(g) for each of them. For now, we assume
that this information is compact enough to fit in memory,
since we expect that many documents share the same
signature. Later, we discuss how to use the SG-tree, a
hierarchical index for signatures, not only to deal with cases
where SG does not fit in memory, but also to speed-up
counting in the second phase of the mining process.

The second phase of the data mining process, called
signature-based counting, is described by the pseudocode in
Fig. 3. All frequent structures of size k are found and stored
in a set F}, (recall that k is a user input parameter which
defines the maximum size of MIS that we want to mine).
Note that we only mine F} and not any Fj, ¢ < k in this
phase. The motivation is that if we quickly discover some
large frequent structures, we can avoid counting the
occurrences of all their substructures when running the
exact data mining algorithm during the third phase of the
MIS discovery process.

The algorithm in Fig. 3 computes the frequent structures in
an Apriori-like, level-wise fashion. The supports of the
structures, however, are not counted by scanning the
documents; instead, the supports of their signatures in SG
are used to derive an upper bound for their actual
occurrences.

We use the frequent structures of the previous level
(Fprev) to generate candidate structures for the current level
according to the tree enumeration method in [3]. However,
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/* Input int k, the maximum number of edges in a MIS*/

/* Input p, frequent threshold,*/

/* Input F'E, frequent edges,*/

/* Input D, the document set*/

/* Input SG, distinct documents’ signatures with counters*/
/* Output Fy, all size k frequent structures®/

1) F}7rc1; =FE

2). fori=2tok

3). candidates = genCandidate( Fpre,, FE)
4). bitprune(candidates)

5). if candidates == () then break

6) Fprm) = @

7). for each g in SG

8). for each c in candidates

9). if sig(c) C g then

10). sigsup(c)+=sup(g)

11). if sigsup(c) > p x | D] then
12). candidates.remove(c); insert ¢ into Fl,..,,

13). scan documents to count the support of each ¢ € Fj,c
14). for each cin F.co

15). if sup(c) > p x |D| then insert ¢ into Fy,

16). return Fy

Fig. 3. The mining algorithm—phase 2.

we include an additional optimization. Function bitprune()
prunes those candidates for which the signature of some
substructure is infrequent with respect to SG. For each
remaining candidate ¢, we calculate its signature-based
support, sigsup(c), by adding the counters of all signatures
in SG that contain sig(c). Lines 11-12 optimize the counting
process by avoiding counting the support of candidates
which have already exceeded the threshold p x |D|. The
process continues until all frequent structures of size k
(according to the signatures) have been discovered. Finally,
we scan the document set once to derive the actual support
of all these structures (line 13). Although, many of them
may turn out to be infrequent in terms of their actual
support in the documents, this process does not miss any
frequent structures if size k, which are eventually stored in
F}.. This is ensured by Theorem 2 below.

Lemma 1. If a structure s is frequent with respect to D, then its
signature, sig(s), is also frequent with respect to SG.

Theorem 2. In line 13 of the algorithm in Fig. 3, Fj,¢, contains
all frequent structures of size k.

Proof. Whether F,,., contains all frequent structures of size
k is affected by only two functions: genCandidate() and
bitprune(). Function genCandidate() enumerates all
possible superstructures of the structures from the
previous level F,., without misses, as shown in [3].
From Lemma 1, we can derive that if a structure’s
signature is infrequent, then the structure is also
infrequent in D. Since bitprune() only removes those
structures having some substructure with an infrequent
signature, actual frequent structures will not be missed.0

The final, structure counting phase of our methodology
finds all MIS in D, as described by the pseudocode in Fig. 4.
The key point of this algorithm is in lines 7-9; whenever we
detect a candidate which is a substructure of a k-sized
frequent structure in Fj, we can skip the counting of its
occurrences in D and directly insert it into F),., for the next-
level candidate generation. The function genCandidate() is
the same as that in Fig. 3.

/* Input int k£, the maximum number of edges of a structure*/
/* Input p, frequent threshold,*/

/* Input FE, frequent edges,*/

/* Input  Fy, all size k frequent structures*/

/* Input D, the document set*/

/* Output M, the set of MIS up to size &*/

1). Fpew=FE;M=10

2). fori=2tok

3). candidates = genCandidate(Fyco, F'E)

4). prune(candidates, Fpye,)

5). if candidates == () then break

6) Fprav = @

7). for each c in candidates

8). if ¢ is a substructure of an structure in Fj, then
9). candidates.remove(c); insert cinto F,..,
10). for each document d in D

11). for each cin candidates

12). if sig(c) C sig(d) then

13). if ¢ is in D then sup(c) = sup(c)+1

14). if sup(c) > p x |D| then

15). candidates.remove(c); insert ¢ into Fp,..,,
16). for each c in candidates

17). if sup(c) > 0 then insert ¢ into M

18). return M

Fig. 4. The mining algorithm—phase 3.

Function prune() removes all size i + 1 candidates which
have one or more size i infrequent substructures by
checking membership of F,.,. For this pruning check, we
do not apply a slow subtree matching routine, but use the
one-to-one mapping from a tree s to a string ¢s(s) (as we
have mentioned in footnote 2, ts(s) captures all structural
information of s) and perform pruning based on ts(s).
Given a candidate structure ¢, we know that the substruc-
tures in the previous level can be obtained by removing one
of its leaf nodes. This operation can be performed cheaply
on ts(c). Leaf nodes can be identified by finding parenth-
eses containing a single element without any nested
subelements. By removing such an element, we get the
ts(¢) of a substructure ¢ of ¢. Thus, by scanning the ¢s(c)
once, we can find the strings of all ¢’s substructures at the
previous level.

Fig. 5 describes an implementation of function prune()
that avoids subtree matching by using strings. It first derives
all strings of the frequent structures from the previous level
and organizes them in a hash table (lines 1-3). Then, for each
candidate ¢, the strings of all its substructures are quickly
generated, using the technique described above (lines 4-6).
Finally, the hash function is applied on the string of each
substructure of the candidate to determine whether or not it
is in F),. The candidate is pruned as soon as one of its
substructure is missing from the hash table (lines 7-12).

Finally, the algorithm of Fig. 4 computes the exact set of
MIS, as shown by Theorem 3 below.

Theorem 3. The algorithm of Fig. 4 finds all MIS up to size k
correctly.

Proof. It is clear that each structure ¢, inserted in MIS (line 17
of Fig. 4), is infrequent, since 1) it exists in the documents
set and 2) its support is smaller than p, as indicated by
the counting process. Thus, no frequent structures are
returned by the algorithm. In addition, ¢ can be inserted
in MIS only if it passes the pruning function (line 4). This



/* Input £, frequent structures in previous level*/
/* Input candidates, generated from F,...,*/

1). for each sin Fye,

2). ts(s) = get_treeString(s)

3). insert ts(s) into hash-table H

4). for each cin candidates

5). ts(c) = get_treeString(c)

6). STS = gen_Sub_treeString(ts(c))
7). found=true

8). for each str in ST'S

9). cwists = H.get(str)

10). if not exists then

11). found=false; break

12). if not found then candidate.remove(c)

Fig. 5. Algorithm prune() for candidates.

means that all substructures of c are frequent. Finally, all
MIS are one-edge extensions of frequent structures by
definition, therefore, they are generated by line 3 from a
frequent structure of the previous level. No candidates
(and, therefore, no MIS) are missed by the algorithm
according to [3]. Thus, the algorithm computes all MIS
correctly. 0

3.3 Optimizations
In this section, we describe several optimizations that can
improve the mining efficiency.

3.3.1 First Strategy: Use Distinct Children-Sets

During the first scan of the data set, for each element we
record every distinct set of children elements found in the
database. For example, consider the data set of Fig. 6,
consisting of two document trees. Observe that element a
has in total three distinct children sets; ((a)(b)), ((¢)(d)), and
((d)(f)). The children sets ((a)(b)), ((c)(d)) are found in
docl, and the children sets ((a)(b)), ((d)(f)) are found in
doc2. When an element a having d as child is extended
during candidate generation, we consider only f as a new
child for it. This technique greatly reduces the number of
candidates since generation is based on extending the
frequent structures by adding edges to their rightmost path.

3.3.2 Second Strategy: Stop Counting Early

Notice that we are searching for MIS rather than frequent
structures, thus we are not interested in the exact support of
frequent structures. During the counting process, when the
support of a candidate is greater than the threshold, the
structure is already frequent. Thus, we do not need to count
it anymore; it is immediately removed from candidates and
inserted to F.,. This heuristic is implemented in lines 11-12
in Fig. 3 and lines 14-15 in Fig. 4.

3.3.3 Third Strategy: Counting Multiple Levels of
Candidates

After candidate pruning in lines 4 and 7-9 of Fig. 4, if the
number of remaining ones is small, we can directly use
them to generate the next level candidates and count two
levels of candidates with a single scan of the documents.
This can reduce the I/O cost at the last phases of the data
mining process.
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a—>(a,b)l(c,d)I(d,D)
e—>null  f—>null

b—>(e)l(n) c—>null d—>null

n—>null

Fig. 6. Summary of children-sets.

3.3.4 Fourth Strategy: Using the SG-Tree in Phase-Two
Counting

In Fig. 3, we obtain the supports of candidates by
sequentially comparing their signatures to those of all
documents. This operation is the bottleneck of the second
phase in our mining algorithm. Instead of comparing each
candidate with all document signatures, we can employ an
index for document signatures, to efficiently select only
those that contain a candidate.

The SG-tree (or signature tree) [18] is a dynamic balanced
tree similar to R-tree for signatures. Each node of the tree
corresponds to a disk page and contains entries of the form
(sig,ptr). In a leaf node entry, sig is the signature of the
document and ptr stores the number of documents sharing
this signature. The signature of a directory node entry is the
logical OR of all signatures in the node pointed by it and ptr
is a pointer to this node. In other words, the signature of
each entry contains all signatures in the subtree pointed by
it. All nodes contain between ¢ and C entries, where C'is the
maximum capacity and ¢ > C'/2, except from the root which
may contain fewer entries. Fig. 7 shows an example of a
signature tree, which indexes nine signatures. In this
graphical example, the maximum node capacity C' is three
and the length of the signatures six. In practice, C is in the
order of several tens and the length of the signatures in the
order of several hundreds.

The tree can be used to efficiently find all signatures that
contain a specific query signature (in fact, [18] have shown
that the tree can also answer similarity queries). For
instance, if ¢ = 000001, the shaded entries of the tree in
Fig. 7 are the qualifying entries to be followed in order to
answer the query. Note that the first entry of the root node
does not contain ¢, thus there could be no signature in the
subtree pointed by it that qualifies the query.

In the first phase of our mining algorithm, we construct
an SG-tree for the set SG of signatures, using the optimized
algorithm of [18] and then use it in the second phase to
facilitate counting. Thus, lines 7-12 in Fig. 3 are replaced by
a depth-first search in the tree for each candidate ¢ that
counts the number of document signatures that contain c.
As soon as this number reaches the threshold p x |D|,
search stops and c are inserted into F,.,. Note that we use a
slight modification of the original structure of [18]; together
with each signature g in a leaf node entry, we store the
number of documents sup(g) having this signature (in
replacement of the pointer in the original SG-tree).

3.4 Space and Time Complexity

The time and space complexity of the proposed mining
algorithm is comparable to that of Apriori since our method
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level 2

|101110‘)‘ 111001|\| ‘

level 1 |100010J)‘ 001110|)| ‘

[120002],[121000]}] |

level 0 | 100000‘ “ 100010|||

| [oo1010]|[ 001100])[001100];] [200001])[0z0001]|]

| [120000] ] 021000]|]

N1 N2 N3 N4

Fig. 7. Example of a signature tree.

is essentially Apriori-based. Like the conventional Apriori,
we need (disk) space to accommodate the database and the
candidates at each mining level. In addition to conventional
Apriori, our method requires space for SG. However, the
additional space is insignificant since signatures are very
small compared to documents and [SG| is typically much
smaller than |D]|.

The time complexity can be derived by summing up the
costs of the three individual phases. Phase 1 requires one
database scan to compute the signatures and the time to
construct the SG-tree. The cost of this phase is expected to
be dominated by the linear database scan since the number
of distinct signatures |SG| found is expected to be much
smaller than |D| resulting in a cheap O(|SG|log|SG|) tree
construction cost. Phase 2 operates on SG only and
performs a (logarithmic) search for each candidate at each
level. Thus, its cost, described by O(fo':2 |Cillog|SGY)),
mainly depends on the number of candidates per level
(exponential to |SG| in the worst-case). Finally, Phase 3
applies Apriori on the actual set of document structures, so
it is exponential to |D| in the worst case. Nevertheless, in
typical cases, our method is expected to be of acceptable
cost and much faster compared to conventional Apriori
because 1) it uses F}, to avoid counting candidates known to
be frequent, 2) it uses prune() to expedite subtree matching,
and 3) it employs the optimizations discussed in Section 3.3.
The experiments of Section 6 verify this assertion.

4 QUERY EVALUATION

In the previous section, we have shown in detail how MIS is
discovered. We now discuss how to use them for fast XML
query evaluation. Given a query, we should find all MIS it
contains and merge their document_id lists. The resulting
document_id list contains all the documents that need to be
further validated for the remaining components of the
query.

Detecting all infrequent elements in a query involves a
simple search of the query nodes in the set of MIS structures
of size 0. In the following, we will consider MIS with one or
more edges. A straightforward method is to scan the set of
MIS once, checking whether or not each is in ¢q. However,
this process may be expensive if only a few MIS are
contained in the query. Observe that if an MIS p is contained
in g, the following conditions must be satisfied: 1) each edge
ein pis also present in ¢, 2) the number of distinct edges in p
is smaller than or equal to the number of distinct edges in g,
and 3) size(p) < size(q). According to these three proper-
ties, we propose an inverted index for MIS which helps to

NS N6 N7 N8 N9

quickly find those structures that may be contained in the
query. The candidate MIS that qualifies them are then
matched against the query using a more expensive
algorithm (i.e., tree matching).

The inverted index is built as follows: Assume that the
number of MIS (with edges) is n. First, all MIS are sorted in
ascending order of the number of distinct edges they
contain. The order of MIS with the same number of distinct
edges is insignificant. After sorting, each MIS gets an id,
which indicates its position in the sorted list.

Assume that m is the number of distinct edges found in
the set of MIS. The inverted index G is an m x n binary
matrix, where each row is indexed by a distinct edge. Thus,
row G; is a bit-array of size n. If structure j contains edge 14,
then G;; = 1, otherwise, GGj; = 0. In addition, another integer
array I is used, storing in I[j] the id of the last MIS in the
sorted list which contains j distinct edges.

The algorithm of Fig. 8 is used to find the MIS contained
in a query ¢. The first three lines are used to detect any
infrequent elements in ¢. Lines 4-12 detect MIS which are
potentially contained in ¢ and lines 13-14 are used to verify
them. In line 4, we assign the number of distinct edges in ¢
to d, and I[d] is used in line 9 to indicate the column of the
matrix beyond which we do not need to search; if the
distinct number of edges in an MIS is larger than the
distinct number of edges in ¢, then the MIS cannot be
contained in ¢. Line 11 checks whether or not all distinct
edges in an infrequent structure appear in ¢. Line 12 is
required to prune structures which have the same distinct
edges as g, but whose total number of edges (including
duplicates) is larger than the size of ¢.

To illustrate the functionality of the algorithm, consider
the example of Fig. 9, depicting the matrix G for a database
where there are two MIS with one distinct edge and two
MIS with two distinct edges. Assuming that ¢ = (a(a)(b)),
the query is split into edges (a(a)) and (a(b)). Since g
contains two distinct edges, only the MIS with one or two
distinct edges are considered (I; = 4, we need to search up
to the fourth column of G). After summing the rows
corresponding to the query edges (a(a)) and (a(b)) (lines 6-
9), we get 0, 0, 2, 1, thus only MIS (a(a)(b)) satisfies the
condition in line 11.

We now analyze the complexity of our MIS-based index.
As already discussed, the space occupied by the index is
O(nm), where n is the number of MIS and m is the number
of distinct edges in them. Given a query structure g, the
worst-case time required to identify all MIS in ¢ is O(myn),
where m,, is the number of distinct edges in g¢. If ¢ contains
more than one MIS we should merge the document_id of the
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/*Input q, G, I*/

/* Input M (an array stores all MIS)*/

/* Output qual, all MIS in ¢*/

/* X, stores a set of MIS that may be contained in ¢ */

1). qual=0and X =10

2). for each distinct element ele in ¢

3). if (ele is an infrequent element) then insert ele into qual
4).  d=number of distinct edges in ¢

5). initialize an integer array SUM of size I[d)

6). for each distinct edge ¢ in ¢

7). A = G(e) I*get the bit-array of edge ¢*/

8). if A = null /*some bits are not zero*/

9). for y=1to I[d] do SUM|[y] = SUM[y] + Aly]
10). for i=1 to I[d]

11). if SUM]|:] = number of distinct edges in M |]
12). if size(M[i]) < size(q) then insert M[q] into X
13). for each structure z in X

14). if z is in ¢ then insert z into qual

15). return qual

Fig. 8. Finding MIS in a query.

nqy MIS in ¢ at O(n,p|D|) worst-case cost (recall that an MIS
can be contained in at most p|D| — 1 documents, otherwise,
it is frequent). Finally, these documents must be accessed to
verify whether they actually contain q at O(c,p|D|), where ¢,
is the average cost of verifying whether ¢ is included in a
document. In general, O(c,p|D|) dominates the overall cost,
since expensive tree matching might be required for many
documents, whereas using the MIS-based index is cheap
and memory-based. As shown in our experiments, the
number of documents that contain all MIS in ¢ is usually
much smaller than p|D|, resulting in very efficient search.

5 PROCESSING VALUES

The reader may notice that so far we have considered only
MIS that are structures of labeled nodes, which cannot be
used for XML queries with selection predicates on values.
Here, we show how we can easily extend our method to
handle values. For each element (attribute) we have interest
to consider values, we partition these values based on their
similarity and interestingness to several groups. Each group
is treated as a new element. For example, the years in
publications could be partitioned into five groups: before
1970, 1970-1979, 1980-1989, 1990-1999, and 2000 or later.
When parsing XML documents, each value is replaced with
the element representing the group it falls in. Given a query,
all value predicates in it are transformed in the same manner.
In this way, our methodology can handle queries with
values, as well. A similar segmentation technique for value
ranges has been used in [17]. Notice that the set of discovered
MIS with values will cover all MIS without values, which is
guaranteed by Theorem 4. Therefore, mining MIS with
values can only bring performance benefits to query
evaluation, as we will show in the experimental section.

Theorem 4. Given a set D of XML documents and k and p, if M
is the set of MIS without considering values and MV the set of
MIS considering values, then M C MV.

Proof. The proof is straightforward, according to the
definition of MIS. If a structure s is an MIS that does not
contain values, then no other MIS can be generated after
extending it with nodes that correspond to values. There-
fore, s is an MIS in both cases where values are considered
or not. O

edge\MIS |(b(e)  |(b(n))

(a(a)(b))

(a(b)(d))

Fig. 9. Example of MIS matching.

Value extension allows us to support queries with
predicates on values, however, it may also increase the
cost of mining the MIS. Therefore, we recommend picking
an interesting subset of all elements with values that are
likely to be queried (based on the domain or query
statistics) for the extension, rather than consider values for
all elements.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness and efficiency
of our methodology. We used real data from the DBLP
archive [30]. In order to evaluate the robustness of our
approach under various data and parameter settings, we
also used synthetically generated data. We begin by
describing the data generator. Then, we validate the
efficiency of our data mining algorithm on both synthetic
and real data. Based on the MIS discovered in real data, we
demonstrate the performance improvements that the MIS
index brings to query processing against a representative
path index and two state-of-the-art relational database
techniques. All experiments are carried out in a computer
with 4 Intel Pentium 3 Xeon 700MHZ processors and
4G memory running Solaris 8 Intel Edition.

6.1 Synthetic Data Generation

We generated our synthetic data using the NITF (News
Industry Text Format) DTD [31]. Table 1 lists the para-
meters used at the generation process.

The procedure that generates documents from a DTD is
as follows: First, we parse the DTD and build a graph to
keep the parent-children relationships and other informa-
tion like the relationships between children. Then, starting
from the root element r of the DTD, for each subelement, if
it is accompanied by “*” or “+,” we decide how many times
it should appear according to a distribution (such as
Poisson). If it is accompanied by “?,” the element appears
or not by tossing a biased coin. If there are choices among
several subelements of r, then their appearance in the
document follows a random distribution. The process is
repeated on the newly generated elements until some
termination thresholds, such as a maximum document
depth, have been reached.

6.2 Efficiency of the Mining Algorithm

In the first set of experiments, we compare the total running
cost (Including the I/O time) of our mining algorithm
(denoted by MMIS) compared with the Apriori algorithm
(denoted by MFS). Both algorithms are equipped with the
first and second optimization strategies. The efficiency of
the two techniques is compared with respect to three
problem and algorithm parameters: 1) the support thresh-
old, 2) the maximum size k& of mined MIS, and 3) the
number of documents.
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TABLE 1
Input Parameters for Data Generation
Symbol | Interpretation Value ‘
N total number of docs 10000-100000
W distribution of ‘*’ Poisson
P distribution of ‘+° Poisson
Q probability of ‘?’ to be 1 | areal between 0 and 1
Max | distribution of doc depth | Poisson

The synthetic data used in the experiments were
generated by setting the parameters of the distribution
functions to: W=3, P=3, Q=0.7, Max = 10. Except
experiments in Section 6.2.3, the generated documents were
N=10,000 and the real data used were 25,000 documents
randomly picked from the DBLP archive.

6.2.1 Varying the Support Threshold

Figs. 10 and 11 show the time spent by MMIS and MFS on the
synthetic and real data, respectively. The support threshold
varies from 0.005 to 0.1. We set k = 10 for the real data set
and k = 15 for the synthetic one. Both figures show the same
trend: As the support threshold increases, the improvement
of MMIS over MFS decreases. This is because the number of
frequent structures decreases, which degrades the effective-
ness of Fj. The improvement in the DBLP data is smaller
than the improvement in the synthetic data because these
documents are more uniform. However, our three-phase
method is still significantly faster than MFS.

Table 2 shows for k=15, p=0.01, the percentage of
candidates in synthetic data, which we avoid counting at
several levels of the mining algorithm because of the
frequent structures Fjy, found by the second phase of the
mining process. Clearly, the advantage of having computed
the frequent k-sized structures, before applying exact
mining, provides a large benefit.

5000 k=15
4500 - —e— MMIS
4000 Tl ...m-- MFS
Z 3500 e
E 3000 ..
© 2500 .
c S
‘€ 2000 L%
ERES //\\
1000 .
500
0
0.005 0.01 0.02 0.05 0.1
Support threshold
Fig. 10. Varying p (synth. data).
k=10

2500

________ - —e—nMMIS
Lo T e - - - -MFS
2000 ‘.

o
=3
S

Running time(s)
=]
8

o
=3
S

0.005 0.01 0.02 0.05 0.1

Support threshold

Fig. 11. Varying p (real data).

TABLE 2
Effectiveness of the Second Phase

| #edgesincandidates [8 |9 [10]11][12]13]
| % candidates not counted | 84 [ 85 [ 90 [ 90 [ 95 | 97 |

6.2.2 Varying k
Figs. 12 and 13 show the time spent by MMIS and MFS on
synthetic and real data, respectively, for various values of k
and p = 0.01. Observe that as k increases, the speedup of
MMIIS over MES increases. The reason for this is that when k
goes beyond the peak point of candidates, the number of
frequent structures in Fj, is smaller while they can still
prune most of the frequent candidates without counting.
Tables 3 and 4 show the number of MIS and nonpath
MIS discovered for various k on the synthetic and real data
set, respectively. The numbers unveil the applicability and
usefulness of our approach. First, the total number of MIS in
both cases is small enough to be easily accommodated and
indexed in memory. Second, the majority of MIS found are
not simple paths, but more complex tree structures. This
indicates that for queries containing these MIS, path indexes
will perform poorly (since all paths contained in the MIS are
frequent), while our MIS index will manage to locate fast
the high-selective part of the queries. Finally, observe that
the number of MIS do not grow significantly with k, thus
the mining process is fast even for very large k (e.g., even if
we mine all MIS of any size). This can also be verified by
Figs. 12 and 13.

6.2.3 Varying the Number of Documents
Figs. 14 and 15 show the time spent by MMIS and MFS on
synthetic and real document sets of various cardinalities.
For this experiment, k =10 for real data and k=15 for
synthetic data, while p = 0.01 in both cases.

In both cases, the speedup of MMIS over MFS is
maintained with the increase of problem size, showing that

6000
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3000

2500 - |—e—MMS| [
2000
1500 -

1000

Running time(s)

500 -

0

k=6 k=7 k=8 k=9 k=10 k=11

Fig. 13. Varying & (real data).
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TABLE 3
MIS in Synthetic Data

TABLE 5
Running Time of Different Algorithms on
Different Support Threshold

\ k (15 [16 |17 [18 [19 [20 |
No. of MIS 321 1 3251 340 | 342 | 342 | 348 [ k=11, D=25000, p=[ 0.005 | 0.01 | 0.02 [ 0.05] 0.1 |
No. of non-path MIS | 303 | 307 | 322 | 324 | 324 | 330 MFS 18697 | 12001 | 10388 | 5273 | 4223
MMIS 7534 | 4423 | 4111 | 3803 | 2701
TABLE 4 MMIS-SG-tree | 5634 | 3525 | 3501 | 3652 | 2670
MIS in Real Data
TABLE 6

| k (6 [7 [8 ]9 [10]11]
No. of MIS 69| 73| 75| 78 | 78 | 81
No. of non-path MIS | 54 | 58 | 60| 63 | 63 | 66

MMIS scales well. Observe that for the DBLP data, the
speedup actually increases with the problem size. This is
due to the fact that DBLP documents have uniform
structure and the number of distinct signatures does not
increase much by adding more documents.

6.2.4 Mining MIS with Values and the Effect of
Using the SG-Tree

In the next set of experiments, we evaluate the effectiveness
and efficiency of the MMIS technique in discovering MIS
with values on real data. We also show the effect of the
optimization method that uses the SG-tree to count fast the
supports of candidates in the second phase of MMIS
(discussed in Section 3.3). We chose a subset of elements
{author, editor, title, booktitle, journal} and define new ele-
ments that correspond to ranges of their values. One can use
statistical methods (e.g., access frequency) to determine the
number of value ranges for each attribute and the distribu-
tion of values in them (e.g., see [17]). In this paper, in order to
demonstrate the applicability of our technique and for the
ease of exposition, instead of discovering an optimal value

45000 k=15
40000 .
— ——MMS -
@ 35000 -
g so000 - e MS o
£ 25000 -
2 20000 -
£ 15000 - .
3
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Fig. 14. Scalability (synth. data).
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Fig. 15. Scalability (real data).

Running Time of Different Algorithms on
Different Number of Documents

k=11, p=0.01 D= | 12500 | 25000 | 50000 | 100000
MES 7012 | 12001 | 25145 | 54091
MMIS 2613 | 4423 | 8013 | 14253
MMIS-SG-tree | 2100 | 3525 | 6876 | 12187

partitioning, we assume that 1) the number of ranges for
each element with attribute value is 10 and 2) the number of
values in each range is the same (uniform ranges).

In the experiments, we compare the total running time
(including the I/O time) of two versions of our mining
technique 1) MMIS and 2) MMIS-SG-tree (which is MMIS
equipped with SG-tree in the second phase) with MFS. In all
experiments, the first and second optimization strategies
discussed in Section 3.3 are applied.

First, we compare the time spent by the three methods
for different values of p, after setting k=11 and
D =2,5000. As Table 5 shows, MMIS performs very well
for small p (< 0.02), but it loses its large performance gain
for large values of this parameter. The result is consistent to
that of Fig. 11, for the same reason; the number of frequent
structures decreases with p and degrades the pruning
effectiveness of Fj. For small values of p, the SG-tree
provides significant performance gain in mining, while the
impact of using the tree at search degrades as p increases.
There are two reasons for this: 1) the number of candidates
is reduced with p, thus fewer queries are applied on it and
2) the SG-tree is only efficient for high-selective signature
containment; smaller values of p apply more queries with
longer candidates, which are high-selective (many bits are
on in them).

Next, we show the time spent by the three methods for
different values of D, after fixing k=11 and p =0.01. In
Table 6, the speedup of MMIS over MFS is maintained with
the increase of problem size, showing that MMIS scales
well. It also demonstrates that, for small p, the advantage of
using the SG-tree is maintained.

Table 7 shows for k=11, p = 0.01, and D = 25,000, the
percentage of frequent candidates which are skipped from
counting at the third phase of the mining process, (classified
by length) as subsets of the frequent structures Fj, found by
the second phase. Clearly, the advantage of having
computed the frequent k-sized structures, before applying

TABLE 7
Effectiveness of I},

\ size. in candidates 7 |8 9 10
94.6 | 97.3 | 99.3

\ % frequent candidates not counted | 91
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TABLE 8
Number of MIS
\ size of MIS 3 4 5 6 7 8 9 10 | 11
\ No. of MIS up to this size 107 | 209 | 463 | 605 | 678 | 725 | 752 | 766 | 771
\ No. of non-path MIS up to this size | 63 | 165 | 419 | 561 | 634 | 681 | 708 | 722 | 727

exact mining, provides a large benefit also when values are
considered in the MIS.

Table 8 presents the number of MIS and nonpath MIS
discovered by size. The numbers unveil the applicability
and usefulness of our approach. First, the total number of
MIS is still small enough to be easily accommodated and
indexed in memory. Second, the majority of MIS found are
not simple paths, but more complex tree structures. This
indicates that for queries containing these MIS, path indexes
will perform poorly (since all paths contained in the MIS are
frequent), while our MIS index will manage to locate fast
the high-selective part of the queries.

6.3 Applicability of MIS to Query Processing

In this section, we demonstrate the query performance
improvements achieved by our MIS-based index over a
representative path index and two merge-join algorithms.
We compare the effectiveness of our MIS index with a path
index, specifically the A(k)-index [13]. We use the
A(7)-index, which indexes exactly all paths in the DBLP
database (the lengths of all paths in DBLP are less than 7).
This means that for any simple path query, the A(7)-index
can provide accurate answer to “how many documents
contain it,” and “which are they.”

As a comparison measure, we count the number of
documents that have to be accessed in order to validate the
query, after the indexes have filtered the documents that
may not possibly contain it. Filtering is performed in a
different way by the indexes as already explained. The MIS
index uses the inverted index directly to find the
document_ids that contain the infrequent part of the query.
The path index decomposes the query into paths and then
finds the document_ids that contain all paths, by joining the
occurrence lists of the paths. Notice that we measure the
cost in terms of the accessed documents since 1) the query
validation cost on the documents is similar for both
methods and 2) DBLP documents have similar size, thus
which documents are filtered is not important.

As we have already seen (Table 4), the majority of MIS
are not simple paths. In the first experiment, we apply all
nonpath MIS (ordered by selectivity) as queries on the
DBLP data set and compare the MIS index with the
A(k)-index. Fig. 16 shows the number documents from the
DBLP data set that pass the checking, where k =11, p is
0.01, and D = 25,000. Observe that if the MIS index is used,

10000 [,

1000 |

Number of documents(log scale)
3
8

oL A(K)-index
MSs

Sequence of MISS

Fig. 16. Effectiveness of indexes (MIS queries).

we need to validate several times fewer documents than
when using the A(k)-index. Notice that there are several
cases in this figure, where the A(k)-index needs to check
thousands of the documents, while MIS points to only few
documents.

We also evaluated queries which are not MIS themselves,
but they are randomly generated superstructures of non-
path MIS without values. The performance gap between the
two methods (see Fig. 17) decreases slightly in this case
because the queries are actually superstructures of MIS,
containing additional paths, that slightly increase the
selectivity. This comes at a benefit of the A(k)-index which
has more paths to merge. There are several valleys in the
curve, which are caused by the presence of multiple MIS in
a single query.

In general, our MIS index is much more effective than the
A(k)-index in handling complex queries of high selectivity
and also much faster because it is lightweight. An accurate
A(k)-index has size comparable to the database, which
affects its performance. On the other hand, in our experi-
ments, the MIS index occupied less than 30Kb and the
algorithm of Fig. 8 ran in just a few milliseconds, for each
query. Finally, the construction cost of the MIS index is
much lower than that of path indexes since only MIS are
considered, and an efficient data mining process is applied
for them, whereas the path indexes require many document
traversals (or else many joins between the elements) in
order to be built.

Next, we evaluate the effectiveness of our MIS index by
comparing it with StackTree [15] and TwigStack [4], two
merge-join algorithms that apply on XML data decomposi-
tions to relational tables. Again, we used the real data set of
25,000 documents from DBLP. All elements in these
documents were extracted, encoded, and stored to rela-
tional tables which are managed by Oracle 8i Enterprise
Edition release 8.1.5.°

For this experiment, we randomly generated six groups
of tree structure queries of selectivity smaller than 0.01.
Each group contains 10 queries. Group 4 contains queries
having ¢ + 1 edges, i.e., group 1 contains queries of two
edges, group 2 queries of three edges, etc.

Table 9 shows the time due to I/O operations for the
queries of each group on the average, by each of the three
methods. StackTree and TwigStack have the same perfor-
mance in all cases, which corresponds to the time to access
all required records from the database sequentially. Our
MIS-based index has significantly lower cost since it
accesses and validates the queries on only those documents
which contain the corresponding MISs. This set of docu-
ments corresponds to a small fraction of the database; at
most, 250 documents are accessed by a query in the worst
case. On the other hand, the other two methods retrieve tens
of thousands or even more than one hundred of thousands
of records corresponding to occurrences of low-selective

3. In [15] and [4], all elements are stored in a single table, whereas we
construct one table for each distinct element tag; this policy significantly
reduces the computations on the server side.
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Fig. 17. Effectiveness of indexes (high-selective queries).

element tags such as author, title, etc. Table 10 shows the
computational time spent by the methods in query
evaluation. Again, our MIS-based index is significantly
faster compared to the two marge-join algorithms.

In summary, we have demonstrated the efficiency of our
two-step methodology compared to exact query evaluation
approaches on decomposed XML data to relational tables.
These merge-join approaches suffer from the same problem
as path indexes; they may need to access a large amount of
data even for high-selective queries if these contain low-
selective constructs.

Note that this study is not meant to devaluate indexing
and query processing techniques for generic queries; both
path indexes and merge-join algorithms can be used to
evaluate exactly any XML query (low or high-selective). On
the other hand, our index serves as an auxiliary, lightweight
mechanism that operates on top of other storage schemes
(and/or indexes) and facilitates fast evaluation of high-
selective queries, no matter whether they comprise high-
selective path components or not.

7 ConNcLusioN AND FUTURE WORK

In this paper, we introduced the concept of minimal
infrequent structures (MIS), which are infrequent structures
in XML data, whose substructures are all frequent. Indexing
the MIS of a document collection comes at several benefits
compared to using path indexes. First, the proposed
method indexes not only paths, but also arbitrary useful
structures of high selectivity. Second, it is space-efficient,
requiring only a limited amount of storage. Third, since the
MIS are infrequent, the index prunes large amounts of data
fast. Fourth, due to its lightweight nature, it can be used
independently, or in combination with other indexing and
query processing techniques. Finally, not only does it
provide a fast means of query evaluation, but it can also
be used to spot queries of low selectivity.

In order to efficiently find all MIS, we developed a data
mining algorithm, which can be several times faster than a

TABLE 9
MIS-Based Index versus the Relational Approach (I/O Cost)
\ Time (in seconds) | StackTree | TwigStack | MIS index
Group 1 6.7 6.7 1.8
Group 2 6.8 6.8 1.8
Group 3 8.9 8.9 1.8
Group 4 9 9 1.8
Group 5 11 11 1.8
Group 6 19.5 19.5 1.8

TABLE 10
MIS-Based Index versus the Relational Approach (CPU Time)

| Time (in seconds) | StackTree | TwigStack [ MIS index |

Group 1 5 4.2 0.034
Group 2 5 4.2 0.044
Group 3 59 43 0.051
Group 4 6 4.7 0.057
Group 5 6.9 5 0.068
Group 6 20 9.8 0.085

previous Apriori-based approach. In addition, our algo-
rithm is independent to the problem of indexing MIS since
it can be seamlessly used for other data mining applications
(e.g., discovery of frequent graphs).

In the current work, we have focused on the applicability
of our techniques in databases that contain a large number
of XML trees (i.e., documents). However, our methodology
could be adapted for arbitrarily structured queries (e.g.,
graph-structured queries with wildcards or relative path
expressions) by changing the definitions of the primary
structural components (e.g., to consider relative path
expressions like a//b instead of plain edges), and the graph
matching algorithms. Toward this direction, we plan to
combine the encoding schema in [28] with our three-phase
algorithm to extend the applicability of our approach.

The idea of extracting and indexing MIS can also be
applied to databases of large XML documents, by defining
the occurrences of a structure s in all documents as sup(s),
instead of counting the number of documents that contain s.
In this case, we should redefine the signatures to be based
not on the whole document, but on document parts up to a
maximum size. We plan to investigate these adaptations in
the future.

Another interesting direction for future work is the
incremental maintenance of the set of MIS. A preliminary
idea toward solving this problem is to change the mining
algorithm of Fig. 3 to compute the exact counts of frequent
structures of size k (instead of stopping as soon as the
minimum support has been reached). Then, given a set AD
of new XML documents, we apply the first and second
phases of our algorithm for AD, to count the frequencies of
all frequent structures of size k there. Having the exact
count of frequent structures of size k in the existing and new
document sets, we can then directly use the algorithm of [7]
to compute the exact count of all frequent structures of size
k in the updated document set D + AD and simply apply
the third phase of our algorithm to update the MIS set.
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