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Chapter 9

Joint Link Scheduling and 
Topology Control for 

Wireless Sensor Networks 
with SINR Constraints

Qiang-Sheng Hua
The University of Hong Kong, China

Francis C.M. Lau
The University of Hong Kong, China

INTRODUCTION

Cross-layer design of wireless ad-hoc and sensor 
networks has received increasing attention in the 
past several years (Goldsmith & Wicker, 2002). 
Most of these work focused on the interplay among 
the physical, MAC and network layer, resulting in 
various joint designs of power control, modulation 
and coding, link scheduling and routing. Very few 

of them, however, have considered joint design 
with topology control. Topology control (Gao et al., 
2008; Santi, 2005) is the strategy to tune the sen-
sors’ transmitting powers so that the sensor nodes 
collectively can maintain a certain global topology 
such as connectivity. The goal in topology control is 
to minimize the sensors’ power consumption while 
trying to provide sufficient network capacity. Topol-
ogy control plays a very important role in wireless 
sensor networks: first, the packets are sent via radio 

ABSTRACT

This chapter studies the joint link scheduling and topology control problems in wireless sensor networks. 
Given arbitrarily located sensor nodes on a plane, the task is to schedule all the wireless links (each 
representing a wireless transmission) between adjacent sensors using a minimum number of timeslots. 
There are two requirements for these problems: first, all the links must satisfy a certain property, such 
as that the wireless links form a data gathering tree towards the sink node; second, all the links simul-
taneously scheduled in the same timeslot must satisfy the SINR constraints. This chapter focuses on 
various scheduling algorithms for both arbitrarily constructed link topologies and the data gathering 
tree topology. We also discuss possible research directions.
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transmissions by which there must be a connected 
topology (or other topologies, such as t-spanner) 
to guarantee that the information collected at 
each sensor can be forwarded to the other sen-
sors; second, since all the sensor nodes are power 
limited, energy efficiency is a fundamental chal-
lenge in sensor networks; third, a high throughput 
capacity can ensure the collected information to 
be more quickly sent to the sink nodes, which is 
crucial in many critical sensor applications. The 
higher throughput capacity achieved by topol-
ogy control in wireless sensor networks can be 
realized by reducing the network’s interferences 
(Wattenhofer et al., 2001), the degree of which is 
generally considered to be directly related to the 
sensor network’s maximum node degree (Wang 
& Li, 2003). Such interference degree, as well as 
the other graph-based interference models devel-
oped later by many other researchers (Schmid & 
Wattenhofer, 2006), however, can not accurately 
reflect the actual capacity gains of wireless sensor 
networks in reality. For example, it has been shown 
that low node degree does not necessarily mean 
low interference degree (Burkhart et al., 2004), 
and a higher graph-based interference degree 
does not necessarily mean lower network capac-
ity (Hua & Lau, 2008). In this chapter, we study 
two related joint link scheduling and topology 
control problems, the goal of which is to minimize 
the number of timeslots used to schedule all the 
wireless links (transmissions) in any given topol-
ogy or a specifically constructed topology. Here 
the number of timeslots used corresponds to the 
reciprocal of the network capacity.

SYSTEM MODEL AND 
PROBLEM DEFINITIONS

System Model

We have the following assumptions: (1) All 
the stationary wireless sensors are arbitrarily 
located on a plane, and each sensor is equipped 

with an omni-directional antenna; (2) we assume 
a single channel and half-duplex mode, which 
means each sensor can not send to or receive 
from more than one node, nor to receive and send 
at the same time; (3) the link capacity is fixed, 
which means increasing the transmission power 
only increases its transmitting range but not its 
capacity; (4) time is slotted with equal durations; 
(5) we assume the signal-to-interference-plus-
noise ratio (SINR) model is applied, which is 
a popular model approximating the physical 
reality of signal transmission in a wireless net-
work. The SINR model is more realistic than 
the graph-based interference models, which 
also makes our link scheduling problems much 
more challenging.

The SINR ratio at the receiver of a link i can 
be represented as (Gupta & Kumar, 2000):

SINR
g p

n g p
i

ii i

i ij jj j i

Q
=

×

+ ×
³

= ¹å 1,

b

   
(The SINR model) 

where p
i
denotes the transmission power of link 

i’s transmitter i
s

; n
i
 is the background noise at 

link i’s receiver i
r

; g
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ij are the link gain 

from i
s

to i
r

, and that from link j’s transmitter
j
s
 to i

r
, respectively; Q denotes the number of 

simultaneous transmissions with link i; b is the 
SINR threshold which is larger than or equal to 
1. Here the numeratorg p

ii i
× means the received 

power at i
r

. In the denominator,g p
ij j
× means the 

attenuated power of p
j
at i

r
and it is regarded as the 

interference power for link i, thus g p
ij jj j i

Q
×

= ¹å 1,

means the accumulated interferences caused by 
all the other simultaneous transmissions. Since 
we do not consider fading effects and possible 
obstacles in wireless transmissions, the link 
gain can be represented by an inverse power law 
model of the link length, i.e., g d i i

ii s r
= 1/ ( , )a

andg d j i
ij s r
= 1/ ( , )a . Here d(, )  is the Euclidean 

distance function, anda is the path loss exponent 
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which is equal to 2 in free space, and varies be-
tween 2 and 6 in urban areas.

We define a non-negativeQ Q´  link gain 
matrixH h

ij
= ( )  such thath g g

ij ij ii
= ×b / , for

i j¹ , andh
ij
= 0 , for i j= . We also define a 

noise vector h h= ( )
i

 such that h b
i i ii

n g= × / . 
With these definitions, we can rewrite the SINR 
inequality as p h p

i ij j ij

Q
= × +

=å h
1

. By using a 
vector-matrix notation, the above inequality be-
comesP HP³ + h , or( )I H P- ³ h . If there is 
only one transmitting link, i.e., no interferences 
from other links, the SINR model degenerates into 
the SNR (Signal to Noise Ratio) model, which is 
shown below:

p n d i i
i i s r
³ × ×b a( , )  (The SNR model) 

Obviously, the SNR model defines the mini-
mum power of link i’s transmitteri

s
to use such that 

the receiver i
r

can successfully decode the packet. 
We now define the spectral radius r( )H  of the H 
matrix asr l( ) max | ( ) |H H

i i
=  wherel

i
H( )stands 

for the ith eigenvalue of H. Let r
i
andc

j
 represent 

the ith row sum and jth column sum of H, and we 
have: r h

i ijj
= å andc h

j iji
= å . Now according 

to (Andersin et al., 1996), we know the matrix 
H is a non-negative irreducible matrix. Also by 
compiling the propositions proposed in (Pillai et 
al., 2005, Zander, 1992b), we have the following 
useful properties of the H matrix:

Property 1:r( )H increases when any entry 
of H increases.

Since h d i i d j i
ij s r s r
= ×b a a( , ) / ( , ) , we can 

see that r( )H can be reduced by either reducing 
the threshold valueb , the length of any links or 
by selecting the links which can result in larger 
d j i

s r
( , )values.

Property 2:  min( ) ( ) max( )
i i i i

r H r£ £r ;
min( ) ( ) max( )

j j j j
c H c£ £r .

Property 3: ( )I H- >-1 0  if and only if
r( )H < 1 .

P ro p e r t y  4 :  T h e  p o w e r  v e c t o r
P I H* ( )= - ×-1 h  is Pareto-optimal in the sense 

that P P* ³  component-wise for any other non-
negativeP satisfying( )I H P- ³ h .

Problem Definitions

In this chapter, we study two closely related joint 
link scheduling and topology control problems. 
The first (MLSAT) is for given arbitrary link to-
pologies, and the second (MLSTT) is for forming 
a data gathering tree topology. Note that, from 
the following problem definitions, we can easily 
see that if the tree topology has been constructed, 
MLSTT becomes a special case of MLSAT. The 
MLSAT problem is a prominent open problem 
(Locher, Rickenbach & Wattenhofer, 2008). 
However, as we will see, how to construct the 
tree topology plays a very important role in the 
scheduling length. In addition, for the two prob-
lems, we assume each link has one packet to be 
transmitted. In this case, we can take the totally 
used timeslots T (the scheduling length) as the 
frame length, which means that the scheduling 
sequence will be repeated in the subsequent 
frames, i.e., X X

i t i t k T, ,
= + × ( 0 < £t T ; k is a 

positive integer;X
i t,

equals 1 if link i transmits 
in timeslot t and 0 otherwise).

Problem MLSAT (Minimum Frame Length 
Link Scheduling for Arbitrary Topologies):

Given n links which are arbitrarily constructed 
over arbitrarily located sensors on a plane, assign 
each link’s transmitting sensor a power level and 
a timeslot, such that all the links scheduled in the 
same timeslot satisfy the SINR constraints and the 
number of timeslots used is minimized.

Problem MLSTT (Minimum Frame Length 
Link Scheduling for a Data Gathering Tree To-
pology):

Given n sensors arbitrarily located on a plane, 
connect these sensors to form a data gathering tree 
towards the sink such that the number of timeslots 
used to schedule all the constructed links under 
the SINR model is minimized.
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Examples

We give some examples to illustrate the MLSAT 
and the MLSTT problems. The example in Figure 
1 has nine arbitrarily constructed links over ten 
arbitrarily located nodes on a plane. The MLSAT 
problem is to assign each transmitting node a 
power level and a timeslot such that the minimum 
number of timeslots to successfully schedule all 
these nine links is achieved, i.e., each transmitting 
node will be able to send a packet to its receiver. 
Due to the half-duplex constraint, only the set of 
links which do not share a common node can be 
potentially scheduled in the same timeslot. This 
set of links must form a matching. Then, due to 

the SINR model, only those links that satisfy the 
SINR constraints can successfully send a packet 
to their receivers. In order to minimize the total 
timeslots, we may try to schedule as many links 
as possible in each timeslot. This, however, means 
more cumulative interferences which could 
make all the links fail to transmit in the worst 
scenario. In addition, the aggregated interferences 
( g p p d j i

ij jj j i

Q

j j i

Q

j s r
× =

= ¹ = ¹å å1 1, ,
( / ( , ))a ) are 

directly related to the transmission powers and 
the geometric distribution of the senders and 
receivers.

For the MLSTT problem, the links are not 
already given. Figure 2 shows two different ways 

Figure 1. Left, ten arbitrarily located nodes in a plane; right, nine arbitrarily constructed links over 
the ten nodes

Figure 2. (left) A data gathering tree by the nearest component connector algorithm; (right) A data 
gathering tree by the minimum spanning tree algorithm
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to connect the sensors as a tree towards the sink 
node. The left side is a tree constructed via the 
nearest component connector algorithm presented 
in (Fussen, 2004), and the right side is constructed 
by a minimum spanning tree algorithm. By our 
discussion about interferences in the last para-
graph, different ways of connecting the nodes may 
result in different scheduling lengths. In tackling 
the MLSTT problem, the scheduling strategy 
must be jointly considered with the topology 
construction algorithm.

We will give further examples in the following 
to elucidate our link scheduling problems under 
the SINR model.

THE FOUR FACTORS THAT IMPACT 
THE SCHEDULING LENGTH

In this section, we discuss the four factors that 
have a significant influence on the scheduling 
length of our scheduling problems.

Power Assignment Strategies 
Make a Difference

We give a pair-wise transmission example in 
Figure 3(a). According to (Hua&Lau, 2006), we 
have the following two facts.

FACT 1: Based on the SINR model, if we 
employ constant power assignment, then in order 
to ensure simultaneous wireless transmissions 
( , )x x

s r
and( , )y y

s r
, the following two inequali-

ties must hold: d y x d x x
s r s r

( , ) ( , )/> ×b a1 and
d x y d y y

s r s r
( , ) ( , )/> ×b a1 .

FACT 2: Based on the SINR model, if we 
employ linear power assignment, then in order 
to ensure simultaneous wireless transmissions 
( , )x x

s r
and( , )y y

s r
, the following two inequali-

ties must hold: d y x d y y
s r s r

( , ) ( , )/> ×b a1 and
d x y d x x

s r s r
( , ) ( , )/> ×b a1 .

So for the two transmissions in Figure 3(a), if 
we employ constant power assignment, we must 
guaranteed x y d y y

s r s r
( , ) ( , )/> ×b a1 for simulta-

neous transmissions. Sinceb ³ 1 , this inequality 
does not hold and the two transmissions can not 
be simultaneously scheduled. Similarly, if we 
employ linear power assignment, we must guaran-
teed y x d y y

s r s r
( , ) ( , )/> ×b a1 , and this inequality 

does not hold either; so the two transmissions can 
not be simultaneously scheduled.

Although both constant and linear pow-
er assignment can not concurrently sched-
ule the two links, there does exist a pow-
er assignment that can simultaneously 
schedule these two transmissions. For example, 
if we seta b= = = = =4 2 1 80, , ,n n p

i j x and

Figure 3. Two pair-wise transmission examples
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p
y
= 3150 , we can compute the SINR values for 

transmissions ( , )x x
s r and( , )y y

s r . Since

SINR
x
= + >( / ) / ( / ) .80 1 1 3150 3 2 001 24 4


 

and 
SINR

y
= + >( / ) / ( / ) .3150 4 1 80 2 2 051 24 4



 we can see that these two links can be scheduled 
in the same timeslot.

From this example, we can conclude that, in 
order to minimize the total scheduling length, 
picking the right power assignment strategy is of 
paramount importance.

Link Topologies Make a Difference

Link topology refers to the geometric distributions 
of all the senders and receivers of the wireless 
links. We take the two of the links in Figure 3(b) 
as an example. Also according to (Hua&Lau, 
2006), we have the following fact.

FA C T 3 :  B a s e d  o n  t h e  S I N R 
model, for any pair-wise wireless trans-
missions ( , )x x

s r and ( , )y y
s r ,  if we have

d x y d y x d x x d y y
s r s r s r s r

( , ) ( , ) ( , ) ( , )/× £ × ×b a2 , 
then there does not exist any power assignment 
strategy that can simultaneously schedule the 
two links.

For example, for the two links in Figure 3(b), 
if we set a = 4 andb = 2 , then since

2/

2/4

( , ) ( , ) 3 3
9 ( , ) ( , )
2 2 4 11.31

s r s r

s r s r

d x y d y x
d x x d y yαβ

⋅ = ⋅

= < ⋅ ⋅

= ⋅ ⋅ �

 

we can see that there are no power assignment 
strategies that can schedule the two links in the 
same timeslot.

From this example, we can see that, in a joint 
link scheduling and topology control algorithm, 
we must construct a topology that can avoid as 
many as possible of these pair-wise wireless links 
that cannot be simultaneously transmitted. In other 
words, we must find a topology that can take full 

advantage of power control to schedule as many 
links as possible in every timeslot.

Length Diversities Make a Difference

The link topology shown in Figure 4 has a length 
diversity of 1. This link topology is called a parallel 
link array and is borrowed from (Baccelli et al. 
2006). We now give a theorem which states that 
this link topology can be scheduled in a constant 
number of timeslots.

THEOREM 1: The parallel link array given in 
Figure 4 can be scheduled in m timeslots where m is 
a constant that satisfiesm ³ -( / ( )) /2 1 1ab a a .

PROOF: In each timeslot, as shown in Fig-
ure 4, we just pick all the links where each pair 
of nearby links has equal horizontal separation 
distanced mh= . If we can prove that all of 
these links can be successfully scheduled in one 
timeslot, we can then deduce that the total links 
can be scheduled in m timeslots. So we need to 
prove that all the links we pick in each timeslot 
do satisfy the SINR constraints.

Suppose we use constant power assignment, 
i.e., all the simultaneously scheduled links employ 
the same transmission power P. The SINR value 
for every link i scheduled in the same timeslots 
is:

2 2 /2

/
(2 / (( 1) ))

/
(2 / ( ))

/ 2 (1 / )

i
i

k

i
k

i
k

P hSINR
n P k m h

P h
n P k m h

m
n m h P k

α

α α

α

α α α

α

α α α

=
+ ⋅ +∑

≥
+ ⋅∑

=
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Suppose  t he  t r ansmis s ion  power
P n m h

i
 × ×a a . Then due to a standard Ri-

emann Zeta Function, the above SINR inequality 
becomes

SINR
m

k

m
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k
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³
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So as long asm ³ -( / ( )) /2 1 1ab a a , we have
SINR

i
³ b . This completes the proof.

Another link topology is given in Figure 5, 
whose length diversity equals n which is the 
number of the links. We call this link topology 
co-centric exponential node chain and it was 
first used in (Moscibroda et al. 2007). We set the 
path loss exponenta = 3 , the background noise
n

i
= 0 and the thresholdb = 2 . The best heu-

ristic link scheduling algorithm so far employs a 
novel nonlinear power assignment strategy for this 
link topology, which is presented in (Moscibroda 
et al. 2007); it can schedule all of these n links in
O n(log ) timeslot. Here we need to point out that, 
considering arbitrary power assignment strategy, 
no better upper bound or any lower bound of this 
link topology’s scheduling length is known.

From the above, we can see that, for a set of 
links, the length diversity of the link topology 
plays a very important role in the scheduling 
length. Since the links which have constant length 
diversity can be scheduled in constant scheduling 
length, we can conclude that the smaller the length 
diversity of the link topology, the smaller the 
scheduling length it tends to have. So for the joint 
link scheduling and topology control algorithm, 
we should try to construct a link topology which 
has smaller length diversity. In addition, for link 
topologies which have large length diversity, such 
as the co-centric exponential node chain, a good 
power assignment strategy together with a clever 
scheduling algorithm is necessary for minimizing 
the scheduling length.

The Scheduling Policies 
Make a Difference

We consider the co-centric link topology again. We 
set the path loss exponenta = 3and the threshold
b = 2 . Now according to Fact 3, for any two 
nearby links, i.e., link i and link i+1, there are no 
power assignment strategies that can schedule the 
two links in the same timeslot. Suppose now we 
employ a kind of link removal based scheduling 
algorithm: First, we try to schedule all the links 
in the same timeslot; if failure we then choose 
in each timeslot to remove either the link with 
the longest length or the link with the shortest 
length. We repeat these steps until all links have 
been scheduled. By using this kind of algorithm, 
we can see that only one link can be scheduled 
in each timeslot and thus the scheduling length is 
n. As we have mentioned earlier, there is a clever 
algorithm given in (Moscibroda et al. 2007) that 
can schedule all links in timeO n(log ) . This al-
gorithm works as follows: LetL

i
denote the set of 

links whose lengthsd
i
satisfy2 2 1i

i
id£ < + , then 

the algorithm schedules all the links in the link 

set i ( L
i k n

k

n n

+
=

-

log

/log

0

1



) where 0 1£ < -i nlog in 

one timeslot. By using their nonlinear power as-
signment, it can be shown that the algorithm can 
schedule all of these links in one timeslot while 
satisfying the SINR constraints. Thus all the links 
can be scheduled inO n(log ) timeslots.

From the example, we can see that designing 
an efficient scheduling algorithm is the key to our 

Figure 4. Parallel link array with equal lengths and equal horizontal separation distances. (Solid circles 
mean the transmitters, the arrows mean the receivers)
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link scheduling problems. We also need to reiter-
ate the important point that the link scheduling 
algorithm should be jointly designed with the 
power assignment strategies. For example, ac-
cording to Theorem 2 in the following, we can see 
that, if we employ either constant or linear power 
assignment, there does not exist any scheduling 
algorithm that can schedule all the links in an 
efficient manner.

THEOREM 2: By using either constant or 
linear power assignment, no matter what kind of 
scheduling policies we propose, all the links in 
the link topology given in Figure 5 can only be 
scheduled in n timeslots, i.e., only one link can 
be scheduled in each timeslot.

PROOF: According to Fact 1 and Fact 2, there 
are no scheduling policies that can make any two 
links in Figure 5 schedulable in the same timeslot. 
This finishes the proof.

HEURISTIC ALGORITHMS 
FOR MLSAT

We begin this section with the hardness analy-
sis of the MLSAT problem. If we do not allow 
power control, the MLSAT problem was first 
proven NP-hard in (Goussevskaia et al. 2007) 
by using a reduction from the partition problem. 
Very recently, by assuming that the maximum 
allowable power is bounded or the available 
powers are bounded, Völker et al. (2009) proved 
that the MLSAT problem is also NP-hard even 
with power control. For arbitrary power levels, 
the hardness of the MLSAT problem with power 

control is still unknown. But for a special case, 
even with power control, Fu et al. (2009) proved 
that the minimum length link scheduling problem 
with arbitrary traffic demands with consecutive 
transmission constraints is NP-hard. Consecutive 
transmission constraints mean that each link must 
be consecutively scheduled. Thus we have to 
turn to heuristic algorithms to tackle the MLSAT 
problem. All the existing heuristics for MLSAT 
can be largely classified as either a top-down or 
a bottom-up approach. In a top-down approach, 
the heuristic would first try to pick the maximal 
number of links (a matching) which do not violate 
the half-duplex constraint, and then find a maximal 
link independent set which does not violate the 
SINR constraints by removing one link at a time. 
This process will continue until all links have 
been scheduled. In a bottom-up approach, the 
heuristic would pick each link incrementally to 
see if the union of the selected links satisfies the 
half-duplex and SINR constraints; if not, the link 
is discarded. This process continues until it finds 
a maximal link independent set, and until all the 
links have been scheduled. Since the top-down 
approach is based on removing one link at each 
step, it can also be called a link removal based 
scheduling approach; similarly, since the bottom-
up approach is based on incrementing one link at 
each step, it can also be called a link incremental 
based scheduling approach. Based on Property 3, 
since all the heuristic link scheduling algorithms 
reduce the problem of finding whether there are 
positive power assignments that satisfy the SINR 
constraints to the spectral radius checking prob-
lem, the time complexities of these algorithms are 

Figure 5. Co-centric exponential node chain (all the links’ senders and receivers are located on the 
same line with link i’s sender’s coordinate as( ( ), )- -2 1 0i  and link i’s receiver’s coordinate as( ( ), )2 1 0i-  
(i is from 1 to n)
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dominated by the matrix eigenvalue computation. 
The time complexity for then n´ matrix eigen-
value computation and matrix inversion problem 
isO n( )3  (Pan & Chen, 1999).

Top-Down Approach

The first link removal based scheduling algorithm 
called SRA (Step-wise Removal Algorithm) is 
proposed by Zander (1992a). For a set of non-
adjacent links, this algorithm defers the link which 
has the maximum value max( , )r c

i i . The rationale 
behind this algorithm is based on Property 2, 
i.e., the spectral radius of the link gain matrix 
is bounded by the maximum value of the row 
sumr

i or the column sumc
i . So the SRA algo-

rithm aims to minimize the upper bound of the 
spectral radius in each removal step. Note that 
the CSCS (Combined Sum Criterion Selection) 
algorithm presented in (Fu et al., 2008) is actu-
ally the same as SRA. Instead of minimizing the 
upper bound of the spectral radius, the Step-wise 
Optimal Removal Algorithm (SORA) proposed 
by Wu (1999) defers the link whose removal 
can minimize the spectral radius directly in each 
step. However, different from SRA which needs 
onlyO n( ) eigenvalue computations, SORA needs
O n( )2 eigenvalue computations. Zander (1992b) 
proposed another algorithm called LISRA (Lim-
ited Information Stepwise Removal Algorithm). 
In this algorithm, assuming all the links employ 
the same transmission powers, the link with the 
minimum SINR value is excluded in each step. 
SMIRA (Step-wise Maximum Interference Re-
moval Algorithm) (Lee et al.,1995) would com-
pute for each link the larger interference value 
between the received cumulative interferences 
from other links and the interferences it caused 
to all the other links, and then it postpones the 
link which has the largest interference value. For 
each link in the WCRP algorithm proposed by 
Wang et al. (2005), the algorithm first computes 
a so-called MIMSR (Maximum Interference to 
Minimum Signal Ratio) value, and then all the 
links whose MIMSR values exceed some pre-

determined threshold are removed in each step. 
Also for the set of non-adjacent links, the heuristic 
algorithm in (Das et al., 2005) discards the link 
with the maximum row sum valuer

i in the link 
gain matrix.

Having covered the link removal algorithms for 
non-adjacent links, we now turn to the algorithms 
for the set of arbitrarily constructed links. To our 
current knowledge, the two-phase link schedul-
ing algorithm in (Elbatt & Ephremides, 2002) is 
the first solution to the joint link scheduling and 
power control problem for ad-hoc networks. In 
the first phase, this algorithm uses a separation 
distance to find a “valid” link set, which is also a 
subset of some maximal matching of the original 
links. Here, the larger the separation distance, the 
fewer the number of links in the “valid” link set 
found. In the second phase, this algorithm tries 
to find an “admissible” link independent set sat-
isfying the SINR constraints by using the LISRA 
algorithm in each link removal step. A variation 
of the two-phase link scheduling algorithm has 
been presented in (Li & Ephremides, 2007). This 
algorithm first defines a link metric which is a 
combination of the link’s queue length and the 
number of blocked links (the number of links 
sharing either a transmitter node or a receiver 
node of the current link). Then it finds a maximal 
matching by greedily selecting a link with the 
longest queue length and the fewest blocked links 
(the lowest link metric value). There are two dif-
ferences between the two-phase scheduling and 
its variation algorithm: the first is that the varia-
tion algorithm sets the separation distance value 
as zero, which means it tries to find a maximal 
matching but not a subset; the second difference 
is that, in order to find an admissible link inde-
pendent set, the variation algorithm defers the link 
with the largest link metric, i.e., the link with the 
shortest queue length and the maximum number 
of blocked links.

The ISPA (Integrated link Scheduling and 
Power control Algorithm) algorithm in (Behzad & 
Rubin, 2007) first constructs a generalized power-
based interference graph, which is very similar 
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to the pair-wise link conflict (infeasible) graph 
proposed in (Hua & Lau, 2008 & 2006). The subtle 
difference between the two interference models 
is that the power-based interference graph takes 
maximum allowable power into account. Note 
that the links in this graph form a subset of some 
maximal matching of the original links. Then, 
by using the minimum degree greedy algorithm 
(MDGA), the ISPA algorithm finds a maximal 
number of links which satisfy the SINR constraints 
pair-wisely. Third, they use the SMIRA algorithm 
as the pruning method to find a maximal number 
of links that satisfy the SINR constraints. Fourthly, 
in a “maximality stage” they try to find more links 
to be added to the link independent set.

Different from all the previously mentioned 
link removal based scheduling algorithms, the 
Algorithm A in (Kozat et al., 2006) first defines 
each link’s effective interference as the corre-
sponding column sum (ci ) in the link gain matrix, 
and then it finds a maximum matching of the links 
directly instead of finding a maximal matching 
or even a subset of the maximal matching. If the 
maximum matching does not satisfy the SINR 
constraints, the link with the maximum effective 
interference is discarded in each link removal 
step. This process is repeated until all links have 
been scheduled.

Bottom-Up Approach

As mentioned earlier, the bottom-up approach 
is based on scheduling each link incrementally. 
The main difference between the top-down and 
bottom-up scheduling approaches is that, for a 
set of non-adjacent links, the top-down approach 
always consists of two phases, i.e., the link match-
ing searching phase (either a maximum matching, 
a maximal matching or even just a matching) 
and the link removal based scheduling phase. 
The bottom-up approach, however, can directly 
schedule the links one by one without first finding 
a link matching. So we can largely classify the 
bottom-up approach into two categories: match-
ing based scheduling and non-matching based 

scheduling. We will first study the non-matching 
based algorithms since most state-of-the-art link 
incremental based scheduling algorithms directly 
schedule the links one by one without first finding 
a link matching.

Non-Matching Based Algorithms

The first polynomial time approximated link 
scheduling algorithm called GreedyPhysical 
is given in (Brar et al., 2006). This algorithm, 
however, is designed for random networks, which 
means that the approximation bound can not 
be generalized to arbitrarily constructed links. 
Moreover, the algorithm does not use packet-level 
power control, which means that all the links in 
the same timeslot employ the same transmission 
powers. Since this algorithm is designed for 
links with arbitrary link demands, which means 
different links may have a different number of 
packets to be transmitted, it can be easily applied 
to the unit link demand case; the algorithm first 
sorts all the links in the decreasing order of their 
interference numbers. The interference number of 
a link refers to the number of links which do not 
share a common node with the current link and 
can not be concurrently scheduled with it under 
the SINR model. The algorithm then greedily 
schedules these links, from the link with the largest 
interference number to the link with the fewest 
interference number.

Since the algorithm GreedyPhysical is only an 
approximation for random networks, Hua & Lau 
(2008) have given the first polynomial time ap-
proximate algorithm for arbitrary link topologies, 
i.e., solving the MLSAT problem. This algorithm 
is based on the exponential time exact scheduling 
algorithm for MLSAT. To the best of our knowl-
edge, this is also the first nontrivial exponential 
time exact algorithm for MLSAT. By taking 
advantage of the inclusion-exclusion principle 
which has been successfully applied in exact graph 
coloring algorithms, the authors have devised an
O n*( )3  time algorithm called ESA_MLSAT which 
is also a bottom-up based scheduling algorithm. 
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In addition, if exponential space is allowed, the 
time complexity can be reduced toO n*( )2 . Here 
theO *( )× notation is used to suppress the poly-
logarithmic factor. With these exact scheduling 
results, the approximation algorithm first partitions 
all the links intoO n n( / log ) groups, and then uses 
the exact scheduling algorithm ESA_MLSAT 
in each group. It can thus achieve a polynomial 
time approximation with an approximation factor
O n n( / log ) .

The Primal Algorithm proposed in (Borbash 
& Ephremides, 2006) is designed originally for 
some kind of “superincreasing” link demands, 
which means when we sort the link demands in 
a non-increasing order, each link with a higher 
demand is greater than or equal to the sum of all 
the links with lower demands. This algorithm first 
finds the link with the largest link demand, and 
then all the other links which can be pair-wisely 
scheduled with the current link under the SINR 
model. After that the algorithm schedules these two 
link sets with the duration of the link with a lower 
link demand. And then the algorithm checks how 
many packets have not been transmitted for the 
link with the largest link demand and schedules 
this single link packet by packet. The algorithm 
repeats these steps until all the packets have been 
transmitted. The authors of this paper have shown 
that this polynomial time greedy algorithm is opti-
mal for these ‘superincreasing’ link demands. We 
can adapt the algorithm to arbitrary link demands 
by first sorting the links in a decreasing order of 
their traffic requirements, and then picking each 
link in order using the bottom-up approach. Obvi-
ously, this method can not guarantee the optimal 
scheduling length for cases with arbitrary link 
demands.

Also designed for arbitrary link demands, the 
IDGS (Increasing Demand Greedy Scheduling) 
algorithm presented in (Fu et al., 2008) first sorts 
the links in an increasing order of their link de-
mands; and then in each timeslot it picks the link 
with the lowest link demand, and then it switches 
to pick the links in a reversed order, i.e., select-

ing the link with the highest link demand using a 
bottom-up approach.

We now introduce the two non-matching 
based scheduling algorithms proposed in (Li & 
Ephremides, 2007). The simplified scheduling 
algorithm first sorts the links in an increasing order 
of their link metrics, and then picks each link in 
order while giving it a power level which is the 
smaller value of its linear power assignment (a 
power assignment proportional to its link length 
to the power of the path loss exponent) and its 
maximum allowable power level. If any SINR 
constraints are violated then it defers it to the 
next timeslot. The second joint link scheduling 
and power control algorithm (JSPCA) behaves 
similarly to the simplified scheduling algorithm 
with the difference that the former one assigns 
the power levels with the values calculated from 
the Pareto-optimal power vectorP * (Property 4) 
rather than the pre-determined power assignments. 
Compared with the two-phase link removal algo-
rithm and the simplified scheduling algorithm, 
the authors have shown that the JSPCA algorithm 
can greatly improve the network performance in 
terms of throughput and delay. The link scheduling 
and power control algorithm (LSPC) proposed in 
(Ramamurthi et al., 2008) first constructs a conflict 
graph based on the node-exclusive interference 
model (links sharing a common node can not be 
concurrently scheduled), and then sorts the links 
either in an increasing order or in a decreasing 
order of the node degrees. Finally it schedules 
the links in order using the bottom-up approach. 
Note that if we employ the increasing order and if 
we do not consider a backlogged system (without 
considering the links’ queuing lengths), the LSPC 
algorithm becomes the same as the JSPCA algo-
rithm introduced in (Li & Ephremides, 2007).

For the throughput maximization problem for 
single hop links, i.e., to compute the maximum 
number of packets transmitted on these links in 
a fixed frame length, Tang et al. (2006) first for-
mulated it as a mixed integer linear programming 
(MILP) problem, and then they relaxed it as a linear 
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programming problem. In order to generate a link’s 
ordering for the proposed serial linear program-
ming rounding algorithm (SLPR), the authors also 
relaxed the SINR requirement. By solving the 
linear programming problem, they sort the links 
in a decreasing order of the fractional values of 
the scheduling variables. Finally the greedy SLPR 
algorithm incrementally schedules these links us-
ing the bottom-up approach. The intuitive idea of 
this link ordering is that, the larger the fractional 
value of the scheduling variable calculated from 
the relaxed SINR model, the higher the probability 
of this link satisfying the original SINR require-
ment. Note that although this is a polynomial time 
algorithm, it suffers from an extremely high worst 
case computational complexityO n M

LP
( )8 × , where 

n is the number of the links andM
LP

is the number 
of binary bits required to store the data.

We now introduce another class of non-
matching based scheduling algorithms which 
feature a kind of nonlinear power assignment. 
This power assignment can overpower the short 
links, which means that on one hand, compared 
with constant power assignment, long links can 
use larger powers; on the other hand, short links 
can receive relatively larger power compared with 
linear power assignment. The nonlinear power 
assignment is first introduced in an algorithm for 
the MLSTT problem (Moscibroda & Wattenhofer, 
2006) and has subsequently been used for the 
MLSAT problem. In (Moscibroda, Wattenhofer 
& Zollinger, 2006), by using the nonlinear power 
assignment, the authors study the relationship 
between the graph-based interference model 
which is called the in-interference degree and 
the SINR model. The in-interference degree of a 
node stands for the number of other transmitters 
whose transmission ranges cover this node. And 
the largest in-interference degree of a node is 
called the in-interference degree of the topology. 
This chapter concludes that the scheduling length 
of the MLSAT problem is upper bounded by the 
product of the in-interference degree of the topol-
ogy and the square of the logarithmic function of 

the number of the links. From this, we can see that 
a lower in-interference degree greatly shortens 
the scheduling length. In a later paper (Mosci-
broda, Oswald & Wattenhofer, 2007), the authors 
propose a low disturbance scheduling algorithm 
called LDS. This algorithm can generate a poly-
logarithmic scheduling length for a topology with 
low disturbances. Here low disturbance is char-
acterized by a parameter called r - disturbance

which can also be regarded as the density of the 
links’ distribution. For a link’s r - disturbance , the 
algorithm first computes the number of other links’ 
transmitters (receivers) located in the current link 
transmitter’s (receiver’s) range (the link’s length 
divided by the value r which is greater than or 
equal to 1), and then the larger value is the link’s
r - disturbance . The maximum r - disturbance

of all the links becomes the r - disturbance of 
the topology. With this parameter, the authors 
prove that the scheduling length of the MLSAT 
problem is upper bounded by the r - disturbance

of the topology multiplied by the product of the 
square of the logarithmic function of the number 
of the links and the square of the r value. From 
this, we know that a sparse link topology with a 
lower r - disturbance can significantly reduce the 
scheduling length.

Matching Based Algorithms

In this section, we discuss some link incremental 
scheduling algorithms which are based on either a 
link matching or a superset of a link matching.

The Algorithm B proposed in (Kozat et al., 
2006) is originally designed for minimizing the 
total power consumption, but it can be adapted for 
the minimum frame length link scheduling prob-
lem with a few modifications. Similar to Algorithm 
A given in the same paper which uses a top-down 
approach, the Algorithm B first finds a maximum 
matching of the unscheduled links; second, it 
sorts all the links in the maximum matching in a 
decreasing order of their effective interferences; 
third, the algorithm can then be adjusted to pick 
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each link in order using the bottom-up approach. 
The authors have shown that Algorithm B can 
schedule more links in a timeslot than the top-
down approach based Algorithm A.

Recently, Hua (2009) introduced a maximum 
directed cut based scheduling framework called 
MDCS. The fundamental differences between this 
framework and all the other state-of-the-art sched-
uling algorithms lie in two aspects: the MDCS 
framework uses a maximum directed cut which 
also contains a maximum matching as the building 
block for each phase’s scheduling; and in each 
scheduling phase, the MDCS framework employs 
a link incremental based scheduling algorithm with 
novel scheduling metrics. We borrow an illustra-
tive example (c.f. Figure 6) from Hua (2009) to 
briefly explain the rationale behind MDCS. First, 
we notice that finding a maximum matching in 
the bottom up based scheduling algorithms is 
preferred to finding a maximal matching or even 
just a matching. The reason is that, compared 
with the maximal matching or just a matching, 
the maximum matching can offer more potential 
links that can be scheduled in the same timeslot. 
Second, we can see that adding more links in the 
maximum matching can offer more potential links 
to be scheduled in the same timeslot. Since there 
may be more than one maximum matching, this 
step can be taken as diversifying the maximum 
matching found. For example, in the following 
example, there are 3n+1 links and any maximum 
matching consists of n+1 links. Here we suppose 

the found maximum matching is composed by link 
1 and links from links 2n+2 to 3n+1. Now we can 
add links from links 2 to n+1 to this maximum 
matching. Thus if any link in the added links can 
be concurrently scheduled with the links in the 
found maximum matching, there will be fewer 
links in the subsequent scheduling phases which 
could lead to much fewer timeslots to schedule 
all the links. The problem then is how to add the 
non-matched links to the maximum matching. 
Examining the link gain matrix H, we can see 
that if adding a link to the maximum matching 
can make a link’s transmitter (receiver) become 
another link’s receiver (transmitter), the denomina-
tor of some element of the link gain matrix would 
become infinity which is very undesirable for 
any scheduling or removal metrics built upon the 
elements of the link gain matrix. So the problem 
boils down to finding the maximum directed cut 
upon a maximum matching. Also taking Figure 6 
as an example, the found maximum directed cut 
comprises the maximum matching consisting of 
link 1 and links from links 2n+2 to 3n+1 and all 
the other links excluding link n+1. For more details 
of this maximum directed cut based scheduling 
framework and the various scheduling metrics, 
please refer to (Hua, 2009).

ALGORITHMS INEFFICIENCY 
ANALYSES

In this section, we give some inefficiency results 
for both top-down and bottom-up based link 
scheduling algorithms.

THEOREM 3: The following top-down based 
link scheduling algorithms have a worst case 
lower bound ofW( )n : the two phase scheduling 
algorithm (Elbatt & Ephremides, 2002), the varia-
tion of the two phase scheduling algorithm (Li & 
Ephremides, 2007), the ISPA algorithm (Behzad 
& Rubin, 2007), the Algorithm A (Kozat et al., 
2006) and the heuristic link scheduling in (Das 
et al., 2005).

Figure 6. An example for the MDCS scheduling 
framework
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PROOF: Since the two phase scheduling 
algorithm and the ISPA algorithm use LISRA 
and SMIRA as their link removal algorithms 
respectively, the inefficiency results of the two 
link removal algorithms (Theorem 5.2 in (Mo-
scibroda, Oswald & Wattenhofer, 2007)) can be 
directly applied here. For the other three schedul-
ing algorithms, we can make use of the co-centric 
exponential node chain given in Figure 5. We can 
set the path loss exponenta = 3 , the background 
noisen

i
= 0 and the thresholdb = 2 . For the 

variation of the two phase scheduling algorithm, 
since all the links have the same number of blocked 
links (zero), the links removed in each step are 
link 1 to link n-1, so only one link (link n) can be 
scheduled in the first timeslot. These removal steps 
will be repeated in the following n-1 timeslots. For 
the Algorithm A and the heuristic link scheduling, 
since they either use the link gain matrix column 
sum or row sum as their link removal metrics, 
the links removed in each step are either in an 
increasing order of their links’ lengths or in a 
decreasing order of their links’ lengths. However, 
both orders will result in W( )n scheduling lengths. 
This completes the proof.

THEOREM 4: The two bottom-up based link 
scheduling algorithms, i.e., the simplified sched-
uling algorithm in (Li & Ephremides, 2007) and 
the GreedyPhysical algorithm in (Brar, Blough 
& Santi, 2006), have a worst case lower bound
W( )n .

PROOF: We make use of the co-centric ex-
ponential node chain. Since all the links form a 
matching, the algorithm can schedule the links in 
a decreasing order of their lengths. So depending 
on the value of maximum allowable transmission 
power, the corresponding power assignments 
can be either linear power assignments, constant 
power assignments, or the long links employing 
constant power assignments while the remaining 
short links would employ linear power assign-
ments. By using the inefficiency results of both 
constant and linear power assignments (Theorem 
3.1 and 3.2 in (Moscibroda & Wattenhofer, 2006)) 

or Theorem 4.1 in (Hua & Lau, 2006), we can 
complete the proof for the simplified scheduling 
algorithm. Similarly since the GreedyPhysical 
algorithm does not employ packet-level power 
control, which means that all the links in the 
same timeslot use the same transmission powers 
(the links in different timeslots may use different 
powers), Theorem 4.1 in (Hua & Lau, 2006) can 
be directly applied here. This completes the proof 
for the GreedyPhysical algorithm.

PROPOSITION 5: Let’s suppose there is a 
link topology whose pair-wise link conflict (in-
feasible) graph (Hua & Lau, 2008) is as shown 
in the following figure, then any link incremental 
scheduling algorithms in the order of [1..n] will 
result in a scheduling length of W( )n . However, 
a much fewer or even a constant number of 
timeslots is possible if we schedule the links in 
the upper and lower parts of this conflict graph 
respectively. This can be realized by the step-
wise least discarded link incremental scheduling 
algorithm called SLDIA proposed in (Hua, 2009). 
This algorithm incrementally schedules the link 
whose addition in the current link independent 
set can discard the fewest number of links in the 
remaining links.

From this proposition, we have the following 
three corollaries.

COROLLARY 6: The link incremental sched-
uling algorithms which use the node degree in the 
pair-wise link conflict graph as the scheduling 
metric has a worst case lower bound ofW( )n .

Figure 7. A pair-wise link conflict (infeasible) 
graph
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COROLLARY 7: Since all the links have 
unit link demand in MLSAT, the link incremental 
scheduling algorithms which use the link demands 
as a scheduling metric, such as the Primal Algo-
rithm in (Borbash & Ephremides, 2006) and the 
IDGS algorithm in (Fu, Liew & Huang, 2008), 
have a worst case lower bound ofW( )n .

COROLLARY 8: Let’s further suppose all the 
links in this link topology have the same number of 
blocked links, then the link incremental schedul-
ing algorithms which use the number of blocked 
links as the scheduling metric, such as the JSPCA 
algorithm in (Li & Ephremides, 2007) and the 
LSPC Algorithm in (Ramamurthi et al., 2008), 
have a worst case lower bound ofW( )n .

JOINT TOPOLOGY CONSTRUCTION 
AND LINK SCHEDULING FOR MLSTT

In this section, we review some joint topology 
construction and link scheduling algorithms for 
the MLSTT problem. The first algorithm for this 
problem is given in (Moscibroda & Wattenhofer, 
2006) in the context of fulfilling the connectivity 
property of all the arbitrarily located nodes on the 
plane. If we remove the last step of this algorithm, 
i.e., adding the links from the sink node to all the 
other nodes, this algorithm can be directly used for 
MLSTT. Since this algorithm employs the nonlinear 
power assignment and is targeted for narrow band 
networks, we call it NPAN. The NPAN proceeds in 
phases, where each phase comprises all the links 
in the nearest neighbor forest constructed over the 
sink nodes of the links in the previous phase. Here 
the sink node means the node with no outgoing 
links. This scheduling algorithm partitions the links 
in each phase into different groups based on the 
links’ lengths, and then it incrementally schedules 
each link in the selected groups with the nonlinear 
power assignment. Since there areO n(log )groups 
in each scheduling phase (n is the number of the 
nodes) and there areO n(log )phases, by combin-
ing the scheduling length of each group which is 

bounded byO n(log )2 , the total scheduling length 
isO n(log )4 . In a follow-up paper (Hua & Lau, 
2006), the authors have studied how the wide-
band networks would affect the poly-logarithmic 
scheduling length. They prove that, for a wide-band 
network with processing gain m, the scheduling 
length can be reduced toO n m n(log( / ) log )× 3 . 
This result shows that a higher processing gain 
can greatly shorten the scheduling length, espe-
cially whenm n= Q( ) . In addition, the paper also 
points out that the poly-logarithmic scheduling 
length is achieved at the expense of total power 
consumption which is an exponential function 
of the number of the nodes. Now if we do not 
schedule the links in each phase but rather to 
schedule the links when the tree topology has been 
constructed afterO n(log ) steps, the scheduling 
length can be reduced toO n(log )3 . This result is 
derived from the paper (Moscibroda, Wattenhofer 
& Zollinger, 2006) which proves that the schedul-
ing length for arbitrary topologies is bounded by 
the in-interference degree of the topology times 
O n(log )2 , and the in-interference degree of the 
iteratively constructed tree topology isO n(log ) . 
By using a slightly different nonlinear power as-
signment in (Moscibroda, 2007), the scheduling 
length has been further reduced toO n(log )2 . In this 
chapter, the algorithm first iteratively constructs 
the tree through the nearest component connector 
algorithm (Fussen, 2004) which is almost the same 
as the nearest forest connection algorithm. Second, 
the algorithm partitions all the links in constant 
number of groups based on the links’ lengths. The 
final result is reached since the scheduling length 
for each group isO n(log )2 . We call this schedul-
ing algorithm NPAN-IPSN07. Here we take note 
that the results of (Hua & Lau, 2006) can be easily 
extended to all these follow-up nonlinear power 
assignment based scheduling algorithms.

Instead of iteratively connecting all the arbi-
trarily located nodes with either the nearest forest 
connection algorithm or the nearest component 
connector algorithm, Hua (2009) has recently 
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proposed another joint topology construction and 
link scheduling algorithm based on first construct-
ing a minimum spanning tree. The algorithm 
does not use nonlinear power assignment based 
scheduling algorithms but rather the proposed 
maximum directed cut based scheduling frame-
work (MDCS).

ALGORITHM COMPARISONS

In this section, we compare the scheduling lengths 
generated by various link scheduling algorithms 
for both the MLSAT and MLSTT problems in-
troduced in this chapter.

Comparisons of Algorithms 
for MLSAT

First we show how the arbitrary link topologies 
are generated. For any n arbitrarily located nodes 
in a 2000×2000 m2 plane, we randomly select a 
link’s transmitter and receiver subject to the con-
straint that they are different nodes on the plane. 
We then repeat this process until a number of n 
different links (either with different transmitters 
or receivers) have been constructed. So in this 
topology construction some nodes may not be used 
(Figure 8 is an example). In this simulation, we 
set the path loss exponenta = 4 and the threshold 
b = 2 . In fact we have also tested all the schedul-
ing algorithms for the other ( , )a b  values. Since 
the arbitrarily generated link topology is a very 
dense link topology (c.f. Figure 8), if we choose a 
smallera value or a largerb value, all of the sched-
uling algorithms can schedule at most one link in 
each timeslot which would make performance 
comparison impossible. However for some other
( , )a b values which either have a largera value or 
a smallerb value, all the algorithms behave simi-
larly with thea = 4 andb = 2 setting. So we only 
give the simulation results for the ( , )a b= =4 2
case. We implemented seven bottom-up based 
scheduling algorithms: the MDCS scheduling 

framework (Hua, 2009), the adjusted Algorithm 
B (Kozat, Koutsopoulos & Tassiulas, 2006), the 
GreedyPhysical algorithm in (Brar, Blough & 
Santi, 2006) with packet level power control, the 
JSPCA algorithm in (Li & Ephremides, 2007), 
the LSPC algorithm in (Ramamurthi et al., 2008), 
the LDS algorithm in (Moscibroda, Oswald & 
Wattenhofer, 2007) and the first fit based link 
increment scheduling algorithm. Here by first fit 
based link incremental scheduling algorithm, we 
mean that we just greedily schedule the links in 
its unsorted order with the bottom up approach. 
In addition, in order to differentiate from the 
JSPCA algorithm, the LSPC algorithm employs 
a decreasing order of the number of blocked 
links to incrementally schedule the links. Note 
that for the LDS algorithm, since its scheduling 
length relies on the parameterr , we have tested 
differentr values and find that LDS can achieve 
the shortest scheduling length whenr = 1 , so 
we setr = 1  in our simulation. We also imple-
ment one top-down based scheduling algorithm 
which uses the link removal algorithm SORA. 
This algorithm first finds a maximum matching 
in each scheduling phase; then it employs SORA 
as the link removal algorithm. The reasons we 
use SORA as a representative for top down based 
link removal algorithms are: first, the simulation 
results in (Wu, 1999) have shown that, compared 
with SRA and SMIRA, SORA has the lowest out-
age probability and a better throughput capacity; 
second, for the co-centric exponential node chain 
topology, our own simulation result shows that the 
SORA algorithm can schedule it with the number of 
timeslots no more than that by the nonlinear power 
assignment based link scheduling algorithm given 
in (Moscibroda, Oswald & Wattenhofer, 2007); 
third, compared with all the other link removal 
based scheduling algorithms which have worst 
case lower boundW( )n where n is the number 
of the links, the scheduling length lower bound 
for the SORA algorithm is still unknown. Note 
that, we have tested these scheduling algorithms 
over ten sets of link topologies with the number 
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of links ranging from 20 to 110. And for each set 
of topology, we compute the average scheduling 
length over 10 different instances. In addition, 
for all the scheduling algorithms except LDS, we 
use the Pareto-optimal power assignment with 
no maximum allowable power limitations. This 
assumption, however, can be removed if we set 
the same maximum allowable power for all the 
scheduling algorithms.

The final scheduling results can be seen in 
Figure 9. Now we can sort these eight scheduling 
algorithms in an increasing order of their sched-
uling lengths: MDCS, the adjusted Algorithm 
B, LSPC, first fit, JSPCA, SORA, the adjusted 
GreedyPhysical with power control and LDS. 
We have the following observations from this 
ordering. (1) In matching based link scheduling 
algorithms, adding more links to the maximum 
matching in each scheduling phase can signifi-
cantly reduce the scheduling length. This can be 
seen from the scheduling lengths of MDCS, the 
adjusted Algorithm B and the matching based link 
removal algorithm SORA. (2) Matching based 
link scheduling algorithms greatly outperform the 
non-matching based link scheduling algorithms 

in terms of their scheduling lengths. This can be 
seen from the scheduling lengths of Algorithm B 
and the other four non-matching based scheduling 
algorithms (LSPC, first fit, JSPCA and Greedy-
Physical). This observation is further strengthened 
by the result that even the matching based link 
removal algorithm SORA can generate fewer 
scheduling lengths than the non-matching based 
link incremental scheduling algorithms (the ad-
justed GreedyPhysical and LDS). (3) Compared 
with the top down and bottom up based scheduling 
algorithms, especially for all the matching based 
link scheduling algorithms, link incremental 
scheduling algorithms can greatly reduce the 
scheduling lengths compared with the link removal 
algorithms. This can be seen from the scheduling 
lengths of the algorithms MDCS, the Adjusted 
Algorithm B, LSPC, first fit, JSPCA and SORA. 
(4) The Fail First principle which corresponds to 
first selecting the link with the largest scheduling 
metric value outperforms the Succeed First prin-
ciple which corresponds to first selecting the link 
with the smallest scheduling metric value. This is 
supported by the results from LSPC and JSPCA. 
(5) Since our generated arbitrary link topologies 

Figure 8. An arbitrary link topology example with 20 links constructed over 20 nodes
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bear large r -disturbance  values (Figure 8 is 
an example whoser -disturbance value could 
be as large as the number of links whenr = 1 ), 
the low disturbance scheduling (LDS) generates 
the longest scheduling lengths (it almost sched-
ules one link in each timeslot!). Since both the 
tree topologies shown in Figure 10 have much 
smallerr -disturbance values, we will see how 
LDS performs in these sparse link topologies in 
the next section.

Comparisons of Algorithms 
for MLSTT

All the nodes are also arbitrarily located in a 
2000×2000 m2 plane and we set the path loss expo-
nenta = 4 and the thresholdb = 20 . The reason 
for setting a much higher threshold value here is 
that the constructed tree topologies (c.f. Figure 10) 
are sparse link topologies, while the arbitrary link 
topologies (c.f. Figure 8) are dense link topologies. 
If we use largera values or smallerb values, then 

all the scheduling algorithms will generate almost 
the same very short scheduling lengths which 
would make the comparisons impossible. On the 
other hand, we have also tested the scheduling 
algorithms for other smallera values or largerb
values, and all the scheduling algorithms behave 
similarly with the settinga = 4 andb = 20 . So 
we omit these similar simulation results here. In 
Figure 10, the left side is a tree topology iteratively 
constructed by the nearest component connector 
(NCC) algorithm while the right side is a minimum 
spanning tree constructed over the same node set. 
Besides the MDCS scheduling framework and the 
LDS algorithm, we also implement the NPAN-
IPSN07 algorithm which is currently the fastest 
nonlinear power assignment based link schedul-
ing algorithm which can schedule the NCC-tree 
(tree constructed with NCC algorithm) in time
O n(log )2  (Mosciborda, 2007). And since the in-
interference degree of a MST topology can beO n( )  
we can not use the NPAN-IPSN07 algorithm to 
schedule the links in the MST topology since the 

Figure 9. Comparisons of scheduling lengths over arbitrary link topologies with different algorithms
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SINR constraints may not be satisfied. So for the 
MST topology, we apply the MDCS and the LDS 
scheduling algorithms, and for the NCC tree, we 
can also apply the NPAN-IPSN07 algorithm. But 
for the NPAN-IPSN07 algorithm, we must pay 
attention to the background noise valueni since 
the scheduling length is also dependent on this 
parameter. Note that, in this algorithm, when the 
background noiseni < - × -( ) / ( ( ))a b a2 2 1   
the SINR constraints can not be guaranteed by 
the proposed nonlinear power assignment (the 
reason is that the SNR model must be satisfied). 
So in this simulation, we set all theni to have 
the same value which is a little bit larger than
( ) / ( ( ))a b a- × -2 2 1 since we have found that 
a much largerni value can greatly increase the 
scheduling length.

The scheduling results are shown in Figure 
11. From this figure we have the following ob-
servations: (1) the MST topology always yields 
much shorter scheduling lengths no matter which 
scheduling algorithm is used; (2) combined with 
Figure 4, for the MST and NCC tree topologies 
having much lowerr -disturbance values, LDS 
generates shorter scheduling lengths; although the 
reduction is not that significant, the reduction of 

scheduling lengths with MDCS is huge; (3) for 
both MST and NCC tree topologies, the MDCS 
algorithm always achieves the shortest schedul-
ing lengths; (4) for NCC tree, compared with 
the NPAN-IPSN07 algorithm, MDCS achieves 
a much shorter scheduling length.

CONCLUSION

This chapter reviews all the state-of-the-art poly-
nomial time link scheduling algorithms under the 
SINR model. We have studied these algorithms 
through theoretical analyses as well as using 
simulation. We can draw some conclusions from 
the results. First, for both dense and sparse link 
topologies, the maximum directed cut based sched-
uling framework MDCS significantly outperforms 
all the other state-of-the-art link scheduling algo-
rithms in terms of scheduling length. Second, our 
results show that connecting all the nodes (sensors) 
on a plane with the minimum spanning tree topol-
ogy can greatly shorten the scheduling lengths, 
which means that the data gathering speed can 
be significantly increased. Third, matching based 
scheduling algorithms help reduce the schedul-

Figure 10. Different tree topologies over the same set of nodes (Left: iterative nearest component con-
nector construction; Right: minimum spanning tree construction)
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ing length compared with non-matching based 
scheduling algorithms. Fourth, link incremental 
based scheduling algorithms can greatly shorten 
the scheduling length compared with link removal 
based scheduling algorithms. Moreover, the time 
complexities of link incremental based schedul-
ing algorithms are much lower than those of link 
removal based scheduling algorithms (Kozat, 
Koutsopoulos & Tassiulas, 2006).

There are many open problems in this research 
area that warrant further attention and investiga-
tion. Here we could only touch upon a small subset 
of them. For more open problems, please refer to 
(Hua & Lau, 2006, 2008, Hua, 2009 & Hua et al., 
2009a,2009b).

First, instead of assuming each link having one 
packet to transmit, we can study the general minimum 
length link scheduling problem with arbitrary traffic 
demands over the links. Although the hardness of 
the MLSAT problem under power control has been 
proven to be NP-hard (Fu et al., 2009), the general 
minimum length link scheduling problem without 
consecutive transmission constraints is still open.

Second, although there are some approxi-
mated algorithms for either the MLSAT problem 
or the general minimum length link scheduling 
problem (Goussevskaia et al., 2009, Halldorsson 
& Wattenhofer, 2009), all their approximation 
ratios are obtained with the assumption of no 
power control. So it seems necessary to study 
approximation algorithms under power control. 
Furthermore, it would be interesting to study 
whether there are some inapproximability re-
sults for the minimum length link scheduling 
problems.

Third, although a polynomial time approxima-
tion algorithm for MLSAT has been proposed in 
(Hua & Lau, 2008), it is a centralized algorithm. 
A localized/distributed algorithm, where each 
sensor only has limited knowledge of the whole 
network, is necessary for sensor networks that 
may experience many changes dynamically. For 
example, we may want a sensor node to decide 
its transmission power locally while guarantee-
ing higher throughput capacity and lower power 
consumption.

Figure 11. Comparison of scheduling lengths over different tree topologies with different algorithms
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Fourth, for the asymptotic upper bound of the 
scheduling length of the MLSTT problem, our 
simulation results and analyses have shown that 
the currently fastest O n(log )2  bound (Moscibroda, 
2007) can be further reduced, which needs a novel 
scheduling algorithm. Moreover, a non-trivial 
lower bound is also needed.

Fifth, it will be interesting to consider more 
layers of the sensor networks, such as the network-
ing layer. For example, a joint link scheduling, 
topology control and routing solution with a much 
shorter provable scheduling length can be very 
challenging (Chafekar et al., 2007).

Sixth, it will also be interesting to consider 
other joint link scheduling and topology control 
problems. For example, we can consider the 
minimum frame length link scheduling problem 
for either a k-connected topology or a t-spanner 
topology.

Seventh, for a small number of links, it is pos-
sible to design some efficient exact algorithms for 
either the MLSAT or the general minimum length 
link scheduling problems. These problems can be 
formulated as a set covering problem (Hua & Lau, 
2008) or as a set multi-covering problem (Hua et 
al., 2009a, 2009b).

Finally, it should be worthwhile to take the 
packets’ arriving rates into account (i.e., stochas-
tic network) when trying to solve the joint link 
scheduling and topology control problems (Joo, 
Lin & Shroff, 2008).
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KEY TERMS AND DEFINITIONS

Constant (Uniform) Power Assignment: If 
all the concurrently scheduled links employ the 
same transmission power, we call it a constant 
(uniform) power assignment.
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Length Diversity: A notion to describe the 
number of magnitudes of lengths in a set of links
N n= { ,..., }1 . In particular, the length diversity 
ofN is: d N m i N d mii( ) | { | : log( ) } |= $ Î ê

ëê
ú
ûú =  

is the length of link i)
Linear Power Assignment: If each link in 

the concurrently scheduled links employs the 
transmission power which is proportional to the 
corresponding link’s length (the distance from 
the transmitter to the receiver) to the power of 
the path loss exponent, we call it a linear power 
assignment.

Link Independent Set: A set of links which 
can be concurrently scheduled under the SINR 
model.

Nonlinear Power Assignment: We used i({ })
to denote the length diversity of all the links{ }i
scheduled in the same timeslot. And we sort the 
links in a non-increasing order of their lengths. 
Then we assign the t value (the power scaling 
exponent) to each link (1£ £t d i({ }) ), and 
the lower the length magnitude of the links, the 
higher the t value. In particular, the links with 
the lowest length magnitude have the highest t
value ofd i({ }) , and the links with the highest 
length magnitude have the lowest t value of 1. 
Then if the link i uses the transmission power
p f diii = ×( ) ( )t a , we say it is a nonlinear power 

assignment. Here f is a function of the parameters
a ,b ,ni and the number of the links.

Pareto-Optimal Power Assignment: Accord-
ing to Property 4 of the link gain matrix H, if we 
set the transmission powers based on the power 
vectorP I H* ( )= - ×-1 h , we call it a Pareto-
optimal power assignment.

SINR Model: A specific interference model 
which is dependent on the so called signal-to-
interference-plus-noise-ratio (SINR). In this 
model, we say that a link i has been successfully 
scheduled if and only if the power received by the 
link’s receiver ir from its corresponding transmit-
ter is is at least a factorb higher than the sum of 
the received powers from the other concurrently 
scheduled links’ transmitters plus the background 
noiseni . Here the received power attenuates with 
distance, i.e., it equals to the transmitted power 
divided by the distance between the sender and 
receiver to the power of the path loss exponent
a .

Topology Control: Adjustment of the links’ 
transmission powers so that these links fulfill a 
network-wide property, such as connectivity, low 
interference and capacity improvement.

Wireless Link: A wireless transmission 
comprised by a source node (transmitter) and a 
destination node (receiver).


