
Index-Compact Garbage Collection

Liangliang Tong and Francis C.M. Lau

Department of Computer Science,
The University of Hong Kong,
Pokfulam Road, Hong Kong
{lltong,fcmlau}@cs.hku.hk

Abstract. Automatic garbage collection is currently adopted by many
object-oriented programming systems. Among the many variants, a mark-
compact garbage collector offers high space efficiency and cheap object
allocation, but suffers from poor virtual memory interactions. It needs
to linearly scan through the entire available heap, triggering many page
faults which may lead to excessively long collection time. We propose
building an object reference index while tracing the heap, which in the
following stages can be used to directly locate the live objects. As the
dead objects are not touched, the collection time becomes dependent only
on the size of the live data set. We have implemented a prototype in Jikes
RVM, which shows promising results with the SPECjvm98 benchmarks.

Key words: Index, Virtual Memory, Compacting Garbage Collection

1 Introduction

In order to avoid the errors of manual memory management, the idea of a garbage
collector to automatically reclaim dead objects was introduced [1]. But to pre-
cisely determine which objects will no longer be used by the program is undecid-
able. A somewhat conservative approach was therefore adopted which identified
reachable objects by tracing the heap from the program roots [1], and many
improvements followed, including some that took advantage of the presence or
work around the limits of virtual memory.

Theoretically there is an unlimited address space in a virtual memory system.
However, as the working set of a program increases its span in the virtual space,
live objects mingle with dead objects and pages gradually become sparsely oc-
cupied (by live objects). Ultimately something must be done, otherwise many
of the pages will be pushed to secondary storage which leads to frequent swaps
[19]. Traditionally a free-list is used to mitigate the problem, unfortunately it
would create memory fragments. So garbage collectors that move live objects
together in space were devised and became popular.

There are two major kinds of moving garbage collectors: semi-space (also
known as copying collector) and mark-compact. The former [14] is faster, but
it needs to reserve half of available space for copying live objects. The latter [2]
does not need to reserve any space, but takes much more time to do a collection.
There are two reasons for the longer collection time:

2 Index-Compact Garbage Collection

– Compaction needs multiple passes over the objects, while copying takes only
one pass.

– Some phases1 of compaction will walk the entire available heap, including
garbage objects, but semi-space collectors only need to touch2 the live objects
and hence their collection work is proportional only to the amount of live
data [7].

Much research has been conducted to reduce the number of passes required by
compaction, such as [3], but to the best of our knowledge nearly no attention has
been paid to the second issue. Regarding this issue, we note that, as indicated in
[17], unreachable objects tend to cluster together. In our experiments, the size of
some clusters even exceeded that of a page. In the presence of virtual memory,
such pages with only garbage are never or rarely visited and therefore should
be evicted out of the main storage. To touch them will trigger many page faults
hence prolong the operation time.

In this paper we propose an improvement to compacting collectors, called
an index-compact garbage collector. It builds an address (index) table during
marking. This index table contains all the references to the live objects in the
available heap in address order. After all the live objects have been visited, this
index is sorted by the values of the references to make it address ordered. In
the following phases of garbage collection, the index is used to efficiently locate
live objects for pointer adjustment and object compaction. Because the index is
sorted, the corresponding movements of objects will not cause them to overlap
and data will not be lost. During these phases, the garbage objects are never
touched, which substantially reduces the working set of the garbage collector.
We have implemented a prototype based on this idea on JikesRVM [12] and the
experiment clearly showed that the collection time depends only on the size of
live objects for the benchmarks tested.

The improvement does not come without a cost—we need at least extra
space for the index and extra time to sort it. In the following, we expound on
the overhead incurred by our algorithm and suggest several possible methods
to mitigate its side effects. Considering that almost all the enterprise garbage
collected systems are generational[9], we also give a separate discussion on how
to build generations using our algorithm. Compared with copying, compaction
saves resources but requires multiple phases to complete its work, so it will be
interesting if we can somehow combine the two to achieve a balance between
space and time.

Our contributions can be summarized as follows.

– We put forward the case that reducing page faults should be one of the main
tasks of garbage collectors in a virtual memory based system.

– We propose the index-compact garbage collector which can avoid touching
the garbage while compacting the working heap. The result is reduced page
swaps, and the collection time can be made proportional only to the amount

1 If a process needs to visit the heap from the start again, we call that a phase.
2 An object is touched if any bytes in this object is visited.

Liangliang Tong, Francis C.M. Lau 3

of live objects. This mechanism can be even more effective if the collector is
generational because of the higher infant mortality of young spaces.

– We have implemented a preliminary version of our collector in JikesRVM.
The experiment behaved as expected and showed a collection time that is
correlated with the size of live objects.

– We also suggest several techniques, such as cluster indexing and page remap-
ping, that can further extend the proposed idea and improve the performance
of the proposed collector. A fine-grain blending of copying and compacting
collectors is discussed, which can achieve a balance between time and space
costs.

The remainder of this paper is organized as follows. Sec. 2 provides a com-
parison between copying and compacting garbage collectors and gives the mo-
tivation for constructing an index for compacting collectors. Sec. 3 presents the
basic design and implementation of our collector. Sec. 4 describes the experimen-
tal environment and reports the experimental results. Sec. 5 gives a discussion
of the overheads and extensions of our algorithm. Related works are overviewed
in Sec. 6. We summarize our contributions and point out possible future work
in Sec. 7.

2 Comparison and Motivation

Semi-space collectors reserve half of the available heap and copy every reach-
able object to that space. Because the reserved space contains no object at the
beginning of collection, there is no need to consider whether different objects
may overlap or not. The active object tree is traced on the fly and every reached
object is copied to the reserved half heap. After the collection, the live objects
align in the new space by breadth-first order regardless of the addresses they
are originally stored at. The situation of mark-compact collectors is different:
live objects must be compacted in address order, or different objects may be
moved to the same place and data will be damaged. We illustrate this situation
in Fig. 1.

Fig. 1: The Traced Heap

In this figure, garbage objects are colored white, and live objects grey. Assume
at the moment the root points at object C which is now marked and needs to be
relocated. If this is a copying collector, this object will be immediately copied to
the new space, and its header will store a forward pointer so that the following

4 Index-Compact Garbage Collection

pointers to this object can be updated. But in a compacting garbage collector,
no extra space is reserved, and so this object must be moved to the start of the
heap. If we do so, however, C will land right on the live object A, damaging
its content. Therefore, a compacting garbage collector must first linearly scan
through the whole available heap for live objects and mark them. Then beginning
from the start of the heap, the collector walks through the objects (including
the dead ones), and when encountering a live one, say A, it relocates the object
to the start of the heap; and similarly for the following marked objects, which
are, B, C and D.

Touching garbage objects can be detrimental, since they mainly reside on
secondary storage, and this might trigger a page fault. It also unnecessarily
enlarges the program’s working set, pollutes the cache memory with the garbage,
and leads to mass misses as a result. In view of this undesirable situation, we
need a mechanism to keep track of live objects in address order after tracing the
entire heap. In this paper we propose such a mechanism which employs an index
table to store every live object reference.

3 Index-Compact Garbage Collector

3.1 Design

Traditionally a compacting garbage collector reclaims memory in four phases:

1. Compute the root set of the running program and push them into a FIFO
queue. To start the tracing, pop an object reference out of the queue and
completely scan it for pointers. The objects referred to by any pointers are
marked and pushed into the queue. This operation continues until the queue
becomes empty, at which time all the reachable objects have been marked
as alive.

2. Scan linearly through the available heap where objects are allocated and
calculate the forward addresses for the marked objects by adding up their
sizes to the heap’s start address.

3. Trace the active program tree again and update the pointers to the forward
addresses.

4. Walk sequentially through the heap and move the marked objects to their
forward addresses.

It can be seen that at least phases 2 and 4 need to touch (specifically to check
the mark bit of) the garbage objects because there is no auxiliary information
on how to locate just the live objects. If we can create and maintain a global
data structure to store this information, we can skip over the garbage objects
completely.

Fig. 2 shows an address index table where each entry points at the start
address of an active object. In phases 2, 3 and 4, this index can be used to
directly locate the live objects. With this index in place, a compacting garbage
collector works as follows:

Liangliang Tong, Francis C.M. Lau 5

Fig. 2: The Index-Compact Garbage Collector

1. Compute the root set, and push all the object references into the index

and iteratively trace them. Note that this time the object references are
not popped out of the index. After completion, the index is sorted by the
reference address values of the items.

2. Calculate the forward addresses using this index. Touching of garbage is
therefore avoided.

3. Update the pointers of objects referred to by items in the index to their
forward addresses.

4. Pop every item in the index and move the object pointed by it to the forward
address.

The above descriptions shows that the index stores only the references to the
reached objects, thus the garbage will never be touched. Consequently the num-
ber of page faults will be reduced. In this paper, we present a simple algorithm
for our idea for the sake of understanding, and leave any enhancements which
we will discuss in the following paragraphs to future implementations.

3.2 Implementation

Where to store the index is an issue. Since the index stores all the pointers to
live objects, so it must be efficient. We cannot use the Java classes to implement
a linked list for this purpose, because that will bring in extra object headers. In
Java [30] this overhead comprises two words, which is too costly and will triple
the overall size of the index.

We notice that every compacting garbage collector has some auxiliary data
structure, such as the trace queue, which must be stored somewhere in the heap.
The size of these data is largely unpredictable, and thus in real-life platforms
the address space allocated for them is extremely large in order to cope with any
unexpected cases. Because they are meta data there is no header to consume
extra spaces. We therefore store the index in such an area.

Since this area has other usages with different data intersecting with each
other, some data structure must be put in place to differentiate them. In this
paper, we partition this area into 4KB blocks (whose size is identical to the page
adopted by most current computer systems) and store two pointers (next and
pre) at the end of each block allocated for the index. Inside each block the object
references are stored in array style. Once a block is exhausted, we allocate a new
block, and set up the next and pre pointers of the two blocks. This is depicted
in Fig. 3. So for every block only two pointers are maintained, corresponding to
a space overhead of less than 0.1%.

6 Index-Compact Garbage Collection

Fig. 3: The Structure of Overall Index

The index also eliminates the need of building a tracing queue and marking.
When a garbage collection is triggered due to memory exhaustion, the root set
is scanned and their object references are pushed into the index. We create an
iterator to point to its first item. Then one by one, every item is checked for
pointers. The reference of every object reached is added to the end of the index.
After the object is entirely scanned, the iterator moves on to the next object and
this process repeats until it meets the end of the index. We use an MSD radix
exchange algorithm to sort this index, which is relatively quick and requires no
extra space. This is also the reason why the index blocks are doubly linked,
because this kind of algorithm needs to search from both top and bottom.

4 Methodology

Based on where to store the forward address, there are three types of com-
pacting garbage collectors: Lisp-2 [6], break table [8], and threading [18]. Our
algorithm can be applied to all of them, but we only select Lisp-2 to work on
for illustration’s sake. Similar improvements can be achieved for threading com-
pactors by avoiding touching the garbage, and better optimizations are possible
for table-based compaction as the break table can be completely removed.

4.1 Experimental Setup

The computer which runs our experiments has a 2 GHz Intel Core 2 Duo CPU
and 2 GB main memory. Every core has an independent 8-way associative 32
KB L1 cache and shares a 4 MB L2 cache. We use Ubuntu 8.04 operating system
[29] with kernel version 2.6.24-24.

Our collector is implemented on MMTk [11] of the Jikes RVM [12]. MMTk
partitions the address heap of the RVM into the several spaces: metadata, immor-
tal, large object and small object space. We modify the current mark-compact
collector and create the index in the metadata space. The iterator is placed in
the immortal space, since it will always be needed during the entire program
execution. Literally the large object space stores objects that are larger than
32KB, and normal allocations and collections happen in the small object space.

All the applications in SPECjvm98 are tested in our experiments except mpe-

gaudio which rarely allocates any new objects and triggers almost no collection.
We calculate the average size consumed by the index at every collection and
subtract it from the working heap space. In this way, the sizes of memory used
by both the mark and the index compactor are approximately the same. In the

Liangliang Tong, Francis C.M. Lau 7

experiment we found that the index seldom exceeds 1 MB (See Fig. 1, and so
the initial average size is set to this number.

The only assumption for our collector to work well is what makes a garbage
collector run efficiently: the heap residency of an application, which is the ratio
between the size of live objects and the heap size, must be low enough so that
there is room for new allocations. We did not include other benchmarks, but it
can be expected that if the heap residency is not too high then they will also
present good performance. Average object size being too small may also affect
the collector’s efficiency, for it will result in an overly large index table. We figure
that the minimum size of Java objects is 8 bytes (to store the header), and in
fact, many previous experiments have suggested that the average size of Java
object ranges from 20 bytes to 60 bytes, which will work fine for our algorithm.

4.2 Results

Table 1: Object Characteristics for SPECjvm98 Benchmarks
Benchmark Average Object Average Cluster Average Index

Size (bytes) Number Size (bytes)

compress 513 252 348720

db 26 1070 377265

jack 37 912 443048

javac 31 23263 1516896

jess 34 1204 503380

mtrt 24 780 973696

We firstly profiled MMTk to obtain the dynamic object characteristics of the
SPECjvm98 benchmarks, which are summarized in Tab. 1. The table shows that
the average object size is small, which is bad news for us because this means the
number of objects would be large and correspondingly so would be the size of
the index. For this particular situation, we offer several optimizations in Sec. 5.

Attention must be paid to the second column of the table, which represents
a very common phenomenon of memory usage: objects are created en masse,
and they also tend to die together. Although the third column suggests that the
size of the index sometimes grows beyond 1 MB, the number of object clusters3

remains moderate. This motivates us to propose in the discussion section the
cluster-wise idea, as opposed to the simple address-wise way of building the
index. Yet by employing our simple, address-wise indexing algorithm, the results
are still encouraging.

3 An object cluster is a continuous heap block with only live objects.

8 Index-Compact Garbage Collection

We implement the index compactor (ic) and compare its performance with
that of a Lisp-2 mark compactor (mc), as reported in the following figures. Fig. 44

shows the overall benchmark execution times for both compactors. In the figure,
two benchmarks, jess and jack, clearly demonstrate the superiority of ic, while
for three other benchmarks, db, javac andmtrt, ic only wins after the heap grows
beyond a certain size. This is reasonable, since the advantage of our compactor
comes from not touching the garbage objects. The live object (survival) rate of
the former two benchmarks is as low as 30% even for a 20MB heap; this rate
would not come down for the latter three benchmarks until the heap grows to
a certain extent. We tuned the heap size for these benchmarks, and found that
the turning point is approximately at 40%. That is, for ic to outperform mc

the heap residency should be less than this turning point rate. Furthermore,
it is also the turning point where the execution time drops dramatically, since
garbage collectors require enough space to work well.

This characteristic makes our algorithm perfect for applying to the young
space of a generational collector, where this rate is well below 10%. Because of
the same reason, the performance of the benchmark compress degrades with ic.
After allocating about 4MB of normal objects in the small object space (where
our algorithm is used), the program only creates large objects in the large object
space. It can be seen from Tab. 1 that its average object size is very large as
compared to that of the other benchmarks. To make the situation worse, the
4MB small objects are never disposed of until the end of the program execution,
which pushes the live object rate to be close to 100% at every collection. In
a nutshell, for compress, an index is redundant, because all the objects are
alive. The degradation in performance as compared to mc is due to the extra
computation time to build and sort the index.

Fig. 5 compares the collection times of the two compactors. It portrays a
similar picture to Fig. 4, and shows a difference that increases monotonically
as the heap grows. This is within our expectation that the performance of our
algorithm improves as the heap residency reduces. Because of the similarity
between ic and mc, there is virtually no difference in mutation time for both
collectors. Combining the temporal performance of the above two figures, it can
be perceived that the size of index table matters a lot. javac and mtrt generate
the biggest indexes. As a result, the performance of ic will not outstrip mc until
the heap approaches 40MB. To reduce the size of index table, we propose several
methods in the discussion section.

As we have stressed, ic does not touch the garbage objects at all, which
contributes to the interesting characteristic of ic as presented in Fig. 6. In the
figure, we can easily spot that the average collection time of ic is insensitive to
the heap size, whereas this time increases as the heap grows for mc. It is worth
pointing out that as the heap grows the number of collections decreases, and
this is why the total collection number keeps falling while the average collection
time remains roughly unchanged.

4 The size of the heap is normalized by 20MB. That is, 1 denotes 20MB, 2 denotes
40MB, etc.

Liangliang Tong, Francis C.M. Lau 9

 15

 16

 17

 18

 19

 20

 21

 1 1.5 2 2.5 3

T
ot

oa
l E

xe
cu

tio
n

T
im

e
(s

)

Normalized Heap Size

mc
ic

(a) compress

 20

 25

 30

 35

 40

 45

 50

 55

 1 1.5 2 2.5 3

T
ot

oa
l E

xe
cu

tio
n

T
im

e
(s

)

Normalized Heap Size

mc
ic

(b) db

 14

 16

 18

 20

 22

 24

 26

 28

 30

 1 1.5 2 2.5 3

T
ot

oa
l E

xe
cu

tio
n

T
im

e
(s

)

Normalized Heap Size

mc
ic

(c) jack

 20

 30

 40

 50

 60

 70

 80

 90

 1 1.5 2 2.5 3

T
ot

oa
l E

xe
cu

tio
n

T
im

e
(s

)

Normalized Heap Size

mc
ic

(d) javac

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 1 1.5 2 2.5 3

T
ot

oa
l E

xe
cu

tio
n

T
im

e
(s

)

Normalized Heap Size

mc
ic

(e) jess

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 1.5 2 2.5 3

T
ot

oa
l E

xe
cu

tio
n

T
im

e
(s

)

Normalized Heap Size

mc
ic

(f) mtrt

Fig. 4: Total Execution Time for Mark- and Index-Compact Collectors

10 Index-Compact Garbage Collection

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 1.5 2 2.5 3

T
ot

oa
l C

ol
le

ct
io

n
T

im
e

(m
s)

Normalized Heap Size

mc
ic

(a) compress

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 1.5 2 2.5 3

T
ot

oa
l C

ol
le

ct
io

n
T

im
e

(m
s)

Normalized Heap Size

mc
ic

(b) db

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 1.5 2 2.5 3

T
ot

oa
l C

ol
le

ct
io

n
T

im
e

(m
s)

Normalized Heap Size

mc
ic

(c) jack

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 1.5 2 2.5 3

T
ot

oa
l C

ol
le

ct
io

n
T

im
e

(m
s)

Normalized Heap Size

mc
ic

(d) javac

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 1 1.5 2 2.5 3

T
ot

oa
l C

ol
le

ct
io

n
T

im
e

(m
s)

Normalized Heap Size

mc
ic

(e) jess

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 1.5 2 2.5 3

T
ot

oa
l C

ol
le

ct
io

n
T

im
e

(m
s)

Normalized Heap Size

mc
ic

(f) mtrt

Fig. 5: Total Collection Time for Mark- and Index-Compact Collectors

Liangliang Tong, Francis C.M. Lau 11

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 1 1.5 2 2.5 3

A
ve

ra
ge

 C
ol

le
ct

io
n

T
im

e
(m

s)

Normalized Heap Size

mc
ic

(a) compress

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 1 1.5 2 2.5 3

A
ve

ra
ge

 C
ol

le
ct

io
n

T
im

e
(m

s)

Normalized Heap Size

mc
ic

(b) db

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1 1.5 2 2.5 3

A
ve

ra
ge

 C
ol

le
ct

io
n

T
im

e
(m

s)

Normalized Heap Size

mc
ic

(c) jack

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 1 1.5 2 2.5 3

A
ve

ra
ge

 C
ol

le
ct

io
n

T
im

e
(m

s)

Normalized Heap Size

mc
ic

(d) javac

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1 1.5 2 2.5 3

A
ve

ra
ge

 C
ol

le
ct

io
n

T
im

e
(m

s)

Normalized Heap Size

mc
ic

(e) jess

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 1 1.5 2 2.5 3

A
ve

ra
ge

 C
ol

le
ct

io
n

T
im

e
(m

s)

Normalized Heap Size

mc
ic

(f) mtrt

Fig. 6: Average Collection Time for Mark- and Index-Compact Collectors

12 Index-Compact Garbage Collection

5 Discussions

5.1 Improvement Techniques

The above experiments show that after introducing an index table to guide the
compactors, the collection time can be made dependent only on the size of live
objects, instead of the size of heap which is the case for traditional compactors.
For most of the time the two compactor versions operate in a similar fashion.
Our algorithm requires some extra time to sort the index. Therefore, it must be
due to avoiding touching garbage that the pages faults triggered by our collectors
are reduce. As a result, the overall collection time is reduced.

Compared with traditional mark-compact, our compactor needs extra space
to store the index and extra time to sort the index. In [28] it is revealed that most
of the objects created in typical programs tend to be very small (See Tab. 1) and
the number of objects tends to be large. For the SPECjvm98 benchmarks, the
average object size ranges mainly from 24 to 37 bytes, whereas an index entry
takes up four bytes (in order to represent an address in a 32-bit machine). It
means that the size of the index can grow to be as large as one eighth of the
total size of live objects, and occasionally it can be larger than 1MB.

As the size of the index grows, so does the space needed to store and the
time spent to sort it. In Sec. 4, we mention that live objects are likely to cluster
together. The number of clusters can be considerably smaller than that of live
objects. Tab. 1 shows that this number falls well below 1000 for most of the
benchmarks. This gives us a good opportunity to adopt another way of building
the index. Fig. 7 shows a cluster-wise index, where every entry contains two
pointers, pointing to the start and the end of a cluster respectively. Note that
this time each index entry must be stored as a node of a linked list. We cannot
construct an array for the index any more, because the tracing may not be
address ordered. For instance, if the first and third cluster in Fig. 7 are traversed
before the second, then an array structure is not adequate for handling this case.

Fig. 7: The Cluster-wise Index Table

Having a cluster-wise index eases the pressure on space, but it may increase
the computation time. In order to make sure that every first reference address
of the block index is ordered, the index must be built as a linked list and every
insertion requires a search for the desired insertion point. If the objects do not

Liangliang Tong, Francis C.M. Lau 13

cluster as much, such as the case of javac, this process will introduce considerable
overhead. Furthermore, because the insertion happens for every live object, it
will be better to build a hash for this index to accelerate searching. Because of
space limitation and that the purpose of this paper is to introduce the basic
indexing idea, we skip further details on and results for the cluster-wise variant.

In the experiments we spotted that the residency of a considerable portion of
the pages was nearly full. The extreme example is compress whose pages in the
small object space are virtually all filled with live objects. For these pages, there
is no need for compaction. Instead, we can remap the virtual addresses of these
full pages so that they become continuous and update those pointers pointing
to them. This would substantially decrease the size of the index and avoid the
cost of moving full pages. For compress, in particular, compaction can be totally
avoided in the small object space, which should help our collector to outstrip
other normal compactors even when the heap becomes densely populated.

5.2 Generational Variant

Because most of the state-of-the-art collectors are generational, we suggest here
how our algorithm can be applied to these collectors. As said before, the object
mortality rate in the young space is much lower than that of the whole heap.
It can be observed that most of the time, the survival rate is well below 10%.
Since 40% is the observed turning point, it can be expected that our algorithm
will perform excellently there. For older spaces, a free-list collector is probably
enough, since it will not be touched as often. To fight against memory fragments,
a compactor can be triggered from time to time to tidy up the room for these
older spaces.

Copying-based collectors are most desirable for young space, because of their
time efficiency. However, the low survival rate there makes it space inefficient,
as it still needs to conserve half the available heap for copying live objects.
Our collector can give a hand at this juncture to achieve a space-time balance
for garbage collection, using an algorithm as described in [10]. This algorithm
would manually set the portion of reserved space to be 30% of the working
space, and fall back to a mark-compactor if this prediction turns out wrong
during actual collection. This fallback compactor can now be replaced by our
index-compact collector to avoid touching the garbage. Most of the objects in the
to-be-compacted area would have already been copied to the reserved space, and
what remains is a sparsely populated space for which our compactor will work
better than an ordinary mark compactor. We will report our implementation of
these ideas in a future paper.

6 Related Works

Since our algorithm is concerned with compaction and virtual memory, we briefly
introduce several existing works that fall into these domains. For details on their
implementation, please refer to [7].

14 Index-Compact Garbage Collection

6.1 Compact Collectors

Implementations of compacting garbage collectors can be classified into three
classes: Lisp-2 [6], table-based [8] and threading [18][4]. In [20], a comparison
between different compacting algorithms is given, and the authors argue that
Lisp-2 is the most time efficient collector. Yet since all of these compactors need
four phases and two heap passes to complete, none of them are good enough to
be used widely in real-life systems.

Because compactors would move objects, they are frequently employed as
an auxiliary method to curb memory fragmentation for non-moving collectors
[22][21]. To take advantage of compactors’ space efficiency over copying collec-
tors, [16] designs a hot-swapping mechanism based on memory residency, and [10]
resorts to compaction in case when its copying reserve prediction falls through.
Note that in [10], the fallback compactor needs to touch the entire heap even af-
ter most of garbage have been collected by the preceding copying collector. Our
algorithm should be a much better choice at this point than traditional com-
pactors, as we have explained in the previous section. There are also research
efforts on how to cut down on the phases required for compaction. For example,
[3] combines marking and compaction into a two-step algorithm with one phase.
But in any case, all of them need to touch the garbage objects.

6.2 VM-Aware Design

To design a VM-aware collector, some researchers have focused directly on re-
ducing the overall consumed memory, for example, via object reuse [23]. Al-
though there are works on how to reap the merits of virtual memory system
[26][25][27], these proposed mechanisms are mostly ignored by current garbage
collectors, as pointed out in [24] where the authors propose to build barriers
between secondary storage and the main memory in order to avoid collection
paging. We should also mention [5] which describes a concurrent, incremental
and parallel algorithm designed for compactors. This collector uses two equal
virtual address spaces to perform a copying-like compaction without touching
the garbage. Their implementation is based on a markbit vector, whereas our
algorithm uses an object reference index which is more portable and extensible
to other usage scenarios, as has been explained in Sec. 5.

7 Conclusion

The slow collection time of compactors is a well known headache. They need
to traverse the heap multiple times; while touching the garbage objects they
trigger lots of page swaps. Many researchers have presented different techniques
to reduce the number of phases in compaction, but little has been done on the
problem of page swapping.

In this paper, we argue that virtual memory performance is one of the most
important factors in the performance of garbage collection, and every garbage

Liangliang Tong, Francis C.M. Lau 15

collector should endeavor to minimize page faults. We then designed an index-
ing algorithm that can avoid touching the garbage objects for compactors. We
have implemented a preliminary basic version of the algorithm and its collec-
tor in Jikes RVM. The results confirmed our point about page swapping during
garbage collection, and showed improved overall performance over traditional
mark compactors. To furthermore enhance our collector’s performance, we have
sketched out several related advanced methods, including an application of our
algorithm in a generational collector.

Further work can be done to make this compactor more suitable for real use,
such as to optimize the sorting algorithm, to make the compaction parallel, to
reduce the phases by storing the relocation pointers in the index, etc. In real
life, our algorithm may not be suitable for certain programs, for example Lisp
programs whose objects are typically even smaller than those of Java. It will be
an interesting exploration to see if we can dynamically decide whether to use an
index or fall back to a traditional compactor.

Acknowledgement This work is supported in part by a Hong Kong RGC
CERG grant (7141/06E). We are thankful to the anonymous reviewers and Prof.
Ueda for their excellent comments and great help in the final stage of the writing.

References

1. J. McCarthy: Recursive Functions Symbolic Expressions and Their Computation
by Machine. In: Communication of the ACM, Volume 3, Number 4, 184-195 (1960)

2. R.A. Saunders: The LISP System for the Q-32 Computer. In: Berkeley and Bobrow,
220-231 (1964)

3. J.J. Martin: An efficient garbage compaction algorithm. In: Communications of the
ACM, Volume 25, Number 8, 571-580 (1982)

4. F.L. Morris: A Time- and Space- Efficient Garbage Compaction Algorithm. In:
Communications of the ACM, Volume 21, Issue 8, 662-665 (1978)

5. H. Kermany and E. Petrank: The Compressor: Concurrent, Incremental, and Par-
allel Compaction. In: ACM Conference on Programming Language Design and Im-
plementation, 354-363 (2006)

6. R. Jones, R. Lins: Garbage Collection: Algorithm for Automatic Dynamic Memory
Management. John Wiley&Sons (1997)

7. P.R. Wilson: Uniprocessor Garbage Collection Techniques. In: Proceedings of the
International Workshop on Memory Management, 1-42 (1992)

8. B.K. Haddon, W.M. Waite: A Compaction Procedure for Variable Length Storage
Element. In: The Computer Journal, Volume 10, Number 2, 162-165 (1967)

9. H. Lieberman, C. Hewitt: A Real-time Garbage Collection Based on the Lifetimes
of Objects. In: Communication of the ACM, Volume 26, Number 6, 419-429 (1983)

10. P. MaGachey, A.L. Hosking: Reducing Generational Copy Reserve Overhead with
Fallback Compaction. In: International Symposium on Memory Management, 17-28
(2006)

11. S.M. Blackburn, P. Cheng, K. S. McKinley: Oil and Water? High Performance
Garbage Collection in Java with MMTk. In: International Conference on Software
Engineering, 137-146 (2004)

16 Index-Compact Garbage Collection

12. B. Alpern, S. Augart, S.M. Blackburn: The Jikes Research Virtual Machine
Project: Building an Open-source Research Community. In: IBM Systems Journal
special issue on Open Source Software, Volume 44, Number 2, 399-417 (2005)

13. B. Alpern and C. R. Attanasio, J. J. Barton: The Jalapeno Virtual Machine. IBM
Systems Journal, volume 39, number 1, 211-238 (2000)

14. C.J. Cheney: A Nonrecursive List Compacting Algorithm. In: Communication of
the ACM, Volume 13, Number 11, 677-678 (1970)

15. H.B.M. Jonkers: A Fast Garbage Compaction Algorithm. In: Information Process-
ing Letters, Volume 9, Number 9, 25-30 (1979)

16. P. M. Sansom: Combining Single-Space and Two-Space Compacting Garbage Col-
lectors. In: Proceedings of the Glasgow Workshop on Functional Programming
(1991)

17. M. Wegiel and C. Krintz: The mapping collector: virtual memory support for
generational, parallel, and concurrent compaction. In: International Conference on
Architectural Support for Programming Languages and Operating Systems, 91-102
(2008)

18. D.A. Fisher: Bounded Workspace Garbage Collection in an Address Order Pre-
serving List Processing Environment. In: Information Processing Letters, Volume
3, Issue 1, 25-32 (1974)

19. H. D. Baecker: Garbage Collection for Virtual Memory Computer Systems. In:
Communications of the ACM, Volume 15, Number 11, 981-986 (1972)

20. J. Cohen and A. Nicolau: Comparison of Compacting Algorithms for Garbage
Collection. In: ACM Transactions on Programming Languages and Systems, Volume
5 , Number 4, 532-553 (1983)

21. Y. Ossia, O.B. Yitzhak and M. Segal: Mostly Concurrent Compaction for Mark-
Sweep GC. In: International Symposium on Memory Management, 25-36 (2004)

22. T. Printezis: Hot-swapping between a mark&sweep and a mark&compact garbage
collector in a generational environment. In: Symposium on JavaTM Virtual Machine
Research and Technology Symposium, 20-32 (2001)

23. Z.C.H. Yu, F.C.M. Lau and C.-L. Wang: Exploiting Java Objects Behavior for
Memory Management and Optimizations. In: Asian Symposium on Programming
Language and Systems, 437-452 (2004)

24. M. Hertz, Y. Feng and E.D. Berger: Garbage collection without paging. In: ACM
SIGPLAN conference on Programming language design and implementation, 143-
153 (2005)

25. T. Yang, E.D. Berger and S.F. Kaplan: CRAMM: virtual memory support for
garbage-collected applications. In: Symposium on Operating systems design and
implementation, 103-116 (2006)

26. P.R. Wilson, M.S. Lam, T.G. Moher: Effective ”Static-graph” Reorganization to
Improve Locality in Garbage-Collected Systems. In: ACM SIGPLAN Notices, Vol-
ume 26, Issue 6, 177-191 (1991)

27. D. Spoonhower, G. Blelloch and R. Harper: Using Page Residency to Balance
Tradeoffs in Tracing Garbage Collection. In: ACM/USENIX international confer-
ence on Virtual execution environments, 57-67 (2005)

28. Y. Shuf, M. Gupta, R. Bordawekar and J.R. Singh: Exploiting Prolific Types for
Memory Management and Optimizations. In: ACM Symposium on Principles of
Programming Languages, 295-306 (2002)

29. The Ubuntu Operating System. http://www.ubuntu.com
30. The Java Hotspot Virtual Machine, White Paper. http://java.sun.com/

products/hotspot/index.html
31. The SPEC Java Virtual Machine Benchmarks. http://spec.org/jvm98

