
ar
X

iv
:1

51
1.

08
63

0v
2

 [c
s.

C
L]

 3
0

N
ov

 2
01

5

A C-LSTM Neural Network for Text Classification

Chunting Zhou1, Chonglin Sun2, Zhiyuan Liu 3, Francis C.M. Lau1

Department of Computer Science, The University of Hong Kong1

School of Innovation Experiment, Dalian University of Technology2

Department of Computer Science and Technology, Tsinghua University, Beijing3

Abstract

Neural network models have been demon-
strated to be capable of achieving remarkable
performance in sentence and document mod-
eling. Convolutional neural network (CNN)
and recurrent neural network (RNN) are two
mainstream architectures for such modeling
tasks, which adopt totally different ways of
understanding natural languages. In this work,
we combine the strengths of both architectures
and propose a novel and unified model called
C-LSTM for sentence representation and text
classification. C-LSTM utilizes CNN to ex-
tract a sequence of higher-level phrase repre-
sentations, and are fed into a long short-term
memory recurrent neural network (LSTM) to
obtain the sentence representation. C-LSTM
is able to capture both local features of phrases
as well as global and temporal sentence se-
mantics. We evaluate the proposed archi-
tecture on sentiment classification and ques-
tion classification tasks. The experimental re-
sults show that the C-LSTM outperforms both
CNN and LSTM and can achieve excellent
performance on these tasks.

1 Introduction

As one of the core steps in NLP, sentence modeling
aims at representing sentences as meaningful
features for tasks such as sentiment classification.
Traditional sentence modeling uses the bag-of-
words model which often suffers from the curse
of dimensionality; others use composition based
methods instead, e.g., an algebraic operation over
semantic word vectors to produce the semantic
sentence vector. However, such methods may not

perform well due to the loss of word order informa-
tion. More recent models for distributed sentence
representation fall into two categories according to
the form of input sentence: sequence-based models
and tree-structured models. Sequence-based models
construct sentence representations from word
sequences by taking in account the relationship be-
tween successive words (Johnson and Zhang, 2015).
Tree-structured models treat each word token as a
node in a syntactic parse tree and learn sentence
representations from leaves to the root in a recursive
manner (Socher et al., 2013b).

Convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) have
emerged as two widely used architectures
and are often combined with sequence-based
or tree-structured models (Tai et al., 2015;
Lei et al., 2015; Tang et al., 2015; Kim, 2014;
Kalchbrenner et al., 2014; Mou et al., 2015).

Owing to the capability of capturing local cor-
relations of spatial or temporal structures, CNNs
have achieved top performance in computer vi-
sion, speech recognition and NLP. For sentence
modeling, CNNs perform excellently in extracting
n-gram features at different positions of a sentence
through convolutional filters, and can learn short
and long-range relations through pooling opera-
tions. CNNs have been successfully combined
with both sequence-based model (Denil et al., 2014;
Kalchbrenner et al., 2014) and tree-structured
model (Mou et al., 2015) in sentence modeling.

The other popular neural network architecture –
RNN – is able to handle sequences of any length
and capture long-term dependencies. To avoid the

http://arxiv.org/abs/1511.08630v2

problem of gradient exploding or vanishing in the
standard RNN, Long Short-term Memory RNN
(LSTM) (Hochreiter and Schmidhuber, 1997) and
other variants (Cho et al., 2014) were designed for
better remembering and memory accesses. Along
with the sequence-based (Tang et al., 2015) or the
tree-structured (Tai et al., 2015) models, RNNs
have achieved remarkable results in sentence or
document modeling.

To conclude, CNN is able to learn local response
from temporal or spatial data but lacks the ability of
learning sequential correlations; on the other hand,
RNN is specilized for sequential modelling but
unable to extract features in a parallel way. It has
been shown that higher-level modeling ofxt can
help to disentangle underlying factors of variation
within the input, which should then make it easier
to learn temporal structure between successive time
steps (Pascanu et al., 2014). For example, Sainath et
al. (Sainath et al., 2015) have obtained respectable
improvements in WER by learning a deep LSTM
from multi-scale inputs. We explore training the
LSTM model directly from sequences of higher-
level representaions while preserving the sequence
order of these representaions. In this paper, we
introduce a new architecture short for C-LSTM by
combining CNN and LSTM to model sentences. To
benefit from the advantages of both CNN and RNN,
we design a simple end-to-end, unified architecture
by feeding the output of a one-layer CNN into
LSTM. The CNN is constructed on top of the
pre-trained word vectors from massive unlabeled
text data to learn higher-level representions of
n-grams. Then to learn sequential correlations from
higher-level suqence representations, the feature
maps of CNN are organized as sequential window
features to serve as the input of LSTM. In this way,
instead of constructing LSTM directly from the
input sentence, we first transform each sentence
into successive window (n-gram) features to help
disentangle factors of variations within sentences.
We choose sequence-based input other than relying
on the syntactic parse trees before feeding in the
neural network, thus our model doesn’t rely on
any external language knowledge and complicated
pre-processing.

In our experiments, we evaluate the semantic
sentence representations learned from C-LSTM

with two tasks: sentiment classification and 6-way
question classification. Our evaluations show that
the C-LSTM model can achieve excellent results
with several benchmarks as compared with a wide
range of baseline models. We also show that
the combination of CNN and LSTM outperforms
individual multi-layer CNN models and RNN
models, which indicates that LSTM can learn long-
term dependencies from sequences of higher-level
representations better than the other models.

2 Related Work

Deep learning based neural network mod-
els have achieved great success in many
NLP tasks, including learning distributed
word, sentence and document representa-
tion (Mikolov et al., 2013b; Le and Mikolov, 2014),
parsing (Socher et al., 2013a), statistical machine
translation (Devlin et al., 2014), sentiment clas-
sification (Kim, 2014), etc. Learning distributed
sentence representation through neural network
models requires little external domain knowledge
and can reach satisfactory results in related tasks
like sentiment classification, text categorization.

In many recent sentence representation learning
works, neural network models are constructed upon
either the input word sequences or the transformed
syntactic parse tree. Among them, convolutional
neural network (CNN) and recurrent neural network
(RNN) are two popular ones.

The capability of capturing local correlations
along with extracting higher-level correlations
through pooling empowers CNN to model sen-
tences naturally from consecutive context windows.
In (Collobert et al., 2011), Collobert et al. applied
convolutional filters to successive windows for
a given sequence to extract global features by
max-pooling. As a slight variant, Kim et al. (2014)
proposed a CNN architecture with multiple filters
(with a varying window size) and two ‘channels’
of word vectors. To capture word relations of
varying sizes, Kalchbrenner et al. (2014) proposed
a dynamic k-max pooling mechanism. In a more
recent work (Lei et al., 2015), Tao et al. apply
tensor-based operations between words to replace
linear operations on concatenated word vectors
in the standard convolutional layer and explore

the non-linear interactions between nonconsective
n-grams. Mou et al. (2015) also explores convolu-
tional models on tree-structured sentences.

As a sequence model, RNN is able to deal
with variable-length input sequences and discover
long-term dependencies. Various variants of RNN
have been proposed to better store and access
memories (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014). With the ability of explicitly
modeling time-series data, RNNs are being increas-
ingly applied to sentence modeling. For example,
Tai et al. (2015) adjusted the standard LSTM to
tree-structured topologies and obtained superior
results over a sequential LSTM on related tasks.

In this paper, we stack CNN and LSTM in a
unified architecture for semantic sentence mod-
eling. The combination of CNN and LSTM can
be seen in some computer vision tasks like image
caption (Xu et al., 2015) and speech recogni-
tion (Sainath et al., 2015). Most of these models
use multi-layer CNNs and train CNNs and RNNs
separately or throw the output of a fully connected
layer of CNN into RNN as inputs. Our approach is
different: we apply CNN to text data and feed con-
secutive window features directly to LSTM, and so
our architecture enables LSTM to learn long-range
dependencies from higher-order sequential fea-
tures. In (Li et al., 2015), the authors suggest that
sequence-based models are sufficient to capture the
compositional semantics for many NLP tasks, thus
in this work the CNN is directly built upon word
sequences other than the syntactic parse tree. Our
experiments on sentiment classification and 6-way
question classification tasks clearly demonstrate the
superiority of our model over single CNN or LSTM
model and other related sequence-based models.

3 C-LSTM Model

The architecture of the C-LSTM model is shown in
Figure 1, which consists of two main components:
convolutional neural network (CNN) and long short-
term memory network (LSTM). The following two
subsections describe how we apply CNN to extract
higher-level sequences of word features and LSTM
to capture long-term dependencies over window fea-
ture sequences respectively.

The

movie

is

awesome
!

iput x
L × d

feature maps
window feature sequence

LSTM

Figure 1: The architecture of C-LSTM for sentence modeling.

Blocks of the same color in the feature map layer and window

feature sequence layer corresponds to features for the samewin-

dow. The dashed lines connect the feature of a window with the

source feature map. The final output of the entire model is the

last hidden unit of LSTM.

3.1 N-gram Feature Extraction through
Convolution

The one-dimensional convolution involves a filter
vector sliding over a sequence and detecting fea-
tures at different positions. Letxi ∈ R

d be the
d-dimensional word vectors for thei-th word in a
sentence. Letx ∈ R

L×d denote the input sentence
whereL is the length of the sentence. Letk be the
length of the filter, and the vectorm ∈ R

k×d is a fil-
ter for the convolution operation. For each position
j in the sentence, we have a window vectorwj with
k consecutive word vectors, denoted as:

wj = [xj ,xj+1, · · · ,xj+k−1] (1)

Here, the commas represent row vector concatena-
tion. A filter m convolves with the window vectors
(k-grams) at each position in a valid way to gener-
ate a feature mapc ∈ R

L−k+1; each elementcj of
the feature map for window vectorwj is produced
as follows:

cj = f(wj ◦m+ b), (2)

where◦ is element-wise multiplication,b ∈ R is a
bias term andf is a nonlinear transformation func-
tion that can be sigmoid, hyperbolic tangent, etc. In
our case, we choose ReLU (Nair and Hinton, 2010)
as the nonlinear function. The C-LSTM model uses
multiple filters to generate multiple feature maps.
For n filters with the same length, the generatedn

feature maps can be rearranged as feature represen-
tations for each windowwj,

W = [c1; c2; · · · ; cn] (3)

Here, semicolons represent column vector concate-
nation andci is the feature map generated with the
i-th filter. Each rowWj of W ∈ R

(L−k+1)×n is the
new feature representation generated fromn filters
for the window vector at positionj. The new succes-
sive higher-order window representations then are
fed into LSTM which is described below.

A max-over-pooling or dynamic k-max pooling
is often applied to feature maps after the convolu-
tion to select the most or the k-most important fea-
tures. However, LSTM is specified for sequence
input, and pooling will break such sequence orga-
nization due to the discontinuous selected features.
Since we stack an LSTM neural neural network on
top of the CNN, we will not apply pooling after the
convolution operation.

3.2 Long Short-Term Memory Networks

Recurrent neural networks (RNNs) are able to prop-
agate historical information via a chain-like neu-
ral network architecture. While processing se-
quential data, it looks at the current inputxt as
well as the previous output of hidden stateht−1

at each time step. However, standard RNNs be-
comes unable to learn long-term dependencies as
the gap between two time steps becomes large.
To address this issue, LSTM was first introduced
in (Hochreiter and Schmidhuber, 1997) and re-
emerged as a successful architecture since Ilya et
al. (2014) obtained remarkable performance in sta-
tistical machine translation. Although many vari-
ants of LSTM were proposed, we adopt the standard
architecture (Hochreiter and Schmidhuber, 1997) in
this work.

The LSTM architecture has a range of repeated
modules for each time step as in a standard RNN.
At each time step, the output of the module is con-
trolled by a set of gates inRd as a function of the old
hidden stateht−1 and the input at the current time
stepxt: the forget gateft, the input gateit, and the
output gateot. These gates collectively decide how
to update the current memory cellct and the cur-
rent hidden stateht. We used to denote the mem-
ory dimension in the LSTM and all vectors in this

architecture share the same dimension. The LSTM
transition functions are defined as follows:

it = σ(Wi · [ht−1, xt] + bi) (4)

ft = σ(Wf · [ht−1, xt] + bf)

qt = tanh(Wq · [ht−1, xt] + bq)

ot = σ(Wo · [ht−1, xt] + bo)

ct = ft ⊙ ct−1 + it ⊙ qt

ht = ot ⊙ tanh(ct)

Here,σ is the logistic sigmoid function that has an
output in[0, 1], tanh denotes the hyperbolic tangent
function that has an output in[−1, 1], and⊙ denotes
the elementwise multiplication. To understand the
mechanism behind the architecture, we can viewft
as the function to control to what extent the informa-
tion from the old memory cell is going to be thrown
away,it to control how much new information is go-
ing to be stored in the current memory cell, andot to
control what to output based on the memory cellct.
LSTM is explicitly designed for time-series data for
learning long-term dependencies, and therefore we
choose LSTM upon the convolution layer to learn
such dependencies in the sequence of higher-level
features.

4 Learning C-LSTM for Text
Classification

For text classification, we regard the output of the
hidden state at the last time step of LSTM as the
document representation and we add a softmax layer
on top. We train the entire model by minimizing
the cross-entropy error. Given a training samplex

(i)

and its true labely(i) ∈ {1, 2, · · · , k} wherek is the
number of possible labels and the estimated proba-
bilities ỹ(i)j ∈ [0, 1] for each labelj ∈ {1, 2, · · · , k},
the error is defined as:

L(x(i), y(i)) =
k∑

j=1

1{y(i) = j} log(ỹ
(i)
j), (5)

where 1{condition} is an indicator such
that 1{condition is true} = 1 otherwise
1{condition is false} = 0. We employ stochas-
tic gradient descent (SGD) to learn the model
parameters and adopt the optimizer RM-
Sprop (Tieleman and Hinton, 2012).

4.1 Padding and Word Vector Initialization

First, we usemaxlen to denote the maximum length
of the sentence in the training set. As the convo-
lution layer in our model requires fixed-length in-
put, we pad each sentence that has a length less
thanmaxlen with special symbols at the end that
indicate the unknown words. For a sentence in the
test dataset, we pad sentences that are shorter than
maxlen in the same way, but for sentences that
have a length longer thanmaxlen, we simply cut
extra words at the end of these sentences to reach
maxlen.

We initialize word vectors with the publicly avail-
ableword2vec vectors1 that are pre-trained using
about 100B words from the Google News Dataset.
The dimensionality of the word vectors is 300. We
also initialize the word vector for the unknown
words from the uniform distribution [-0.25, 0.25].
We then fine-tune the word vectors along with other
model parameters during training.

4.2 Regularization

For regularization, we employ two commonly used
techniques: dropout (Hinton et al., 2012) and L2
weight regularization. We apply dropout to pre-
vent co-adaptation. In our model, we either apply
dropout to word vectors before feeding the sequence
of words into the convolutional layer or to the output
of LSTM before the softmax layer. The L2 regular-
ization is applied to the weight of the softmax layer.

5 Experiments

We evaluate the C-LSTM model on two tasks: (1)
sentiment classification, and (2) question type clas-
sification. In this section, we introduce the datasets
and the experimental settings.

5.1 Datasets

Sentiment Classification: Our task in this regard
is to predict the sentiment polarity of movie reviews.
We use the Stanford Sentiment Treebank (SST)
benchmark (Socher et al., 2013b). This dataset
consists of 11855 movie reviews and are split
into train (8544), dev (1101), and test (2210).
Sentences in this corpus are parsed and all phrases
along with the sentences are fully annotated with

1http://code.google.com/p/word2vec/

5 labels: very positive, positive, neural, negative,
very negative. We consider two classification tasks
on this dataset: fine-grained classification with
5 labels and binary classification by removing
neural labels. For the binary classification, the
dataset has a split of train (6920) / dev (872) / test
(1821). Since the data is provided in the format of
sub-sentences, we train the model on both phrases
and sentences but only test on the sentences as
in several previous works (Socher et al., 2013b;
Kalchbrenner et al., 2014).
Question type classification: Question classifica-
tion is an important step in a question answering
system that classifies a question into a specific
type, e.g. “what is the highest waterfall in the
United States?” is a question that belongs to
“location”. For this task, we use the benchmark
TREC (Li and Roth, 2002). TREC divides all ques-
tions into 6 categories, includinglocation,
human, entity, abbreviation,
description and numeric. The training
dataset contains 5452 labelled questions while the
testing dataset contains 500 questions.

5.2 Experimental Settings

We implement our model based on Theano
(Bastien et al., 2012) – a python library, which sup-
ports efficient symbolic differentiation and transpar-
ent use of a GPU. To benefit from the efficiency
of parallel computation of the tensors, we train the
model on a GPU. For text preprocessing, we only
convert all characters in the dataset to lower case.

For SST, we conduct hyperparameter (number of
filters, filter length in CNN; memory dimension in
LSTM; dropout rate and which layer to apply, etc.)
tuning on the validation data in the standard split.
For TREC, we hold out 1000 samples from the train-
ing dataset for hyperparameter search and train the
model using the remaining data.

In our final settings, we only use one convolu-
tional layer and one LSTM layer for both tasks. For
the filter size, we investigated filter lengths of 2, 3
and 4 in two cases: a) single convolutional layer
with the same filter length, and b) multiple convolu-
tional layers with different lengths of filters in paral-
lel. Here we denote the number of filters of lengthi

byni for ease of clarification. For the first case, each
n-gram window is transformed intoni convoluted

http://code.google.com/p/word2vec/

Model Fine-grained (%) Binary (%) Reported in
SVM 40.7 79.4 (Socher et al., 2013b)
NBoW 42.4 80.5 (Kalchbrenner et al., 2014)
Paragraph Vector 48.7 87.8 (Le and Mikolov, 2014)
RAE 43.2 82.4 (Socher, Pennington, et al., 2011)
MV-RNN 44.4 82.9 (Socher et al., 2012)
RNTN 45.7 85.4 (Socher et al., 2013b)
DRNN 49.8 86.6 (Irsoy and Cardie, 2014)
CNN-non-static 48.0 87.2 (Kim, 2014)
CNN-multichannel 47.4 88.1 (Kim, 2014)
DCNN 48.5 86.8 (Kalchbrenner et al., 2014)
Molding-CNN 51.2 88.6 (Lei et al., 2015)
Dependency Tree-LSTM 48.4 85.7 (Tai et al., 2015)
Constituency Tree-LSTM 51.0 88.0 (Tai et al., 2015)
LSTM 46.6 86.6 our implementation
Bi-LSTM 47.8 87.9 our implementation
C-LSTM 49.2 87.8 our implementation

Table 1: Comparisons with baseline models on Stanford Sentiment Treebank.Fine-grained is a 5-class classification task.Binary

is a 2-classification task. The second block contains the recursive models. The third block are methods related to convolutional

neural networks. The fourth block contains methods using LSTM (the first two methods in this block also use syntactic parsing

trees). The first block contains other baseline methods. Thelast block is our model.

features after convolution and the sequence of win-
dow representations is fed into LSTM. For the latter
case, since the number of windows generated from
each convolution layer varies when the filter length
varies (seeL−k+1 below equation (3)), we cut the
window sequence at the end based on the maximum
filter length that gives the shortest number of win-
dows. Each window is represented as the concatena-
tion of outputs from different convolutional layers.
We also exploit different combinations of different
filter lengths. We further present experimental anal-
ysis of the exploration on filter size later. According
to the experiments, we choose a single convolutional
layer with filter length 3.

For SST, the number of filters of length 3 is set to
be 150 and the memory dimension of LSTM is set
to be 150, too. The word vector layer and the LSTM
layer are dropped out with a probability of 0.5. For
TREC, the number of filters is set to be 300 and the
memory dimension is set to be 300. The word vec-
tor layer and the LSTM layer are dropped out with
a probability of 0.5. We also add L2 regularization
with a factor of 0.001 to the weights in the softmax
layer for both tasks.

6 Results and Model Analysis

In this section, we show our evaluation results on
sentiment classification and question type classifica-
tion tasks. Moreover, we give some model analysis
on the filter size configuration.

6.1 Sentiment Classification

The results are shown in Table 1. We compare our
model with a large set of well-performed models on
the Stanford Sentiment Treebank.

Generally, the baseline models consist of recur-
sive models, convolutional neural network mod-
els, LSTM related models and others. The re-
cursive models employ a syntactic parse tree as
the sentence structure and the sentence representa-
tion is computed recursively in a bottom-up man-
ner along the parse tree. Under this category, we
choose recursive autoencoder (RAE), matrix-vector
(MV-RNN), tensor based composition (RNTN) and
multi-layer stacked (DRNN) recursive neural net-
work as baselines. Among CNNs, we compare with
Kim’s (2014) CNN model with fine-tuned word vec-
tors (CNN-non-static) and multi-channels (CNN-
multichannel), DCNN with dynamic k-max pool-

Model Acc Reported in
SVM 95.0 Silva et al .(2011)
Paragraph Vector 91.8 Zhao et al .(2015)
Ada-CNN 92.4 Zhao et al .(2015)
CNN-non-static 93.6 Kim (2014)
CNN-multichannel 92.2 Kim (2014)
DCNN 93.0 Kalchbrenner et al. (2014)
LSTM 93.2 our implementation
Bi-LSTM 93.0 our implementation
C-LSTM 94.6 our implementation

Table 2: The 6-way question type classification accuracy on TREC.

ing, Tao’s CNN (Molding-CNN) with low-rank ten-
sor based non-linear and non-consecutive convo-
lutions. Among LSTM related models, we first
compare with two tree-structured LSTM models
(Dependence Tree-LSTMandConstituency Tree-
LSTM) that adjust LSTM to tree-structured network
topologies. Then we implement one-layer LSTM
and Bi-LSTM by ourselves. Since we could not tune
the result of Bi-LSTM to be as good as what has
been reported in (Tai et al., 2015) even if following
their untied weight configuration, we report our own
results. For other baseline methods, we compare
againstSVM with unigram and bigram features,
NBoW with average word vector features andpara-
graph vector that infers the new paragraph vector
for unseen documents.

To the best of our knowledge, we achieve the
fourth best published result for the 5-class classi-
fication task on this dataset. For the binary clas-
sification task, we achieve comparable results with
respect to the state-of-the-art ones. From Table 1,
we have the following observations: (1) Although
we did not beat the state-of-the-art ones, as an end-
to-end model, the result is still promising and com-
parable with thoes models that heavily rely on lin-
guistic annotations and knowledge, especially syn-
tactic parse trees. This indicates C-LSTM will be
more feasible for various scenarios. (2) Compar-
ing our results against single CNN and LSTM mod-
els shows that LSTM does learn long-term depen-
dencies across sequences of higher-level represen-
tations better. We could explore in the future how
to learn more compact higher-level representations
by replacing standard convolution with other non-

linear feature mapping functions or appealing to
tree-structured topologies before the convolutional
layer.

6.2 Question Type Classification

The prediction accuracy on TREC question classifi-
cation is reported in Table 2. We compare our model
with a variety of models. TheSVM classifier uses
unigrams, bigrams, wh-word, head word, POS tags,
parser, hypernyms, WordNet synsets as engineered
features and 60 hand-coded rules.Ada-CNN is a
self-adaptiive hierarchical sentence model with gat-
ing networks. Other baseline models have been in-
troduced in the last task. From Table 2, we have the
following observations: (1) Our result consistently
outperforms all published neural baseline models,
which means that C-LSTM captures intentions of
TREC questions well. (2) Our result is close to that
of the state-of-the-art SVM that depends on highly
engineered features. Such engineered features not
only demands human laboring but also leads to the
error propagation in the existing NLP tools, thus
couldn’t generalize well in other datasets and tasks.
With the ability of automatically learning semantic
sentence representations, C-LSTM doesn’t require
any human-designed features and has a better scali-
bility.

6.3 Model Analysis

Here we investigate the impact of different filter con-
figurations in the convolutional layer on the model
performance.

In the convolutional layer of our model, filters are
used to capture local n-gram features. Intuitively,
multiple convolutional layers in parallel with differ-

S:2 S:3 S:4 M:2,3 M:2,4 M:3,4 M:2,3,4

Filter configuration

0.920

0.925

0.930

0.935

0.940

0.945

0.950

A
cc

u
ra

cy

Figure 2: Prediction accuracies on TREC questions with dif-

ferent filter size strategies. For the horizontal axis, S means

single convolutional layer with the same filter length, and M

means multiple convolutional layers in parallel with different

filter lengths.

ent filter sizes should perform better than single con-
volutional layers with the same length filters in that
different filter sizes could exploit features of differ-
ent n-grams. However, we found in our experiments
that single convolutional layer with filter length 3 al-
ways outperforms the other cases.

We show in Figure 2 the prediction accuracies on
the 6-way question classification task using differ-
ent filter configurations. Note that we also observe
the similar phenomenon in the sentiment classifica-
tion task. For each filter configuration, we report in
Figure 2 the best result under extensive grid-search
on hyperparameters. It it shown that single convolu-
tional layer with filter length 3 performs best among
all filter configurations. For the case of multiple
convolutional layers in parallel, it is shown that fil-
ter configurations with filter length 3 performs better
that those without tri-gram filters, which further con-
firms that tri-gram features do play a significant role
in capturing local features in our tasks. We conjec-
ture that LSTM could learn better semantic sentence
representations from sequences of tri-gram features.

7 Conclusion and Future Work

We have described a novel, unified model called C-
LSTM that combines convolutional neural network
with long short-term memory network (LSTM). C-
LSTM is able to learn phrase-level features through

a convolutional layer; sequences of such higher-
level representations are then fed into the LSTM
to learn long-term dependencies. We evaluated the
learned semantic sentence representations on senti-
ment classification and question type classification
tasks with very satisfactory results.

We could explore in the future ways to replace the
standard convolution with tensor-based operations
or tree-structured convolutions. We believe LSTM
will benefit from more structured higher-level repre-
sentations.

References

[Bastien et al.2012] Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, James Bergstra, Ian J. Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, and Yoshua Ben-
gio. 2012. Theano: new features and speed im-
provements. Deep Learning and Unsupervised Fea-
ture Learning NIPS 2012 Workshop.

[Cho et al.2014] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation.arXiv preprint
arXiv:1406.1078.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language process-
ing (almost) from scratch.The Journal of Machine
Learning Research, 12:2493–2537.

[Denil et al.2014] Misha Denil, Alban Demiraj, Nal
Kalchbrenner, Phil Blunsom, and Nando de Freitas.
2014. Modelling, visualising and summarising doc-
uments with a single convolutional neural network.
arXiv preprint arXiv:1406.3830.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,
Zhongqiang Huang, Thomas Lamar, Richard
Schwartz, and John Makhoul. 2014. Fast and
robust neural network joint models for statistical
machine translation. InProceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, volume 1, pages 1370–1380.

[Hinton et al.2012] Geoffrey E Hinton, Nitish Srivas-
tava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. 2012. Improving neural networks
by preventing co-adaptation of feature detectors.The
Computing Research Repository (CoRR).

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Irsoy and Cardie2014] Ozan Irsoy and Claire Cardie.
2014. Deep recursive neural networks for composi-
tionality in language. InAdvances in Neural Informa-
tion Processing Systems, pages 2096–2104.

[Johnson and Zhang2015] Rie Johnson and Tong Zhang.
2015. Effective use of word order for text categoriza-
tion with convolutional neural networks.Human Lan-
guage Technologies: The 2015 Annual Conference of
the North American Chapter of the ACL, pages 103–
112.

[Kalchbrenner et al.2014] Nal Kalchbrenner, Edward
Grefenstette, and Phil Blunsom. 2014. A convo-
lutional neural network for modelling sentences.
Association for Computational Linguistics (ACL).

[Kim2014] Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. InProceedings of
Empirical Methods on Natural Language Processing.

[Le and Mikolov2014] Quoc Le and Tomas Mikolov.
2014. Distributed representations of sentences and
documents. InProceedings of the 31st International
Conference on Machine Learning (ICML-14), pages
1188–1196.

[Lei et al.2015] Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2015. Molding cnns for text: non-linear,
non-consecutive convolutions. InProceedings of Em-
pirical Methods on Natural Language Processing.

[Li and Roth2002] Xin Li and Dan Roth. 2002. Learn-
ing question classifiers. InProceedings of the 19th in-
ternational conference on Computational linguistics-
Volume 1, pages 1–7. Association for Computational
Linguistics.

[Li et al.2015] Jiwei Li, Dan Jurafsky, and Eudard Hovy.
2015. When are tree structures necessary for deep
learning of representations? InProceedings of Em-
pirical Methods on Natural Language Processing.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and
their compositionality. InAdvances in neural infor-
mation processing systems, pages 3111–3119.

[Mou et al.2015] Lili Mou, Hao Peng, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2015. Discriminative
neural sentence modeling by tree-based convolution.
Unpublished manuscript: http://arxiv. org/abs/1504.
01106v5. Version, 5.

[Nair and Hinton2010] Vinod Nair and Geoffrey E Hin-
ton. 2010. Rectified linear units improve restricted
boltzmann machines. InProceedings of the 27th In-
ternational Conference on Machine Learning (ICML-
10), pages 807–814.

[Pascanu et al.2014] Razvan Pascanu, Caglar Gulcehre,
Kyunghyun Cho, and Yoshua Bengio. 2014. How to

construct deep recurrent neural networks. InProceed-
ings of the conference on International Conference on
Learning Representations (ICLR).

[Sainath et al.2015] Tara N Sainath, Oriol Vinyals, An-
drew Senior, and Hasim Sak. 2015. Convolutional,
long short-term memory, fully connected deep neural
networks. IEEE International Conference on Acous-
tics, Speech and Signal Processing.

[Silva et al.2011] Joao Silva, Luı́sa Coheur, Ana Cristina
Mendes, and Andreas Wichert. 2011. From symbolic
to sub-symbolic information in question classification.
Artificial Intelligence Review, 35(2):137–154.

[Socher et al.2012] Richard Socher, Brody Huval,
Christopher D Manning, and Andrew Y Ng. 2012.
Semantic compositionality through recursive matrix-
vector spaces. InProceedings of Empirical Methods
on Natural Language Processing, pages 1201–1211.

[Socher et al.2013a] Richard Socher, John Bauer,
Christopher D Manning, and Andrew Y Ng. 2013a.
Parsing with compositional vector grammars. InIn
Proceedings of the ACL conference. Citeseer.

[Socher et al.2013b] Richard Socher, Alex Perelygin,
Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013b. Recur-
sive deep models for semantic compositionality over
a sentiment treebank. InProceedings of Empirical
Methods on Natural Language Processing, volume
1631, page 1642. Citeseer.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc VV Le. 2014. Sequence to sequence learning
with neural networks. InAdvances in neural informa-
tion processing systems, pages 3104–3112.

[Tai et al.2015] Kai Sheng Tai, Richard Socher, and
Christopher D Manning. 2015. Improved semantic
representations from tree-structured long short-term
memory networks. Association for Computational
Linguistics (ACL).

[Tang et al.2015] Duyu Tang, Bing Qin, and Ting Liu.
2015. Document modeling with gated recurrent neural
network for sentiment classification. InProceedings
of Empirical Methods on Natural Language Process-
ing.

[Tieleman and Hinton2012] T. Tieleman and G Hinton.
2012. Lecture 6.5 - rmsprop, coursera: Neural net-
works for machine learning.

[Xu et al.2015] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron
Courville, Ruslan Salakhutdinov, Richard Zemel, and
Yoshua Bengio. 2015. Show, attend and tell: Neural
image caption generation with visual attention. InPro-
ceedings of 2015th International Conference on Ma-
chine Learning.

[Zhao et al.2015] Han Zhao, Zhengdong Lu, and Pascal
Poupart. 2015. Self-adaptive hierarchical sentence

model. InProceedings of International Joint Confer-
ences on Artificial Intelligence.

	1 Introduction
	2 Related Work
	3 C-LSTM Model
	3.1 N-gram Feature Extraction through Convolution
	3.2 Long Short-Term Memory Networks

	4 Learning C-LSTM for Text Classification
	4.1 Padding and Word Vector Initialization
	4.2 Regularization

	5 Experiments
	5.1 Datasets
	5.2 Experimental Settings

	6 Results and Model Analysis
	6.1 Sentiment Classification
	6.2 Question Type Classification
	6.3 Model Analysis

	7 Conclusion and Future Work

