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Abstract

Neural network models have been demon-
strated to be capable of achieving remarkable
performance in sentence and document mod-
eling. Convolutional neural network (CNN)
and recurrent neural network (RNN) are two
mainstream architectures for such modeling
tasks, which adopt totally different ways of
understanding natural languages. In this work,
we combine the strengths of both architectures
and propose a novel and unified model called
C-LSTM for sentence representation and text
classification. C-LSTM utilizes CNN to ex-
tract a sequence of higher-level phrase repre-
sentations, and are fed into a long short-term
memory recurrent neural network (LSTM) to
obtain the sentence representation. C-LSTM
is able to capture both local features of phrases
as well as global and temporal sentence se-
mantics. We evaluate the proposed archi-
tecture on sentiment classification and ques-
tion classification tasks. The experimental re-
sults show that the C-LSTM outperforms both
CNN and LSTM and can achieve excellent
performance on these tasks.

Introduction

perform well due to the loss of word order informa-
tion. More recent models for distributed sentence
representation fall into two categories according to
the form of input sentence: sequence-based models
and tree-structured models. Sequence-based models
construct sentence representations from word
sequences by taking in account the relationship be-
tween successive words (Johnson and Zhang,|2015).
Tree-structured models treat each word token as a
node in a syntactic parse tree and learn sentence
representations from leaves to the root in a recursive
manner|/(Socher et al., 2013b).

Convolutional neural networks  (CNNSs)
and recurrent neural networks (RNNs) have
emerged as two widely used architectures
and are often combined with sequence-based
or tree-structured models | (Taietal., 2015;
Leietal.,, 2015; | Tangetal., 2015;| Kim, 2014;
Kalchbrenner et al., 2014; Mou et al., 2015).

Owing to the capability of capturing local cor-
relations of spatial or temporal structures, CNNs
have achieved top performance in computer vi-
sion, speech recognition and NLP. For sentence
modeling, CNNs perform excellently in extracting
n-gram features at different positions of a sentence
through convolutional filters, and can learn short

A_s one of the core steps in NLP, sentence mod_elin&qd long-range relations through pooling opera-
aims at representing sentences as meaningfns. CNNs have been successfully combined
features for tasks such as sentiment classificatiofith poth sequence-based model (Denil et al., 2014
Traditional sentence modeling uses the bag-Ogaichbrenner etal., 2014) and tree-structured
words model which often suffers from the curseyggel (Mou et al. 2015) in sentence modeling.

of dimensionality; others use composition based The other popular neural network architecture —
methods instead, e.g., an algebraic operation OVRINN — is able to handle sequences of any length

semantic word vectors to produce the semantigny capture long-term dependencies. To avoid the
sentence vector. However, such methods may not
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problem of gradient exploding or vanishing in thewith two tasks: sentiment classification and 6-way
standard RNN, Long Short-term Memory RNNquestion classification. Our evaluations show that
(LSTM) (Hochreiter and Schmidhuber, 1997) andhe C-LSTM model can achieve excellent results
other variants|(Cho et al., 2014) were designed fawith several benchmarks as compared with a wide
better remembering and memory accesses. Alomgnge of baseline models. We also show that
with the sequence-based (Tang et al., 2015) or thke combination of CNN and LSTM outperforms
tree-structured [ (Tai et al., 2015) models, RNN#dividual multi-layer CNN models and RNN
have achieved remarkable results in sentence orodels, which indicates that LSTM can learn long-
document modeling. term dependencies from sequences of higher-level
To conclude, CNN is able to learn local responseepresentations better than the other models.
from temporal or spatial data but lacks the ability of
learning sequential correlations; on the other han®, Related Work
RNN is specilized for sequential modelling but
unable to extract features in a parallel way. It haBeep learning based neural network mod-
been shown that higher-level modeling ©f can els have achieved great success in many
help to disentangle underlying factors of variatiolNLP tasks, including learning distributed
within the input, which should then make it easieword, sentence and document representa-
to learn temporal structure between successive timien (Mikolov et al., 2013p; Le and Mikolov, 2014),
steps|(Pascanu et al., 2014). For example, Sainathpatrsing [(Socher et al., 2013a), statistical machine
al. (Sainath et al., 2015) have obtained respectablmnslation [(Devlin et al., 2014), sentiment clas-
improvements in WER by learning a deep LSTMsification (Kim, 2014), etc. Learning distributed
from multi-scale inputs. We explore training thesentence representation through neural network
LSTM model directly from sequences of higher-models requires little external domain knowledge
level representaions while preserving the sequenesd can reach satisfactory results in related tasks
order of these representaions. In this paper, wike sentiment classification, text categorization.
introduce a new architecture short for C-LSTM by In many recent sentence representation learning
combining CNN and LSTM to model sentences. Tavorks, neural network models are constructed upon
benefit from the advantages of both CNN and RNNgither the input word sequences or the transformed
we design a simple end-to-end, unified architecturgyntactic parse tree. Among them, convolutional
by feeding the output of a one-layer CNN intoneural network (CNN) and recurrent neural network
LSTM. The CNN is constructed on top of the(RNN) are two popular ones.
pre-trained word vectors from massive unlabeled The capability of capturing local correlations
text data to learn higher-level representions oélong with extracting higher-level correlations
n-grams. Then to learn sequential correlations frorthrough pooling empowers CNN to model sen-
higher-level sugence representations, the featutences naturally from consecutive context windows.
maps of CNN are organized as sequential window (Collobert et al., 2011), Collobert et al. applied
features to serve as the input of LSTM. In this wayconvolutional filters to successive windows for
instead of constructing LSTM directly from thea given sequence to extract global features by
input sentence, we first transform each sentencrax-pooling. As a slight variant, Kim et al. (2014)
into successive window (n-gram) features to helproposed a CNN architecture with multiple filters
disentangle factors of variations within sentencegwith a varying window size) and two ‘channels’
We choose sequence-based input other than relyin§ word vectors. To capture word relations of
on the syntactic parse trees before feeding in thearying sizes, Kalchbrenner et al. (2014) proposed
neural network, thus our model doesn't rely ora dynamic k-max pooling mechanism. In a more
any external language knowledge and complicategcent work [(Lei et al., 2015), Tao et al. apply
pre-processing. tensor-based operations between words to replace
In our experiments, we evaluate the semantiinear operations on concatenated word vectors
sentence representations learned from C-LSTM the standard convolutional layer and explore



the non-linear interactions between nonconsective l
n-grams. Mou et all (2015) also explores convolu- %-»%
tional models on tree-structured sentences. H

As a sequence model, RNN is able to deal The l
with variable-length input sequences and discover| " ; ié@
long-term dependencies. Various variants of RNN| "
have been proposed to better store and access e l
memories (Hochreiter and Schmidhuber, 1997; 1. SN
Choetal., 2014). With the ability of explicitly
modeling time-series data, RNNs are being increas- feature maps IO CAIE SCUENTE gy

ingly applied to_sent_ence modeling. For examplésigyre 1: The architecture of C-LSTM for sentence modeling.
Tai et al. (2015) adjusted the standard LSTM t@qcks of the same color in the feature map layer and window

tree-structured tOpOIO_gies and obtained SUPeriQgatyre sequence layer corresponds to features for thevsame
results over a sequential LSTM on related tasks. oy, The dashed lines connect the feature of a window with the

In this paper, we stack CNN and LSTM in agoyrce feature map. The final output of the entire model is the
unified architecture for semantic sentence MOodsst hidden unit of LSTM.
eling. The combination of CNN and LSTM can
be seen in some computer vision tasks like ima
caption |[Xuetal., 2015) and speech recogni-
tion (Sainath et al., 2015). Most of these models
use multi-layer CNNs and train CNNs and RNNsl'he one-dimensional convolution involves a filter
separately or throw the output of a fully connectedyector sliding over a sequence and detecting fea-
layer of CNN into RNN as inputs. Our approach idures at different positions. Let; € R? be the
different: we apply CNN to text data and feed cond-dimensional word vectors for theth word in a
secutive window features directly to LSTM, and scsentence. Lex € R"*“ denote the input sentence
our architecture enables LSTM to learn long-rang#hereL is the length of the sentence. Liebe the
dependencies from higher-order sequential fedength of the filter, and the vecten € R**¢ s a fil-
tures. In [(Lietal., 2015), the authors suggest thd€r for the convolution operation. For each position
sequence-based models are sufficient to capture thé the sentence, we have a window veaorwith
compositional semantics for many NLP tasks, thus consecutive word vectors, denoted as:
in this work the CNN is directly built upon word
sequences other than the syntactic parse tree. Our Wi = X5 Xt X (1)

experiments on sentiment classification and 6-wa¥, .« the commas represent row vector concatena-

guestion classification tasks clearly demonstrate ”ﬁ%n A filter m convolves with the window vectors
sup&er:ont;(; ofr?ur mlode(; over smglebCNl\(ljor L(?-I;M (k-grams) at each position in a valid way to gener-
model and other related sequence-based models. _ " toqtire map € RL-5+1; each element; of

the feature map for window vectev; is produced
3 C-LSTM Model as follows:

.1 N-gram Feature Extraction through
Convolution

¢j = f(wjom+D), )
The architecture of the C-LSTM model is shown in
Figure 1, which consists of two main componentswhereo is element-wise multiplicationh € R is a
convolutional neural network (CNN) and long short-bias term andf is a nonlinear transformation func-
term memory network (LSTM). The following two tion that can be sigmoid, hyperbolic tangent, etc. In
subsections describe how we apply CNN to extraciur case, we choose RelLU (Nair and Hinton, 2010)
higher-level sequences of word features and LSTMs the nonlinear function. The C-LSTM model uses
to capture long-term dependencies over window feanultiple filters to generate multiple feature maps.
ture sequences respectively. For n filters with the same length, the generated



feature maps can be rearranged as feature represarchitecture share the same dimension. The LSTM

tations for each window;, transition functions are defined as follows:
W = [ci5¢95- - 5 ¢y 3) i = o(Wi - [h—1, 2] + bi) (4)
Here, semicolons represent column vector concate- fi=0(Wy - [h—1,2¢] + by)
nation andc; is the feature map generated with the q = tanh(W, - [he_1, 2] + by)
I , (L—k+1)xn ;
i-th filter. Each rowW; of W € R is the op = (W - [he—1, 2] + by)

new feature representation generated frorilters
for the window vector at positiof. The new succes-
sive higher-order window representations then are h = oy © tanh(c;)

fed into LSTM which is described below. . L . .
: : . Here, o is the logistic sigmoid function that has an
A max-over-pooling or dynamic k-max pooling . .
. : output in[0, 1], tanh denotes the hyperbolic tangent
is often applied to feature maps after the convolu: ="
. ) function that has an output [r-1, 1], and® denotes
tion to select the most or the k-most important fea: . e
. e the elementwise multiplication. To understand the
tures. However, LSTM is specified for sequence . . . )
. . . mechanism behind the architecture, we can vjgw
input, and pooling will break such sequence orga- . .
R . : as the function to control to what extent the informa-
nization due to the discontinuous selected features. : )
. fion from the old memory cell is going to be thrown
Since we stack an LSTM neural neural network on _ . L
. : away,i; to control how much new information is go-
top of the CNN, we will not apply pooling after the . .
) . ing to be stored in the current memory cell, ando
convolution operation.
control what to output based on the memory eegll
3.2 Long Short-Term Memory Networks LSTM is explicitly designed for time-series data for

Recurrent neural networks (RNNSs) are able to prod_earnmg long-term dependencies, and therefore we

agate historical information via a chain-like neu-Choose LSTM upon the convolution layer to learn

ral network architecture. While processing se§UCh dependencies in the sequence of higher-level
guential data, it looks at the current input as features.
well as the previous output of hidden stdig | 4 Learning C-LSTM for Text
at each time step. However, standard RNN_S be- Classification
comes unable to learn long-term dependencies as
the gap between two time steps becomes largBor text classification, we regard the output of the
To address this issue, LSTM was first introducedhidden state at the last time step of LSTM as the
in  (Hochreiter and Schmidhuber, 1997) and redocument representation and we add a softmax layer
emerged as a successful architecture since llya @ top. We train the entire model by minimizing
al. (2014) obtained remarkable performance in stdhe cross-entropy error. Given a training samylte
tistical machine translation. Although many vari-and its true labey®) € {1,2,--- ,k} wherek is the
ants of LSTM were proposed, we adopt the standartlimber of possible labels and the estimated proba-
architecture|(Hochreiter and Schmidhuber, 1997) ibilities yji) € [0,1] for each labej € {1,2,--- ,k},
this work. the error is defined as:

The LSTM architecture has a range of repeated .
modules for each time step as in a standard RNN. (@) , ()Y _ () _ . ~(i)
At each time step, the output of the module is con- L y) =3 1 = i) los(@"). ()
trolled by a set of gates iR? as a function of the old
hidden stateh;_; and the input at the current timewhere 1{condition} is an indicator such
stepz;: the forget gatef;, the input gate,, and the that 1{condition is true = 1 otherwise
output gaten;. These gates collectively decide howl{condition is fals¢ = 0. We employ stochas-
to update the current memory ce}l and the cur- tic gradient descent (SGD) to learn the model
rent hidden staté;. We used to denote the mem- parameters and adopt the optimizer RM-
ory dimension in the LSTM and all vectors in thisSprop |(Tieleman and Hinton, 2012).

a=fiOc1+iOq

j=1



4.1 Padding and Word Vector Initialization 5 labels: very positive, positive, neural, negative,

First, we usenazlen to denote the maximum length V&Y negative. We consider two classification tasks
of the sentence in the training set. As the convo@" this dataset: fine-grained classification with
lution layer in our model requires fixed-length in-> [abels and binary classification by removing
put, we pad each sentence that has a length |e@gural labels. For the binary classification, the
than mazlen with special symbols at the end thatdataset has a split of train (6920) / dev (872) / test
indicate the unknown words. For a sentence in thg-821). Since the data is provided in the format of
test dataset, we pad sentences that are shorter t#fp-Sentences, we train the model on both phrases
mazlen in the same way, but for sentences tha_?”d sentences put only test on the sentences as
have a length longer thamazlen, we simply cut N several previous works| (Socher et al., 2013b;
extra words at the end of these sentences to reaGgichbrenner etal., 2014). _ 3
mazxlen. Question type classification: Question classifica-
We initialize word vectors with the publicly avail- 10N IS an important step in a question answering
ablewor d2vec vectord that are pre-trained using SYStém that classifies a question into a specific
about 100B words from the Google News DatasefyP& ©-9. “what is the highest waterfall in the

The dimensionality of the word vectors is 300. We}”"te‘_]I ?tates?" is a question that belongs to
also initialize the word vector for the unknown location”. For this task, we use the benchmark

words from the uniform distribution [-0.25, 0.25]. TREC [Liand Roth, 2002). TREC divides all ques-
We then fine-tune the word vectors along with othefiONS into 6 categories, including ocati on,

model parameters during training. human, entity, abbreviation, o
description and nuneric. The training
4.2 Regularization dataset contains 5452 labelled questions while the

For regularization, we employ two commonly used®€Sting dataset contains 500 questions.

techniques: d_rop_out (Hinton et al., 2012) and L?5'2 Experimental Settings

weight regularization. We apply dropout to pre-

vent co-adaptation. In our model, we either applyVe implement our model based on Theano
dropout to word vectors before feeding the sequendBastien et al., 2012) —a python library, which sup-
of words into the convolutional layer or to the outputPOrts efficient symbolic differentiation and transpar-
of LSTM before the softmax layer. The L2 regular-€Nt use of a GPU. To benefit from the efficiency

ization is applied to the weight of the softmax layerOf parallel computation of the tensors, we train the
model on a GPU. For text preprocessing, we only

5 Experiments convert all characters in the dataset to lower case.

Wi | he C-LSTM model ks: (1 For SST, we conduct hyperparameter (number of
e evaluate the C- model on two tasks: ( )filters, filter length in CNN; memory dimension in

sentiment classification, and (2) question type CIai’STM' dropout rate and which layer to apply, etc.)
sification. In this section, we introduce the datasetl%mng’On the validation data in the standar(; split
and the experimental settings. For TREC, we hold out 1000 samples from the train-
5.1 Datasets ing dataset for hyperparameter search and train the
model using the remaining data.

In our final settings, we only use one convolu-
jonal layer and one LSTM layer for both tasks. For

Sentiment Classification: Our task in this regard
is to predict the sentiment polarity of movie reviews
We use the Stanford Sentiment Treebank (SS e filter size, we investigated filter lengths of 2, 3

benc_hrt'narkf (181%<:5hSer et a_I., 201.3b)' T(;"S datasl%ﬁqd 4 in two cases: a) single convolutional layer
consists o movie Teviews and are sp I\t)vith the same filter length, and b) multiple convolu-

into train (8544), dev (1101), and test (2210)tional layers with different lengths of filters in paral-

Sentenc_es in this corpus are parsed and all phra_l &F Here we denote the number of filters of length
along with the sentences are fully annotated wit y n; for ease of clarification. For the first case, each

Ihtt p: /7 code. googl e. coni p/ wor d2vec/ n-gram window is transformed inta; convoluted
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Model Fine-grained (%) | Binary (%) | Reported in

SVM 40.7 79.4 (Socher et al., 2013b)
NBoWw 42.4 80.5 (Kalchbrenner et al., 2014)
Paragraph Vector 48.7 87.8 (Le and Mikolov, 2014)
RAE 43.2 82.4 (Socher, Pennington, et al., 2011)
MV-RNN 44.4 82.9 (Socher et al., 2012)
RNTN 45.7 85.4 (Socher et al., 2013b)
DRNN 49.8 86.6 (rsoy and Cardie, 2014)
CNN-non-static 48.0 87.2 (Kim, 2014)
CNN-multichannel 47.4 88.1 (Kim, 2014)

DCNN 48.5 86.8 (Kalchbrenner et al., 2014)
Molding-CNN 51.2 88.6 (Leietal., 2015)
Dependency Tree-LSTM 48.4 85.7 (Tai etal., 201b)
Constituency Tree-LSTM 51.0 88.0 (Tai etal., 201b)

LSTM 46.6 86.6 our implementation
Bi-LSTM 47.8 87.9 our implementation
C-LST™ 49.2 87.8 our implementation

Table 1: Comparisons with baseline models on Stanford Sentimertbrgk.Fine-grainedis a 5-class classification tasRinary
is a 2-classification task. The second block contains therse® models. The third block are methods related to cartigoial
neural networks. The fourth block contains methods usingM$the first two methods in this block also use syntactic ipars
trees). The first block contains other baseline methods.|adtédlock is our model.

features after convolution and the sequence of wiré Results and Model Analysis

dow representations is fed into LSTM. For the latter

case, since the number of windows generated froffi this section, we show our evaluation results on

each convolution layer varies when the filter lengti$entiment classification and question type classifica-

varies (sed. — k -+ 1 below equation (3)), we cut the tion tasks. M.oreover., we give some model analysis

window sequence at the end based on the maximu@f the filter size configuration.

filter length that gives the shortest number of win- ) o

dows. Each window is represented as the concateryl  Sentiment Classification

tion of outputs from different convolutional layers. The results are shown in Table 1. We compare our

We also exploit different combinations of differentmodel with a large set of well-performed models on

filter lengths. We further present experimental anakhe Stanford Sentiment Treebank.

ysis of the exploration on filter size later. According Generally, the baseline models consist of recur-

to the experiments, we choose a single convolutiongive models, convolutional neural network mod-

layer with filter length 3. els, LSTM related models and others. The re-
For SST, the number of filters of length 3 is set txursive models employ a syntactic parse tree as

be 150 and the memory dimension of LSTM is sethe sentence structure and the sentence representa-

to be 150, too. The word vector layer and the LSTMion is computed recursively in a bottom-up man-

layer are dropped out with a probability of 0.5. Fomer along the parse tree. Under this category, we

TREC, the number of filters is set to be 300 and thehoose recursive autoencod®AE ), matrix-vector

memory dimension is set to be 300. The word vegiviV-RNN ), tensor based compositioRKTN) and

tor layer and the LSTM layer are dropped out withmulti-layer stacked BRNN) recursive neural net-

a probability of 0.5. We also add L2 regularizationwork as baselines. Among CNNs, we compare with

with a factor of 0.001 to the weights in the softmax<Kim’s (2014) CNN model with fine-tuned word vec-

layer for both tasks. tors (CNN-non-static) and multi-channels GNN-

multichannel), DCNN with dynamic k-max pool-



Model Acc | Reported in

SVM 95.0 | Silva et al /(2011)
Paragraph Vector | 91.8 | Zhao et al [(2015)
Ada-CNN 92.4 | Zhao et al [(2015)

CNN-non-static 93.6 | Kim (2014)
CNN-multichannel| 92.2 | Kim (2014)

DCNN 93.0 | Kalchbrenner et all_(2014)
LSTM 93.2 | our implementation
Bi-LSTM 93.0 | our implementation
C-LST™ 94.6 | our implementation

Table 2: The 6-way question type classification accuracy on TREC.

ing, Tao’s CNN Molding-CNN) with low-rank ten- linear feature mapping functions or appealing to
sor based non-linear and non-consecutive converee-structured topologies before the convolutional
lutions. Among LSTM related models, we firstlayer.
compare with two tree-structured LSTM models ) o
(Dependence Tree-LSTMandConstituency Tree- ©-2  Question Type Classification
LSTM) that adjust LSTM to tree-structured networkThe prediction accuracy on TREC question classifi-
topologies. Then we implement one-layer LSTMcation is reported in Table 2. We compare our model
and Bi-LSTM by ourselves. Since we could not tunevith a variety of models. Th&VM classifier uses
the result of Bi-LSTM to be as good as what hasinigrams, bigrams, wh-word, head word, POS tags,
been reported iri (Tai et al., 2015) even if followingparser, hypernyms, WordNet synsets as engineered
their untied weight configuration, we report our owrfeatures and 60 hand-coded rule&da-CNN is a
results. For other baseline methods, we compagelf-adaptiive hierarchical sentence model with gat-
againstSVM with unigram and bigram features,ing networks. Other baseline models have been in-
NBoW with average word vector features gmata- troduced in the last task. From Table 2, we have the
graph vector that infers the new paragraph vectorfollowing observations: (1) Our result consistently
for unseen documents. outperforms all published neural baseline models,
To the best of our knowledge, we achieve thevhich means that C-LSTM captures intentions of
fourth best published result for the 5-class classiFREC questions well. (2) Our result is close to that
fication task on this dataset. For the binary clasef the state-of-the-art SVM that depends on highly
sification task, we achieve comparable results withngineered features. Such engineered features not
respect to the state-of-the-art ones. From Table tnly demands human laboring but also leads to the
we have the following observations: (1) Althougherror propagation in the existing NLP tools, thus
we did not beat the state-of-the-art ones, as an encbuldn’t generalize well in other datasets and tasks.
to-end model, the result is still promising and comWith the ability of automatically learning semantic
parable with thoes models that heavily rely on linsentence representations, C-LSTM doesn’t require
guistic annotations and knowledge, especially syrany human-designed features and has a better scali-
tactic parse trees. This indicates C-LSTM will bebility.
more feasible for various scenarios. (2) Compatr- )
ing our results against single CNN and LSTM mod8-3  Model Analysis
els shows that LSTM does learn long-term deperHere we investigate the impact of different filter con-
dencies across sequences of higher-level represdigurations in the convolutional layer on the model
tations better. We could explore in the future howperformance.
to learn more compact higher-level representations In the convolutional layer of our model, filters are
by replacing standard convolution with other nonused to capture local n-gram features. Intuitively,
multiple convolutional layers in parallel with differ-



a convolutional layer; sequences of such higher-
level representations are then fed into the LSTM
to learn long-term dependencies. We evaluated the
learned semantic sentence representations on senti-
0.940 ment classification and question type classification
tasks with very satisfactory results.

We could explore in the future ways to replace the
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0.925 will benefit from more structured higher-level repre-
sentations.
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