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Abstract
Latency monitoring is important for improving user experi-
ence and guaranteeing quality-of-service (QoS). Virtualized
systems, which have complex I/O stacks spanning multi-
ple layers and often with unpredictable performance, present
more challenges in monitoring packet latency and diagnos-
ing performance abnormalities compared to traditional sys-
tems. Existing tools either trace network latency at a coarse
granularity, or incur considerable overhead, or lack the abil-
ity to trace across different boundaries in virtualized en-
vironments. To address this issue, we propose Time Cap-
sule (TC), an in-band profiler to trace packet level latency
in virtualized systems with acceptable overhead. TC times-
tamps packets at predefined tracepoints and embeds the tim-
ing information into packet payloads. TC decomposes and
attributes network latency to various layers in the virtual-
ized network stack, which can help monitor network latency,
identify bottlenecks, and locate performance problems.

1. Introduction
As virtualization has become mainstream in data centers, a
growing number of enterprises and organizations are mov-
ing applications into the cloud, such as Amazon EC2 [1]. It
is well believed that virtualization introduces significant and
often unpredictable overhead to I/O-intensive workloads, es-
pecially latency-sensitive network applications. To improve
user experience and guarantee QoS in the cloud, it is neces-
sary to efficiently monitor and diagnose the latency of these
applications in virtualized environments.

However, compared to traditional systems, it is more
challenging to trace I/O workloads and troubleshoot latency
problems in virtualized systems. First, virtualization intro-
duces additional software stacks and protection domains
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while traditional tracing tools designed for physical ma-
chines are unable to trace across the boundaries (e.g., be-
tween the hypervisor and the guest OS). Second, workload
consolidation inevitably incurs interference between appli-
cations, which often leads to unpredictable latencies. Thus,
fine-grained tracing of network latency, instead of coarse-
grained monitoring, is particularly important to guarantee-
ing QoS. Third, many applications in the cloud are highly
optimized and the tracing tool should incur negligible per-
formance impact [31]. Otherwise, tracing overhead may hide
seemingly slight but relatively significant latency changes of
the cloud services. Last, as clouds host diverse workloads,
it is prohibitively expensive to devise application specific
tracing mechanisms and this calls for a system level and
application transparent tracing tool.

There exist many studies focusing on system monitoring
and diagnosing. Traditional tools, such as SystemTap [12],
DTrace [17], Xentrace [13], or existing instrumentation sys-
tems, such as DARC [34] and Fay [21], are limited to use
within a certain boundary, e.g., only in the hypervisor or
in a virtual machine (VM). None of them can trace activ-
ities, e.g. network processing, throughout the entire virtu-
alized I/O stack. Many state-of-the-art works, like Mystery
Machine [20], Draco [24], LogEnhancer [37], lprof [38],
identify performance anomalies among machines based on
distributed logs. However, analyzing massive logs, not only
introduces non-negligible runtime overhead, but also cannot
guarantee providing the information users need, e.g., statis-
tics on tail latency. In addition, such out-of-band profiling
needs additional effort to stitch the distributed logs [18, 33],
and time drift among logs on different machines may also
affect the accuracy.

In this paper, we propose Time Capsule (TC), a profiler to
trace network latency at packet level in virtualized environ-
ments. TC timestamps packets at predefined tracepoints and
embeds the timing information into the payloads of packets.
Due to in-band tracing, TC is able to measure packet latency
across different layers and protection boundaries. In addi-
tion, based on the position of tracepoints, TC can decom-
pose and attribute network latency to various components of
the virtualized network stack to locate the potential bottle-
neck. Further, TC incurs negligible overhead and requires
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Figure 1. The architecture of Time Capsule.

no changes to the traced applications. We demonstrate that
fine-grained tracing and latency decomposition enabled by
TC shed light on the root causes of long tail network latency
and help identify real performance bugs in Xen.

The rest of the paper is organized as follows. Section 2
and 3 describe the design, implementation, and optimiza-
tions of Time Capsule, respectively. Section 4 presents eval-
uation results. Section 5 and 6 discuss future and related
work, respectively. Section 7 concludes this paper.

2. Design and Implementation
The challenges outlined in Section 1 motivate the following
design goals of Time Capsule: (1) cross-boundary tracing;
(2) fine-grained tracing; (3) low overhead; (4) application
transparency. Figure 1 presents a high-level overview of how
TC enables tracing for network send (Tx) and receive (Rx).
TC places tracepoints throughout the virtualized network
stack and timestamps packets at enabled tracepoints. The
timing information is appended to the payload of the packet.
For network receive, before the traced packet is copied to
user space, TC restores the packet payload to its original size
and dumps the tracing data to a kernel buffer, from where the
tracing data can be copied to user space for offline analysis.
For network send, trace dump happens before the packet
is transmitted by the physical NIC. Compared to packet
receive, we preserve the timestamp of the last tracepoint
in the payload of a network send packet to support tracing
across physical machines. Since tracepoints are placed in
either the hypervisor, the guest kernel or the host kernel, TC
is transparent to user applications. Next, we elaborate on the
design and implementation of TC in a Xen environment.

Clocksource To accurately attribute network latency to
various processing stages across different protection do-
mains, e.g., Dom0, DomU, and Xen, a reliable and cross-
domain clocksource with high resolution is needed. The
para-virtualized clocksource xen meets the requirements.
In a Xen environment, the hypervisor, Dom0, and the guest
OS all use the same clocksource xen for time measurement.
Therefore, packet timestamping using the xen clocksource
avoids time drift across different domains. Next, the clock-
source xen is based on the Time Stamp Counter (TSC) on
the processor and has nanosecond resolution. It is adequate
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Figure 2. The relationship of TSCs on different physical
machines. The constant tsc flag allows TSC to tick at the
processor’s maximum rate regardless of the actual CPU
speed. Line slope represents the maximum CPU frequency.

for latency measurement at the microsecond granularity. A
similar clocksource kvm-clock is also available in KVM.
Furthermore, we enabled constant tsc and nonstop tsc

of Intel processors, which can guarantee that TSC rate is not
only synchronized across all sockets and cores, but also is
not affected by power management on individual processors.
As such, TSC ticks at the maximum CPU clock rate regard-
less of the actual CPU running speed. For cross-machine
tracing, the clocks on physical nodes may inevitably tick at
different rates due to different CPU speeds. Therefore, the
relative difference between timestamps recorded on separate
machines does not reflect the actual time passage. Figure 2
shows the relationship between the TSC readings on two
machines with different CPU speeds. The slopes of the two
lines represent the maximum CPU frequency on the respec-
tive machines. There exist two challenges in correlating the
timestamps on separate machines. First, TSC readings are
incremented at different rates (i.e., different slopes). Sec-
ond, TSC registers are reset at boot time or when resuming
from hibernation. The relative difference between TSC read-
ings on two machines includes the absolute distance of these
machines since last TSC reset. For example, as shown in
Figure 2, the distance between TSC reset on two machines
is denoted by ↵ = |tareset � tbreset|, where tareset and tbreset
are the last TSC reset time of machine a and b, respectively.

Tracepoints are placed on the critical path of packet process-
ing in the virtualized network stack. When a target packet
passes through a predefined tracepoint, a timestamp based
on local clocksource is appended to the packet payload. The
time difference between two tracepoints measures how much
time it spent in a particular processing stage. For example,
two tracepoints can be placed at the backend in Dom0 and
frontend in DomU to measure packet processing time in the
hypervisor. As timestamps are taken sequentially at vari-
ous tracepoints throughout the virtualized network stack, TC
does not need to infer the causal relationship of the trace-
points (as Pivot Tracing does in [27]) and the timestamps in
the packet payload have strict happened-before relations.

Cross-machine tracing requires that the varying TSC rates
and reset times on different machines be taken into ac-
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count for accurate latency attribution. Specifically, times-
tamps recorded on separate machines should be calibrated
to determine the latency due to network transmission be-
tween machines. We illustrate the TSC calibration process
in Figure 2. Assume that a packet is sent from machine a
(denoted by the dotted blue line) at time t1, which has a
faster CPU and its TSC starts to tick earlier, and received
at time t2 on machine b (denoted by the solid red line)
with a slower CPU. Without TSC calibration, the differ-
ence tscb� tsca can show negative transmission time. There
are two ways to measure packet transmission time in the
network based on the two timestamps tsca and tscb taken
at the sender and receiver machines. First, the difference of
TSC reset time ↵ can be estimated as | tscasync

cpufreqa
� tscbsync

cpufreqb
|,

where tscasync and tscbsync are the instantaneous TSC read-
ings on the two machines at exactly the same time. This
can be achieved through distributed clock synchronization
algorithms which estimate the packet propagation time in a
congestion-free network and adjust the two TSC readings.
Once ↵ is obtained, the absolute TSC difference � is cal-
culated as � = ↵ ⇥ cpufreqa. Then, the first calibration
step is to derive tsc0a = tsca � � to remove the absolute
TSC difference. As shown in Figure 2, tsc0a is the TSC read-
ing of packet transmission at the sender if machine a resets
TSC at the same time as machine b. Further, the equiva-
lent TSC reading at the receiver machine b when the packet
starts transmission is tsc0b = tsc0a ⇥ cpufreqb

cpufreqa
. Finally, the

packet transmission time is the difference between the times-
tamps of packet send and receive on the receiver machine b:
t2 � t1 = tscb�tsc0b

cpufreqb
.

The first calibration method only requires the examina-
tion of one packet to measure packet transmission time but
relies on an accurate estimation of ↵. Since ↵ is constant for
all packet transmissions between two particular machines,
an alternative is to estimate network condition based on
the comparisons of multiple packet transmissions. Similar
to [25], which compares packet transmission time with a ref-
erence value in a congestion-free environment to estimate
network congestions, we can roughly measure packet trans-
mission time as tsca

cpufreqa
� tscb

cpufreqb
and use cross-packet

comparison to identify abnormally long transmission time.
However, this method only identifies relative transmission
delays with respect to a reference transmission time, which
is difficult to obtain in production datacenter network and
may be variable due to packets being transmitted through
different routes.

Tracing payload To enable tracing latency across physical
or virtual boundaries, TC adds an extra payload to a packet
to store the timestamps of tracepoints. Upon receiving a
packet at the physical NIC or copying a packet from user
space to kernel space for sending, TC uses skb put(skb,

SIZE) to allocate additional space in the original packet.
The tracing information is removed from packet payload and
dumped to a kernel buffer before a packet is copied to the
application buffer in user space or sent out by the physical
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Figure 3. The structure of a Time Capsule packet.

NIC. Figure 3 shows the structure of a TC-enabled packet.
The tracing payload contains two types of data: the tracing
raw data and the tracing metadata. The tracing raw data con-
sists of 8-byte entries, each of which stores the timestamp
of a tracepoint. Users can place plenty of tracepoints in the
virtualized network stack based on their needs and choose
which tracepoints to enable for a particular workload. The
tracing metadata uses the annotation bits to indicate if the
corresponding tracepoint is enabled or not (1 as enabled).
Users define an event mask to specify the enabled tracepoints
and initialize the tracing metadata. The SIZE of the tracing
payload depends on the number of enabled tracepoints. For
latency tracing across VMs on the same physical machine,
packet is transferred between the hypervisor and domains
through shared memory. The packet size is not limited by the
maximum transmission units (MTUs). Thus, TC is able to
allocate sufficient spaces in packet payload for tracing with-
out affecting the number of packets communicated by the
application workloads. For tracing across different physical
machines, we dump all the timestamps before packets are
sent out by the NIC but preserve the last timestamp recorded
at the sender side (the sender side raw data in Figure 3) in the
tracing payload. When the packet arrives at the receiver ma-
chine, new tracing data will be added after the sender side’s
last timestamp. As such, the tracing data pertaining to the
same packet stored on multiple machines can be stitched to-
gether by the shared timestamp.

3. Overhead and Optimizations
Despite the benefits, tracing at packet level can introduce
considerable overhead to network applications. For highly
optimized services in the cloud, such tracing overhead can
significantly hurt performance. In this section, we discuss
the sources of overhead and the corresponding optimizations
in Time Capsule.

Time measurement It usually incurs various levels of cost
to obtain timestamps in the kernel space. If it is not properly
designed, fine-grained tracing can significantly degrade net-
work performance, especially increasing packet tail latency.
Optimization We compare the cost of different clocksource
read functions available in various domains using a simple
clock test tool [2] and adopt native read tscp to read
from the xen clocksource at each tracepoint. Compared to
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Figure 4. Time Capsule incurs negligible overhead to
packet latency with various (a) number of tracepoints and
(b) sampling rates. The sampling rate is set to 1/4 in (a) and
the number of tracepoints is 10 in (b).

other time functions, which incur an overhead ranging from
several microseconds to a few milliseconds, the function
native read tscp adds only about 20 nanoseconds la-
tency at a tracepoint. The overhead is negligible compared
to tens and hundreds of microseconds latency in a typical
network request.

Trace collection The dump of traces to storage is the most
expensive operation in TC. If the completion of each packet
triggers a disk write, the overhead will be prohibitively high.
Further, the overhead grows as the intensity of network traf-
fic increases.
Optimization We adopt a ring buffer in the guest network
stack (receiver side) and the NIC driver in the driver domain
(sender side) to temporarily store the tracing data. Each time
the tracing payload is removed from a packet, the tracing
data is copied to the buffer. The latest trace sample over-
writes the oldest data if the circular buffer is full. We use
mmap to map the kernel buffer to user space /proc file sys-
tem, from where the traces can be dumped to persistent stor-
age. We design a user space trace collector that periodically
dumps and clears collected traces. As trace collection hap-
pens infrequently and can be performed offline on another
processor, it does not hurt network latency.

Instrumentation cost Too much instrumentation is one of
the common issues in system monitoring, especially for
latency-sensitive applications. As Google’s tracing infras-
tructure Dapper [31] shows, over-sampling increases the av-
erage latency of web search by as much as 16.3%, while
only inflicting a marginal 1.48% drop on throughput.
Optimization We devise two optimizations to reduce in-
strumentation overhead. First, TC selectively traces packets
from a targeted application. We use a combination of IP ad-
dress and port number to identify the packets that should
be traced. Other network packets skip the tracepoints and
are processed normally. Second, as Figure 3 shows, tracing
metadata in each packet allows TC to configure a flexible
tracing rate (i.e., via the sampling decision bit) and to select
a subset of tracepoints (i.e., via the annotation bit). The sam-
pling decision bit enables tracing for a portion of packets in
a network traffic based on a user-defined sampling rate. The

annotation bit determines which tracepoint(s) should be en-
abled for a particular packet.

4. Evaluation
Experimental Setup Our experiments were performed on
two PowerEdge T420 servers, connected with Gigabit Eth-
ernet. Each server was equipped with two 6-core 1.90GHz
Intel Xeon E5-2420 CPUs and 32GB memory. The host ran
Xen 4.5 as the hypervisor and Linux 3.18.21 in the driver do-
main. The VMs had a single virtual CPU (vCPU) and 4GB
memory, and ran Linux 3.18.21 as the guest OS.

4.1 Overhead Analysis
First, we analyze the overhead of Time Capsule on net-
work latency. Figure 4 plots the average, 99th, and 99.9th

percentile latency of UDP packets using Sockperf [11]. We
varied the number of tracepoints and the sampling rate. As
shown in Figure 4, the number of tracepoints does not have
much impact on packet latency, with no more than 1.5% la-
tency increase (ten tracepoints) compared to that without TC
(zero tracepoint). Similarly, the performance impact due to
different sampling rates is insignificant. A sampling rate of
1 increased packet latency by 2% compared to that with a
sampling rate of 1/16. As discussed in Section 3, TC’s over-
head mainly comes from timestamping the packet at trace-
points and manipulating packet payload, which takes tens of
nanoseconds at each tracepoint. Given that typical network
applications have latency requirements in the range of hun-
dreds of microseconds to a few milliseconds, TC’s overhead
is negligible even with tens of tracepoints. In real systems, if
enabling a large number of tracepoints for fine-grained trac-
ing raises overhead concerns, lowering the packet sampling
rate is likely to provide adequate trace data for network-
intensive workloads. In summary, TC adds negligible over-
head to network latency and overhead can be controlled by
varying the number of tracepoints and the sampling rate.

4.2 Per Packet Latency
User-perceived latency is an important QoS metric. How-
ever, it is difficult to track individual user experiences in vir-
tualized environments. When application-level per-request
logging is not available, system-wide tracing can be effective
in identifying performance issues of individual users. Next,
we demonstrate that packet level tracing reveals problems
that could be hidden in coarse-grained tracing.

We created a scenario in which users-perceived latency
suffered sudden hike due to a short network burst from an-
other application. We chose Sockperf as the application un-
der test and used Netperf [9] to generate the interfering traf-
fic. Figure 5 plots the per-second average latency and packet
level latency of Sockperf. The burst arrived at the 1.5th sec-
ond and left at the 6.5th second. We have three observations
from Figure 5 (b): i) packet level latency accurately captured
latency fluctuations during the burst; ii) packet level latency
measurement timely reflected user-perceived latency imme-
diately after the network spike left (at 6.5s); iii) most im-
portantly, packet level tracing successfully captured a few
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spikes in latency around the 11th second. The spike may be
due to the backlogged packets during the traffic burst.

In contrast, per-second average latency (as shown in Fig-
ure 5 (a)) hid performance fluctuations, was not responsive
to load changes, and missed the important latency issue after
the bursty traffic left. Microbursts, the sudden and rapid traf-
fic bursts in the network, can cause long tail latency or packet
loss and may not be captured by coarse-grained monitoring.
TC enables packet level latency tracing and can effectively
identify slight performance changes. Next, we show that TC
further decomposes the packet latency into time spent in dif-
ferent stages to help locate the root causes of long latency.

4.3 Latency Decomposition
A detailed breakdown of packet latency sheds light on which
processing stage in the virtualized network stack contributes
most to the overall latency and help identify abnormalities at
certain stages. Figure 6 and Figure 7 show the latency and
its breakdown of Sockperf under two scenarios: i) the VM
hosting Sockperf alone; ii) the VM hosting Sockperf and
HPCbench [8] simultaneously. In scenario ii, two separate
clients sent Sockperf UDP requests and HPCbench UDP
stream flows, respectively. While it is expected that the co-
location of Sockperf and HPCbench in the same VM causes
interference to Sockperf, we show that latency breakdown
provides insight on how to mitigate the interference.

Figure 6 (a) and (b) show the receiver side latency for
500 packets and the latency breakdown when Sockperf ran
alone in the VM. Without interference, the latency stabilized
at about 60 µs and the processing at the driver domain, the
hypervisor, and the guest kernel contributed equally to the
overall latency. In contrast, Sockperf latency degraded by up
to 35x and became wildly unpredictable when co-running
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Figure 7. Latency decomposition when Sockperf is co-
located with HPCbench in the same VM.

with throughput-intensive HPCbench workload, as shown in
Figure 7 (a). Note that although interference also exists on
physical machines when co-locating latency-sensitive work-
loads with throughput-intensive workloads, the performance
degradation is not as drastic as that in virtualized environ-
ments. Latency breakdown suggests that most degradation
was from prolonged processing in Dom0.

To pinpoint the root cause, we added two additional tra-
cepoints to further break down packet processing in Dom0:
i) packet processing in Dom0’s network stack (denoted as
Dom0 (a)) and ii) processing in the VM’s backend NIC
driver at Dom0 (denoted as Dom0 (b)). As shown in Fig-
ure 7 (b), most time in Dom0 was spent in the backend NIC
driver. After an analysis of Dom0’s backend driver code, we
found that the excessively long latency was due to batching
the memory copy between the backend and frontend drivers.
The backend driver does not copy packets to a VM until the
receive queue of the physical NIC is depleted. All received
packets will be copied to a VM in a batch to amortize the
cost of memory copy. This explains why workloads with
bulk transfer degrade the performance of latency-sensitive
applications. A large number of packets from throughput-
intensive workloads fill up the receive queue in the backend
driver, preventing the packets of latency-sensitive applica-
tion from being transferred to the VM. The analysis based
on latency decomposition suggests that limiting the batching
size in the backend driver would alleviate the interference.

4.4 Case Studies
With packet level tracing and latency decomposition, TC
helps associate the excessively long latency to certain pro-
cessing stages in the virtualized network stack. In this sec-
tion, we describe our discovery of multiple bugs in Xen’s
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credit scheduler with the help of TC. These scheduler bugs
cause long tail latency of I/O workloads. We reported the
bugs to the Xen community and they were confirmed by en-
gineers from Citrix [3–5]. Next, we explain how TC helped
locate these bugs.

Xen’s credit scheduler is designed to prioritize I/O-bound
VMs while not compromising the overall system utilization
and fairness. Thus, if an I/O-bound VM consumes less than
its fair CPU share, it always has a higher priority than a CPU-
bound VM and I/O performance should not be affected by
co-located CPU-bound workloads. Figure 8 shows the per-
formance of Sockperf when its host VM shared the same
physical CPU with another CPU-bound VM. We observed
that Sockperf latency degraded significantly due to the inter-
ference from the CPU-bound VM. For approximately every
250 packets, latency grew to as high as 30 ms and started
to descend until the next spike. Latency decomposition in
Figure 8 (b) shows that latency spikes always started with
long delays in Xen, which dominated the overall latency.
This indicates that the latency spike started with packets be-
ing blocked in Xen and then the delay propagated to Dom0.
The delay in Xen was close to 30 ms, which matched the
length of the default time slice in the credit scheduler. These
observations gave a hint that the long latency is correlated
with the VM scheduler.

The analysis led to the discovery of the first bug in the
credit scheduler: Xen mistakenly boosts the priority of a
CPU-bound VM, thereby preventing an I/O-bound VM from
being prioritized. If this happens, the I/O-bound VM needs
to wait for a complete time slice (i.e., 30 ms) before the
CPU-bound VM is descheduled by Xen due to the expiration
of its time slice. The latency breakdown in Figure 8 (b)
further shows that the first wave of packets in the latency
spike were copied to the grant table in Xen but cannot be
processed by the I/O-bound VM because the VM was not
scheduled to run. Thus, the delay is attributed to the wait
time in Xen. After the grant table was full but the I/O VM
was not yet scheduled, new coming packets stayed in the
backend driver of Dom0, which explained the propagation
of delay to Dom0. After fixing this bug, both the average
and tail latency were greatly improved.

Using the same methodology, we discovered another two
bugs in the credit scheduler that also contributed to the long
tail latency issue. The reasons behind excessively long tail
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Figure 9. Bug-2 [4]: Xen does not timely activate I/O VMs
that are deactivated due to long idling. Bug-3 [5]: I/O VMs’
BOOST priority can be prematurely demoted.

latency are usually complicated. As packets with long la-
tency are ephemeral and difficult to be captured by coarse-
grained monitoring, finding the causes is even harder. Fig-
ure 9 shows the occurrence of abnormal latency in twenty
thousands packets. Only 5% of the packets suffered long
latency and their occurrence had no clear patterns. As the
magnitude and occurrence of the abnormal latency were un-
predictable, using TC traces alone was not enough to iden-
tify the bugs. As Figure 9 (b) shows similar patterns of the
long latency – long delays in Xen followed by delays in
Dom0, we separately instrumented Xen to report its schedul-
ing events and performed side-by-side comparisons of the
Xen trace and TC packet trace. We used event and packet
timestamps to correlate the Xen scheduling events with ab-
normal packets. Considerable manual effort was needed to
identify two additional bugs in the credit scheduler. Through
the above examples, we have demonstrated that TC is quite
useful to identify, localize and analyze latency issues, espe-
cially for the long tail latency.

5. Discussions and Future Work
Packet size TC relies on the additional space in the packet
payload to store tracing information. For small packets and
the packets transferred between VMs on the same host, TC’s
tracing payload does not increase the number of packets
needed by the original application. In the case of cross-
machine tracing, an 8 byte space is needed for the last times-
tamp from the sender. It is possible that this will increase
the number of MTUs transferred by the original application.
When network is congested, the additional MTUs could be
the source of overhead. For packets larger than the MTU,
NIC that supports GSO/GRO features will split the large
packets into separate MTUs at the sender side. TC only
needs to append an 8-byte timestamp to the last MTU.

Dynamic instrumentation Currently, we manually add tra-
cepoints in TC, and Dom0 and DomU kernels need to be
recompiled to use the new tracepoints. Dynamic instrument-
ing the Linux kernel is possible by using the extended Berke-
ley Packet Filter (eBPF). However, dynamic instrumentation
cannot manipulate packet payload, thereby unable to cross
the boundaries between Dom0, DomU and the hypervisor.
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Automated analysis Although TC provides detailed infor-
mation about packet processing in virtualized systems, con-
siderable manual effort is needed to identify the causes of
unsatisfactory performance. TC can only correlate the stages
on the critical path of I/O processing with the overall net-
work performance. For performance issues due to other re-
source management schemes, such as VM scheduling and
memory allocation, a causal analysis of TC trace and other
system traces is necessary. Statistical approaches that find
the correlation between the traces are promising directions
towards automated identification of the root causes.

Extending TC to disk I/Os TC leverages the commonly
shared data structure skb to associate tracing information
with individual packets. Virtualized disk I/O is as complex
as virtualized network I/O and often suffers poor and un-
predictable performance. However, it is more challenging to
trace disk I/O across multiple block I/O stacks in virtual-
ized systems. The challenges are the lack of a shared data
structure between the protection domains to pass the trac-
ing information and aggressive optimizations of disk I/O at
different layers of the virtualized system.

6. Related Work
Monitoring and tracing schemes There are in general two
ways to monitor performance and trace program execution
in complex systems. Non-intrusive tracing systems [14, 15,
20, 28–30, 35] leverage existing application logs and perfor-
mance counters to diagnose performance issues and detect
bugs. Annotation-based monitoring [16, 19, 22, 31] offers
users more flexibility to selectively trace certain components
in the monitored systems. However, both approaches still
face the challenges of balancing the tradeoff between the ef-
fectiveness of tracing and its overhead. Dynamic instrumen-
tation allows flexible logging and tracing to be installed dy-
namically. Pivot Tracing [27] leverages aspect-oriented pro-
gramming to export variables for dynamic tracing and de-
signs a query languages to selectively invoke user-defined
tracepoints. Similarly, Time Capsule requires tracepoints to
be manually inserted by administrator but supports a flexible
selection of tracepoints and varying sampling rates. Differ-
ent from Pivot Tracing on the distributed systems, TC is a
low-level profiler that focuses on event tracing on the criti-
cal path of network I/O processing in virtualized systems.

Tracing across boundaries Tools are widely used in com-
plex systems to diagnose performance problems. However,
many tools are limited within certain boundaries. For exam-
ple, gperf [7] is an application-level tool to analyze UNIX
program performance while Systemtap [12], DTrace [17],
and Perf [10] are used to trace source code or collect per-
formance data inside Linux kernel. Similarly, Xentrace and
Xenalyze [6] can only be used to trace events in the Xen
hypervisor. To address the limitations, many efforts have
been proposed to trace beyond boundaries. Stardust [33]
uses breadcrumb record associated with application requests
to correlate events in separate components or computers.

Whodunit [18] adopts synopsis, a compact representation
of a transaction context, to profile transactions across dis-
tributed machines. Pivot tracing [27] uses a per-request con-
tainer, baggage, to correlate logging information with a par-
ticular request context. There are also other works that in-
fer the relationship between events in distributed environ-
ments [16, 18, 19, 22, 31, 33]. Inspired by [26], TC embeds
the tracing information into the payload of network packets
and dumps the traces before packets are received by appli-
cations. This design offers two advantages. First, events are
naturally ordered in the payload, avoiding efforts to casually
correlate logs from distributed machines. Second, in virtual-
ized environments, it is not always possible to access trac-
ing events in the privileged domain (e.g., the driver domain)
from unprivileged domains (e.g., user VMs) due to security
concerns. TC passes tracing information along with the I/O
path, thus analysis only needs to be performed in user VMs.

Latency measurement and analysis Much effort has been
dedicated to analyzing factors that affect network latency.
DARC [34] proposes runtime latency analysis to find main
latency contributors. Li et al. [26] explore the potential
causes for tail latency on multi-core machines. Similarly
in virtualized environment, Soroban [32] studies the latency
in VMs or containers by using machine learning and Xu et
al. [36] introduce a host-centric solution for improving la-
tency in the cloud. As Software Defined Network (SDN) and
Network Function Virtualization (NFV) become popular in
recent years, latency measurement and analysis play more
important roles in modern networks. For example, relying
on accurate timestamps provided by SoftNIC [23], DX [25]
proposes a new congestion control scheme to reduce queue-
ing delay in datacenters. TC is complementary to these ap-
proaches and can be used to evaluate their effectiveness.

7. Conclusion
Latency is a critical QoS factor for network applications.
However, it is challenging to monitor latency in virtualized
systems. This paper presents Time Capsule (TC), an in-band
packet profiler that traces packet level latency across differ-
ent boundaries in virtualized systems. TC incurs negligible
overhead to network performance and requires no changes
to applications. We demonstrated that fine-grained packet
tracing and latency decomposition shed light on the latency
problems and helped us identify three bugs in Xen’s credit
scheduler. Guided by TC, we are able to trace and analyze
issues that cause long latency in virtualized systems.
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