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Abstract. One-way trading is a fundamental problem in the online al-
gorithms. A seller has some product to be sold to a sequence of buyers
{u1, u2, . . .} in an online fashion and each buyer ui is associated with
his accepted unit price pi, which is known to the seller on the arrival of
ui. The seller needs to decide the amount of products to be sold to ui

at the then-prevailing price pi. The objective is to maximize the total
revenue of the seller. In this paper, we study the unbounded one-way
trading, i.e., the highest unit price among all buyers is unbounded. We
also assume that the highest prices of buyers follow some distribution
with monotone hazard rate, which is well-adopted in Economics. We
investigate two variants, (1) the distribution is on the highest price a-
mong all buyers, and (2) a general variant that the prices of buyers is
independent and identically distributed. To measure the performance of
the algorithms, the expected competitive ratios, E[OPT ]/E[ALG] and
E[OPT/ALG], are considered and constant-competitive algorithms are
given if the distributions satisfy the monotone hazard rate.

1 Introduction

Revenue maximization is an important problem studied by researchers in the
fields of economics, mathematics and computer science. This problem has many
variations but generally involves the question of how to sell or assign products
(goods or services) to various buyers. The assignment of products includes deter-
mining both the price and the amount of products sold to each buyer, which is a
fundamental problem related to markets and market mechanisms in economics.
Accordingly, there are two ways for a seller to maximize revenue: controlling the
selling price and controlling the amount sold.
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In this paper, we focus on the design of an online strategy to determine how
much should be sold at the prevailing market price (which cannot be controlled
by the seller) at different times. This problem was first studied by El-Yaniv et
al. [12, 13], which was called named one-way trading. In the one-way trading
problem, a player has some initial asset (e.g., dollar) to be changed to a target
asset (e.g., yen). The exchange rate fluctuates over time. To maximize the rev-
enue, the player must decide the amount of the initial asset to be changed when
the exchange rate on each day is known. The offline version of this problem is
straightforward as the seller can know all the future information: the seller can
simply exchange all initial assets to the target asset on the day with the highest
exchange rate. However, in the online version where the player has no knowledge
of the future, at no point will the player be sure that the prevailing exchange
rate is the highest one. The key features of the one-way trading problem are: (1)
the player has no control of the exchange rate which fluctuates over time; (2)
the player has no knowledge, or incomplete knowledge, of the future; and (3) the
player can decide the amount to be changed only upon the arrival of each rate.

The one-way trading problem studied in [13] is the bounded version, i.e.,
the range of the exchange rate is in [m,M ], where m and M are fixed val-
ues. Based on the relationship between m and M , El-Yaniv et al. presented an
optimal online algorithm by using a threat-based policy, of which the compet-
itive ratio is Θ(log(M/m)). If the highest possible rate is unbounded, even for
a fixed number of transactions, the threat-based policy cannot be implemented
since the ratio between any two rates can be arbitrary large. In the bounded
one-way trading problem, the remaining amount of the initial asset after the
last transaction will be changed to the target asset with the minimum rate m.
However, if the highest possible rate is unbounded, in the worst case, the to-
tal revenue is dominated by the revenue from high rates and the revenue from
the remaining asset using the minimum rate is very tiny and ignoring this part
will hardly affect the performance. For the one-way trading with unbounded
value, Chin et al. [10] gave a near optimal algorithm with competitive ratio

O(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)1+ε) if the value of r∗ = p∗/p1, the
ratio between the highest market price p∗ = maxi pi and the first price p1, is
large and satisfies log(h) r∗ > 1, where log(i) x denotes the application of the log-
arithm function i times to x; otherwise, the algorithm has a constant competitive
ratio. A lower bound was also proved in [10]. Given any positive integer h and

any one-way trading algorithm A, a sequence of buyers σ with log(h) r∗ > 1 exist
such that the ratio between the optimal revenue and the revenue obtained by A
is at least Ω(log r∗(log(2) r∗) . . . (log(h−1) r∗)(log(h) r∗)).

In some sense, the one-way trading problem can be regarded as a time series
search problem, the objective of which is to find the maximum (or the minimum)
value among a sequence of values in an online fashion. For the 1-max-search
variant, i.e., determining the highest value among the whole sequence in an online
fashion, El-Yaniv et al. [13] presented a randomized O(logM/m)-competitive
algorithm if the values fluctuate between m and M ; when M/m is unknown in
advance, a randomized online algorithm with competitive ratio O(log(M/m) ·
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log1+ε(log(M/m))) can be achieved. In [16], Lorenz et al. gave an optimal online
algorithm for the k-search problem, in which the player’s target is to find the
k highest (or lowest) values among all values in a sequence and the values are
chosen from [m,M ].

In this paper, we assume that items can be sold fractionally, thus, the amount
of items can be normalized to be 1. A sequence of buyers come one after one
and each buyer i is associated with a price pi, which is his accepted unit price
for buying the items. Only upon the arrival of a buyer i will his accepted price
pi be known to the seller, who will immediately determine the amount of items
to be sold to the buyer with unit price pi. The objective is to maximize the
total revenue of the seller. In the unbounded one-way trading, the range of the
accepted prices is in (0,+∞).

In all previous studies, if there is no information about the future prices, no
algorithm achieved a competitive ratio better than a logarithm factor. Howev-
er, given some partial information about the prices, the performance could be
improved greatly. In this paper, we assume that the distribution of the highest
accepted price is the partial information that is known. Firstly, assume that the
distribution is on the highest price among all buyers, i.e., maxi pi. We then con-
sider a general variant where the sequence of prices of buyers is independent and
identically distributed (i.i.d.).

To measure the performance of the online algorithm, the competitive ratio is
often used, which denotes the ratio between the result form the online algorithm
and the optimal offline algorithm. For the online algorithm with distributions,
we use the expected competitive ratio for evaluation. There are mainly two kinds

of expectation of competitive ratio, i.e., E[OPT ]
E[ALG] and E[OPTALG ]. Both of them are

considered with respect to different situations and the values of them may vary
a lot. For the former measure, since the expected value of the optimal solution
is independent of the algorithm solution, the target is to maximize the expected
output of the algorithm.

The paper is organized as follows: Section 2 describes the one-way trading
with distributions and the measurement of the algorithm; in Section 3, constant
competitive algorithms are given if the distribution is on the highest price among
all buyers; in Section 4, we prove that the variant with i.i.d. distribution on each
buyer can be reduced to the variant in Section 3, and thus constant-competitive
algorithms can be obtained too.

2 One-Way Trading with Distribution

In the one-way trading problem, we may regard the first price as a unit value.
This assumption is reasonable since in the remaining part of the price sequence,
values lower than the first one could be ignored and will not affect the perfor-
mance. Let f be the density function and F be the accumulated distribution
with respect to the highest price among all buyers. We assume that f and F are
continuous in [1,+∞). Given F , the expected revenue received from the optimal
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algorithm is

E[OPT ] =

∫ +∞

1

xdF (x) =

∫ +∞

1

xf(x)dx.

El-Yaniv et al. showed that for the bounded one-way trading problem, the
adversary can choose the worst distribution on the highest selling price and force
the online algorithm to achieve the competitive ratio no less than Ω(logM/m)
(Theorem 7 in [13]), where the highest price p ∈ [m,M ]. This result can be
extended to the unbounded one-way trading problem.

Fact 1 There exists the worst distribution F such that no online algorithm can
solve the unbounded one-way trading problem with the competitive ratio better
than a logarithm factor if the highest price is drawn from F .

Proof. The distribution on the bounded one-way trading can be also used as
the distribution on the unbounded version such that the probabilities on the
highest price higher than M and lower than m are both zero. Thus, setting the
distribution F to be the worst distribution w.r.t. the bounded one-way trading
implies the competitive ratio of any online algorithm cannot be better than a
logarithm factor. ut

This negative result is unimportant in reality since most frequently used dis-
tributions in economics are far from the worst distribution. If the highest price
among all buyers is uniformly distributed, Fujiwara et al. [14] considered the sell-
ing strategy according to several measures, e.g., E[ALG/OPT ], E[OPT/ALG],
E[ALG]/E[OPT ], E[OPT ]/E[ALG]. The algorithms for the average case analysis
of the bounded one-way trading are based on the threat-based policy. However,
such a strategy does not work for the unbounded variant since the lowest price
m and highest price M may not be known in advance.

The hazard rate, a.k.a. the failure rate, is the probability of observing an
outcome within a neighborhood of some value x, conditional on the outcome
being no less than x. The concept of the hazard rate is well-adopted in economics.
For example, in English auctions, the hazard rate on x denotes the probability
of the auction ending at x, conditional on the bidders’ prices reach x. In this
paper, we consider the monotone hazard rate, which is reasonable and also has
been considered in theoretical computer science [8, 17]. Formally speaking,

Definition 1. (Monotone Hazard Rate). A distribution F with density f is said

to satisfy the monotone hazard rate (MHR) if 1−F (x)
f(x) is monotonically non-

increasing for all x > 0.

3 Distribution on the Highest Price among All Buyers

In this part, we consider the variant that the distribution on the highest price
among all buyers is known in advance and satisfies the monotone hazard rate.
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3.1 Measure of E[OPT ]
E[ALG]

The following two lemmas from Chawla et al. [8] and Dhangwatnotai et al. [11]
respectively can be regarded as the consequences of Myerson’s optimal strate-
gy [18]. They also gave the idea to maximize the algorithm’s expected revenue.

Lemma 1. [8] If the distribution F with density f satisfies MHR, then there
exists x0 such that (1) x0(1 − F (x0)) is maximized, (2) for any x0 < x1 < x2,
x0(1− F (x0)) > x1(1− F (x1)) > x2(1− F (x2)) and, (3) for any x0 > x1 > x2,
x0(1− F (x0)) > x1(1− F (x1)) > x2(1− F (x2)).

From Lemma 1, it is natural to assign all products to any buyer with value
no less than x0. With probability 1−F (x0), all products are assigned with price
no less than x0, which means the expected revenue from the algorithm is at least
x0 · (1− F (x0)).

Lemma 2. [11] E[OPT ] = O(x0 · (1− F (x0)))

According to the above two lemmas, the algorithm can be simply described
as follows.

Algorithm 1 Online Selling for the measure of E[OPT ]/E[ALG]

1: Let x0 = arg maxx x · (1− F (x))
2: Sell the whole product to the first buyer with price no less than x0.

Thus, we have the following conclusion.

Theorem 1. When considering the measure of E[OPT ]
E[ALG] , the expected competitive

ratio of Algorithm 1 is a constant.

3.2 Measure of E[OPT
ALG

]

For the measure of E[OPTALG ], the competitive ratio of Algorithm 1 is unbounded
since the seller does not assign any product to the buyer with price less than
arg maxx x(1−F (x)) and the ratio in such case is unbounded. Thus, we have to
investigate the intrinsic property and find other way to achieve good performance
for this measurement.

Lemma 3. Given a distribution F satisfying MHR, h(x) = 1−F (x)
1−F (2x) is mono-

tone non-decreasing.

Proof.

h′(x) =
−(1− F (2x))f(x) + 2(1− F (x))f(2x)

(1− F (2x))2

=
2f(2x)(1− F (x))− f(x)(1− F (2x))

(1− F (2x))2

=
2f(2x)

1− F (2x)
· 1− F (x)

1− F (2x)
− f(x)

1− F (2x)
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Since F satisfies MHR, i.e., 1−F (x)
f(x) ≥

1−F (2x)
f(2x) , we have h′(x) ≥ 0, which means

that h(x) is monotone non-decreasing. ut

From Lemma 1, we know that if the distribution of the highest price satisfies
MHR, there exists p such that p · (1−F (p)) is maximized. W.l.o.g., assume that
2k ≤ p < 2k+1. As mentioned before, if the coming price is no less than p, selling
the whole item to this buyer is a good idea. But for the remaining case that
the highest price is strictly less than p, the assignment is also critical. In our
algorithm, the item is partitioned with respect to the range of the price. Upon
the arrival of a buyer, if his price is the first in some range, the corresponding
amount of item will be assigned to him. The description of the algorithm is
shown in Algorithm 2.

Algorithm 2 Online Selling for the measure of E[OPT/ALG]

1: if v is the first value no less than p then
2: Assign 1/2 product to this buyer.
3: else
4: if v is the first value within [2−i · p, 21−i · p) then
5: Assign 2−i−1 product to this buyer.
6: end if
7: end if

Theorem 2. When considering the measure of E[OPTALG ], the expected competitive
ratio of the above algorithm is a constant.

Proof. For a sequence of buyers, suppose that the highest price among all buyers
is x. The maximal revenue for this sequence is x by assigning the whole product
to the buyer with the highest price. Let ALG(x) be the revenue received by the
online algorithm on a buyer sequence with the highest price x.

According to the online algorithm, if x ≥ p, the algorithm assigns 1/2 of
a product to a buyer with price no less than p; if x ∈ [2−i · p, 21−i · p), the
algorithm assigns 2−i−1 products to a buyer with price no less than 2−i · p. For
any sequence of buyers, the total amount of products assign to buyers is at most
1/2 + 1/4 + · · · < 1. The whole product is sufficient to be assigned to all buyers
according to the algorithm.

The expected competitive ratio is

E[
OPT

ALG
] =

∫ +∞

1

x

ALG(x)
dF (x)

= (

∫ 2−k·p

1

+

−1∑
−k

∫ 2i+1·p

2i·p
+

+∞∑
0

∫ 2i+1·p

2i·p
)

x

ALG(x)
dF (x)

≤ (

−1∑
−k−1

∫ 2i+1·p

2i·p
+

+∞∑
0

∫ 2i+1·p

2i·p
)

x

ALG(x)
dF (x)
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The above formula has two parts and we analyze them as follows.

(i) −k − 1 ≤ i ≤ −1.
In this case, ALG(x) ≥ 2i−1 · 2i · p while x ≤ 2i+1 · p. Thus,∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 22−i

∫ 2i+1·p

2i·p
dF (x) = 22−i(F (2i+1 · p)− F (2i · p))

(ii) i ≥ 0.
In this case, ALG(x) ≥ p/2 while x ≤ 2i+1 · p. Thus,∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 2i+2

∫ 2i+1·p

2i·p
dF (x) = 2i+2(F (2i+1 · p)− F (2i · p))

From Lemma 1, if i ≥ 0, we have 2i ·p(1−F (2i ·p)) > 2i+1 ·p(1−F (2i+1 ·p)).
Thus, 1−F (2i+1 ·p) < (1−F (2i ·p))/2 and F (2i+1 ·p)−F (2i ·p) > (1−F (2i ·p))/2.
Let (1−F (2i+1 ·p) = (1−F (2i ·p)·δi and F (2i+1 ·p)−F (2i ·p) = (1−F (2i ·p))·γi,
where δi < 1/2, γi > 1/2 and δi + γi = 1.

From Lemma 3, 1−F (2x)
1−F (x) is monotone non-increasing when x > p, thus, δi is

monotone non-increasing and γi is monotone non-decreasing when i increasing.
Thus, if i ≥ 0,∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 2i+2(F (2i+1 · p)− F (2i · p))

= 2i+2 · (1− F (2i · p)) · γi

= 2i+2 · (1− F (p)) ·
i−1∏
k=0

δk · γi

≤ 2i+2 · (1− F (p)) · δi0
= 4 · (1− F (p)) · (2δ0)i

∫ +∞

p

x

ALG(x)
dF (x) ≤ 4 · (1− F (p)) ·

∑
i

(2δ0)i (1)

=
4 · (1− F (p))

1− 2δ0

From Lemma 1, if i ≤ −1, we have 2i ·p(1−F (2i ·p)) < 2i+1 ·p(1−F (2i+1 ·p)).
Thus, 1−F (2i+1 ·p) > (1−F (2i ·p))/2 and F (2i+1 ·p)−F (2i ·p) < (1−F (2i ·p))/2.
Let 1−F (2i+1 ·p) = (1−F (2i ·p) ·µi and F (2i+1 ·p)−F (2i ·p) = (1−F (2i ·p)) ·νi,
where µi > 1/2, νi < 1/2 and µi + νi = 1.

From Lemma 3, 1−F (x)
1−F (2x) is monotone non-decreasing when 2x < p, and thus,

µi is monotone non-decreasing and νi is monotone non-increasing when i in-
creases.
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Since

F (2i+2 · p)− F (2i+1 · p) = (1− F (2i+1 · p) · νi+1

= (1− F (2i · p)) · µi · νi+1

= (F (2i+1 · p)− F (2i · p)) · µi · νi+1/νi.

We have

F (2i+1 · p)− F (2i · p) = (F (2i+2 · p)− F (2i+1 · p)) · νi
µi · νi+1

.

Thus, if i ≤ −1,∫ 2i+1·p

2i·p

x

ALG(x)
dF (x) ≤ 22−i(F (2i+1 · p)− F (2i · p))

= 22−i · (F (2i+2 · p)− F (2i+1 · p)) · νi
µi · νi+1

= 22−i · (F (p)− F (p/2)) · νi
ν0
· 1∏0

k=i µk

≤ 8 · (F (p)− F (p/2)) · 1∏0
k=i 2µk

≤ 8 · (F (p)− F (p/2)) · ( 1

2µ0
)i+1

Therefore,∫ p

1

x

ALG(x)
dF (x) ≤ 8 · (F (p)− F (p/2)) ·

∑
i

(
1

2µ0
)i (2)

=
8 · (F (p)− F (p/2))

1− 1/(2µ0)

Combining the inequalities (1) and (2), we can say that the excepted com-
petitive ratio of the algorithm is

E[
OPT

ALG
] ≤ 4 · (1− F (p))

1− 2δ0
+

8 · (F (p)− F (p/2))

1− 1/(2µ0)
= O(1).

ut

4 Distribution on The Highest Price of Each Buyer

In the previous part, we study the case that the distribution is on the highest
price among all buyers. Now we assume that the distribution on the price of
each buyer is known in advance, and the distribution on the buyers is under the
i.i.d. assumption. We also assume that the number of buyers is bounded by n.
Otherwise, even for a distribution with a very tiny value in some high price, the
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adversary can force the probability of the high price to be close to 1 by sending
sufficiently large number of buyers.

Formally speaking, there are at most n buyers who will come to the seller to
buy products; the price of each buyer is drawn from the accumulated distribution
F (x) with the density function f(x), where f(x) is derivable.

For this variant, if the distribution of the highest price among all buyers also
satisfies the MHR property, the algorithms in Section 3 can be implemented.
This gives us a heuristic to reduce this variant to the previous one. Let F̃ (x) and
f̃(x) be the accumulated distribution and density function on the highest price
among all buyers, thus, F̃ (x) = Fn(x) and f̃(x) = nFn−1(x)f(x), respectively.

Lemma 4. If f(x) satisfies the monotone hazard rate, then f̃(x) also satisfies
the monotone hazard rate.

Proof. If f(x) satisfies the monotone hazard rate (MHR), i.e., 1−F (x)
f(x) is non-

increasing, we have ( 1−F (x)
f(x) )′ ≤ 0, thus, f ′(x) ≤ f2(x)

F (x)−1 . Now we consider 1−F̃ (x)

f̃(x)
.

If ( 1−F̃ (x)

f̃(x)
)′ ≤ 0, this lemma is true.

(
1− F̃ (x)

f̃(x)
)′

= (
1− Fn(x)

nFn−1(x)f(x)
)′

=
−(nFn−1(x)f(x))2 − (1− Fn(x))[n(n− 1)Fn−2(x)f2(x) + nFn−1(x)f ′(x)]

(nFn−1(x)f(x))2

=
−nFn(x)f2(x)− (n− 1)f2(x)− F (x)f ′(x) + (n− 1)Fn(x)f2(x) + Fn+1(x)f ′(x)

nFn(x)f2(x)

=
−Fn(x)f2(x)− (n− 1)f2(x) + (Fn+1(x)− F (x))f ′(x)

nFn(x)f2(x)

≤
−Fn(x)f2(x)− (n− 1)f2(x) + (Fn+1(x)− F (x)) f2(x)

F (x)−1

nFn(x)f2(x)

=
−Fn+1(x) + Fn(x)− (n− 1)F (x) + (n− 1) + Fn+1(x)− F (x)

nFn(x)(F (x)− 1)

=
(F (x)− 1)(Fn−1(x)− 1)− (n− 1)(F (x)− 1) + Fn−1(x)− 1

nFn(x)(F (x)− 1)

=
Fn−1(x)− 1− (n− 1) + Fn−2(x) + Fn−3(x) + · · ·+ 1

nFn(x)

=
Fn−1(x) + Fn−2(x) + · · ·+ F (x)− (n− 1)

nFn(x)

≤ 0

Therefore, f̃(x) also satisfies the monotone hazard rate. ut
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Since F̃ (x) and f̃(x) satisfy the monotone hazard rate, Algorithm 1 and
Algorithm 2 can be used to handle this variant. Thus, we have the following
conclusion.

Theorem 3. In the unbounded one-way trading problem, if the number of buyers
is bounded, the distribution on price of each buyer is i.i.d. and satisfies the
monotone hazard rate, online algorithms with constant competitive ratios can be
obtained under the measures of E[OPT/ALG] and E[OPT ]/E[ALG].

5 Concluding Remark

Design selling mechanisms to maximize the seller’s revenue is well-studied in
the field of economy whereas related research in theoretical computer science
is relatively more recent and ongoing. Many variants of the problem have been
found to be computationally difficult when cast in a realistic setting. The chal-
lenge has been to identify special cases for which a solution can be efficiently
computed while keeping their relevance to real-life situations. Traditional worst
case analyses in which the algorithm designer usually knows nothing about the
future may not match the reality well. Average case analysis of the expected
ratio is a direct measure of performance. This paper is an attempt to model the
real case where the seller has some partial information about the buyers. For
future research, it may be worthwhile to determine which information is critical
and how to fully utilize the partial information to design selling strategies.
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