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Abstract. There is growing interest in bio(logy)-inspired approaches
that are inspired by the principles of biology and that can solve difficult
problems. In this paper, we propose a new computational algorithm that
is inspired by molecular mechanics for the solution of complex problems.
There is a deep and useful connection between mechanics mechanics
and combinatorial optimization. This connection exposes new informa-
tion and allows an unfamiliar perspective on traditional optimization
problems and approaches. The alternative of molecular mechanics algo-
rithm (MMA) to traditional approaches has the advantages of inherent
parallelism and the ability to deal with a variety of complicated social
interactions, autonomous behaviors and multiple objectives.

Keywords: Bio-inspired algorithm, multi-objective optimization, molec-
ular mechanics algorithm (MMA), molecular dynamics.

1 Introduction

Many artifacts have been built throughout history, and many of which obtained
their inspiration from phenomena in the natural world. It is noted that “progress
often occurs at the boundaries between disciplines.” [1] In the field of computer
science, especially in artificial intelligence, there is growing interest in parallel-
distributed intelligent theories and approaches that are inspired by the principles
of nature and that can solve difficult problems. Bio(logy)-inspired approaches are
probably the best known example of such nature-inspired approaches. Success-
ful bio-inspired approaches include Genetic Algorithm (1975) [2], Ant Colony
Optimization (1991) [3, 4], and Particle Swarm Optimization (1995) [5]. There
were also physics-inspired approaches such as Simulated Annealing Algorithm
(1983) [6]. The fields of biology and physics have flourished in a rich soil for
many years. We believe there exist many opportunities for the application of
the principles in biology and physics to computing. This paper proposes a brand
new bio-inspired approach for solving difficult computational problems.
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2 Molecular Mechanics Algorithm (MMA)

The distribution problem is one of those difficult computational problems. The
mathematical structure of the distribution problem is simple. The distribution
problem defined below is a typical NP-hard combinatorial optimization problem.

Definition 1. In a multi-objective framework, the distribution problem can be
formulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max :

zq(R) = (Cq)T X(R)T =

I∑

i=1

J∑

j=1

cq
ijxijrij q = 1, · · · , Q

s.t.
J∑

j=1

rij = 1 i = 1, · · · , I

xij = 0, 1

(1)

where q represents the objective, R is a two-dimensional distribution vector, Cq

is a two-dimensional weight vector (q = 1, 2, · · · , Q), and X is a two-dimensional
Boolean vector.

With this problem model, we can now examine the bio-inspired multi-
objective model which can mathematically describe an MMA. The theory of
evolution behind the model is a dynamical theory.

The bio-inspired dynamics will drive the MMA to its equilibrium state.

Definition 2. The distribution and weight dynamic equations of the MMA are
defined, respectively, by

rij(t + 1) = rij(t) + Δrij(t) (2)

cq
ij(t + 1) = cq

ij(t) + Δcq
ij(t) (3)

The two dynamic equations are seen as the “MMA evolution” by fictitious agents
(molecules) which manipulate the distribution and weight vectors until an equi-
librium is reached. In the MMA, every entry of distribution vector R is treated
as a fictitious agent (molecule). In fact, the weight vector is invariable, and the
evolution of the weight vector only occurs in the computing process in order to
obtain efficient solutions for the distribution vector.

For the fictitious agents—the molecules—there are four factors related to the
evolutionary distribution vector (R) and the weight vector (C):

– personal utility (u) (to realize the multiple objectives);
– whole utility (J) (to increase the overall utility);
– minimal personal utility (P) (to realize max-min fair distribution);
– interaction among the molecules (Q) (to satisfy the restrictions and to de-

scribe high-dimensional, highly nonlinear, random behaviors and dynamics).



Optimization Using a New Bio-inspired Approach 41

We try to solve the distribution problem defined in Definition 1 by subdividing
this hard problem with respect to the four factors. In molecular mechanics,
“energy” makes molecules move. When “energy” is equal to zero, the molecules
will stop moving, being in an equilibrium state. For the MMA, we will define
the “energy” function, which makes fictitious agents (molecules) evolve towards
the optimum or until an equilibrium is reached. The “energy” function is based
on the four factors each of which corresponds to a component of the “energy”
function.

Definition 3. The “energy” function is defined by

Eq
ij(t) = λ1u

q
ij(t) + λ2J

q(t) − λ3P
q(t) − λ4Q

q(t) (4)

where 0 < λ1, λ2, λ3, λ4 < 1 . The larger the “energy” function, the faster the
fictitious agent (molecule) would evolve towards the optimum.

According to “differential equation theory”, a variable’s increment to make it
minimum is equal to the sum of negative items from related factors differentiating
the variable. Because our defined problem is a “maximum” problem, a variable’s
increment to make it maximum is equal to the sum of the items from related
factors differentiating the variable. Thus we have the following definitions.

Definition 4. The increments of distribution and weight are defined, respec-
tively, by

Δrij(t+1) ≈ drij(t)

dt
=

∂Eq
ij(t)

∂rij(t)
=

Q∑

q=1

(λ1

∂uq
ij(t)

∂rij(t)
+λ2

∂Jq(t)

∂rij(t)
−λ3

∂P q(t)

∂rij(t)
−λ4

∂Qq(t)

∂rij(t)
)

(5)

Δcq
ij(t + 1) ≈ dcq

ij(t)

dt
=

∂Eq
ij(t)

∂cq
ij(t)

= λ1

∂uq
ij(t)

∂cq
ij(t)

+ λ2
∂Jq(t)

∂cq
ij(t)

− λ3
∂P q(t)

∂cq
ij(t)

− λ4
∂Qq(t)

∂cq
ij(t)

(6)

q = 1, 2, · · · , Q

Four kinds of factor functions in the “energy” function will be defined here,
respectively.

Definition 5. The individual personal utility function for every agent (molecule)
is defined by

uq
ij(t) = 1 − exp ( −cq

ij(t)rij(t)xij(t)) q = 1, 2, · · · , Q (7)

Definition 6. The whole utility function for every agent (molecule) is defined by

Jq(t) =
I∑

i=1

J∑

j=1

uq
ij(t) q = 1, 2, · · · , Q (8)
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Definition 7. The gravitational potential energy function that makes minimal
personal utility increase for every agent (molecule) is defined by

P q(t) = k2 ln
I∑

i=1

J∑

j=1

exp[−(uq
ij)

2(t)/2k2] − k2 ln IJ (9)

q = 1, 2, · · · , Q

Definition 8. The interaction energy function is defined by

Qq(t) =

I∑

i=1

|
J∑

j=1

rij(t)xij(t) − 1 |2 −
∑

i,j

∫ u
q
ij

0

{[1 + exp(−ζijx)]−1 − 0.5}dx (10)

where ζij represents the intention strength of social coordination.
Now, we explain why the four kinds of functions are chosen.

1. Personal utility function. For the q-th objective, the larger the value of
cq
ij(t)rij(t)xij(t) in Eq. (7), the more profit the (i, j)-th molecule gets. The

optimization problem here is posed as a maximization problem. And we use
the exponential function in order that uq

ij(t) would be between 0 and 1. uq
ij(t)

can be regarded as the q-th dimensional utility of molecule. The larger uq
ij(t)

is, the more profit the (i, j)-th molecule gets. Schematically, the q-th dimen-
sional utility function uq

ij of a molecule corresponds to the q-th dimensional
coordinate of the (i, j)-th molecule’s q-th dimensional force field. We define
the distance from the bottom boundary to the upper boundary of all of the
molecule’s q dimensional force fields to be 1. The biological meaning of the
MMA will be discussed in Section IV. 1 − e−x is chosen as the definition of
uq

ij because 1− e−x is a monotonically increasing function and is between 0
and 1. Obviously, the larger uq

ij(t) the better.
2. Whole utility function. For this definition, we assume that the individual

personal utilities are additive. Obviously, the larger Jq(t) the better.
3. The potential energy function. For Eq. (9), 0 < k < 1 is a parameter to be

tuned in the implementation. The smaller P q is, the better. With Eq. (9),
we attempt to construct a potential energy function, P q, such that the de-
crease of its value would imply the increase of the minimal utility of all the
molecules. We prove that in Theorem 1. This way we can optimize the distri-
bution problem in the sense that we consider not only the individual personal
utility, but also the aggregate utilities, by increasing the minimum utility of
all the molecules again and again. In fact, k represents the strength of the
upward gravitational force in the q-th dimensional force field. The bigger k
is, the faster the molecules would move up; hence, k influences the conver-
gence speed of the distribution problem. k needs to be carefully adjusted in
order to maximize the q objectives.

4. The interaction energy function. For Eq. (10), the first term of Qq(t) is
related to the constraints on capability; the second term involves social co-
ordinations, with ζij coming from Eqs. (11) − (13). If social coordinations
are not involved in the system, ζij will be a constant (e.g., 6 or 8). The first
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term of Qq(t) corresponds to a penalty function with respect to the con-
straint on the utilization of resources. The second term of Qq(t) is chosen as
shown because we want ∂Qq

∂uq
ij

to be a monotonically decreasing sigmoid func-

tion. −{[1 + exp(−ζiju
q
ij)]

−1 − 0.5} is such a function. Therefore we let ∂Qq

∂uq
ij

equal to −{[1 + exp(−ζiju
q
ij)]

−1 − 0.5}. Then ∂Qq

∂uq
ij

is integrated to be Qq.

ζij(t) ↑⇒ ∂Qq

∂u
q
ij

↓⇒ − ∂Qq

∂u
q
ij

↑ (5)⇒Δrij(t + 1) ↑ a⇒ rij(t + 1) ↑ (7)⇒
b

uq
ij ↑

a: rij(t + 1) = rij(t) + Δrij(t + 1);
b: uq

ij is a monotonically increasing function.

ζij(t) =

I∑

l=1

ζilj(t) +

I∑

l=1

ζlij(t) (11)

ζilj(t) =

{
1 if βilj ∈ (II) ∪ (IV )
−1 if βilj ∈ (I) ∪ (III)

(12)

ζlij(t) =

{
1 if βlij ∈ (I) ∪ (IV )
−1 if βlij ∈ (II)∪ (III)

(13)

βilj is the social coordination of agent i with respect to agent l for object j,
which gives rise to the change ζilj(t) of intention strength ζij(t). The social
coordination (βilj) can be divided into four main categories as follows.
– I: Unilateral adaptive coordination
– II: Unilateral inducing coordination
– III:Bilateral adaptive coordination
– IV: Bilateral inducing coordination

We can therefore obtain the iteration speed by the following equation.

vq
ij = duq

ij

/
dt =

∂uq
ij

∂rij

drij

dt +
∂uq

ij

∂cq
ij

dcq
ij

dt

= [λ1 + λ2
∂Jq(t)

∂u
q
ij(t)

− λ3
∂P q(t)

∂u
q
ij(t)

− λ4
∂Qq(t)

∂u
q
ij(t)

]{[∂u
q
ij (t)

∂rij(t)
]2 + [

∂u
q
ij(t)

∂c
q
ij (t)

]2}

vq
ij represents the iteration speed of molecule (i, j) (the (i, j)-th entry of dis-

tribution vector) with respect to the q-th objective. Meanwhile, vq
ij represents

the speed of the upward movement of molecule (i, j) in the q-th dimensional
force field.

After having proposed the mathematical model of MMA, we give the parallel
MMA in Table 1.

Proving the mathematical model of MMA
We now discuss the properties of the mathematical model of MMA as proposed
above.

Theorem 1. If k is very small, decreasing the potential energy function P q(t)
of Eq. (9) amounts to increasing the minimal utility of molecules (entries in
distribution vector R), minimized over R.
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Table 1. Algorithm MMA

g

Input: cq
ij , xij , ζij

Output:

1. Initialization:

t ← 0

rij(t) —Initialize in parallel

2. While (duq
ij/dt �= 0) do

t ← t + 1

uq
ij(t) —Compute in parallel according to Eq.(7)

duq
ij/dt —Compute in parallel according to Eq.(14)

drij(t)/dt —Compute in parallel according to Eq.(5)

rij(t) ← rij(t − 1) + drij(t)/dt

dcq
ij(t)/dt —Compute in parallel according to Eq.(6)

cq
ij(t) ← cij(t − 1) + dcij(t)/dt

Proof. Supposing that H(t) = max
i,j

{−(uq
ij(t))

2}, we have

[exp(H(t)/2k2)]2k2 ≤{
I∑

i=1

J∑

j=1

exp[−(uq
ij(t))

2/2k2]}2k2 ≤ [IJ exp(H(t)/2k2)]2k2
.

Taking the logarithm of both sides of the above inequalities gives

H(t) ≤ 2k2 ln
I∑

i=1

J∑

j=1

exp[−(uq
ij(t))

2/2k2] ≤ H(t) + 2k2 ln IJ.

Since IJ is constant and k is very small, we have

H(t) ≈ 2k2 ln
I∑

i=1

J∑

j=1

exp[−(uq
ij(t))

2/2k2] − 2k2 ln IJ = 2P q(t).

It turns out that the potential energy P q(t) at the time t represents the
maximum of −(uq

ij(t))
2 among all the molecules, which is the minimal personal

utility of entries with respect to an objective q at time t. Hence the decrease of
potential energy P q(t) will result in the increase of the minimum of uq

ij(t). �

Theorem 2. Updating the allotted entries rij and weights cq
ij by Eq. (5) and Eq.

(6) respectively amounts to changing the speed of molecule by vq
ij(t) of Eq. (14).

Proof. Denote the k-th terms of Eq. (5) and Eq. (6) by 〈 drij(t)
dt 〉k and 〈 dcq

ij(t)

dt 〉k,
respectively. When allotted entry rij is updated according to (5), the first and
second terms of (5) will cause the following speed increments of the iteration,
respectively:
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〈duq
ij(t)/dt〉r1 =

∂uq
ij(t)

∂rij(t)
〈drij(t)

dt
〉1 = λ1[

∂uq
ij(t)

∂rij(t)
]2 (14)

〈duq
ij(t)/dt〉r2 =

∂uq
ij(t)

∂rij(t)
〈drij(t)

dt 〉2 = λ2
∂uq

ij(t)

∂rij(t)
∂Jq(t)
∂rij(t)

= λ2

∂uq
ij(t)

∂rij(t)

∂Jq(t)

∂uq
ij(t)

∂uq
ij(t)

∂rij(t)
= λ2

∂Jq(t)

∂uq
ij(t)

[
∂uq

ij(t)

∂rij(t)
]2 (15)

Similarly, the third and the fourth term of Eq. (5) will cause the following speed
increments of the iteration:

〈 duq
ij(t)/dt 〉r3 = −λ3

∂P q(t)
∂uq

ij(t)
[
∂uq

ij(t)

∂rij(t)
]2

〈 duq
ij(t)/dt 〉r4 = −λ4

∂Qq(t)
∂uq

ij(t)
[
∂uq

ij(t)

∂rij(t)
]2

Similarly, for Eq. (6), we have 〈duq
ij(t)/dt〉cq

k , k = 1, 2, 3, 4. We thus obtain

4∑

k=1

[〈duq
ij(t)/dt〉cq

j + 〈duq
ij(t)/dt〉rj ]

= [λ1 + λ2
∂Jq(t)

∂u
q
ij(t)

− λ3
∂P q(t)

∂u
q
ij(t)

− λ4
∂Qq(t)

∂u
q
ij(t)

]{[∂u
q
ij (t)

∂rij(t)
]2 + [

∂u
q
ij(t)

∂c
q
ij (t)

]2} = vq
ij(t)

Therefore, updating r
(k)
ij and (cq

ij)
(k) by (5) and (6), respectively, gives rise to

the speed increment of the iteration that is exactly equal to vq
ij(t) of Eq. (14).

�

Theorem 3. Updating the allotted entries rij and weights cq
ij by Eq. (5) and

Eq. (6) respectively amounts to increasing the minimal utility of an entry with
respect to an objective q in direct proportion to the value of λ3.

Proof. The speed increment of the iteration, which is related to potential energy
P q(t), is given by

〈duq
ij(t)

dt 〉3 = 〈 duq
ij(t)/dt〉r3 + 〈duq

ij(t)/dt〉cq

3 = −λ3
∂P q(t)
∂uq

ij(t)
{[∂uq

ij(t)

∂rij(t)
]2 + [

∂uq
ij(t)

∂cq
ij(t)

]2}.

Denote by 〈dP q(t)
dt 〉 the differentiation of the potential energy function P q(t)

with respect to time t arising from using Eqs. (5), (6). We have

〈dP q(t)
dt 〉 = ∂P q(t)

∂uq
ij(t)

〈duq
ij(t)

dt 〉3 = −λ3[
∂P q(t)
∂uq

ij(t)
]2{[∂uq

ij(t)

∂rij(t)
]2 + [

∂uq
ij(t)

∂cq
ij(t)

]2}
= −λ3ω

2
ij(t)(u

q
ij(t))

2x2
ij(t)[r

2
ij(t) + (cq

ij(t))
2][uq

ij(t)]
2 ≤ 0.

where, ωij(t) = exp[−(uq
ij(t))

2/2k2]/
I∑

i=1

J∑

j=1

exp[−(uq
ij(t))

2/2k2].

It can be seen that using Eqs. (5) and (6) gives rise to monotonic decrease of
P q(t). Then by Theorem 1, the decrease of P q(t) will result in the increase of
the minimal utility of entries in distribution vector R, in direct proportion to
the value of λ3. �
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Theorem 4. The first and second terms of Eqs. (5) and (6) will enable the
personal utility of every entry of distribution R to increase, in direct proportion
to the value of (λ1 + λ2).

Proof. According to Eqs. (15) and (16), the sum of the first and second terms of
Eq. (5) and (6) will be

〈duq
ij(t)/dt〉r1 + 〈duq

ij(t)/dt〉r2 + 〈duq
ij(t)/dt〉cq

1 + 〈duq
ij(t)/dt〉cq

2

=[λ1+λ2
∂Jq(t)
∂uq

ij(t)
]{[∂uq

ij(t)

∂rij(t)
]2+[

∂uq
ij(t)

∂cq
ij(t)

]2}=(λ1+λ2)x2
ij(t)[r

2
ij(t)+(cq

ij(t))
2][−uq

ij(t)]
2

≥ 0.

Therefore, the first and second terms of (5) and (6) will cause uq
ij(t) to mono-

tonically increase. �

Theorem 5. Updating rij and cq
ij by Eqs. (5) and (6) gives rise to monotonic

increase of the whole utility of all the entries of distribution R, in direct propor-
tion to the value of λ2.

Proof. Similar to Theorem 4, it follows that when an entry (i, j) modifies its rij

and cq
ij by Eqs. (5) and (6), differentiation of Jq(t) with respect to time t will

not be negative—i.e., 〈dJq(t)
dt 〉 ≥ 0, and it is directly proportional to the value

of λ2. �

Definition 9. (Max-min Fairness) A feasible distribution R is max-min fair if
and only if an increase of any entries of distribution vector r within the domain
of feasible distributions must be at the cost of an decrease of some already smaller
entries r. Formally, for any other feasible distribution Y , if yij > rij then there
must exist some (i′, j′) such that ri′j′ ≤ rij and yi′j′ < ri′j′ .

Theorem 6. (Max-min fair allocation) Max-min fair solution with multi- ob-
jective can be obtained by updating the allotted entries rij and weights cq

ij by Eq.
(5) and Eq. (6) respectively.

Proof. It is straightforward from Theorems 1–5 and Definition 9. �

Theorem 7. Updating rij and cq
ij by Eqs. (5) and (6) gives rise to monotonic

decrease of the interaction energy Qq(t), in direct proportion to the value of λ4.

Proof. As in the above, we have

〈duq
ij(t)

dt 〉4 = −λ4
∂Qq(t)
∂uq

ij(t)
{[∂uq

ij(t)

∂rij(t)
]2 + [

∂uq
ij(t)

∂cq
ij(t)

]2}; and

〈dQq(t)
dt 〉 = ∂Qq(t)

∂uq
ij(t)

〈duq
ij(t)

dt 〉4 = −λ4[
∂Qq(t)
∂uq

ij(t)
]2{[∂uq

ij(t)

∂rij(t)
]2 + [

∂uq
ij(t)

∂cq
ij(t)

]2} ≤ 0.

Updating rij and cq
ij by Eqs. (5) and (6) makes the interaction energy Qq(t)

smaller and smaller. Thus it is possible to satisfy the restrictions. �

Theorem 8. The MMA can solve the distribution problem defined in Defini-
tion 1.

Proof. It is straightforward from Theorems 6–7. �
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3 Simulation

Because the problem-related matrices are too large to be listed in this paper, we
go directly to the results of these two problems. The experimental evolutionary
results for z from t = 1 to t = 1000 are depicted in Fig. 1.

As shown in Fig. 1, Curve A, at t = 983, z reaches its maximum, and stays
unchanged in the remainder of the iterations; for Curve B, at t = 968, z reaches
its maximum, and stays unchanged in the remainder of the iterations. At the
two points, the MMA converges to a stable equilibrium state and produces the
optimum solutions. The results confirm the usefulness of MMA for large-scale
NP-hard combinatorial optimization problems.

Curve A: Social behaviors not involved

Curve B: Social behaviors involved

Fig. 1. Comparison of z optimization in large-scale problems with social behaviors
involved and not involved

4 Motivation and Biological Meaning of MMA

In the MMA, all the entries in distribution vector R are treated as molecules
which are located in their own force fields. This transforms the distribution
problem into the kinematics and dynamics of the molecules in a set of force
fields. In molecular mechanics, Newtonian mechanics is used to model molecular
systems and force fields are used to calculate the potential energy.

MMA puts emphasis on

– providing a view of individual and whole optimization (with one to two
objectives);

– parallelization with reasonably low time complexity;
– all multiple objectives being optimized individually as well as collectively;
– the ability to deal with social interactions;
– the biological meaning of the model.
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In the biological model of MMA, there are I × J molecules (every entry in
distribution vector R is treated as a molecule), and the same number (I × J)
of force fields. These force fields are evenly distributed in the horizontal plane.
Every molecule moves in its own force field. When the number of optimization
objectives is Q, the force fields of all molecules form Q dimensions where the co-
ordinates in the space are in [0, 1]. In the biological model of MMA, sij represents
molecule (i, j).

If the number of maximum objectives is 1, the molecules will move upwards
on one-dimensional spaces (lines) (u1

ij ∈ [0, 1]) during the optimization process.
If the number of maximum objectives is 2, the molecules will move away from
the origin in two-dimensional spaces (planes) (u1

ij ∈ [0, 1], u2
ij ∈ [0, 1]) during

the optimization process. Analogously, if the number of maximum objectives
is Q, the molecules will move away from the origin in Q-dimensional spaces
(u1

ij ∈ [0, 1], · · · , uq
ij ∈ [0, 1], · · · , uQ

ij ∈ [0, 1]) during the optimization process,
where uq

ij is a coordinate of the q-dimensional space.
Molecules in the MMA move not only under outside forces, but also under

their internal force; hence they are different from molecules in molecular me-
chanics. In fact, the evolution of sij involves two variables—rij, cq

ij . rij and
anyone of cq

ij(q = 1, · · · , Q) are reciprocal dual.
In a force field Fij , the coordinates of the Q-dimensional space of the molecules

represent the utilities with respect to the q-th objective of the entry (i, j) of the
distribution vector R that is described as a molecule. A molecule will be influ-
enced simultaneously by several kinds of forces in the Q-dimensional space, which
include the gravitational force of the Q-dimensional space force field where the
molecule is located, the pulling or pushing forces stemming from the interactions
with other molecules, and the molecule’s own autonomous driving force.

When the number of maximum objectives is 1, that is, a single objective opti-
mization problem, all the above-mentioned forces that are exerted on a molecule
are dealt with as forces along a vertical direction (along a line). Thus a molecule
will be driven by the resultant force of all the forces that act on it upwardly or
downwardly, and move along a vertical direction. The larger the upward resul-
tant force on a molecule, the faster the upward motion of the molecule. When
the upward resultant force on a molecule is equal to zero, the molecule will stop
moving, being at an equilibrium status. As shown in Fig. 2, the molecules move
in their own one-dimensional force fields Fij (lines).

The upward gravitational force of a force field on a molecule causes an upward
component of the motion of the molecule, which represents the tendency that
the molecule pursues the common benefit of the whole. The upward or downward
component of the motion of a molecule, which is related to the interactions with
other molecules, depends upon the strengths and categories of the interactions.
The molecule’s own autonomous driving force is proportional to the degree the
molecule tries to move upwards in its own force field where it is located, i.e., the
molecule tries to acquire its own maximum utility.

When the number of maximum objectives is 2, each molecule moves away
from the origin in its own force field (a unit plane), as shown in Fig. 2.
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Fig. 2. The biological model of MMA for single objective optimization

(a) A 3D global view of MMA (b) Force field Fij

Fig. 3. The biological model of MMA for two objectives optimization

When the number of maximum objectives is Q > 2, each molecule moves
away from the origin in its own Q-dimensional force field. Q-dimensional force
field and Q+1-dimensional biological model of MMA are abstract mathematical
spaces.

One major difference between the molecule of the proposed MMA and the
molecule of a classical biological model is that the molecule in MMA has its
own driving force which depends upon the autonomy of the molecule. All the
molecules, in their own Q-dimensional force fields, simultaneously, evolve under
their exerted forces; as long as they gradually reach their equilibrium positions
from their initial positions which are set at random, we can obtain a feasible
solution to the multiple objectives distribution problem.

There are three main components of the MMA biological model. We call them
as “skeleton”, “muscle” and “blood”.

Molecules motion——————————————–skeleton
How to move (mathematical model of MMA)———muscle
Energy (energy function) ———————————-blood
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In summary

– Every entry in distribution vector R is treated as a molecule.
– In Section II, we defined some concepts in kinematics and dynamics based

on both biology ideas and our optimization problem.
– We defined energy function as

Energy = personal utility kinetic energy

+ whole utility kinetic energy

+ max-min fair gravitational potential energy
+ interaction potential energy

It is difficult to say which one occurred to us earlier: the idea of the mathe-
matical model of MMA or the idea of the biological model. We found inspiration
in and a foundation from molecular mechanics, leading to the proposal of the
mathematical model of MMA. Both the mathematical model and the biological
model have a system of their own. There are the correspondences between them.

5 Conclusion

In this paper, we propose a novel Molecular Mechanics Algorithm (MMA) as
a new branch of nature-inspired algorithms for solving multi-objective NP-hard
combinatorial optimization problems. The MMA is inspired by the biological
model of molecule dynamics. The approach maps a given combinatorial optimiza-
tion problem to the motion of molecules in the corresponding multi-dimensional
force fields. The molecules move according to certain rules defined by a mathe-
matical model until arriving at a stable state; subsequently, the solution of the
multi-objective combinatorial optimization problem is obtained by anti-mapping
the stable state. We have discussed the mathematical model, algorithm, moti-
vation, biological model, and the experiments of the MMA in detail.

The MMA can work out the theoretical optimum solution, which is important
and exciting. We have given the theoretical proofs and experiments to verify this
key point.

Although there are many differences between molecules in molecular mechan-
ics and those in the MMA, we have shown that being inspired by molecular
mechanics, the MMA enables feasible multi-objective optimization in very large
scales. The MM approach can work out the theoretical optimum solution and
has a low computational complexity, which is crucial for the functioning of large-
scale NP-hard combinatorial optimization problems.
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