
1

Offloading Interrupt Load Balancing from SMP
Virtual Machines to the Hypervisor

Luwei Cheng, and Francis C.M. Lau, Senior Member, IEEE

Abstract—Cloud computing increasingly leverages SMP virtual machines (VMs) to host multi-threaded applications. Interrupt
balancing as a problem becomes more challenging because VMs are subject to the hypervisor’s scheduling. Since the scheduling
delays are typically tens of milliseconds, when they are added to one VM’s interrupt delivery, they can seriously degrade the VM’s I/O
performance. Traditional balancing techniques are designed for dedicated environments, which cannot work well in virtualized
environments because VMs are disallowed to directly control the hardware in many cases. In this paper, we present hBalance, a very
simple approach to offload interrupt load balancing from SMP-VMs to the hypervisor. To accelerate the interrupt processing, our
approach does not require shortening the hypervisor’s scheduling time slice, but dynamically redirects interrupts from preempted
virtual CPUs to running ones in a balanced manner. hBalance supports both Fully Virtualiized (FV) guests and Para-Virtualized (PV)
guests, and exhibits high portability among various hypervisors. With our prototype implementation in Xen, the experimental results
with both micro-level and application-level benchmarks show that hBalance significantly improves SMP-VMs’ I/O performance while
introduces moderate overhead.

Index Terms—SMP Virtual Machines, Interrupt Load Balancing, I/O Performance

F

1 INTRODUCTION

Cloud platforms adopt VMs to provide on-demand com-
puting services. To improve hardware resource utilization,
independent workloads are often consolidated in the same
machine using VMs. As multi-core computer systems be-
come prevalent, SMP-VMs have been widely deployed to
exploit their inherent parallelism to cope with heavy work-
loads. One useful feature of SMP-VMs is the ability to adapt
to the changing resource demand. For example, when the
workload increases, an SMP-VM can expand its computing
capability by running on dedicated cores; while during
off-peak periods, it can be simply consolidated with other
VMs. In this consolidated environment, I/O performance is
critical for communication-intensive applications.

To guarantee I/O performance, interrupts must be
served as soon as possible. Interrupt processing in physical
SMPs typically includes two stages: (1) when a core receives
an interrupt, it must suspend the current task to fetch the
data from the I/O device to the kernel stack; (2) after
the data is passed to the user space, a number of child
threads may be created or waked up by the correspond-
ing application to process the data. This is true of many
web server applications: in Apache HTTP server, which
is a multi-process multi-threaded application, the daemon
listens to a TCP port and after receiving a new request,
it will spawn a copy of itself to process the request while
the parent goes back to listening. Since each child inherits
almost everything from its parent (e.g., memory address
space, global variables, binary code and loaded libraries),
initially they run on the same core. Regarding virtual SMP

Luwei Cheng is now at Facebook (email: chengluwei@fb.com); Francis C.M.
Lau is with the Department of Computer Science, the University of Hong Kong
(HKU), (e-mail: fcmlau@cs.hku.hk). This work was partially done during
Luwei Cheng’s PhD study at HKU.

pCPU0 pCPU1 pCPU2 pCPU3

Hypervisor

vCPU1

vCPU0

vCPU2 vCPU

vCPU vCPU

vCPU

vCPU

vCPU3 vCPU vCPU vCPU

hardware interrupts virtual interrupts

vCPU1 vCPU0 vCPU2 vCPU3

. . .

spawn

child
threads

migration

Fig. 1: In a virtualized system, the hypervisor translates
hardware interrupts into virtual interrupts, and one pCPU
is often time-shared by several vCPUs.

systems, the scenario is similar but starts to deviate when
the hypervisor takes over the hardware and multiplexes
the underlying resources among different VMs. Figure 1
clearly shows this difference: when there are multiple virtual
CPUs (vCPUs) running on one physical CPU (pCPU), vCPU
preemption is usually inevitable; such scheduling delays
can seriously affect the timeliness of interrupt processing.

In a dedicated environment, to amortize the overhead
of the first stage, the OS either relies on hardware chipsets
to automatically distribute the interrupts to different cores,
or adopts a user-level daemon (e.g., irqbalance [1] in Linux)
to periodically change the interrupt-receiving core. To bal-
ance the spawned threads in the second stage, the process
scheduler takes the role to migrate them among different
cores. However, in a virtualized environment, the problem
is more complicated in that hardware interrupts are served by
the hypervisor which manages all the native device drivers,
and VMs see and process only virtual interrupts. Therefore,
the need for load balancing exists in three levels: hardware
interrupts, virtual interrupts and the spawned threads.

Take Xen [11] for example, hardware interrupts are bal-

2

anced by the driver domain (dom0) which is out of any
guest VM’s concern (§2 has more details). As dom0 often
runs on dedicated pCPUs, it is similar to a dedicated en-
vironment. However, for virtual interrupts, traditional OS-
level methods are suboptimal in several aspects. First, vCPU
preemption is totally transparent to VMs; if an interrupt is
routed to a waiting vCPU, it will not be seen by the SMP-
VM until that vCPU gets scheduled again. Second, since
the newly created threads have many things in common
with their parent, the process scheduler would tend to
retain them on the same core as long as possible in order
to maximize the CPU cache effect; this is different from
exec() in which the child is replaced with another program,
and the kernel will try to migrate the child to another
core for load balancing because it has the smallest effective
memory and cache footprint. Third, the process scheduler
may attempt to use as fewer cores as possible, assuming
that idle cores can stay in sleep mode to save power (§3 has
more details); however, this assumption is not true for VMs
because power is managed by the hypervisor which sits on
the physical CPUs; on the other hand, as the hypervisor
scheduler treats all vCPUs of an SMP-VM equally when
allocating CPU quota, imbalanced load potentially causes
wasted resources.

We observe that the vCPUs of an SMP-VM are mostly
scheduled independently in each pCPU’s run queue, so it is
very likely that when one vCPU is waiting, some other is
already running. Therefore, if interrupts can be dynamically
migrated from preempted vCPUs to running ones: (1) they
can be processed immediately; (2) no vCPU context switch
will occur. In our prior work, we propose an OS-level
solution called vBalance [13] to migrate virtual interrupts
within the guest. However, this approach only works for
PV guests, without any support for FV guests; besides,
its portability is also very limited. In this paper, we argue
that the hypervisor is actually at a vantage point to balance
I/O for SMP-VMs, because it knows exactly about each
vCPU’s runtime scheduling state. To this end, we propose
hBalance to offload such functionality from the guest OS to the
hypervisor. Our new design is based on two representative
interrupt delivery models: virtual APIC, adopted by most
hypervisors; and event channel, introduced by Xen’s PV
technology. For APIC-based guests, hBalance simply reuses
its logical destination mode, requiring no modifications to
the OS; regarding PV guests, we introduce OS-specific event
channel, which decouples I/O pertaining to a specific vCPU
so that all vCPUs can process the virtual interrupts (more de-
tails are in §4). At the core of hBalance, a scheduling-aware
routing algorithm is proposed to avoid vCPU scheduling
delays as much as possible. We also optimize the current
proportional-share scheduler for SMP-VMs, making it more
I/O-friendly by periodically compensating vCPUs that have
served I/O on behalf of the whole SMP-VM.

We have implemented a prototype of hBalance in Xen
4.2.2. The experimental results show that hBalance signifi-
cantly reduces I/O latency and improves I/O throughput.
In the SPECWeb tests, hBalance improves throughput by
48.1% for a FV guest and 15.5% for a PV guest, while re-
ducing average response times by 48.5% and 64.2% respec-
tively. Such benefit is obtained without shortening the vCPU
scheduling time slice, but by appropriately routing virtual

interrupts. When the current targeted vCPU is preempted,
in the FV tests there are over 60% of cases where hBalance
can find another running vCPU to receive virtual interrupts;
in the PV tests, such preemption-free opportunities are
above 80%. hBalance introduces acceptable overhead: only
about 18% extra vCPU context switches in the FV tests and
less than 50% in the PV tests.

The remainder of the paper is as follows. §2 makes
plain the interrupt delivery procedures in SMP-VMs. §3
discusses the limitations of existing solutions. §4 introduces
the principles and algorithms of our hBalance. We present
the prototype implementation details in §5. Our solution is
evaluated in §6. §7 discusses the related work. We conclude
our work in §8.

2 BACKGROUND

To understand how interrupts are delivered in virtualized
environments, in this section, we detail two typical models
for SMP-VMs: (a) “virtual APIC” model, which is broadly
implemented in Xen [11], KVM [22], VMware [37] and
Hyper-V [9] to support unmodified FV guests; (b) “event
channel” model, which is specific to Xen’s PV technology.
Since Xen includes both models, in Figure 2, we use it as an
example to illustrate their differences.

Xen provides basic mechanisms for its upper-layer do-
mains, such as CPU proportional sharing, memory sharing
and I/O device emulation. Hardware interrupts from I/O
devices first arrive at the physical IOAPIC (pIOAPIC) which
is responsible to redirect the signal to a physical Local
APIC (pLAPIC) via the connected interrupt pin1. After that,
the so-called driver domain which contains the real device
driver2, will process the interrupts in step 1. The requests are
then forwarded to the targeted VM’s virtual devices (fully-
virtualized or para-virtualized).

2.1 Virtual APIC
To support FV guests, the hypervisor needs to present a
similar interrupt processing architecture to VMs as that in
dedicated environments. Xen adopts QEMU [12] to emulate
I/O devices. Once the QEMU thread receives a virtual
interrupt in step 2, it will invoke the VM’s virtual IOAPIC
(vIOAPIC). Depending on how the guest OS configures
vIOAPIC, the interrupt will be injected into a certain virtual
Local APIC (vLAPIC) in step 3. If the targeted vCPU runs
on another pCPU, which is very likely because the driver
domain often runs on dedicated pCPUs to guarantee I/O
efficiency, Xen will send an IPI (Inter-Processor Interrupt)
to let the remote pCPU trap into the hypervisor. Finally in
step 5, the hypervisor scheduler will determine whether or
not the targeted vCPU should get scheduled to process the
interrupt.

Virtual APIC is commonly implemented according to the
Intel 82093AA chipset specification [6]. Basically, there are
two fields in the I/O redirection table (IOREDTBL) dictating

1. Modern PCIe devices are not pin-based, but use in-band MSI/MSI-
X to directly interact with pLAPIC, bypassing pIOAPIC.

2. It is worth noting that some other hypervisors like VMware’s
ESX(i) contain device drivers as components (called VMkernel) [7], so
sometimes the driver domain is also considered a secondary part of
Xen hypervisor.

3

vCPU vCPU

…

vCPU

IPI

Frontend

PIRQ

FV guest PV guest

interrupts

vLAPIC

Unmodified

device drivers

inject the
interrupt

Driver domain

set event
pending Xen

vLAPIC

vCPU vCPU

vIOAPIC

sched

sched

…

1

3
3

4

5

5
Event channel

vCPU

Native drivers

pIOAPIC

2

Virtual devices

(QEMU or Backend)

pCPU pCPU pCPU

pLAPIC pLAPIC pLAPIC

pCPU

pLAPIC

Fig. 2: Xen adopts virtual APIC to support FV guests and
event channel to support PV guests.

how an I/O interrupt should be routed: destination mode and
delivery mode. Figure 3 shows the options for the two modes.
When physical destination mode is used, the interrupt will be
delivered to one predefined core, regardless of the delivery
mode; the guest OS also disables the other cores to serve
this interrupt, and if accidentally another core receives this
interrupt, it will be viewed as spurious and then discarded.
When the destination mode is logical, more than one core
would be allowed to receive this interrupt: in Fixed delivery
mode, the interrupt will be broadcasted to all cores listed
in the destination filed of IOREDTBL; in Lowest Priority
delivery mode, the interrupt will be delivered to the core
that has the lowest “task priority” at the moment, resulting
in a round-robin (RR) fashion in practice. Linux does not
use the Fixed delivery mode, as the broadcast operation is
too expensive and also unnecessary.

2.2 Event Channel
Xen’s PV technology uses event to abstract interrupt, and
introduces a split-driver model for I/O communication: a
frontend residing inside the guest OS communicates with its
backend counterpart in the driver domain. Upon receiving
data, the backend will put the data in the shared memory
for the frontend to retrieve, and then notify a predefined guest
vCPU via an event channel in step 2. For the notified vCPU,
it will receive a pending event in step 3. Similarly in steps
4 and 5, after an IPI, the hypervisor will determine whether
the targeted vCPU should be scheduled or not to process
the event.

By comparison, Xen’s event channel is actually another
form of the physical destination mode of virtual APIC: each
event channel is statically bound to one vCPU, while the
other vCPUs are disallowed to see this type of event. For
an SMP-VM, if the hypervisor redirects the event to another
vCPU, the event cannot be processed because it has been
masked out for the other vCPUs by the guest kernel. In
the current implementation, all I/O events are delivered to
vCPU0 by default, and this mapping can only be changed
by the guest OS. For UniProcessor (UP) VMs, it makes
no difference because all interrupts are bound to the only

Destination Mode Delivery Mode

Physical Logical Fixed LowestPrio

Fig. 3: Intel IOAPIC uses the above two modes to deter-
mine how an I/O interrupt should be routed. It should be
noted that in the delivery mode, there are other options
(SMI, NMI, INIT and ExtINT) which are not used for I/O
interrupts.

vCPU; but for SMP-VMs, virtual APIC is apparently more
flexible because it allows multiple vCPUs to serve I/O in
the logical destination mode.

3 PROBLEMS

3.1 Physical mode or Logical mode

In physical SMP systems, the RR routing of the logical
destination mode can cause performance problems in some
scenarios, because the change of the targeted core of every
interrupt will reduce the CPU cache effect. Take network
I/O for example, when one interrupt arrives, IOAPIC di-
rects it to one of the cores; and next time, the interrupt
will be directed to yet a different core; as a result, two
different cores will work with the same TCP connection
and both of them have to fetch its content into their own
caches. As such, IOAPIC’s RR routing is usually disabled
by setting the interrupt’s CPU affinity, resulting in the same
effect as that in the physical destination mode. To achieve
load balancing, Linux makes use of irqbalance [1] software
daemon to periodically migrate interrupts from overloaded
cores to underloaded cores, in a coarse-grained manner (e.g.,
every 10 seconds).

In virtualized SMP systems, irqbalance is still recom-
mended to balance hardware interrupts in the driver domain
when it runs on dedicated pCPUs [8]. But for guest domains,
since there are often several vCPUs sharing one pCPU,
vCPU scheduling delays are unavoidable. If the targeted
vCPU has been preempted when an interrupt comes, I/O
processing will be delayed, by typically 10× milliseconds
(the default scheduling time slice is 30ms in Xen [5] and
50ms in VMware ESX(i) [10]). Due to the semantic gap,
the guest OS has no knowledge of each vCPU’s runtime
state; therefore irqbalance has no way to properly respond to
VM scheduling delays. Besides, its second-level IRQ remap-
ping interval is also incapable to react timely to a vCPU’s
millisecond-level preemption.

In conclusion, the logical destination mode allows mul-
tiple cores to serve I/O, which is a useful feature, but its
RR routing is not so desired; the physical destination mode
plus irqbalance can effectively balance the interrupts when
pCPUs are dedicated to vCPUs, but this combination is less
effective when one pCPU is time-shared by multiple vCPUs.

3.2 Task Balancing in the Guest OS

To efficiently utilize CPU cycles in multi-core systems,
contemporary OSes use per-core runqueues to schedule
tasks, and tasks are dynamically migrated across different
cores for load balancing. Take Linux’s process scheduler

4

vCPU vCPU …

I/O events in hBalance All events in Xen

vCPU vCPU …

OS-specific

Event Channel

vCPU-specific

Event Channel

Fig. 4: For Xen’s PV guests, we extend I/O events to be
OS-specific, while the other vCPU-specific events are not
affected.

(CFS) for example, task migration happens typically in three
situations: (1) when one core goes idle, it will attempt to
pull a task from the busiest runqueue if the average idle
period is larger than the cost of migrating a task; (2) when a
task wakes up or a new task is created, runqueue selection
will consider the overall task balance of the system; (3)
a periodic attempt will be made to balance the current
scheduling domain if it has not been balanced for longer
than a predefined time interval. However, there are also
constraints on migrating tasks. In particular, the balancer
resists migrating cache-hot tasks, and one task is prone to
be scheduled on a particular core for as long as possible.
Besides, power saving has also been taken into account: if
tasks can be consolidated on fewer cores when the system is
not heavily loaded, idle cores can enter low-power states
[32]. In the scenario of Apache web server as shown in
Figure 1, we observe that child threads are largely running
on the interrupt-receiving core, while the other cores are
much less loaded.

In virtualized environments, the above balancing strate-
gies cannot work effectively in several aspects. First, the un-
derlying pCPU topology is usually invisible to the guest OS;
adding to the complication, one vCPU can be occasionally
relocated to a different pCPU by the hypervisor scheduler
for global load balancing. Second, power management is in
fact an onus on the hypervisor which dictates the hardware
(e.g., xenpm module in Xen), out of any VM’s concern.
Third, from the perspective of an SMP-VM, since each vCPU
only gets a portion of CPU cycles in each allocation period,
to better utilize the limited resource, it is more desired
to spread the tasks across all vCPUs rather than using
as fewer as possible. Lastly, Linux kernel relies on each
core’s historical utilization to determine whether the core
has ever been overloaded or not; but when multiple vCPUs
time-shares one pCPU, the measurements are not accurate
so the kernel is unable to correctly estimate each vCPU’s
utilization, making CFS fail to migrate many tasks.

4 SOLUTION

We propose hBalance, a shim layer residing in the hypervisor
to balance interrupt workloads for SMP-VMs, in a very
simple but effective way. Our solution supports both FV
guests and PV guests, and has very high portability among
various hypervisors.

vCPU0 vCPU2 vCPU3 vCPU1

vCPU scheduler

Runtime info

hBalance interrupt router

Dynamic routing in hBalance

Guest OS (FV or PV)

pCPU0 pCPU1 pCPU2 pCPU3

Hypervisor

vCPU1

vCPU0

vCPU2 vCPU

vCPU vCPU

vCPU

vCPU

vCPU3 vCPU vCPU vCPU

pCPU0 pCPU1 pCPU2 pCPU3

Hypervisor

vCPU1

vCPU0

vCPU2 vCPU

vCPU vCPU

vCPU

vCPU

vCPU3

vCPU vCPU

vCPU

. . .

spawn

. . .

spawn

Child

threads

T1 T2

vCPU positions at time T1 vCPU positions at time T2

Fig. 5: hBalance dynamically routes virtual interrupts from a
preempted vCPU to a running one. In this way, the spawned
child threads would not crowd into a single interrupt-
receiving vCPU.

4.1 Basic Principles

4.1.1 Enable the Flexibility – Decouple I/O from vCPU
In SMP systems, some interrupts are generated for specific
CPUs, which cannot be redirected to elsewhere. For instance,
periodic timer interrupts are generated for the local core
to create timed events for many kernel services; perfor-
mance monitoring interrupts report runtime information of
the local core, which are critical for performance profiling
tools; IPIs are largely used to wake up processes on remote
CPUs, to pull a process remotely in an effort to spread the
workload, and to synchronize the cache and the memory
management unit between CPUs.

In contrast, interrupts from external I/O devices do not
have bias towards a particular CPU; therefore they are OS-
specific rather than CPU-specific. However, recall the two
representative interrupt delivery models mentioned in §2,
in vAPIC’s physical mode and Xen’s PV event channel,
virtual interrupts are forcibly delivered to one predefined
vCPU, preventing the hypervisor from redirecting them
to other vCPUs. To be not bound by this limitation, with
vAPIC, hBalance simply reuses logical mode’s flexibility;
with Xen’s event channel, we introduce OS-specific event
channel which allows every vCPU to access it, as shown in
Figure 4. In this way, the hypervisor gains full flexibility to
select vCPUs when delivering virtual interrupts, regardless
of the VM’s type. Note that our OS-specific event channel
will not introduce contentions between different vCPUs,
because microscopically one I/O interrupt is set as pending
to only one vCPU at a time, therefore the guest OS will
never observe two vCPUs accessing the same event channel
simultaneously.

4.1.2 Offload the Responsibility – In-hypervisor Virtual In-
terrupt Routing
With the routing capability enabled in the above, inter-
rupt balancing can be offloaded from the guest OS to the
hypervisor. The rationality behind our design is that: it
is the hypervisor rather than the guest OS that schedules
vCPUs, and virtual interrupts are initiated by the hypervisor
and then applied to the guest OS. The hypervisor thereby
has all the smartness to optimize the interrupt routing
policies. Since interrupt redirection is totally transparent
to VMs, the guest OS does not need to instrument each
IRQ’s CPU affinity. Furthermore, when interrupts are evenly

5

Y&38�VFKHGXOHU�

Y&38�

UHPDSSHU�

,�2�LQWHUUXSW�

Y&38�VFKHGXOHU�

Y&38�Y&38�

LQWHUUXSW�URXWHU�

hypercall

«�

«�
5XQWLPH�LQIR�

,54�VWDWV�

Y&38�

7KH�DUFKLWHFWXUH�RI�Y%DODQFH� 7KH�DUFKLWHFWXUH�RI�K%DODQFH�

,�2�LQWHUUXSW�

Y&38�

Y&38�

S&38� S&38� S&38� S&38�

+\SHUYLVRU�

Y&38�

Y&38�

Y&38� Y&38�

Y&38�Y&38�

Y&38�

Y&38�

Y&38�Y&38� Y&38�Y&38�

5XQQLQJ�

:DLWLQJ�

5XQWLPH�LQIR�

*XHVW�26�

�)9�RU�39��

+\SHUYLVRU�

*XHVW�26�

�39��

+\SHUYLVRU�

previous interrupt target

Fig. 6: vBalance [13] is a cross-layer design to migrate interrupts in the guest OS kernel, which is only applicable to PV
guests. By comparison, hBalance offloads such functionality from the guest OS to the hypervisor, supporting both FV and
PV guests.

TABLE 1: Hypervisor-level balancer is apparently more generic and neater than OS-level balancer.

VM support Interrupt migration Guest-hypervisor shared data Interrupt load balancing
vBalance PV only Use hypercall to sync vCPU’s scheduling status Use IRQ statistics in the guest OS
hBalance FV and PV Directly in the hypervisor Shareless Scheduling-aware interrupt routing

distributed at the millisecond time granularity, the child
threads triggered by interrupts can be uniformly created
on all vCPUs as shown in Figure 5, without completely
counting on the process scheduler to balance them. This is
more efficient than to migrate the threads after they have all
been spawned on one vCPU as shown in Figure 1. This way,
we do not need to modify the process scheduler, which is
not possible for commodity OSes and likely also lacks the
general applicability for other scenarios.

4.1.3 hBalance vs. vBalance
Without the above two principles, as a comparison, our
previous work vBalance [13] has to migrate interrupts within
the guest OS. This is because Xen’s vCPU-specific event
channel forbids the hypervisor to redirect I/O events, so the
guest OS has to perform this duty. To obtain each vCPU’s
scheduling status, vBalance requires the hypervisor to pass
such runtime information to the guest space, using an
additional communication channel. This OS-level method,
however, has many limitations. First, it is tightly coupled
with Xen’s PV implementation, leaving all FV guests (which
are more widely deployed) unsupported. Second, when
vBalance remaps an interrupt to another vCPU, the guest OS
must trap into the hypervisor to synchronize this change, via
a hypercall. Although hypercall has been optimized to be
very light-weight, it still incurs certain CPU overhead when
it happens too frequently, e.g., every 10×ms as introduced
by VM scheduling delays. More importantly, this approach
has no portability for other hypervisors.

In contrast, hBalance is in-hypervisor so it can directly
access all vCPUs’ runtime information. Figure 6 illustrates
the primary differences between hBalance and vBalance.
hBalance requires no interactions between the guest OS and
the hypervisor. This feature is important in that FV guests
would not allow any modification to the OS kernel. Even
for PV guests, with the use of the OS-specific event channel,
no hypercall will be involved when interrupt migration
happens. All these advantages are obtained by just enabling
the routing flexibility in the hypervisor. Despite its simplic-
ity, it is very powerful to unlock the performance. Table 1
summarizes the advantages of hypervisor-level balancer

over OS-level balancer. From the perspective of the design
and implementation, hypervisor-level solution is obviously
a much simpler approach.

4.2 Components

4.2.1 Scheduling-Aware Interrupt Routing
To balance I/O interrupts, hBalance does not rely on vCPUs’
IRQ statistics, which is unavailable in the hypervisor and
also too heavy-weight to implement. Instead, we adopt a
statistics-free method by circularly delivering interrupts to
all vCPUs. The details are described in Algorithm 1. Each
time when the current vCPU is preempted, hBalance will
select a new target starting from the one that is logically
next to the current one. In this way, all vCPUs are treated
equally.

Compared with the RR routing of IOAPIC’s logical des-
tination mode, which changes the targeted vCPU for ev-
ery interrupt, hBalance is different in two ways: (1) small
batching: interrupts will not be redirected to another vCPU
until the current vCPU has used up its time slice so that
the system can be used more effectively by maintaining the
cache effect; (2) when interrupts have to be migrated, hBal-
ance will try selecting a vCPU that has unused CPU quota
rather than in the native RR way. Specifically, hBalance will
find a running vCPU first so that no vCPU context switch
will be introduced; if there are no running vCPUs, a blocked
vCPU will be considered as a second choice. Although both
blocked and waiting vCPUs need to be rescheduled to pro-
cess interrupts, blocked vCPUs serve better for load balance
in that a vCPU stays in blocked state primarily because it has
no tasks running and thereby voluntarily yields CPU control
to the hypervisor; in contrast, a waiting CPU still has tasks in
need of CPU cycles. There is also a concern about resource
utilization: if a blocked vCPU cannot be woken up to use
up its quota within the resource refill interval, the unused
allocation will be consumed by other co-located vCPUs
without reimbursement in the future. When all vCPUs of
the SMP-VM are in waiting state, hBalance simply selects
the current vCPU’s logical neighbor to balance the load.
hBalance allows a blocked or waiting vCPU to preempt the

6

Algorithm 1: Scheduling-Aware Interrupt Routing
Data: N , the number of vCPUs of the SMP-VM;

run bitmap, all running vCPUs at the moment;
blk bitmap, all blocked vCPUs at the moment;
int.cur vcpu, the current notified vCPU;
int.nxt vcpu, the next notified vCPU;

for each virtual interrupt “int” of the SMP-VM do
if int.cur vcpu is waiting in the runqueue then

/* Redirect the interrupt */
k = int.cur vcpu.id;
if run bitmap != 0 then

/* Select a running vCPU */
Search from (k + 1)th bit of run bitmap, find
the first marked bit, j;
int.nxt vcpu.id = j;

else /* Wake up a blocked vCPU */
if blk bitmap != 0 then

Search from (k + 1)th bit of blk bitmap,
find the first marked bit, j;

else /* All are waiting, let the
neighbor balance the load. */

j = (k + 1)%N ;
end
int.nxt vcpu.id = j;
if the SMP-VM has unused quota then

int.nxt vcpu.priority = HighestPrio;
end

end
int.cur vcpu← int.nxt vcpu;

end
Inject the virtual interrupt into int.cur vcpu;

end

current running vCPU, but only when the whole SMP-VM
still has unused quota. In this way, CPU fairness between
different VMs will not be compromised.

For cache effectiveness, when a schedulable entity (ei-
ther a task or a vCPU) begins to run on a physical CPU,
in practice, the cache becomes hot in around 1ms. For
example, Linux CFS scheduler sets this value to 0.5ms
(in sysctl_sched_migration_cost), while Xen’s credit
scheduler adopts 1ms (in vcpu_migration_delay). In
our scenario, since interrupts are migrated at the same
pace with that of vCPU preemption, we believe cache ef-
fectiveness can be maintained in the same degree with the
hypervisor scheduler.

4.2.2 I/O-Friendly CPU Quota Allocation

Cloud computing features a pay-per-use usage model where
the service level is priced by the provided resources. For
CPU resources, proportional share (PS) based schedulers
have been largely implemented to allocate CPU cycles, such
as Xen’s credit scheduler [5], KVM’s CFS scheduler [35] and
VMware’s stride scheduler [38]. Based on each VM’s given
share, all VMs periodically receive certain quota from the
hypervisor scheduler, and inter-VM fairness is ensured in
this level. For an SMP-VM with N vCPUs, since commodity
OSes typically assume that all cores have identical comput-
ing power, to create this symmetric illusion, the hypervisor
scheduler simply divides the VM’s quota into equal shares:

Quota(vcpui) + =
new quota

N
(0 ≤ i < N) (1)

Algorithm 2: I/O-Friendly CPU Quota Allocation
Data: N , the number of vCPUs of the SMP-VM;

new quota, the VM’s allocation in each quota refill
period;

for every quota refill period do
/* Aggregate all remaining quota */

Quota(smp-vm) =
∑N−1

i=0 Quota(vcpui);
for each vCPU of the SMP-VM do

/* Rebalance: make all vCPUs have the
same quota at the end */
Quota(vcpui) =

1
N
(Quota(smp-vm)+new quota);

end
end

This simple scheme, however, could potentially cause
inter-vCPU unfairness, because the quota may not be
equally utilized by all vCPUs. Note that in virtual APIC’s
physical destination mode and Xen’s event channel, I/O
interrupts are bound to only one vCPU (vCPU0 by default).
The incurred interrupt receiving overhead can sometimes
dominate the CPU consumption of the whole SMP-VM. As
a result, the vCPU (vcpui) that has served I/O would have
much less quota than other vCPUs (vcpuj):

Quota(vcpui)� Quota(vcpuj) (0 ≤ i, j < N) (2)

With the resource allocation scheme in Equation 1, the
quota imbalance between vCPUs will carry over to every
next refill period. As a result, the vCPU with fewer quo-
tas will get fewer opportunities to run. Worse still, if an
upper bound is set for the VM (e.g., “cap” mechanism in
Xen’s credit scheduler or “CPU bandwidth limit” in Linux
CFS), the I/O-bound vCPU will be throttled much earlier
than other vCPUs, introducing extra delays to interrupt
processing. On the other hand, if one vCPU has received too
many credits which exceed a predefined upper bound, the
excess will be automatically deducted, resulting in wasted
allocation for the whole SMP-VM.

Although this problem is less severe when virtual in-
terrupts can be fairly distributed to all vCPUs, the vCPU
in question actually performs I/O on behalf of the whole
SMP-VM, so it is unfair to charge all the consumption to
only one vCPU. In our new allocation scheme described in
Algorithm 2, in every quota refill period, we rebalance the
quota among all vCPUs. By compensating the vCPU which
has served I/O in the passed period, the interrupt receiving
overhead is implicitly charged to all vCPUs at a very fine-
grained time interval. In the long run, this method will not
compromise vCPU fairness because virtual interrupts have
been uniformly distributed.

Alternatively, one would be tempted to try assign-
ing CPU quota asymmetrically, e.g., giving the interrupt-
receiving vCPU (vCPU0) more CPU quota so that fewer
scheduling delays happen to it. However, we find this
approach can bring serious starvation to the other vCPUs,
which causes the kernel to hang quickly. In Linux, there
are many per-CPU services that must be alive, such as
the scheduling queue and various kernel threads. Simply
asking the hypervisor to starve one vCPU will make all
these services stall unexpectedly.

7

5 IMPLEMENTATION

We have implemented a prototype of hBalance in Xen 4.2.2.
For FV guests, we do not make any modification to the guest
OS. For PV guests, Linux 3.10.0 is slightly modified to use
the OS-specific event channel.

5.1 Modifications to Xen Hypervisor
Virtual APIC for FV Guests. Virtual interrupts are deliv-
ered in the function vioapic_deliver(). With the logical
destination mode, if the LowestPrio delivery mode is used,
the function vlapic_lowest_prio() will compare PPR
(Processor Priority Register) values of all vCPUs to select the
vCPU that currently has the lowest task priority. hBalance
replaces this selection algorithm with Algorithm 1. If the
Fixed delivery mode is used, a virtual interrupt will be
injected into all vLAPICs. This is very costly because every
vCPU will be kicked by the hypervisor scheduler, resulting
in many expensive guest-hypervisor switches (i.e., VMExit
instruction in Intel-VT platform). In fact, only one vCPU
needs to execute the interrupt handler, so it is unnecessary
to bother all vCPUs. Even in non-virtualized environments,
Linux does not support the use of the Fixed delivery mode.
To this end, hBalance disables this broadcast operation and
just kicks the vCPU selected by Algorithm 1. After that,
the function ioapic_inj_irq() will inject the interrupt
into the targeted vCPU. Finally, the corresponding bit of
IRR (Interrupt Request Register) is set in the function
vlapic_set_irq(). In order to record vCPU ID of the
current interrupt receiver, a new variable notify_vcpu_id
is added to struct hvm_irq.

Event Channel for PV Guests. Xen categorizes “event”
into four types: (1) PIRQs, used by the driver domain to
send and receive hardware interrupts; (2) IPIs, for inter-
vCPU communication; (3) VIRQs, typically used for per-
vCPU events such as local timers; (4) inter-domain noti-
fications, driven by frontends and backends. I/O events of
guest domains are all of inter-domain type, so we do not
need to explicitly differentiate them from other events. Our
interrupt routing algorithm is implemented as a subfunction
called by the function evtchn_send().

Hypervisor Scheduler. When migrating interrupts in
Algorithm 1, if there was no auxiliary method, all vCPUs
have to be visited in the worst case. Fortunately, Xen as-
signs each vCPU a priority according to its remaining CPU
resource: UNDER means the vCPU has unused CPU quota
while OVER means the vCPU has consumed more than its
allocation. This priority is updated mainly in two places: 1)
Xen’s periodic accounting, and 2) when vCPU preemption
happens. In our approach, we simply record the priority
changes, so we can quickly find an UNDER vCPU.

Two bitmaps (run_bitmap and blk_bitmap) are
added to struct domain to record the scheduling statuses
of all vCPUs of the SMP-VM. When one vCPU is selected to
run in the function schedule(), the corresponding bit of
run_bitmap will be updated. Likewise, when one vCPU is
blocked in the function do_block() or wakes up in the
function vcpu_wake(), a particular bit of blk_bitmap
will be set or cleared. Recall that when a blocked or a
waiting vCPU is selected to receive interrupts, if the SMP-
VM still has unused credits, the vCPU is allowed to preempt

the current running vCPU by getting the highest priority.
In Xen’s credit scheduler [5], we introduce SMP BOOST
priority which is higher than all the other priorities. Re-
garding Algorithm 2, we track both vCPU-level and VM-
level credit usage in the function burn_credits(); and in
the function csched_acct(), if one VM is an SMP-VM,
we will recalculate its total credits and then rebalance the
credits among all its vCPUs.

5.2 Modifications to Xen’s PV Guest OS
The status of each event channel is stored in the
shared_info structure, which is implemented as a
shared memory page between guests and the hyper-
visor for passing runtime information. In the cur-
rent implementation, when a vCPU checks its pending
events in __xen_evtchn_do_upcall(), it will first call
active_evtchns() to mask out the events that do not
belong to it. If the guest OS changes the interrupt map-
ping in set_affinity_irq(), only the first bit of the
CPU affinity value is used as the event notifier. This is
how Xen’s vCPU-specific event channel is implemented.
To replace it with our OS-specific event channel, we in-
troduce the bind_evtchn_to_all_vcpus() function to
enable I/O events to be visible to every vCPU. This change
is only applied to the network and disk interrupt. We
obtain their IRQ numbers from the frontend handlers,
xennet_interrupt() and blkif_interrupt(). Other
interrupts such as local timer interrupt and IPI still use Xen’s
vCPU-specific event channel.

5.3 Portability of hBalance
We take KVM [22] as an example to discuss the porta-
bility of our design. KVM adopts virtual APIC model to
deliver interrupts for FV guests. It is worth mentioning
that KVM also has PV drivers [30], and there are two
different implementations: (1) a user-space implementation
in QEMU (qemu-virtio), and (2) a kernel module imple-
mentation (vhost). vhost performs better than qemu-virtio
because it avoids data copy between the user space and
the kernel space [34]. Both implementations share the same
guest OS frontend driver, and also comply with virtual
APIC. Therefore, there is no problem with implementing
dynamic interrupt routing in KVM, i.e., in the function
kvm_irq_delivery_to_apic().

Regarding CPU resource allocation, KVM relies on
Linux’s CFS group scheduling (cgroup) to schedule the
vCPUs of an SMP-VM. Algorithm 2 can be implemented
by adjusting each vCPU’s share within the group, without
affecting other VMs’ CPU budgets.

6 EVALUATION

We conduct our experiments on several Dell PowerEdge
M1000e blade servers, connected by a Brocade FastIron
SuperX GbE switch. Each server is equipped with two quad-
core 2.53GHz Intel Xeon 5540 CPUs, 16GB physical memory,
and two 250GB SATA disks.

For the FV tests, three different settings are evaluated:
(1) the physical destination mode, with vCPU0 being the
interrupt receiver; (2) the logical destination mode, in which

8

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Ping RTT (millisecond)

FV_physical

FV_logical

FV+hBalance

PV_xen

PV+vBalance

PV+hBalance

(a) 2 vCPUs per pCPU on average.

al

al

al

al

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Ping RTT (millisecond)

FV_physical

FV_logical

FV+hBalance

PV_xen

PV+vBalance

PV+hBalance

(b) 3 vCPUs per pCPU on average.

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

Ping RTT (millisecond)

FV_physical

FV_logical

FV+hBalance

PV_xen

PV+vBalance

PV+hBalance

(c) 4 vCPUs per pCPU on average.

Fig. 7: The CDF diagrams of ping experimental results with different vCPU densities. Note that to clearly show the
performance differences, we use log scale on the x-axis.

I/O interrupts are routed to all vCPUs in a RR fashion;
(3) hBalance, which replaces the RR routing of the logical
destination mode with its own algorithms. The FV SMP-
VM under test is equipped with an emulated e1000 net-
work adapter using QEMU. For the PV tests, we compare
hBalance with both vanilla Xen and our previous OS-level
approach vBalance [13]. Vanilla Xen sets vCPU0 as the de-
fault interrupt receiver, similar to FV’s physical destination
mode. The hypervisor’s scheduling time slice is not changed
(30ms).

6.1 Micro-level Benchmarks
We use a set of I/O benchmarks to evaluate hBalance. The
SMP-VM under test is configured with 4vCPUs and 4GB
memory. To observe hBalance’s effectiveness under different
VM consolidation levels, we vary the number of background
VMs running on the same set of pCPUs. The pCPUs are
shared fairly among all vCPUs by properly setting the
‘weight’ of each VM. In the experiments, we use lookbusy [2]
tool to keep the CPU load of each VM at a desired level.

6.1.1 Network RTT
We use Linux’s ping to evaluate the network RTT. Since ping
consumes very few CPU cycles, to trigger the hypervisor
scheduling, the SMP-VM also runs the same CPU load as
background VMs. With various VM densities, we ping the
SMP-VM for 1000 times and show the results in Figure 7.
In the FV tests, RTT varies largely in both the physical
mode and the logical mode. In contrast, hBalance keeps
RTT mostly within 1 millisecond. Similarly in the PV tests,
a large number of long delays are observed in vanilla Xen,
while both vBalance and hBalance can maintain the RTT
at around 0.2 millisecond, with sporadic ones approaching
but not exceeding 0.5 millisecond. Compared with the PV’s
split-driver model, the QEMU-based FV device emulation
incurs much more overhead. Regarding the tails in the
hBalance’s tests, we speculate they are caused by Xen’s
credit scheduler’s global load balancing: when sometimes
a virtual interrupt arrives just before a vCPU is migrated
to another pCPU, both the migration cost and the vCPU
switching cost are potentially included in RTTs.

6.1.2 Network Throughput
We measure the benefit of hBalance to network throughput
using iperf. As iperf tests would bring certain CPU load

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx0

200

400

600

800

1000

2 3 4 2 3 4

T
h
ro

u
g
h
p
u
t
(M

b
/s

e
c
)

Average number of vCPUs per pCPU

xx
xx

FV_physical

x
x

FV_logical
xx
xx
xxFV+hBalance xxxxxx

xxxxxx PV_xen
xx
xxPV+vBalance

x
x
x PV+hBalance

TCP UDP

Fig. 8: The results of iperf throughput experiments.

to the SMP-VM, we do not run lookbusy as we did in the
above. Each test lasts for 10 seconds and we repeat the test
for ten times to average out the results. Figure 8 shows
both TCP and UDP throughput results. In the FV tests,
the logical mode performs similarly to hBalance, but clearly
outperforms the physical mode. This makes sense because
iperf is single-threaded, which invokes only one vCPU at a
time. With the RR routing in the logical mode, since each
vCPU serves only one interrupt at a time, it consumes very
few credits and then goes idle (in the “blocked” state).
Xen’s boost mechanism [27] guarantees that blocked vCPUs
with unused quota can be scheduled immediately when it
receives another interrupt next time. hBalance differs from
the RR routing in that it will not turn to another vCPU
until the current one is preempted. In the PV tests, the
network throughput with vanilla Xen degrades along with
the increased number of background VMs, because once the
targeted vCPU (vCPU0) is preempted, the iperf session has
to be delayed until vCPU0 gets CPU cycles again. Both vBal-
ance and hBalance can adapt to this situation by migrating
interrupts to another vCPU so that the iperf server can be
resumed to receive data.

6.1.3 HTTP Performance

We use httperf to measure the HTTP performance of the
SMP-VM, which runs the Apache web server. In the exper-
iments, we set four vCPUs per pCPU and then vary the
requested file size. Httperf reports the reply rate every 5

9

xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0

1000

2000

3000

4000

1M 512K 256K 128K 64K 32K 16K 8K 4K 2K 1K

R
e

p
ly

 r
a

te
 (

#
/s

e
c
)

Request file size (byte)

xx
xxFV_physical
xx

FV_logical
xxx
xxxFV+hBalance
xxxx
xxxxxxxx
xxxxxxxxPV_xen
xx
xx

PV+vBalance
xx
xxPV+hBalance

Fig. 9: The results of httperf experiments.

seconds and we run each test for one minute. Quite different
from the iperf tests, the results in Figure 9 show that FV’s
logical mode performs much worse than the physical mode.
This is because iperf only triggers one vCPU at a time and
the other vCPUs stay in the blocked state; while Apache
web server is a multi-process multi-threaded application, a
large number of child threads are created, so all vCPUs are
active to concurrently process the requests. In the physical
mode, the requests can be accepted in a batched manner by
vCPU0 within each scheduling timeslice, so the scheduling
delays would not happen to every request. However, in
the logical mode, the targeted vCPU is changed for every
request, although the current one may still be running; since
all vCPUs are active, it is very possible that the next target
is a waiting vCPU which cannot process the request until
it gets scheduled again. hBalance considers each vCPU’s
scheduling status when routing the interrupts, and therefore
substantially improves the reply rate. The improvement for
PV guests is more apparent than FV guests due to the
high performance of Xen’s split-driver model. In the PV
tests, we find that hBalance is particularly suitable for small
files: when the file size is between 1KB and 32KB, hBalance
achieves an improvement from 68.4% to 117.2%. This can be
explained simply: under the fixed network bandwidth, the
smaller the file is, the more requests can be simultaneously
served and thereby more CPU cycles are consumed; when
such CPU demand exceeds one vCPU’s capability, vanilla
Xen shows limited scalability because only vCPU0 is able to
receive interrupts; in comparison, hBalance is able to utilize
all vCPUs to process the requests.

6.1.4 Cache Effectiveness
To investigate whether hBalance would degrade cache’s
performance or not, we use STREAM benchmark [4] to mea-
sure the VM’s memory bandwidth. STREAM is specifically
designed to work with arrays much larger than the available
cache so that most of their time is spent on waiting for
cache misses to be satisfied. First, we set up 4 single-vCPU
VMs to fairly share one pCPU, and then reduce the time
slice of Xen’s credit scheduler from 30ms to 1ms. Though
a smaller time slice can potentially reduce VM scheduling
delays, the results in Figure 10 (left) show that it seriously
decreases memory access efficiency because the increased
the number of VM context switches induces more cache
flushes. Second, with the same vCPU density, we rerun the
httperf experiments with 16KB file size (in which hBalance

0

1000

2000

3000

4000

5000

6000

30ms 20ms 10ms 5ms 3ms 1ms

M
e

m
o

ry
 T

h
ro

u
g

h
p

u
t
(M

B
/s

)

Xen’s Scheduling Time Slice

PV FV

w/ hBalance-30ms

Fig. 10: The results of STREAM experiments.

Prime
Client

Client 1 … Client 2 Client N

BeSim

HTTP

HTTP

TCP/IP

Web Server

Internal
Storage

Disk I/O

System Under Test

TCP/IP

Fig. 11: The settings of SPECweb experiments.

achieves the highest performance improvement), but with
one background VM running STREAM benchmark. The
results in Figure 10 (right) indicate that the background
VM’s cache effectiveness is not affected by hBalance’s in-
terrupt migrations, because (1) the scheduling time slice is
not shortened, and (2) interrupts will not be redirected to
another vCPU until the current vCPU has used up its whole
time slice.

6.2 Application-level Benchmarks
We adopt the PHP implementation of SPECweb2009 Bank-
ing (v1.2) for evaluation. This benchmark simulates online
banking operations and exhibits a mixed workload patterns:
it has 16 different operations such as login/logout, bank
balance inquiry, money transfers, show and modify the user
profile, etc, which can generate various pressures on both
CPU and I/O. Each test lasts for more than 30 minutes.

Figure 11 shows the application’s architecture, consisting
of a prime client, a certain number of agent clients, a web
request processing unit and a backend (BeSim). The primary
client drives multiple agent clients to generate HTTPS re-
quests, and the web server communicates with the back-
end to retrieve specific information needed to dynamically
construct responses. The experimental setting is the same
as that in the httperf tests, having four vCPUs per pCPU
on average. The clients and the backend run on dedicated
machines, which communicate with the web server via our
hardware switch. We launch 400 simultaneous sessions in
the PV tests to saturate the SMP-VM; in the FV tests, we find
the SMP-VM is unable to sustain given such a workload due
to its higher device emulation overhead, so we reduce the
number of simultaneous sessions to 200.

Table 2 shows the overall experimental results. In the
FV tests, the physical mode again outperforms the logical
destination mode, similar to that in the httperf tests. It

10

TABLE 2: The overall results of SPECweb experiments. FV tests: 200 sessions; PV tests: 400 sessions.

FV phyical FV logical FV+hBalance PV PV+vBalance PV+hBalance
Total Finished Requests (#) 27,837 24,538 36,352 94,704 108,111 109,351
Improvement w/ hBalance +30.6% +48.1% – +15.5% +1.1% –
Avg. Response Times (sec) 3.053 3.443 1.772 1.108 0.442 0.397
Reduction w/ hBalance -42.0% -48.5% – -64.2% -10.2% –

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0

5000

10000

15000

20000

25000

#
 o

f
fi
n
is

h
e
d
 r

e
q
u
e
s
ts

x
x PV_xen

x
x PV+vBalance

xx
xxPV+hBalance

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0

2000

4000

6000

8000

10000

#
 o

f
fi
n
is

h
e
d
 r

e
q
u
e
s
ts

x
x FV_physical

x
x FV_logical

xx
xxFV+hBalance

Fig. 12: The breakdown of the throughput results in the SPECWeb2009 experiments.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0

0.5

1

1.5

2

2.5

3

A
v
g
.

re
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
) x

x PV_xen
x
x PV+vBalance

xx
xxPV+hBalance xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0

1

2

3

4

5

6

A
v
g
.

re
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
) x

FV_physical
xx

FV_logical
xx
xxFV+hBalance

Fig. 13: The breakdown of the average response times in the SPECWeb2009 experiments.

proves that when the workload is high, RR routing is
very unsuitable for SMP-VMs because it is oblivious of
the targeted vCPU’s scheduling status. With hBalance in
the FV tests, the performance is significantly improved –
30.6% and 48.1% more throughput respectively, and 42.0%
and 48.5% reduction in average response times. In the PV
tests, when comparing with vanilla Xen, hBalance improves
the throughput by 15.5% and reduces the average response
times by as much as 64.2%. Even compared with vBalance,
hBalance achieves 1.1% more throughput and 10.2% less
average response times. We attribute the improvement to
the avoidance of hypercalls when migrating interrupts. Fig-
ure 12 and Figure 13 show the breakdown of the testing
results. It can be seen that hBalance achieves highest perfor-
mance in nearly all types of requests.

To better understand the experimental results, we
record all interrupt migrations in hBalance. We use Xen’s
debug-key to periodically dump the statistical data for
analysis. Figure 14 shows that when the current notified
vCPU is preempted, in the FV tests, in as many as 65.2%
of the cases that hBalance is capable to find another running
vCPU as the next target without preempting other vCPUs;
in about 28.1% of the cases a blocked vCPU is selected and

only 6.7% of the cases have all vCPUs are waiting in the
queue. The results in the PV tests are more encouraging:
there are about 83.8% of the cases in which virtual interrupts
are migrated to another running vCPU, and about 12.0% of
the cases where a blocked vCPU is selected and only 4.2%
of the cases have a waiting vCPU being selected. From the
statistics it can be seen that the hypervisor-level balancer
is very advantageous because it can directly obtain each
vCPU’s runtime state to make optimal interrupt routing
decisions.

We also examine the overhead of hBalance. Figure 15
shows the number of vCPU context switches per pCPU on
average. In the FV tests, hBalance introduces only 17.7%
more context switches than the physical mode. In the log-
ical mode, there are much less context switches because it
often routes the interrupts to waiting vCPUs, causing I/O
activities to temporarily stall; whereas in the physical mode,
we observe that vCPU0 can frequently migrate a certain
number of tasks to other vCPUs, bringing more vCPU pre-
emptions. Within one time slice, hBalance behaves similarly
to the physical mode in that it routes all interrupts to only
one vCPU; while when that vCPU has been preempted,
hBalance can immediately redirect the interrupts to other

11

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0

20

40

60

80

100

0 200 400 600 800 1000

P
e
rc

e
n
ta

g
e
 o

f
o
c
c
u
rr

e
n
c
e
 (

%
)

xx
xxmigr-to-waiting-vcpu

xxxx
xxxxxxxx
xxxx migr-to-blocked-vcpu

xx
xxmigr-to-running-vcpu

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0

20

40

60

80

100

0 200 400 600 800 1000

hBalance in the FV test hBalance in the PV test

Time (second) Time (second)

Fig. 14: The statistics of interrupt migration using hBalance.
Note that “migr-to-running-vcpu” does not bring vCPU
preemptions, while “migr-to-waiting-vcpu” and “migr-to-
blocked-vcpu” will potentially trigger vCPU scheduling,
because the selected vCPU will receive the SMP BOOST
priority if the SMP-VM has not used up its credits.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000

#
 o

f
v
C

P
U

 C
x
t.
 S

w
t.
 (

m
ill

io
n
)

Time (second)

FV_physical

FV_logical

FV+hBalance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000
Time (second)

PV_xen

PV+vBalance

PV+hBalance

Fig. 15: vCPU context switch times per pCPU. The results
are obtained via Xen’s performance counters.

vCPUs. Extra context switches should be caused by the
wakeups of blocked vCPUs as illustrated in Figure 14 and
the SMP BOOST priority we introduce in hBalance. In the
PV tests, hBalance brings 47.9% more context switches than
vanilla Xen, but 17.6% less than vBalance. We believe this is
achieved by completely avoiding the guest-hypervisor race
condition in vBalance when passing vCPU runtime states,
proving that hypervisor-level migration is more accurate
and light-weight than OS-level migration. Considering the
benefit hBalance brings, we argue that its overhead is ac-
ceptable. Recall that different from other works [17], [42]
which use a very small vCPU scheduling timeslice (e.g.,
0.1ms), hBalance does not change it (30ms).

Figure 16 shows the balancing effect for the vCPUs. In
FV’s physical mode and PV’s vanilla Xen, since all interrupts
go to vCPU0, it consumes many more CPU cycles than the
other vCPUs, resulting in an asymmetric use of the allocated
resources. Although FV’s logical mode can utilize CPU
cycles as balanced as vBalance and hBalance, it does not
benefit I/O performance because of its RR routing policy.

7 RELATED WORK

7.1 VM Scheduling for I/O

The “boost” mechanism [27] is introduced to allow “wakeup
preemption” for blocked vCPUs; “partial boost” is proposed
to prevent CPU-bound vCPUs from compromising CPU
fairness [21]. vSlicer [43] reduces Xen’s scheduling time slice

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0

25

50

75

100

P
e
rc

e
n
ta

g
e
 o

f
ru

n
 t
im

e
 (

%
)

xx
xxvCPU3

xx
xxvCPU2

xxx
xxxvCPU1

x
x vCPU0

Fig. 16: Proportion of each vCPU’s run time.

from 30ms to 10ms for latency-sensitive VMs, but it requires
users to explicitly specify such VMs which is difficult in
practice as many VMs run a combination of I/O and CPU
workloads. Soft real-time methods [25], [41] can improve
I/O responsiveness, but maintaining CPU fairness becomes
can be quite challenging because an I/O-intensive VM can
frequently preempt other VMs.

Dynamically partitioning pCPUs into “fast-tick cores”
and “general cores” is proposed in [17], which requires the
hypervisor to predict each VM’s I/O workload. vAMP [19]
proposes asymmetric scheduling for user-interactive work-
loads, but it requires identifying the workload’s character-
istics in the hypervisor. Janus [29] categorizes vCPUs into
“real-time” type and “best-effort” type, and the schedules
them differentially. vTurbo [42] binds I/O tasks to an extra
“turbo vCPU” which is created by the hypervisor for all
VMs, and schedules all turbo-vCPUs on designated pCPUs
using 0.1ms time slice. Actually, the essence of these ap-
proaches is to move the extra vCPU context switches, caused
by preempting vCPUs to quickly serve I/O, to fewer cores
rather than avoiding them. Moreover, instrumenting tasks’
CPU affinities is inconvenient when tasks are dynamically
created. Therefore, the practicality of these intrusive ap-
proaches is probably limited.

The side-core approach [23] uses dedicated pCPUs for
costly operations, e.g., to let a remote core carry out privi-
leged hypervisor instructions so as to avoid the expensive
guest-hypervisor swapping on the local core. VPE [26] runs
dedicated polling threads on dedicated pCPUs to help with
I/O device virtualization. SplitX [24] relies on conceptual
hardware to split the execution of guests and the hyper-
visor. ELI [15] and ELVIS [16] remove the virtualization
overhead caused by exits/entries during interrupt handling,
by polling I/O cores in the guest. The common problem of
these approaches is the lack of general applicability. Though
poll-driven I/O is more efficient than interrupt-driven I/O
when handling extremely high-rate I/O, such as 10Gb Eth-
ernet and very fast SSDs, it leads to wasted CPU cycles
and longer latencies when I/O rate decreases. Besides, the
dedicated cores are often seriously under-utilized. In prac-
tice, a hybrid approach is often adopted for the system to
adaptively switch between polling and interrupt.

We argue that, for SMP-VMs, accelerating I/O by pre-
empting vCPUs should not be the only choice. hBalance
explores another opportunity: the scheduling asynchronism
of vCPUs. Within an SMP-VM, if virtual interrupts can be

12

redirected from a preempted vCPU to a running one, I/O
processing will not be delayed and no vCPU context switch
will be introduced. As our approach is independent of the
scheduling time slice, it is complementary to other time slice
based solutions. Another merit of hBalance is that it takes
advantages of all vCPUs to process interrupts, which is very
useful when to serve a certain I/O workload is beyond one
vCPU’s capability.

7.2 VM Scheduling for Synchronization

Uncoordinated vCPU scheduling can decrease the perfor-
mance of multi-threaded applications running in an SMP-
VM: if the vCPU that holds a contended spinlock is pre-
empted, other vCPUs have to wait for a longer time, which
is known as Lock-Holder Preemption (LHP). To deal with
it, VMware ESX 2.x adopts strict co-scheduling to make
all vCPUs progress at similar rates, but it introduces CPU
fragmentation problem. Relaxed co-scheduling only tracks
the slowest vCPU and lets each vCPU make co-scheduling
decisions independently [10], which is introduced in ESX
3.x and later versions. This technique is further refined
in [40], [44] by detecting long-lived lock contention. Balance
scheduling [33] places vCPU siblings in different runqueues,
and similar idea has been incorporated in VMware ESXi
5.x [10]. More adaptively, demand-based scheduling [20]
identifies TLB shutdown and reschedule IPI as two main
sources for vCPU coordination. vCPU ballooning [31] alle-
viates LHP by dynamically adjusting the number of vCPUs
according to available CPU cycles of the SMP-VM.

There are also optimizations at the guest level. In [36],
an OS-informed approach is proposed to ask the hypervisor
not to preempt lock-holder vCPUs until the lock is released.
Linux’s PV spinlock [14] allows LHP, but prevents long
active waiting: specifically, when one vCPU has been busy-
waiting for more than a predefined time threshold, it will
return the CPU control to the hypervisor. For ticket spinlock,
authors in [28] point out that if the waiters are not scheduled
in the same order as they require the lock, waiters in the tail
will be delayed for longer. They propose to set the waiters’
sleep times to be proportional to their positions in the lock
waiting queue, so that the hypervisor can schedule them
properly.

Hardware-assisted approaches include Intel’s Pause
Loop Exiting (PLE) and AMD’s Pause Filter (PF). The basic
idea is to let the hypervisor take over CPU control after the
guest has executed a certain number of pause instructions
when spinning. In [39], the authors observe that a spinning
thread makes very few modifications to the program state
(e.g., the store instruction that changes variables in mem-
ory), and they implement Spin Detection Buffer (SDB) to
indicate such busy-waiting, which can assist the hypervisor
to schedule vCPUs more wisely.

In general, most concurrencies inside SMP-VMs can be
inferred by the hypervisor, informed by the guest OS or
detected by the hardware. Co-scheduling is only needed
temporarily and selectively for certain vCPUs. Most of the
time, the vCPUs of an SMP-VM are scheduled independently
in their own runqueues, leaving much space for hBalance
to explore the scheduling asynchronism for better interrupt
routing.

7.3 Receiver-side Network Balancing
At the end host, network processing includes interrupt pro-
cessing and protocol processing. In physical SMPs, Receive
Side Scaling (RSS) [3] allows a multi-queue NIC to distribute
packets of each flow to a separate CPU to balance the load.
However, in virtualized environments, since virtual NIC is
currently implemented as a mono-queue software entity,
RSS does not apply here. As for the protocol processing,
Receive Packet Steering (RPS) [3] is a kernel approach to
distribute packets to sibling vCPUs, after the packets have
been copied into the VM. Compared to kernel operations
(e.g., interrupt execution) which are mostly at the cost of
microseconds, in consolidated VMs, the dominant delay
actually comes from interrupt delivery which can be tens of
milliseconds when the targeted vCPU has been preempted.

8 CONCLUSION AND FUTURE WORK

Traditional interrupt balancing techniques are built upon
the assumption that the OS runs on dedicated pCPUs. For
SMP-VMs, this assumption is not true when one pCPU is
time-shared by multiple vCPUs. In this paper, we revisit two
existing interrupt delivery models and point out their limi-
tations. We present hBalance to offload interrupt balancing
from the guest OS to the hypervisor. hBalance mainly seeks
for preemption-free opportunities when migrating inter-
rupts. Our approach can support both FV and PV guests and
has very high portability among various hypervisor. The
evaluation with SPECWeb application and several micro-
benchmarks shows that hBalance considerably improves
network performance with moderate overhead.

It will be meaningful to investigate to what extent our
solution can benefit other applications. For example, video
streaming applications have very different traffic patterns
and scheduling requirements. In the past, there have already
been a few works studying soft real-time virtual machine
scheduling [18], [45]. The problem space of our paper is
different from theirs in that our approach aims to be agnostic
of specific VM schedulers, but to explore preemption-free
interrupt delivery opportunities to assist them. Meanwhile,
since video streaming quality is also affected by other fac-
tors, such as datacenter-level caching policy and client-side
buffering policy, we view video streaming applications a
good genre in which to investigate how various layers can
interact with each other.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers for comments that
improved this paper. This work was supported in part by
a Hong Kong RGC CRF grant (No. C7036-15G).

REFERENCES

[1] irqbalance: https://code.google.com/p/irqbalance.
[2] lookbusy – a synthetic load generator:

http://www.devin.com/lookbusy/.
[3] Scaling in the linux networking stack. Linux Kernel Document.
[4] STREAM bechmark: https://www.cs.virginia.edu/stream/.
[5] Xen’s Credit Scheduler:

http://wiki.xen.org/wiki/credit scheduler.
[6] 82093AA I/O ADVANCED PROGRAMMABLE INTERRUPT

CONTROLLER (IOAPIC). Intel, May 1996.

13

[7] The architecture of VMware ESXi. VMware Technical White Paper,
2008.

[8] Achieving a fair distribution of the processing of guest network
traffic over available physical CPUs. Citrix Technical White Paper,
2011.

[9] Server Virtualization, Windows Server 2012. Microsoft Technical
White Paper, 2012.

[10] The CPU scheduler in VMware vSphere 5.1. VMware Technical
White Paper, 2013.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, 2003.

[12] F. Bellard. QEMU, a fast and portable dynamic translator. In
USENIX ATC, 2005.

[13] L. Cheng and C.-L. Wang. vBalance: using interrupt load balance
to improve I/O performance for SMP virtual machines. In ACM
SoCC, 2012.

[14] T. Friebel and S. Biemueller. How to deal with lock holder
preemption. Xen Developer Summit, 2008.

[15] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,
A. Schuster, and D. Tsafrir. ELI: Bare-metal performance for I/O
virtualization. In ASPLOS, 2012.

[16] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger, and
R. Ladelsky. Efficient and scalable paravirtual I/O system. In
USENIX ATC, 2013.

[17] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/O scheduling model
of virtual machine based on multi-core dynamic partitioning. In
HPDC, 2010.

[18] H. Kim, J. Jeong, J. Hwang, J. Lee, and S. Maeng. Scheduler sup-
port for video-oriented multimedia on client-side virtualization.
In MMSys, 2012.

[19] H. Kim, S. Kim, J. Jeong, and J. Lee. Virtual asymmetric multipro-
cessor for interactive performance of consolidated desktops. In
VEE, 2014.

[20] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-based
coordinated scheduling for SMP VMs. In ASPLOS, 2013.

[21] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-aware virtual
machine scheduling for I/O performance. In VEE, 2009.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
Linux virtual machine monitor. In The Ottawa Linux Symposium,
2007.

[23] S. Kumar, H. Raj, K. Schwan, and I. Ganev. Re-architecting VMMs
for multicore systems: The sidecore approach. In WIOSCA, 2007.

[24] A. Landau, M. Ben-Yehuda, and A. Gordon. SplitX: Split
guest/hypervisor execution on multi-core. In WIOV, 2011.

[25] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik.
Supporting soft real-time tasks in the Xen hypervisor. In VEE,
2010.

[26] J. Liu and B. Abali. Virtualization polling engine (VPE): using
dedicated CPU cores to accelerate I/O virtualization. In ICS, 2009.

[27] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O in virtual
machine monitors. In VEE, 2008.

[28] J. Ouyang and J. R. Lange. Preemptable ticket spinlocks: improv-
ing consolidated performance in the cloud. In VEE, 2013.

[29] R. Rivas, A. Arefin, and K. Nahrstedt. Janus: a cross-layer soft
real-time architecture for virtualization. In HPDC, 2012.

[30] R. Russell. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review, 42(5):95–103,
2008.

[31] X. Song, J. Shi, H. Chen, and B. Zang. Schedule processes, not
VCPUs. In APSys, 2013.

[32] V. Srinivasan, G. R. Shenoy, S. Vaddagiri, D. Sarma, and V. Palli-
padi. Energy-aware task and interrupt management in Linux. In
Ottawa Linux Symposium, 2008.

[33] O. Sukwong and H. S. Kim. Is co-scheduling too expensive for
SMP VMs? In EuroSys, 2011.

[34] M. S. Tsirkin. vhost-net and virtio-net: need for speed. In KVM
Forum, 2010.

[35] P. Turner, B. B. Rao, and N. Rao. CPU bandwidth control for CFS.
In Linux Symposium, volume 10, pages 245–254, 2010.

[36] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards
scalable multiprocessor virtual machines. In Virtual Machine Re-
search and Technology Symposium, 2004.

[37] C. A. Waldspurger. Memory resource management in VMware
ESX server. In OSDI, 2002.

[38] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Determin-
istic proportional-share resource management. Technical report,
MIT Laboratory for Computer Science, 1995.

[39] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware support for
spin management in overcommitted virtual machines. In PACT,
2006.

[40] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive scheduling
for virtual machines. In HPDC, 2011.

[41] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: towards real-time
hypervisor scheduling in Xen. In EMSOFT, 2011.

[42] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu. vTurbo:
Accelerating virtual machine I/O processing using designated
turbo-sliced core. In USENIX ATC, 2013.

[43] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and
D. Xu. vSlicer: latency-aware virtual machine scheduling via
differentiated-frequency CPU slicing. In HPDC, 2012.

[44] L. Zhang, Y. Chen, Y. Dong, and C. Liu. Lock-Visor: An efficient
transitory co-scheduling for MP guest. In ICPP, 2012.

[45] L. Zhou, S. Wu, H. Sun, H. Jin, and X. Shi. Virtual machine
scheduling for parallel soft real-time applications. In MASCOTS,
2013.

Luwei Cheng received his PhD in computer
science from the University of Hong Kong in
2015. He is currently a Research Scientist at
Facebook. His research interests are mainly on
performance problems in cloud datacenters, in-
cluding operating system, networking and dis-
tributed storage. He received Best Student Pa-
per Award in UCC 2011 conference, Hong Kong
PhD Fellowship in 2012 and Microsoft Research
Asia Fellowship in 2013.

Francis C.M. Lau received his PhD in computer
science from the University of Waterloo in 1986.
He has been a faculty member of the Depart-
ment of Computer Science, The University of
Hong Kong since 1987, where he served as the
department chair from 2000 to 2005. He is now
Associate Dean of Faculty of Engineering, the
University of Hong Kong. He was a honorary
chair professor in the Institute of Theoretical
Computer Science of Tsinghua University from
2007 to 2010. His research interests include

computer systems and networking, algorithms, HCI, and application of
IT to arts. He is the editor-in-chief of the Journal of Interconnection
Networks.

