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Abstract—Heterogeneous cellular networks (HetNets) can sig-
nificantly improve the spectrum efficiency, where low-power
low-complexity base stations (Pico-BSs) are deployed inside the
coverage of macro base stations (Macro-BSs). Due to cross-tier in-
terference, joint detection of the uplink signals is widely adopted
so that a Pico-BS can either detect the uplink signals locally or
forward them to the Macro-BS for processing. The latter can
achieve increased throughput at the cost of additional backhaul
transmission. However, in existing literature the delay of the
backhaul links was often neglected. In this paper, we study the
delay-optimal uplink scheduling problem in HetNets with limited
backhaul capacity. Local signal detection or joint signal detection
is scheduled in a unified delay-optimal framework. Specifically,
we first prove that the problem is NP-hard and then formulate it
as a Markov Decision Process problem. We propose an efficient
and effective algorithm, called OLIUS, that can deal with the
exponentially growing state and action spaces. Furthermore,
OLIUS is online learning based which does not require any prior
statistical knowledge on user behavior or channel characteristics.
We prove the convergence of OLIUS and derive an upper bound
on its approximation error. Extensive experiments in various
scenarios show that our algorithm outperforms existing methods
in reducing delay and power consumption.

I. INTRODUCTION

Heterogeneous networks (HetNets) have emerged as a

promising network paradigm that can dramatically increase

the spectrum efficiency of cellular networks. In HetNets, low-

power low-complexity base stations (namely, Pico-BSs or

Femto-BSs) are deployed inside the coverage of macro base

stations (Macro-BSs), and the macro-BSs and pico-BSs can

operate in the same frequency band simultaneously. This cell

splitting technology benefits the cellular service in many ways

including much reduced path loss and better spatial reuse of

the radio spectrum. Fig. 1 shows an example of a HetNet with

one macrocell and two picocells.

However, the potential of HetNets has not been fully

exploited due to the severe cross-tier interference. Taking

the uplink transmission as an example, the signals of the

high-power macro-users may interfere with nearby picocells,

resulting in interference on the pico-BSs that may even be

stronger than the desired signals sent by the pico-users. Joint
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Fig. 1. A heterogeneous network with one macrocell and two picocells. The
pico-BSs are connected to the macro-BS via the backhaul links (which is
called the X2 interface in LTE systems). After uplink detection, the uplink
data is further forwarded to the core network via the data links (called the S1
interface). The control action is determined by a centralized controller in the
macro-BS.

signal detection is a widely used technique to mitigate such

cross-tier interference; it enables the raw signals received at

pico-BSs to be forwarded to the macro-BS via the backhaul

links (e.g., X2 links in Long Term Evolution (LTE) systems).

Essentially, the whole network operates like a virtual MIMO

(multiple-input-multiple-output) system and hence the cross-

tier interference can be cancelled. Some existing works [1]–[5]

studied how to utilize joint detection in HetNets, but they often

made an unrealistic assumption that the backhaul links have

unlimited capacity. Obviously, the backhaul capacity for joint

signal detection is limited in reality because the forwarded

signals are raw signals instead of demodulated signals. Al-

though there have been a number of works [6]–[8] which

studied the impact of limited backhaul capacity on joint signal

detection, they mainly focused on throughout maximization

in downlink transmission. With the development of Mobile

Edge Computing (MEC) and the Internet of Things (IoT), the

requirement for uplink transmission is dramatically increasing.

Besides, the demand for high upload capacity, end-to-end

delay1 also plays an important role in the users’ experience.

For example, in MEC, mobile devices can offload tasks to

edge servers which can meet harsh requirements on end-to-

end delay (e.g., for real-time applications or online gaming).

Moreover, due to the capacity limited backhaul links, joint

detection will introduce more queuing delay when forwarding

the signals. As existing uplink scheduling algorithms either

1In this paper, we refer to the end-to-end delay as the time from the
appearance of a data packet to the time it reaches the core network.



ignore end-to-end delay [9] or neglect joint signal detection

[10]–[12], a natural question one may ask is: Is it possible to
design an efficient algorithm for uplink scheduling in HetNets
with limited backhaul capacity that minimizes average end-to-
end delay?

In this paper, we give an affirmative answer to the above

question by proposing an efficient and effective algorithm,

called OLIUS. Instead of using joint detection for all pico-

users, we novelly introduce one additional control dimension

to decide whether a pico-user’s signal should be detected by

pico-BS (local detection) or macro-BS (joint detection). When

the cross-tier interference is weak, local detection could lead

to a smaller delay; when the cross-tier interference is strong,

joint detection could have better uplink throughput. Therefore,

in the uplink scheduling problem, our algorithm should jointly

decide (1) User Selection: which users should be selected for

uplink transmission; (2) Power Allocation: which power level

should be picked for each selected user; and (3) Detection
Mode Selection: whether to use local detection at pico-BSs or

to use joint detection at the macro-BS. Our contributions can

be summarized as follows.

• We formulate the delay-optimal uplink scheduling problem

in HetNets as an infinite horizon Markov Decision Process

(MDP) problem. We prove that this problem is NP-hard.

• Generally, solving an MDP problem (e.g., value iteration

and policy iteration) requires exponential time. We uti-

lize Factored MDP (FMDP) and approximate Q-function

to exploit the special structure of the uplink scheduling

problem to reduce the time complexity. OLIUS is a low-

complexity online learning algorithm which does not require

any prior statistical information on user behavior or channel

characteristics. We prove the convergence of OLIUS and

derive an upper bound on its approximation error.

• We conduct extensive simulations for different scenarios to

evaluate the performance of OLIUS, and the results show

that OLIUS can achieve significant performance gain over

conventional scheduling algorithms in both delay and power

consumption.

The remainder of this paper is organized as follows. In

Sec. II, we present the system model and formulate the uplink

scheduling problem and prove its NP-hardness. In Sec. III, we

introduce our algorithm, OLIUS and analyze its convergence

and error bounds. In Sec. IV, we present the experiment

results. We conclude this paper in Sec. V.

II. SYSTEM MODEL

A. Heterogeneous Network Model

We consider the uplink transmission in one macrocell with

M picocells deployed within the macrocell’s coverage. The

pico-BSs are connected with the macro-BS via capacity lim-

ited backhaul links. We denote as Rβ
m the capacity of the

backhaul link from the m-th pico-BS to the macro-BS. Let

M � {1, . . . ,M} and Km � {1, . . . , Nm}(∀m ∈ M) denote

the set of pico-BSs and the set of users served by the mth pico-

BS, respectively, where Nm is the number of users served by

the mth pico-BS. Let K0 � {1, . . . , N0} denote the set of

users served by the macro-BS. Without ambiguity, we call the

0th BS and mth (m = 1, ...,M) BS the macro-BS and the

mth pico-BS, respectively.

The users and the pico-BSs are equipped with a single

antenna, and the macro-BS has L antennas. The time di-

mension is organized by the scheduling time slots, each of

which lasts for τ seconds. Let hm,k(t) denote the channel state

information (CSI or channel gain) from the user k ∈ Km to

its service pico-BS (i.e., the mth pico-BS); denote as h0,k(t)
the L × 1 CSI vector from the macro-user k ∈ K0 to the

macro-BS. As the macro-users use much higher power than

the pico-users, the macro-users will introduce interference to

the pico-BSs. We denote as hm
0,k the interference CSI from the

macro-user k ∈ K0 to the pico-BS m ∈ M. We consider the

widely used model of block fading channel, where the CSI

is quasi-static in each slot and independently and identically

distributed (i.i.d.) over

different scheduling time slots. At the beginning of each

time-slot, the HetNet controller should select exactly one user

for each cell (which includes the pico-cells or and the marco-

cell). Thus there are M + 1 users selected in each time-slot.

For higher spectrum efficiency, we consider the co-channel

heterogeneous network [13], [14], where all cells share a

common frequency band with a bandwidth of B Hz. Before

each uplink time slot, the centralized controller (as shown

in Fig. 1) collects all the system information, and makes a

decision on the uplink scheduling. This decision is broadcasted

to all the users via their service BSs. The scheduling decision

includes which users are selected for uplink transmission,

the transmission power and the detection model (i.e., local

detection or joint detection). Due to the larger path loss atten-

uation, macro-users usually use much higher power for uplink

transmission than that of the pico-users, and thus they may

generate strong interference to the picocells. Because the pico-

users use low power for uplink transmission, we assume the

interference generated by the pico-users to other BSs can be

ignored. As shown in Fig. 1, users A, B and C are chosen for

uplink transmission in one time-slot. Because user A belongs

to the macrocell, its high power signals will be received by

pico-BS 1 and pico-BS 2 as the interference signals to users B

and C. Moreover, users B’s and C’s interference to the other

cells can be ignored, because their powers are much lower.

B. Uplink Detection Model

In this paper, we consider two possible paths through which

the uplink data could be finally delivered to the core network

of the cellular system:2 (1) the uplink signals are detected

locally at the pico-BSs and forwarded to the core network;

(2) the uplink signals are first forwarded to the macro-BS for

joint detection via capacity limited backhaul links, and then

the decoded data is delivered to

2In LTE systems, the core network is called the Evolved Packet Core (EPC),
and the uplink data should be forwarded to the Serving Gateway of EPC.



the core network from the macro-BS.3 Note that joint

detection needs the pico-BSs forward the raw signals to the

macro-BS. As the raw signals without demodulation are in

a large volume, they cannot be forwarded instantaneously.

Although joint detection helps to increase the throughput of

the scheduled users, it introduces more end-to-end delay due

to limited backhaul capacity.

Let Sα
m(t) ∈ Km(∀m ∈ M∪{0}) denote the scheduled user

in the mth BSs (macro-BS or pico-BS) for uplink transmission

in the tth time-slot. Let Sβ
m(t) ∈ {0, 1} (∀m ∈ M) denote

the decision on whether or not to use joint detection. For

instance, Sβ
m(t) equals 1 if joint detection is used, and 0

if local detection is used. Let P � diag(P0, P1, . . . , PM )
denote the diagonal matrix of the transmission power where

Pm denotes the transmission power of the scheduled user in

the mth BS. We assume Pm ∈ Pm where Pm is the discrete

power levels that the users in the mth BS can use.

Let (·)T denote the transpose of a matrix or a vector.

Let hpico
mu = (h1

0,Sα
0
, . . . , hM

0,Sα
0
)T denote the vector of the

interference CSI. Let hpico
pu = diag(h1,Sα

1
, . . . , hM,Sα

M
) denote

the diagonal matrix of CSI between the scheduled pico-users

and their service pico-BSs. Denote the aggregated CSI matrix

from all the scheduled users to all the BSs in the tth time-slot

as H(t); then it can be written as:

H(t) =

⎛
⎝ h0,Sα

0
0

hpico
mu hpico

pu

⎞
⎠ ,

We call H(t) the global CSI at time-slot t.
Denote as Rm(t) the data rate of the scheduled uplink

user in the mth BS. Formally, we derive this data rate in the

following lemma.

Lemma 1. The data rate of the scheduled uplink user in the
mth BS is

Rm(t) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τB log2

(
1 + ξ

‖w†
m+1‖2

)
, if m = 0

or Sβ
m = 1;

τB log2

(
1 +

ξ|hm,Sα
m

Pm|2
1+|hm

0,Sα
0
P0|2

)
, if m �= 0, Sβ

m = 0,

(1)

where w†
m+1 is a parameter vector derived by a Zero Forcing

(ZF) filter and ξ is the decoding efficiency, which can be used
to model both the coded and uncoded systems.

Proof. Please refer to Appendix A in the full version [15].

It can be observed that if

the local detection is used (when Sβ
m = 0), the data rate

at a picocell suffers from the interference brought by the

macro-user (the term hm
0,Sα

0
P0 in the second case of Eqn. (1)).

Although joint detection can cancel the interference (as shown

in Eqn. (1)) when Sβ
m = 1), the limited backhaul capacity

will introduce additional queuing delay, which is formally

established in the following section.

3We assume that the data receiving gateway in the core network is able to
reorder the packets received from the macro-BS and pico-BSs for each user.

C. Queuing Model
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Fig. 2. The queuing model in HetNets. Each uplink user has its own data
queue for uplink transmission, while all users in the same cell share a common
backhaul queue.

Fig. 2 shows the queuing model in a HetNet cell. Let

Qα
m,k(t) denote the number of packets in the uplink buffer,

and Np denote the packet size in the number of bits. The

pico-BS can send the raw received signals to the macro-BS

via the backhaul links for joint detection. Because the signals

have not been detected at the pico-BSs, the amount of the

raw signals for joint detection can be very large (in terms of

number of bits) so that the limited capacity of the backhaul

links will introduce additional delay in the uplink transmission.

Thus, we use a queue Qβ
m(t) to denote the number of bits

in the backhaul queue of the mth pico-BS. Let Qm(t) �
(Qβ

m, Qα
m,1, . . . , Q

α
m,Nm

) denote the joint queue state of the

mth pico-BS (which includes the backhaul queue and the

users’ data queues). Similarly, let Q0(t) � (Qα
0,1, . . . , Q

α
0,N0

)
denote the joint queue state of the macro-BS, which contains

the data queue states of all the macro-users. Therefore, we can

denote as Q � (Q0, . . .QM ) the global joint queue state of

the entire network. The cardinality of the global joint queue

state Q is IQ = (Nα
Q +1)

∑M
m=0 Nm × (Nβ

Q +1)M , where Nα
Q

and Nβ
Q are the maximum buffer sizes of one uplink user and

one backhaul queue, respectively.

Denoting Am,k(t) as the new arrival packets at the end

of a time-slot for the user k ∈ Km, we make the following

assumption on the data arrivals.

Assumption 1 (Packet Arrival Process). We assume that the
arrival process Am,k(t) is i.i.d. over the time-slots and is
according to a general distribution with an average arrival
rate of λm,k, i.e., E[Am,k(t)] = λm,k. This assumption is
widely adopted by works on cellular networks, such as [16].

Hence for the kth user in the mth BS, the queue dynamics

can be written as

Qα
m,k(t+ 1) = min{[Qα

m,k(t)− �τRm,k(t)/Np�]+

+Am,k(t), N
α
Q}, (2)

where [x]+ = max{x, 0} and Rm,k(t) is the data rate of the

kth user in the mth BS. Similarly, the dynamics of a backhaul

queue for the mth pico-BS is given by

Qβ
m(t+ 1) = min{[Qβ

m(t)− τRβ
m]+ + Sβ

m(t) · fβ(τB), Nβ
Q},

where Rβ
m is the data rate of the backhaul queue (i.e., the

capacity of the backhaul link) in the mth pico-BS. Note

that the signal in the backhaul queue is not detected, and



thus its size fβ(τB) only depends on the time duration,

the sampling rate, the bandwidth of the frequency band and

the signal compression algorithm used. The information rate

Rm,k(t) would not affect the size of the signals going into

the backhaul queue. For example, if no signal compression is

used, fβ(τB) = 2τBNbit according to the Nyquist sampling

theorem [17], which is independent of the data rate or packet

size. Here, Nbit is the number of bits used to represent one

sampled signal value.

D. Problem Definition

At time-slot t, the decision of the mth pico-BS is de-

noted as Sm(t) � {Sα
m(t), Sβ

m(t), Pm(t)}, which contains

the selected user, the detection mode and the transmission

power. Similarly, the decision of the macro-BS is denoted

as S0(t) � {Sα
0 (t), P0(t)}. Here, we define the discounted

accumulated cost of the user k ∈ Km as follows

Tm,k � lim sup
T→∞

E

[ T−1∑
t=0

γtf(Qα
m,k(t), Q

β
m(t),Sm(t))

]
, (3)

where f(Qα
m,k(t), Q

β
m(t),Sm(t)) is the instantaneous cost

function of this user and γ (0 ≤ γ < 1) is a constant called the

discount factor to indicate the importance of future cost. The

instantaneous cost function f(Qα
m,k(t), Q

β
m(t),Sm(t)) can be

defined in various ways. According to the Little’s law [18],

Tm,k is related to the average end-to-end delay4 of the kth

user in the mth cell, and it can be estimated approximately

with

f(Qα
m,k(t), Q

β
m(t),Sm(t))

=
Qα

m,k(t)

λm,k
+ I[Sα

m(t) = k] · I[Sβ
m(t) = 1] · Q

β
m(t)

Rβ
m

, (4)

where I[x] is the indicator function which equals 1 if the

condition x holds, or 0 otherwise.

At the beginning of each time slot, the HetNet controller at

the macro-BS should collect all the system state information

and then make a decision on the link scheduling. We define

the system control policy for the HetNet controller as follows.

Definition 1 (Stationary Scheduling Policy). A stationary
scheduling control policy Ω : H,Q → S is a mapping from
the global CSI H and the global joint queue state Q to a
control action S = {Sm : ∀m ∈ M∪ {0}}.

In this paper, we seek to find the optimal control policy Ω∗

to minimize the total cost of all the uplink users. Specifically,

we define the problem as follows:

4The delay from the packet’s arrival at the user’s buffer to the time instance
when it arrives at the core network.

Problem 1. (Delay-Optimal Uplink Scheduling Problem) For
some positive constants β = {βm,k : m ∈ M∪{0}, k ∈ Km},
find a stationary control policy such that

min
Ω

∑
m,k

ηm,kTm,k(Ω)

= lim sup
T→∞

E

[ T−1∑
t=0

γtg(Q(t),S(t))|Ω
]
, (5)

where g(Q(t),S(t)) =
∑

m,k ηm,kf(Q
α
m,k(t), Q

β
m(t),Sm(t))

is the weighted per time-slot (instantaneous) cost. The con-
stant ηm,k denotes the relative importance of the uplink
user k ∈ Km. For a given set of β, the optimal solution
of this problem is a Pareto optimal to the multi-objective
optimization problem to minimize the cost of each uplink
user, i.e., minΩ Tm,k(Ω), ∀m, k. Thus Ω∗ is a Pareto optimal
control.

Remark 1 (The discounted cost). In this work, we adopt the
discounted accumulated cost function in Eqn. (3). The other
widely adopted criterion is the long-term average cost without
the discount factor [19], such as

lim sup
T→∞

1

T
E

[ T−1∑
t=0

g(Q(t),S(t))|Ω
]
. (6)

However, this average cost criterion is insensitive to the in-
stantaneous cost due to its arbitrary far tail cost. For example,
two control policies providing costs 10 + 0 + 0 + 0+ 0+ · · ·
and 0 + 0 + 0 + 0 + 0 + · · · are equally good for the
average cost criterion, but we know the latter is better with
the discounted accumulated cost criterion. Moreover, it has
been shown that the optimal control policy for the discounted
accumulated cost is the same as that for the average cost
criterion when the discount factor is sufficiently close to 1
[20]–[24]. Therefore, with a properly chosen discount factor
γ, the discounted accumulated cost criterion can generate the
control policy with good average cost and remain sensitive to
the instantaneous cost.

Theorem 1. The delay-optimal uplink scheduling problem in
HetNets is NP-hard.

Proof. Please refer to Appendix B in the full version [15].

III. OLIUS: ONINE LEARNING BASED UPLINK

SCHEDULING ALGORIHTM IN HETNETS

In this section, we propose our algorithm, called OLIUS (the

Online LearnIng based Uplink Scheduling algorithm). Here is

a sketch of OLIUS:

• Section III-A: We first derive the optimal condition (i.e.,

the Bellman’s equation) for solving Problem 1. However,

solving the Bellman’s equation with general approaches

suffers from the curse of dimensionality.

• Section III-B1: In order to avoid the curse of dimensionality

in the system state space, we define the approximate Q-

function only on some specific states, so that the space

grows polynomially with the number of users and picocells.



• Section III-B2: As the control action space also grows

exponentially, we adopt Factored MDP to exploit the system

structure, which can obtain the optimal control action in

polynomial time.

• Section III-C: Because we assume no prior knowledge

on the statistical information of the system (such as the

packet arrival rate and channel characteristics), we propose

an online learning based algorithm to learn the approximate

Q-function to estimate the necessary information.

A. The Bellman’s Equation

The Bellman’s equation [25] is the sufficient condition for

the optimal control policy Ω∗ to solve the MDP problem in

Problem 1, which is given by

Q∗(Q,S) = EH

{
g(Q,S)

+ γ
∑
Q′

Pr{Q′|Q,S}min
S′

Q∗(Q′,S′)
∣∣∣S}, (7)

where Q∗(Q,S) is called the “Q-function” which equals

the expected discounted accumulated cost of the state Q
by taking the control action S at the first time-slot and

following the optimal control policy in future time-slots.

Thus the optimal control policy Ω∗(Q) can be obtained by

Ω∗(Q) = argminS{Q∗(Q,S)}.

Note that the optimal Q-function (i.e., Q∗) is a function

of the global user states and actions, whose space grows

exponentially with the number of uplink users and picocells.

General approaches, such as value iteration [26] or policy

iteration [27], to solve the Bellman’s equation in Eqn. (7) need

exponential time. Thus, we aim to find an efficient algorithm

to get an approximate solution.

B. Approximate Q-function & Factored MDP

Finding the optimal Q-function in Eqn. (7) is actually

computationally prohibitive due to the following two reasons.

(1) Since the number of possible system states Q is huge,

the number of Q-function values to be calculated in Eqn.

(7) is also huge. (2) Due to the minimization at Ω∗(Q) =
argminS{Q∗(Q,S)}, we have to check all the possible control

action S for each system state Q. However, the number

of control actions grows exponentially with respect to the

number of cells. In this paper, we propose a low-complexity

approximate solution that uses the techniques of approximate

Q-function and Factored MDP. The former is good at dealing

with the large state space and the latter can efficiently exploit

the action structure to derive the control policy optimally based

on the approximate Q-function.

1) Approximate Q-function : To deal with the huge state

space in the calculation of Bellman’s equation (7), we propose

to approximate the Q-function by the summation of “per-user

Q-function” on some specific “reference states”. Specifically,

we define QI as the reference states, which is given as

QI � {Tm,k ◦Q | ∀ Q,m, k}, (8)

where the operator Tm,k ◦Q is defined as

Tm,k ◦Q � (Q0 = 0, . . . ,Qm−1 = 0,

Qm = (Qβ
m, 0, . . . , 0︸ ︷︷ ︸

k−1

, Qα
m,k, 0, . . . 0︸ ︷︷ ︸

Nm−k

),Qm+1 = 0, . . . ,QM = 0). (9)

Note that Tm,k ◦Q picks up the queue information of the kth

user in the mth cell only. Then we can apply the following

approximation on the Q-function:

Q(Q,S) ≈
∑
m,k

Qm,k(ϕm,k), (10)

where ϕm,k � (Tm,k ◦ Q,Sm,S0). The notation Qm,k is

called the per-user Q-function, and it satisfies the Bellman’s

equation in the reference states as follows.

Qm,k(ϕm,k) = EH

[
βm,k · fm,k(Tm,k ◦Q,Sm)

+γ
∑
Q′

Pr{Q′|ϕm,k,H} min
S′=(S′

0,S
′
1,...,S

′
m)

∑
m,k

Qm,k(ϕ
′
m,k)

∣∣∣ϕm,k

]
,

∀m, k. (11)

where ϕ′
m,k = (Q′,S′

m,S′
0) is the next local state-action.

Because the per-user Q-function Qm,k(ϕm,k) is only de-

fined when Q ∈ QI with the action of the mth picocell and

the macrocell, we can avoid calculating the Q-function for

all possible state-action pairs. In Section III-C, we propose

the Q-Learning algorithm to obtain the approximate per-user

Q-function. Our theoretical analysis in Theorem 3 shows the

error bound on the performance with the learned per-user Q-

function. Although Eqn. (11) solves the large state space prob-

lem, its computation complexity is still prohibitively high due

to the minimization operation in minS{
∑

m,k Qm,k(ϕ
′
m,k)}

(the space of the control action S grows exponentially with

respective to the number of cells). In the following, we

introduce the Factored MDP (FMDP) that can optimally deal

with the large control action space in polynomial time.

2) Factored MDP: The FMDP model was first proposed

by Boutilier et. al. [28] who used a two-time slices Dynamic

Bayesian Network (DBN) to represent the relations between

the states and actions. In our problem, the state transition of

the users in the macrocell only depends on the control actions

of the macro-BS, i.e., S0(t). However, the state transition of

the users in a picocell depends not only on the control actions

of the pico-BS (i.e., Sm(t)) but also the control actions of the

macro-BS (i.e., S0(t)). With the standard approach of FMDP,

we can decompose the state transition probability as follows:

M∏
k=0

Pr[Qk(t+ 1)|Qk(t),S(t),H(t)]

=

N0∏
k=1

Pr[Qα
0,k(t+ 1)|Qα

0,k(t),S0(t),H(t)]×
∏
m,k

Pr[Qα
m,k(t+ 1)|Qα

m,k(t),Sm(t),S0(t),H(t)]

× Pr[Qβ
m(t+ 1)|Qβ

m(t),Sm(t)]. (12)



According to Eqn. (12), the users in the mth picocell

are only affected by the control actions of the macrocell

(i.e., S0) and their service picocell (i.e., Sm). Therefore, the

minimization operation in Eqn. (11) can be written as

min
S=(S0,S1,...Sm)

{
∑
m,k

Qm,k(ϕm,k)} (13)

= min
S0

{ ∑
k∈K0

Q0,k(ϕ0,k)

︸ ︷︷ ︸
The Macrocell

+
∑

m∈M

(
min
Sm

∑
k∈Km

{Qm,k(ϕm,k)}
︸ ︷︷ ︸

The mth picocell

)}
.

With the above decomposition, the computation complexity

is reduced from O(
∏M

m=0(|Sm| · ∑mM |Km|)) to O(|S0| ×∑
mM |Sm||Km|), which is a polynomial time complexity.

C. The Proposed Algorithm: OLIUS

In the above section, we adopt the approximate Q-function

and the factored MDP to simplify the original Problem 1.

So far, the only unsolved problem is how to obtain the

per-user Q-function. In this section, we first propose the

solution framework to determine the control actions, and then

elaborate on the reinforcement learning based algorithm that

can adaptively learn the value of the per-user Q-function.

Algorithm 1: OLIUS
1 t = 0;

2 Qm,k(ϕm,k) = 0, ∀m, k, ϕm,k ;

3 for t = 0, 1, 2, . . . do
4 Determine the control action according to Eqn. (13) ;

5 if Q-function converged = False then
6 Update Q-function according to Eqn. (14) ;

7 else
8 Apply LSPI to adjust the Q-function ;

1) Solution Framework: Algorithm 1 elaborates the so-

lution framework. In each time-slot, the control action is

determined by Eqn. (13) (Line 4). Afterwards, the approximate

Q-function is updated according to the Discounted Q-Learning

Algorithm in Section III-C2 (Line 6). After the convergence of

the approximate Q-function, the Least Square Policy Iteration

(LSPI) in Algorithm 2 is applied to adjust the approximate

Q-function for policy improvement (Line 8).

Although the approximate Q-function can be calculated by

some offline methods, such as value iteration or policy iter-

ation [29], these methods require prior statistical knowledge

about the channel state and user behavior which are typically

unknown in practice. Therefore, in the rest of this section,

we adopt a reinforcement learning based algorithm called

Discounted Cost Q-Learning algorithm which can adaptively

calculate the value of the approximate Q-function by learning

the statistical information online.

2) Discounted Cost Q-Learning Algorithm with LSPI :
As stated in Remark 1, instead of considering the average

cost over an infinite time-horizon, we consider the discounted

accumulated cost over an infinite time-horizon with a large

discount factor close to 1 (e.g. γ = 0.99).

At time-slot t, when the current system state is a reference

state (i.e., Q(t) ∈ QI ), the updating rule for the approximate

Q-function under the discounted cost model is:

Qt+1
m,k(ϕm,k(t)) = (1− εlm,k(ϕm,k(t)))Q

t
m,k(ϕm,k(t))+

εlm,k(ϕm,k(t))

[
ηm,kfm,k(ϕm,k)

+ γQt
m,k(ϕm,k(t+ 1))

]
. (14)

Eqn. (14) is to adaptively adjust the approximate per-

user Q-function according to the instantaneous cost (i.e.

ηm,kfm,k(ϕm,k)) and the current observed discounted ac-

cumulated cost (i.e., γQt
m,k(ϕm,k(t + 1)). In Theorem 2,

we prove the approximate per-user Q-function will converge

with the update in Eqn. (14) in finite steps. After the con-

vergence, an algorithm called Least Square Policy Iteration

(LSPI) [30], [31] is applied to the approximate Q-function for

policy improvement, which is elaborated in Algorithm 2.

Algorithm 2: Least-Squares Policy Iteration (LSPI)

Input:
Nuser: The number of users;

Qm,k: The per-user Q-function for all users;

D: A list of samples (Q,S, g(Q,S),Q′)
δ: The convergence condition of weights;

Output: Q̂m,k: The improved Q-function

1 ω0
m,k ← 1, ∀m, k ; ω0 ← {ω0

m,k}m,k; i ← 0;

2 φ(Q,S) � {Qm,k(ϕm,k)}m,k;

3 repeat
4 Ã ← 0; //(Nuser ×Nuser) matrix;

5 b̃ ← 0; //(Nuser × 1) vector;

6 foreach sample (Q,S, g(Q,S),Q′) in D do
7 Calculate S′ by Eqn. (16) ;

8 Ã ← Ã+ φ(Q,S)(φ(Q,S)− γφ(Q′,S′));
9 b̃ ← b̃+ φ(Q,S)g(Q,S);

10 ωi+1 ← Ã−1b̃;
11 i ← i+ 1;

12 until ‖ωi+1 − ωi‖ < δ;;
13 return Q̂m,k ← ωi

m,k ·Qm,k, ∀m, k;

In order to explain how LSPI works, we should define the

Bellman error on the Q-function as follows:

BellmanErr(Q) � ‖T V −V‖∞, (15)

where V(Q) � minS Q(Q,S) and T is the operator which

is equal to the R.H.S. of Eqn. (11) with the state Q and

the action argminS Q(Q,S). The Bellman error should be

0 if the control policy is optimal, i.e., BellmanErr(Q) = 0
if Ω = Ω∗. However, the approximate per-user Q-function



learned by Eqn. (14) is not optimal, it is hard to obtain the

Bellman error of 0 with the approximate Q-function. Nonethe-

less, we can adjust the approximate Q-function to reduce

the Bellman error. Therefore, after the convergence of the

approximate Q-function with the learning update in Eqn. (14),

the Least-Squares Policy Iteration (LSPI) in Algorithm 2

would be executed to adjust the approximate Q-function by

Q̂m,k = ωi
m,kQm,k, where Q̂m,k is the adjusted approximate

Q-function and ωi
m,k is the adjust factor calculated by LSPI.

Before the execution of Algorithm 2, a set of samples is

collected by observing the system state Q, the control action

S, the instantaneous cost g(Q,S) and the new system state

Q′ in the next time-slot. In Algorithm 2, Line 1 to Line 2

are to initialize the weights ω0
m,k = 1 for all users. Line 4 to

Line 11 are to iteratively calculate the weights to reduce the

Bellman error in Eqn. (15). Note that, in Line 7, the action

S′ for the state Q′ is calculated by minimizing the following

equation, which is similar to Eqn. (13) but the approximate

per-user Q-function is replaced by ωi
m,kQm,k, i.e.

min
S

Q(Q,S) = min
S0

( ∑
k∈K0

ωi
0,kQ0,k(ϕ0,k)

+
∑

m∈M
min
Sm

∑
k∈Km

ωi
m,kQm,k(ϕm,k)

)
. (16)

After the convergence of the weights, the adjusted approx-

imate Q-function Q̂m,k is returned to replace the original

approximate Q-function Qm,k in future time-slots (Line 13).

Remark 2 (The Time Complexity of OLIUS). We can divide

the algorithm OLIUS into two phases: (1) the online phase

(i.e., the online learning with Eqn. (14)) and (2) the offline

phase (i.e., adjusting the Q-function with LSPI in Algorithm

2. In the online phase, the control action is first decided by

Eqn. (13) with O(|S0| ×
∑

mM
—Sm||Km|) time complexity. Then, the controller updates

the Q-function according to Eqn. (14) with O(1) time com-

plexity. Thus the online phase has a low complexity and

can be further accelerated with parallel computing. After the

convergence of the Q-function, OLIUS needs to adjust the Q-

function using LSPI. Although LSPI is an iterative algorithm

with high time complexity (O(|D||S0| ×
∑

mM |Sm||Km|)
per iteration), it can be executed offline in parallel with the

online phase. After LSPI completes, we can replace the old

Q-function with the new one returned by LSPI. As the offline

phase does not affect the OLIUS’s execution time, we can say

OLIUS is a low complexity algorithm and so it is practical.

Remark 3 (Comparison with Previous Approximate
MDP-based Approaches in Cellular Networks). There

have been a number of works based on approximate MDP

(e.g., [10]–[12]) in cellular networks. Their approaches

directly approximate the Q-function with a sum of per-user

Q-function and no theoretical analysis on the approximation

error has been provided. Moreover, most of these works only

deal with a very small action space. However, in this paper,

we adopt the FMDP and the approximate Q-function to deal

with a much larger state and action space. We also show the

performance guarantee with theoretical analysis in Sec. III-D.

Our method can be extended to a general class of problems,

which are usually referred to as weakly coupled multi-agent

resource allocation problems, such as [32], [33].

D. Theoretical Analysis: Convergence and Error Bound

We formally show the convergence of OLIUS in Theorem

2.

Theorem 2 (Convergence of OLIUS). With the updating rule
in Eqn. (14), the Q-function will converge almost surely for
any given initial Q-function, i.e.,

lim
t→∞Qt

m,k(Q,S) = Q∞
m,k(Q,S). (17)

And εlm,k
should satisfy [34]

∑
n εn = ∞ and

∑
n ε

2
n <

∞. Examples of step sizes satisfying this condition are εn =
1
n ,

1
n logn ,

logn
n , etc., for n ≥ 2.

Proof. Please refer to Appendix C in the full version [15].

The approximation error of OLIUS with LSPI can be

bounded by the Bellman error defined in Eqn. (15), which

is given by the following Theorem 3.

Theorem 3 (Error Bound of OLIUS). Let V∗ and Vπ denote
the Q-function associated with the optimal control policy Ω∗

and the approximate control policy Ωπ obtained by Eqn.
(13), respectively. The loss due to acting according to the
approximate control policy Ωπ instead of the optimal control
policy Ω∗ is bounded by:

‖V∗ − Vπ‖∞ ≤ 2γBellmanErr(Q∞)

(1− γ)2
, (18)

where Q∞ is the converged approximate Q-function adjusted
by the LSPI in Algorithm 2.

Proof. Please refer to Appendix D in the full version [15].

IV. PERFORMANCE EVALUATION

We have conducted extensive simulations to evaluate the

performance of the proposed algorithm, OLIUS. In Problem 1,

we aim to minimize the discounted accumulated cost function

over an infinite time horizon; however, all the baselines are

designed to optimize the average performance. For the sake

of fairness, all the performance metrics in the section are

calculated in average without the discount factor, including

our proposed method. Moreover, all users are equal weighted

(i.e., ∀m, k, ηm,k = 1).

We compare OLIUS to three classical scheduling meth-

ods in cellular networks and one approximate MDP-based

approach:

• Round Robin Scheduler: to choose the uplink users in a

circular order.

• CSIT (Channel State Information at the Transmitter) Only

Scheduler: to optimize the uplink throughput without con-

sidering queueing status.



• Dynamic Backpressure [35]: a throughput-optimal schedul-

ing policy (in stability sense).

• Average Cost Q-Learning Algorithm: an approximate MDP-

based approach with long-term average cost (instead of dis-

counted cost), which is elaborated in the following remark.

Remark 4 (Average Cost Q-Learning Algorithm). When solv-
ing scheduling problems, most previous works using MDP
models adopted the average cost Q-Learning algorithm (e.g.,
[10]–[12], [19]). We extend their algorithms to solve the
scheduling problem in HetNets as a baseline.

Denote ϕm,k(t) �
(
Tm,k◦Q(t), Sm(t), S0(t)

)
as the state

and action for the user k ∈ Km in the BS m ∈ M∪ {0}. At
time-slot t, when the system state Q(t) is in a reference state
(i.e., Q(t) ∈ QI ), the Q-function for the user k in BS m
updates its value according to:

Qt+1
m,k(ϕm,k(t)) = Qt

m,k(ϕm,k(t))

+ εlm,k(ϕm,k(t))

[
ηm,kfm,k(ϕm,k) +Qt

m,k(ϕm,k(t+ 1))

−Qt
m,k(ϕ

r)−Qt
m,k(ϕm,k(t))

]
, (19)

where ϕr is the prescribed reference state-action pair.
lm,k(ϕm,k) is to count how many times ϕm,k appears, i.e.,
lm,k(ϕm,k) �

∑t
i=0 I[ϕm,k(i) = ϕm,k]. And εlm,k

is the step
size sequence for updating.

Next, we evaluate the impacts of the packet arrival rate, the

backhaul capacity, the number of macro users, as well as the

performance gain brought by LSPI. The frequency bandwidth

is 10 MHz with -50 dBm/Hz spectrum noise. The packet size is

1000 bytes and the packet arrival follows a Poisson distribution

with 20 ms slot duration. A mobile user has a 2Mb data buffer.

A backhaul link has a 50 Mb backhaul buffer. The macro-BS

is equipped with 4 receiving antennas. The maximum transmit

power of mobile users is 24 dBm. OLIUS uses Eqn. (4) as

the cost function. The discount factor γ is 0.9.

A. Impact of Packet Arrival Rate
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Fig. 3. Impact of packet arrival rate

By varying the packet arrival rate of users, we observe

the average delay and power consumption of OLIUS and the

baselines under different transmission loads. Fig. 3(a) and Fig.

3(b) illustrate the average delay
and empirical CDF of the transmission power, respectively,

with 3 picocells, 5 users in each picocell and 5 macro-users
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Fig. 4. Average delay versus dif-
ferent backhaul capacity.
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Fig. 5. Average delay versus the
number of macro users.

in the macrocell. It can be observed that OLIUS has the least

average delay and transmission power. One interesting phe-

nomenon is the performance gain brought by local detection.

In Fig. 3(a), the line marked “OLIUS without Local Detection”

is the delay performance of OLIUS using only joint detection.

It shows that using local detection intelligently could bring

significant improvement to the performance, especially when

the arrival rate is low. The performance gain brought by local

detection degrades with higher arrival rate. It is because higher

arrival rate increases the demand for higher data rate, and

thus joint detection at the macro-BS is more preferred for

interference cancellation.

B. Impact of Backhaul Capacity

Fig. 4 demonstrates the impact of the backhaul capacity

on the average delay with 3 picocells, 5 users in each pic-

ocell and only 1 macro-user in the macro-cell. With larger

backhaul capacity, all methods perform better due to the

reduced delay in the backhaul links. The proposed algorithm

outperforms all three baselines in this experiment. Note that

the performance gain of OLIUS increases with less backhaul

capacity. It indicates that OLIUS is more efficient when the

backhaul capacity is limited because our method can make the

joint/local detection decision more intelligently via the joint

uplink scheduling among all cells.

C. Impact of the Number of Macro Users

Both OLIUS and Average Cost Q-Learning consider the

impact brought by the macrocell to picocells, which is not

taken into account by the other three baselines (Round-Robin,

CSIT Only and Dynamic Backpressure). Fig. 5 illustrates

the average delay versus the number of macro users. In this

experiment, there are 5 macro-users in the macro-cell but only

1 pico-user in each of the 3 pico-cells. It can be observed that

the average delay of OLIUS and Average Cost Q-Learning

remains almost unchanged with more macro-users, while it

degrades in the other three baselines. It indicates that the cross-

tier mitigation can improve the performance by considering the

impact from macro-users.

D. Impact of LSPI

Fig. 6(a) and 6(b) illustrate the impact of LSPI on the

per-user Q-function and the average delay respectively. After

applying LSPI, the average delay significantly drops by over

50%. It shows that the policy improvement made by LSPI



can bring significant performance gain based on the per-user

Q-function learned with Discounted Cost Q-Learning.
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Fig. 6. The variation of selected per-user Q-function and the average delay
with 3 picocells, 3 users in each picocell, 5 macro-users in the macrocell.

V. CONCLUSION

In this paper, we study the delay-optimal uplink scheduling

problem in HetNets with limited backhaul capacity. In ad-

dition to considering user scheduling and power allocation,

we further allow local detection at the pico-BSs. We first

formulate the problem as an MDP problem. Then, we propose

our algorithm OLIUS that adopts approximate Q-Function

and Factored MDP to exploit the model structure so that the

problem can be solved approximately in polynomial time.

OLIUS works online without any prior statistic information

of the user behavior or the channel characteristics. We theoreti-

cally prove the convergence of OLIUS and its error bound with

the approximate Q-Function. Extensive simulations show that

our algorithm dramatically outperforms existing scheduling

algorithms both in delay and power consumption. In this

work, we only consider the scheduling in one HetNet cell.

It would be interesting as future work to jointly schedule the

communication and the computation in networking systems

using reinforcement learning, such as in HetNets as well as

data centers and cloud computing [36].
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