
Profit-Maximizing Virtual Machine Trading in

a Federation of Selfish Clouds
Hongxing Li∗, Chuan Wu∗, Zongpeng Li† and Francis C.M. Lau∗

∗Department of Computer Science, The University of Hong Kong, Hong Kong, Email: {hxli, cwu, fcmlau}@cs.hku.hk
†Department of Computer Science, University of Calgary, Canada, Email: zongpeng@ucalgary.ca

Abstract—The emerging federated cloud paradigm advocates
sharing of resources among cloud providers, to exploit temporal
availability of resources and diversity of operational costs for job
serving. While extensive studies exist on enabling interoperability
across different cloud platforms, a fundamental question on cloud
economics remains unanswered: When and how should a cloud
trade VMs with others, such that its net profit is maximized over
the long run? In order to answer this question by the federation,
a number of important, correlated decisions, including job
scheduling, server provisioning and resource pricing, need to
be dynamically made, with long-term profit optimality being a

goal. In this work, we design efficient algorithms for inter-cloud
resource trading and scheduling in a federation of geo-distributed
clouds. For VM trading among clouds, we apply a double auction-
based mechanism that is strategyproof, individual rational, and
ex-post budget balanced. Coupling with the auction mechanism is
an efficient, dynamic resource trading and scheduling algorithm,
which carefully decides the true valuations of VMs in the auction,
optimally schedules stochastic job arrivals with different SLAs
onto the VMs, and judiciously turns on and off servers based
on the current electricity prices. Through rigorous analysis, we
show that each individual cloud, by carrying out our dynamic
algorithm, can achieve a time-averaged profit arbitrarily close to
the offline optimum.

I. INTRODUCTION

The emerging federated cloud paradigm advocates sharing

of disparate cloud services (in separate data centers) from

different cloud providers, and interconnecting them based on

common standards and policies to provide a universal environ-

ment for cloud computing. Such a cloud federation exploits

temporal and spatial availability of resources (e.g., virtual

machines) and diversity of operational costs (e.g., electricity

prices): when a cloud experiences a burst of incoming jobs, it

may resort to VMs of other clouds having idle resources; when

the electricity price for running servers and VMs is high at one

data center, the cloud can schedule jobs onto other data centers

with lower electricity charges. In this way, the aggregate job

processing capacity of the cloud federation can potentially be

higher than the summation of the capacities of separate clouds

operating alone, leading possibly to a larger overall profit.

To realize such a federated cloud paradigm, fundamental

problems on cloud economics need to be resolved. Naturally,

a cloud in the real world is selfish, and would try every mean

to maximize its own profit—i.e., its income from handling jobs

and leasing VMs to other clouds, minus its operational costs

and expenses in VM rental from other clouds. Only if its profit

can be maximized and in any case not lower than when operat-

ing alone, can a cloud be incentivized to join a federation. This

incentive is materialized if an efficient mechanism to carry out

resource trading and scheduling among federated clouds, thus

achieving profit maximization for individual clouds, can be put

in place. To this end, several correlated, practical decisions

need to be made: (1) VM pricing: what mechanism should

be advocated for VM sale and purchase among the clouds,

and at what prices? (2) Job scheduling: given time-varying

job arrivals at each cloud, having different resource and SLA

requirements, should a cloud serve the jobs right away or later,

and use its own resources or others’, in order to take advantage

of lower electricity prices? (3) Server provisioning: is it more

beneficial for a cloud to keep many of its servers running to

serve jobs of its own and those from others, or to switch some

of them off to save electricity costs? These decisions should be

efficiently and optimally made in an online fashion, which in

turn provide a guarantee for long-term optimality of individual

cloud’s profits.

In this paper, we design efficient algorithms for inter-cloud

resource trading and scheduling, in a federation consisting of

disparate cloud data centers. A double auction-based mecha-

nism is applied for the sell and purchase of available VMs

across cloud boundaries, which is strategy-proof, individual

rational, and ex-post budget balanced. Closely combined with

the auction mechanism is an efficient, dynamic VM trading

and scheduling algorithm, which carefully decides the true

valuations of VMs to participate in the auction, optimally

schedules randomly-arriving jobs with different resource re-

quirements (e.g., number of VMs) and SLAs (e.g., maximum

job scheduling delay) onto different data centers, and judi-

ciously turns on and off servers in the clouds based on the

current electricity prices. The contributions of this work are

summarized as follows.

First, we address selfishness of individual clouds in a cloud

federation, and design efficient mechanisms to maximize the

net profit of each participating cloud. This profit is not only

guaranteed to be larger than that when the cloud operates

alone, but also maximized over the long run, in the presence

of time-varying job arrivals and electricity prices.

Second, we novelly combine a truthful double auction

mechanism with stochastic Lyapunov optimization techniques,

and design an online VM trading and scheduling algorithm for

a cloud to optimally price the VMs and judiciously schedule

the VM and server usages. Each cloud values different VMs

based on the back pressure in its job queues, and bids for them

in the auction for effective VM acquisition.

Third, we demonstrate that by applying the dynamic algo-

rithm with double auction, each cloud can achieve a time-

averaged profit arbitrarily close to its offline optimum (ob-

tained if the cloud has complete knowledge of the incoming



jobs and electricity prices over the entire time span).

In the rest of the paper, we discuss related literature in

Sec. II, present the system model in Sec. III, introduce

the detailed resource trading and scheduling mechanisms in

Sec. IV, and conclude the paper in Sec. V.

II. RELATED WORK

A. Optimal Scheduling in Cloud Computing

Existing literature ([1]–[3] and references therein) on re-

source scheduling in cloud systems focuses mainly on a single

cloud that operates alone. A common theme is to minimize the

operational costs (mainly consisting of electricity bills) in one

or multiple data centers of the cloud, while providing certain

performance guarantee for job scheduling, e.g., in terms of

average job completion times [1]–[3]. Different from these

studies, this work investigates bounded scheduling delay for

each job even in the worst cases, and profit maximization for

individual selfish clouds in a cloud federation.

B. Resource Trading Mechanisms

There is a large body of literature devoting to resource trad-

ing in computing grids [4] and wireless spectrum leasing [5]

[6]. Various mechanisms have been studied, e.g., bargaining

[4], fixed or dynamic pricing based on a contract or the supply-

demand ratio [7], and auctions [5], [6].

A typical bargaining mechanism [4] tends to have unaccept-

able complexity when negotiating between each pair of traders.

Fixed pricing, e.g., Amazon EC2 on-demand instances, has

been shown to be inefficient in profit maximization given there

are system dynamics [8]. Dynamic pricing, such as Amazon

EC2 spot instances, could be inefficient too, as the participants

may quote the resources untruthfully [9].

Auction stands out as a promising mechanism, for which

there are many solutions ([5], [6] and references therein) with

truthful design and polynomial complexity. Although some

recent works [8], [9] aim to design an auction mechanism with

individual rationality (non-negative profit gain) for trading in

federated clouds, they do not explicitly address individual

profit maximization over the long run. Moreover, there is very

little discussion in the literature on auctions about methods to

quantitatively calculate the true valuation in each bid, which is

usually assumed as known. Our design addresses these issues.

III. SYSTEM MODEL AND AUCTION FRAMEWORK

A. Federation of Clouds

We consider a federation of F clouds, each of which

assigned to a different geometric location and operates au-

tonomously to gain profit by serving its customers’ job re-

quests, managing server provisioning and trading resources

with other clouds.

Service demands: Each individual cloud i ∈ [1, F ] has a

front-end proxy server, which accepts job requests from its

customers. There are S types of jobs being serviced at each

cloud, each specified by a three-tuple < ms, gs, ds >. Here,

ms ∈ [1,M ] refers to the type of the required VM instances,

where M is the maximum number of VM types, and each

type corresponds to a different set of configurations of CPU,

storage and memory; gs is the number of type-ms VMs that

the job needs simultaneously (see Amazon EC2 API [7]);

and ds stands for the SLA (Service Level Agreement) of job

type s ∈ [1, S], evaluated by the maximal response delay

for scheduling a job, i.e., the time-span from when the job

arrives to when it starts to run on the scheduled VMs. In a real

cloud, it is common to buy servers of the same configuration

and provision the same type of VMs on one machine [10].

Therefore, we suppose each cloud i has Nm
i homogeneous

servers to provision VMs of type m ∈ [1,M ], each of which

can provide a maximum of Cm
i VMs of this type; the total

number of servers in cloud i is
∑M

m=1N
m
i .

The system runs in a time-slotted fashion. At the beginning

of each time slot t, rsi (t) ∈ [0, Rs
i ] jobs arrive at cloud i, for

each job type s. Rs
i is an upper-bound on the number of type-s

jobs submitted to cloud i in a time slot. The arrival of jobs is

an ergodic process at each cloud. We assume the arrival rate

is given, and how a customer decides which cloud to use is

not a concern in this study. Let psi (t) ∈ [0, p
s(max)
i ] be the

given service charge to the customer by cloud i, for accepting

a job of type s in time slot t, which remains fixed within a

time slot, but may vary across time slots. Here, p
s(max)
i is the

maximum possible price for psi (t).

Job scheduling: Each incoming job to cloud i enters a FIFO

queue of its type—a cloud i maintains a queue to buffer

unscheduled jobs of each type s, with Qs
i (t) as its length in t.

When the required VMs of a job are allocated, the job departs

from its queue and starts to run on the VMs. A cloud may

schedule its jobs on either its own VMs or VMs leased from

other clouds, whichever yields the best economic benefits.

Let µs
ij(t) be the number of type-s jobs of cloud i that are

scheduled for processing in cloud j at the beginning of slot t.
When a job’s maximum response time (the SLA) cannot

be met, probably because of system overload, the job is

dropped. A penalty is raised in this case, to compensate for

the customer’s loss. Let

Ds
i (t) ∈ [0, D

s(max)
i ] (1)

be the number of type-s jobs dropped by cloud i in t, where

D
s(max)
i is the maximum value of Ds

i (t). Let ξsi ≥ p
s(max)
i

be the penalty to drop one such job, which is at least equal to

the maximum price charged to the customer if the job were

accepted.

Hence, the number of unscheduled jobs buffered at each

cloud can be updated with the following the queueing law:

Qs
i (t+ 1) =max{Qs

i (t)−
F
∑

j=1

µs
ij(t)−Ds

i (t), 0}

+ rsi (t), ∀s ∈ [1, S], ∀i ∈ [1, F ]. (2)

Job scheduling should satisfy the following SLA constraint:

Each type-s job in cloud i is either scheduled or dropped (subject

to a penalty) before its maximum response delay ds, ∀s ∈ [1, S].
(3)

To satisfy this SLA constraint, we seek to bound the lengths

of job queues and the following virtual queues Zs
i , each

associated with a job queue Qs
i . The virtual queues are created

based on the ǫ−persistence queue technique [11].



Zs
i (t+ 1) = max{Zs

i (t) + 1{Qs
i
(t)>0} · [ǫs −

F
∑

j=1

µs
ij(t)]−Ds

i (t)

− 1{Qs
i
(t)=0} ·

F
∑

j=1

Cms

j ·Nms

j

gs
, 0}, ∀i ∈ [1, F ], s ∈ [1, S]. (4)

Here, ǫs > 0 is a constant. 1{Qs
i
(t)>0} and 1{Qs

i
(t)=0} are

indicator functions such that

1{Qs
i
(t)>0} =

{

1 if Qs
i (t) > 0

0 Otherwise
; 1{Qs

i
(t)=0} =

{

1 if Qs
i (t) = 0

0 Otherwise
.

Length of a virtual queue reflects the cumulated response delay

of jobs from the respective job queue.

Server provisioning: We consider the electricity cost, for

running and cooling the servers [12], as the main component

of the operational cost in a cloud. Other costs, e.g., space

rental and labour, remain relatively fixed for a long time, and

therefore are of less interest. Given that electricity prices vary

at different locations and from time to time [1], we model

the operational cost βi(t) in each cloud i as a general ergodic

process over time, varying across time slots between β
(min)
i

and β
(max)
i .

Each cloud strategically decides the number of active

servers at each time, to optimize its profit. Let nm
i (t) be the

number of active servers provisioning type-m VMs at cloud i
in t. The available server capacities constrain any feasible job

scheduling strategy at time t as follows:
∑

j∈[1,F ]

∑

s:ms=m,s∈[1,S]

gsµ
s
ji(t) ≤ Cm

i · nm
i (t),

∀m ∈ [1,M ], ∀i ∈ [1, F ], (5)

nm
i (t) ≤ Nm

i , ∀m ∈ [1,M ], ∀i ∈ [1, F ]. (6)

(5) states that the overall demand for type-m VMs in cloud

i from itself and other clouds should be no larger than the

maximum number of available type-m VMs on the active

servers in cloud i. Here gsµ
s
ji(t) is the total number of VMs

needed by type-s jobs scheduled from cloud j to cloud i
in t. Considering practical job execution efficiency, we only

consider the scheduling of a job to VMs in a single cloud,

but not to VMs across different clouds. (6) ensures that the

number of active servers is limited by the total number of

on-premise servers of the corresponding VM configuration at

each cloud.

B. Inter-cloud VM Trading with Double Auction

In an inter-cloud resource market, VMs are the items for

trading. For each type of VMs, multiple clouds may have

them on sale while multiple other clouds can request them.

A double auction is a natural fit to implement efficient trading

in this case, allowing both selling and buying clouds to actively

participate in pricing to strive for their own benefits. In our

dynamic system, a multi-unit double auction is carried out

among the clouds at the beginning of each time slot, to decide

the VM trades within that time slot.

Buyers & Sellers: A cloud can be both a buyer and a seller.

A buy-bid < bmi (t), γm
i (t) > records the unit price and

maximum quantity for which cloud i is willing to buy VMs of

type m, in t. Similarly, a sell-bid < smi (t), ηmi (t) > records

the unit price and maximum quantity for which cloud i is

willing to sell VMs of type m in t.
Let b̃mi (t) and s̃mi (t) be cloud i’s true valuations of buying

and selling a type-m VM respectively (the max/min price it is

willing to pay/accept). Similarly, let γ̃m
i (t) and η̃mi (t) be cloud

i’s true valuations of the quantities to buy and sell VMs of type

m respectively (the maximum number of VMs it is willing to

purchase/sell). A cloud i may strategically manipulate the bid

prices and volumes, in the hope of maximizing its profit.

Auctioneer: We assume that there is a broker in the cloud

federation, assuming the role of the auctioneer. After collecting

all the buy and sell bids, the auctioneer executes a double

auction to decide the set of successful buy and sell bids, their

clearing prices and the numbers of VMs to trade in each

type. Let b̂mi (t) be the actual charge price for cloud i to buy

one type-m VM, and γ̂m
i (t) be the actual number of VMs

purchased. Similarly, let ŝmi (t) be the actual income cloud i
receives for selling one type-m VM, and η̂mi (t) be the actual

number of VMs sold.

Let αm
ij (t) be the number of type-m VMs that cloud i

purchases from cloud j in t, as decided by the auctioneer:

γ̂m
i (t) =

∑

j∈[1,F ],j 6=i

αm
ij (t), ∀m ∈ [1,M ], i ∈ [1, F ], (7)

η̂m
i (t) =

∑

j∈[1,F ],j 6=i

αm
ji(t), ∀m ∈ [1,M ], i ∈ [1, F ]. (8)

Since VMs are purchased for serving jobs, the job schedul-

ing decisions µs
ij(t) at each cloud i, ∀j ∈ [1, F ], s ∈ [1, S],

are related to the number of VMs it purchases:
∑

s:s∈[1,S],ms=m

gs·µ
s
ij(t) = αm

ij (t),

∀m ∈ [1,M ],∀i, j ∈ [1, F ], i 6= j. (9)

Three economic properties are desirable for the auctioneer’s

mechanism. (i) Truthfulness: Bidding true valuations is a

dominant strategy, and consequently, both bidder strategies

and auction design are simplified. (ii) Individual Rationality:

Each cloud obtains a non-negative profit by participating in

the auction. (iii) Ex-post Budget Balance: The auctioneer has

a non-negative surplus, i.e., the total payment from all winning

buy-bids is no less than the total charge for all winning sell-

bids in each time slot. Detailed design of an auction with these

properties is given in our technical report [13].

C. Individual Selfishness

Each cloud in the federation aims to maximize its time-

averaged profit (revenue minus cost) over the long run of

the system, while striving to fulfil the resource and SLA

requirements of each job.

Revenue: A cloud has two sources of revenue: i) job service

charges paid by its customers, and ii) the proceeds from VM

sales. The time-averaged revenue of cloud i by undertaking

different types of jobs from its customers is

Φi
1 = lim

T→∞

1

T

T−1
∑

t=0

∑

s∈[1,S]

E{psi (t) · r
s
i (t)}, ∀i ∈ [1, F ]. (10)



We assume the front-end charges, psi (t), from a cloud to its

customers, are given. Hence, this part of the revenue is fixed

in each time slot. The time-averaged income of cloud i from

selling VMs to other clouds is:

Φi
2 = lim

T→∞

1

T

T−1
∑

t=0

∑

m∈[1,M]

E{ŝmi (t) · η̂m
i (t)}, ∀i ∈ [1, F ]. (11)

Cloud i can control this income by adjusting its sell-bids, i.e.,

smi (t) and ηmi (t), ∀m ∈ [1,M ], at each time.

Cost: The cost of cloud i consists of three parts: i) operational

costs incurred for running its active servers, ii) the penalties for

dropping jobs, and iii) the expenditure on buying VMs from

other clouds. The time-averaged cost for operating servers is

decided by the number of active servers in each time, i.e.,

Ψi
1 = lim

T→∞

1

T

T−1
∑

t=0

E{βi(t) ·
M
∑

m=1

nm
i (t)}, ∀i ∈ [1, F ]. (12)

The time-averaged penalty is determined by the number of

dropped jobs over time, i.e., Ds
i (t), ∀s ∈ [1, S], t ∈ [0, T−1]:

Ψi
2 = lim

T→∞

1

T

T−1
∑

t=0

∑

s∈[1,S]

E{ξsi ·Ds
i (t)}, ∀i ∈ [1, F ]. (13)

The time-averaged expenditure for VM purchase is decided

by the actual VM trading prices and numbers, as decided by

the buy-bids (bmi (t), γm
i (t)) from cloud i:

Ψi
3 = lim

T→∞

1

T

T−1
∑

t=0

E{
M
∑

m=1

b̂mi (t) · γ̂m
i (t)}. (14)

Profit Maximization: The profit maximization problem at

cloud i ∈ [1, F ] can be formulated as follows:

max Φi
1 +Φi

2 −Ψi
1 −Ψi

2 −Ψi
3 (15)

s.t. Constraints (1)-(9).

IV. DYNAMIC ALGORITHMS

We next present a dynamic algorithm for each cloud to trade

VMs and schedule jobs/servers, which is in fact applicable

under any truthful, individual-rational and ex-post budget

balanced double auction mechanism. Fig. 1 illustrates the

relation among these algorithm modules.

Fig. 1. Key algorithm modules.

The goal of the dynamic algorithm at each cloud i is to

maximize its time-averaged profit, i.e., to solve optimization

(15), by dynamically making decisions in each time slot. We

apply the drift-plus-penalty framework in Lyapunov optimiza-

tion theory [14], and derive (from (15)) the following one-shot

optimization problem to be solved by cloud i in each time slot

t (detailed derivation in our technical report [13]):

max ϕi
1(t) + ϕi

2(t) + ϕi
3(t) (16)

s.t. Constraints (1), (5)-(9).

where

ϕi
1(t) = V

∑

m∈[1,M]

[ŝmi (t)η̂m
i (t)− b̂mi (t)γ̂m

i (t)− βi(t)n
m
i (t)],

ϕi
2(t) =

∑

s=∈[1,S]

∑

j∈[1,F ]

µs
ij(t)[Q

s
i (t) + Zs

i (t)],

ϕi
3(t) =

∑

s∈[1,S]

Ds
i (t)[Q

s
i (t) + Zs

i (t)− V · ξsi ],

and V > 0 is a user-defined parameter for gauging the

optimality of the time-averaged profit.

In solving the one-shot optimization, cloud i observes the

states of job and virtual queues (Qi(s)(t), Z
s
i (t)), job arrival

rates, the current cost for server operation (βi(t)), and then

decides the optimal values of variables for optimal decisions

on i) buy/sell bids for different types of VMs, ii) scheduling of

active servers and jobs to these servers, and iii) jobs to drop.

1. VM Valuation and Bid: Optimization (16) is related to the

actual charges b̂mi (t) and ŝmi (t) (∀m ∈ [1,M ]) and traded VM

numbers γ̂m
i (t) and η̂mi (t) (∀m ∈ [1,M ]), from the double

auction. These values are determined by the auctioneer accord-

ing to buy-bids (bmi (t), γm
i (t)) and sell-bids (smi (t), ηmi (t))

submitted by all clouds, and its double auction mechanism.

When a truthful double auction is employed, sellers and

buyers bid their true values of the prices and quantities, in

order to maximize their individual utilities. (16) is the utility

maximization problem for each cloud. If we can find true

values of each cloud i, b̃mi (t), γ̃m
i (t), s̃mi (t) and η̃mi (t), and

let the cloud bid using these values, the achieved profit in (16)

is guaranteed to be the largest, as compared to bidding other

values.

The true values of the buy/sell prices for cloud i are derived

as follows (detailed derivation is presented in the technical

report [13]):

b̃mi (t) =
Q

s∗m
i (t) + Z

s∗m
i (t)

V · gs∗m
, (17)

and

s̃mi (t) =







Q
s∗m
i

(t)+Z
s∗m
i

(t)

V ·gs∗m
if

Q
s∗m
i

(t)+Z
s∗m
i

(t)

V ·gs∗m
> βi(t)/C

m
i

βi(t)/C
m
i Otherwise

,

(18)
respectively, where

s∗m = arg max
s′∈[1,S],ms′=m

{W s′

i (t)}, (19)

and W s′

i (t) =
Qs′

i (t) + Zs′

i (t)

gs′
. (20)

W s′

i (t) denotes the weight for scheduling one type-s′ job (to

run on type-ms′ VM(s)) by cloud i in t, and s∗m specifies

the job type with the largest weight (ties broken arbitrarily),

among all types of jobs requiring type-m VMs.

The true values of the number of type-m VMs to buy and

to sell at cloud i are

γ̃m
i (t) =

∑

j∈[1,F ]

Cm
i ·Nm

i , (21)

and η̃m
i (t) = Cm

i ·Nm
i . (22)

They state that the maximum number of type-m VMs cloud

i is willing to buy (sell) at the price in (17) (in (18)), is the

number of all potential type-m VMs in the federation (the

number i can provision).



Algorithm 1 Dynamic Profit Maximization Algorithm at cloud

i in Time Slot t
Input: rsi (t), Q

s
i (t), Z

s
i (t), gs, ms, ξsi , Cm

i , Nm
i and βi(t), ∀s ∈

[1, S].
Output: bmi (t), smi (t), γm

i (t), ηm
i (t), Ds

i (t), µs
ij(t) and nm

i (t),
∀m ∈ [1,M ], s ∈ [1, S], j ∈ [1, F ].

1: VM valuation and bid: Decide bmi (t), smi (t), γm
i (t) and ηm

i (t)
with Eqn. (17)-(22);

2: Server provisioning, job scheduling and dropping: Decide
µs
ij(t), D

s
i (t) and nm

i (t) with Eqn. (23), (25) and (26);
3: Update Qs

i (t) and Zs
i (t) with Eqn. (2) and (4).

To conclude, in each time slot t, cloud i submits its bids as

bmi (t) = b̃mi (t), smi (t) = s̃mi (t), γm
i (t) = γ̃m

i (t) and ηmi (t) =
η̃mi (t), for each type of VMs m ∈ [1,M ].

2. Server Provisioning, Job scheduling and Dropping:

After receiving results of the double auction (actual charges

and VM allocation αms

ji (t), ∀s ∈ [1, S], ∀j ∈ [1, F ]), cloud

i schedules its jobs on its local servers and (potentially)

purchased VMs from other clouds, decides which jobs to drop

and the number of active servers to provision, by solving the

one-shot optimization in (16). Detailed steps can be found in

our technical report [13].

The derived number of type-s jobs scheduled to run on the

local servers is

µs
ii(t) =











C
ms
i

·N
ms
i

−
∑

j 6=i α
ms
ji

(t)

gs
if

Qs
i (t)+Zs

i (t)

V ·gs
> βi(t)/C

ms
i

and s = s∗ms

0 Otherwise

,

(23)
and the number of type-s jobs to run at cloud j(6= i) is

µs
ij(t) =

{

αms

ij (t)/gs if s = s∗ms

0 Otherwise
. (24)

The number of type-s jobs dropped by cloud i in t is

Ds
i (t) =

{

D
s(max)
i if Qs

i (t) + Zs
i (t) > V · ξsi

0 Otherwise
. (25)

The number of activated servers at cloud i to provision type-

m VM is calculated as

nm
i (t) = (

∑

s∈[1,S],ms=m

µs
ii(t) · gs +

∑

j 6=i

αm
ji(t))/C

m
i . (26)

These many servers can provide enough type-m VMs for

serving local jobs and selling to other clouds.

Alg. 1 summarizes the dynamic algorithm at each cloud.

We next analyze the performance guarantee provided by our

dynamic algorithm. Due to space limit, all detailed proofs can

be found in [13].

Lemma 1: Let Q
s(max)
i = V ξsi +Rs

i and Z
s(max)
i = V ξsi +

ǫs. If D
s(max)
i ≥ max{Rs

i , ǫs}, each job queue Qs
i (t) and

each virtual queue Zs
i (t) are upper-bounded by Q

s(max)
i and

Z
s(max)
i , respectively, in t ∈ [0, T − 1], ∀i ∈ [1, F ], s ∈ [1, S].

Theorem 1 (SLA Guarantee): Each job of type s ∈ [1, S] is

either scheduled or dropped with Alg. 1 before its maximum

response delay ds, if we set ǫs =
Q

s(max)
i

+Z
s(max)
i

ds
.

Theorem 2 (Individual Profit Optimality): Let Ω∗
i be the

offline-optimal time-averaged profit of cloud i ∈ [1, F ],

obtained with a truthful, individual-rational, ex-post budget-

balanced double auction, with complete information about its

own job arrivals and prices in the entire time span [0, T − 1].
The dynamic Algorithm 1 can achieve a time-averaged profit

Ωi for cloud i within a constant gap Bi/V to Ω∗
i , i.e.,

Ωi ≥ Ω∗
i −Bi/V,

where V > 0 and Bi = 1
2

∑

s∈[1,S][[
∑F

j=1 C
ms

j Nms

j /gs +

D
s(max)
i ]2 + [Rs

i ]
2 + [ǫs]

2 + [D
s(max)
i +

∑F

j=1 C
ms

j Nms

j /gs]
2] is

a constant.

The gap Bi/V can be close to zero by fixing ǫs and

increasing V . Detailed proof is included in [13].

V. CONCLUSION

This paper investigates profit maximization strategies at

individual selfish clouds in a cloud federation where VM

trading happens across cloud boundaries. We adopt a truthful,

individual-rational, ex-post budget-balanced double auction as

the inter-cloud trading mechanism, and design a dynamic

algorithm for each cloud to decide the best VM valuation and

bidding strategies, and to schedule job service/drop and server

provisioning in the most economic fashion, under time-varying

job arrivals and operational costs. The proposed algorithm can

obtain a time-averaged profit for each cloud within a constant

gap from its offline maximum, based on solid theoretical

analysis.

ACKNOWLEDGEMENTS

The research was supported in part by a grant from Hong

Kong RGC under the contract HKU 717812E.

REFERENCES

[1] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in Prof. of IEEE INFOCOM’10, 2010.

[2] R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely, “Dynamic resource
allocation and power management in virtualized data centers,” in Prof. of

IEEE/IFIP NOMS’10, 2010.
[3] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data

centers power reduction: A two time scale approach for delay tolerant
workloads,” in Proc. of IEEE INFOCOM’12, 2012.

[4] R. Buyya, D. Abramson, and J. Giddy., “Nimrod/g: An architecture of a
resource management and scheduling system in a global computational
grid,” in Proc. of HPC Asia’00, 2000.

[5] X. Zhou and H. Zheng, “Trust: A general framework for truthful double
spectrum auctions,” in Proc. of IEEE INFOCOM’09, 2009.

[6] H. Xu, J. Jin, and B. Li, “A secondary market for spectrum,” in Proc. of

IEEE INFOCOM’10, Mini Conference, 2010.
[7] [Online]. Available: http://aws.amazon.com/ec2
[8] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on federated

clouds,” in Proc. of IEEE/ACM CCGrid’10, 2010.
[9] ——, “The impact of user rationality in federated clouds,” in Proc. of

IEEE/ACM CCGrid’12, 2012.
[10] [Online]. Available: http://www.linode.com/faq.cfm
[11] M. J. Neely, “Opportunistic scheduling with worst case delay guarantees

in single and multi-hop networks,” in Proc. of IEEE INFOCOM’11,
2011.

[12] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool, 2009.

[13] H. Li, C. Wu, Z. Li, and F. C. Lau, “Profit-maximizing virtual machine
trading in a federation of selfish clouds,” The University of Hong Kong,
http://i.cs.hku.hk/∼hxli/profit-federation.pdf, Tech. Rep., 2012.

[14] M. J. Neely, Stochastic Network Optimization with Application to Com-

munication and Queueing Systems, J. Walrand, Ed. Morgan&Claypool
Publishers, 2010.


