
Dynamic Pricing and Profit Maximization for the
Cloud with Geo-distributed Data Centers

Jian Zhao∗, Hongxing Li∗, Chuan Wu∗, Zongpeng Li†, Zhizhong Zhang∗, Francis C.M. Lau∗
∗ The University of Hong Kong, {jzhao,hxli,cwu,zzzhang,fcmlau}@cs.hku.hk

† University of Calgary, zongpeng@ucalgary.ca

Abstract—Cloud providers often choose to operate datacenters
over a large geographic span, in order that users may be served
by resources in their proximity. Due to time and spatial diversities
in utility prices and operational costs, different datacenters
typically have disparate charges for the same services. Cloud
users are free to choose the datacenters to run their jobs,
based on a joint consideration of monetary charges and quality
of service. A fundamental problem with significant economic
implications is how the cloud should price its datacenter resources
at different locations, such that its overall profit is maximized.
The challenge escalates when dynamic resource pricing is allowed
and long-term profit maximization is pursued. We design an
efficient online algorithm for dynamic pricing of VM resources
across datacenters in a geo-distributed cloud, together with
job scheduling and server provisioning in each datacenter, to
maximize the profit of the cloud provider over a long run.
Theoretical analysis shows that our algorithm can schedule jobs
within their respective deadlines, while achieving a time-average
overall profit closely approaching the offline maximum, which is
computed by assuming that perfect information on future job
arrivals are freely available. Empirical studies further verify the
efficacy of our online profit maximizing algorithm.

I. INTRODUCTION

Recent years have witnessed the proliferation of cloud

computing platforms, services and applications [1] [2] [3]. To

better serve the computing demands from users in different

geographical regions, it is common for a cloud provider to host

multiple datacenters in a number of selected locations. Given

the different operational costs across service regions, resources

(e.g., virtual machines) are naturally priced differently across

data centres [2]. Users of the cloud system can strategically de-

cide the datacenters to run their jobs in, based on the resource

prices and the desired quality of service (e.g., communication

delays between the user’s location and the datacenters).

How the cloud provider should price its resources in dat-

acenters distributed across different locations such that the

overall profit is maximized is a problem of fundamental impor-

tance. As compared to fixed prices (e.g., Amazon on-demand

instances), dynamic pricing that reflects the realtime supply-

demand relationship (e.g., Amazon spot instances) represents

a more promising charge strategy that can better exploit user

payment potentials and thus larger profit gains at the cloud

provider. Under the objective to maximize the overall profit in

The research was supported in part by grants from Hong Kong RGC under
the contracts HKU 717812 and HKU 718513, and in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC).

978-1-4799-3360-0/14/$31.00 ©2014 IEEE.

the cloud, it is however non-trivial to decide a dynamic price

for VMs in each datacenter at a given time, which is intimately

connected to decisions on server right-sizing (turning servers

on/off) and job scheduling among different datacenters.

The challenge escalates when we want to pursue time-

averaged profit maximization over a long run of the system,

with dynamically arriving user jobs with heterogeneous exe-

cution times, and based on online decision making. A number

of intriguing questions are involved: What is the strategy for

each user to select the cloud datacenter for its job execution, in

order to maximize its own utility? Given the user strategy, how

should the cloud dynamically price its VMs and decide the

number of active servers in each datacenter at any time such

that the jobs are maximally served and its profit is maximized

over time?

In this work, we answer these questions by jointly modelling

job scheduling, VM pricing and server provisioning decisions

as an integrated stochastic optimization framework based on

Lyapunov optimization theory [4]. An efficient online algorith-

m is designed to guide the operational decisions of the cloud

provider to pursue maximal time-averaged profit over the long

run. Based on rigorous theoretical analysis, we demonstrate

that the algorithm has the following desired properties: (1)

The algorithm guarantees no job dropping under two mild

conditions as presented in Sec. IV-B, while all the accepted

jobs can be completed within their respective completion

deadlines; (2) the algorithm achieves a time-averaged overall

profit for the cloud provider, which can approach the offline

maximum arbitrarily closely. Note that the latter is computed

under the strong assumption that complete information of

all job arrivals, including those in the future, are magically

available.

To our knowledge, this work is among the first to design ef-

ficient strategies for joint dynamic pricing, job scheduling, and

resource provisioning in the cloud computing literature, and

among the first to handle jobs with variable lengths under the

Lyapunov optimization framework. In particular, we consider

a cloud with various VM configurations, whose operational

costs vary in both the temporal and spatial domains. We

address dynamic arrivals of jobs into the cloud, with various

requirements on types and lengths of occupation of different

VMs, as well as different job completion deadlines. A salient

contribution in our Lyapunov optimization approach is that,

we allow the execution time of each job to be longer than

the interval of online decision making, such that decisions

2

in consecutive decision intervals are strongly correlated, be-

yond what the standard Lyapunov optimization framework can

handle. Employing a new design of the dynamic algorithm

in two time scales, we can still ensure its close-to-optimal

performance, based on rigorous theoretical analysis. It is

noteworthy that our algorithm has fundamental difference from

the ingenious work [5] with two-time-scale scheduling, in

that we need no expectation into the future to be extracted

from historical data. Instead, our framework makes dynamic

decisions just based on the current status of the system.

The remainder of the paper is organized as follows. Sec. II

presents the system model. The online algorithm is designed

in Sec. III. The performance of the algorithm is analyzed in

Sec. IV. Sec. V presents the simulation results. We review re-

lated literature in Sec. VI and conclude the paper in Sec. VII.

II. MODEL & NOTATION

A. The Cloud System Model

Consider a cloud provider with a set D (with size D = |D|)
of geo-distributed datacenters, indexed by d where 1 ≤ d ≤ D.

Each datacenter d has Nd homogeneous servers. The system

operates in a time-slotted fashion, for t = 0, 1, . . . , T . A set H
(with size H = |H|) of distinct types of virtual machine (VM)

instances are provided in the cloud, each with a specific set

of configurations of CPU, memory, and storage, characterizing

heterogenous VM instance provisioning in the real world such

as in Amazon EC2 [2]. Each server in a datacenter hosts VMs

of the same type in a time slot, which can change across

different time slots [6]. Let nd
h denote the maximum number of

type-h VMs that a server of datacenter d can simultaneously

host.

Datacenters receive VM requests from customers in the

form of jobs. Each job r ∈ R is a pair (hr, wr), where

hr ∈ H is the type of VM requested; wr ∈ [wmin, wmax]
is the number of time slots requested and is referred to the

workload of the job. The set of possible job types is R with

R = |R|. As a Service Level Agreement (SLA), the cloud

provider guarantees that the maximum job scheduling latency

is bounded by l, i.e., the delay from the time the job is

submitted to a datacenter to the time it is allocated a VM,

will not exceed l.
Cloud customers reside in a set of geo-distributed zones

J with size J = |J |. The utility obtained by customers in

zone j when aj,dr type-r jobs are served by datacenter d is

U j,d
r (aj,dr), j ∈ J , d ∈ D, r ∈ R, which is a differentiable,

concave utility function.

B. The Cloud Provider’s Solution Space

We aim to design dynamic, optimal algorithms for the

cloud provider to strategically make the following operational

decisions in each datacenter at each time slot: (i) Front-end
job pricing: What prices should be charged to each type of

jobs with a specific workload? (ii) Job scheduling: How many

jobs of each type should be scheduled for execution in each

datacenter? (iii) Server/VM provisioning: How many servers

should be turned on, and what type of VMs should each active

server provision? The goal is overall profit optimization from

all datacenters over the long run.

Job Pricing. Let pdr(t) ∈ [0, pd,max
r] be the price charged

to a type-r job at datacenter d at time t, upper-bounded by

pd,max
r , which will be related to customers’ maximum value

for a type-r job at datacenter d.

Given the job price pdr(t), customers in zone j will request

aj,dr (t) type-r jobs from datacenter d, for maximizing their

surplus (total utility minus total charges) under the charging

prices pdr(t):

aj,d
r (t) = argmax

a
j,d
r

∑
d∈D

[U j,d
r (aj,d

r (t))− pdr(t) · aj,d
r (t)]. (1)

The total number of type-r jobs datacenter d receives is∑
j∈J aj,dr (t), with total workload wr

∑
j∈J aj,dr (t). The job

arrival rate aj,dr (t) is upper-bounded by amax
r .

Job Scheduling. Each datacenter maintains R queues of

unscheduled workload, Qd
r , each corresponding to a distinct

job type r,∀r ∈ R. Upon arrival of a type-r job at datacenter

d, wr units of workload are appended to Qd
r ; when a job

is scheduled for execution, a unit workload departs from Qd
r

in that time slot. Let μd
r(t) denote the number of type-r jobs

scheduled to run in datacenter d in time slot t. Once scheduled,

the job will occupy a VM of type hr for wr consecutive time

slot(s). Let μd
r(t

−) denote the number of type-r jobs scheduled

before t, which are still running on datacenter d in t. We model

the potential dropping of a job when its SLA requirement l
(max scheduling delay) cannot be met. Let Gd

r(t) denote the

number of unscheduled jobs of type r in datacenter d, which

are dropped in t, 0 ≤ Gd
r(t) ≤ Gmax

r , where Gmax
r is the

maximum number of jobs allowed to drop in one time slot, In

practice, a cloud may never drop a user’s job. The “drop” in

our model can be understood as follows: The cloud maintains

a set of regular resources (
∑

d∈D Nd VMs) while keeping a

set of backup resources, whose provisioning can be expensive.

When a job is “dropped” due to not being scheduled using the

regular resources when its response delay is due, the cloud

uses its expensive backup resources to serve the job, subject

to a cost ηr (“the job drop penalty”) to serve one type-r job.

The SLA requirement can be formulated as follows:

Each type-r job is either scheduled or dropped (subject to a

penalty) before its maximum scheduling delay l. (2)

Let Qd
r(t) be the total unprocessed workload of type-r jobs

in datacenter d at t. It is updated over time as follows:

Qd
r(t+ 1) =max{Qd

r(t)− μd
r(t)− μd

r(t
−)− wrG

d
r(t), 0}

+ wr

∑
j∈J

aj,d
r (t). (3)

Here, μd
r(t) is the total number of type-r jobs newly scheduled

to run on VMs of type hr at the beginning of time slot t; for

each of these jobs, one unit of workload is reduced from Qd
r(t)

after the job has been running for the time slot. μd
r(t

−) is the

total number of left-over type-r jobs still running in datacenter

d; for each of these jobs, one unit of workload is also reduced

from Qd
r(t) after it has been running for that time slot. The

3

TABLE I
IMPORTANT NOTATIONS

D set of datacenters H set of VM types

R set of all job types Nd # of servers at d ∈ D
hr VM type for type-r jobs wr size of a type-r job
l Max job scheduling delay J set of customer zones

nd
h Max # of type h VMs a server in datacenter d can host

pdr(t) price charged to a type-r job at t in d

aj,dr (t) # of admitted type r jobs from zone j at t in d

μd
r(t) # of new type r jobs executed at datacenter d at time slot t

μd
r(t

−) # of type r jobs at datacenter d left over from earlier

Gd
r(t) # of dropped jobs in Qd

r at time slot t

Nd
h(t) # of active servers for type-h VMs in d at time t

cd(t) unit power cost for running one server at datacenter d in t
ηr penalty for dropping a type-r job
P (t) cloud’s profit at time t

Qd
r queue of unscheduled type r workload at datacenter d

Zd
r virtual queue for bounding queueing delay in Qd

r

εr preset constant for controlling queueing delay in Qd
r

pd,max
r max price for type-r jobs in datacenter d
amax
r max # of type-r jobs arriving in one slot

μd,max
r max # of type-r jobs allowed to be scheduled in one slot
Gmax

r max # of type-r jobs allowed to be dropped in one slot

drop of Gd
r(t) unscheduled jobs brings a reduction of wrG

d
r(t)

units of workload from Qd
r(t).

μd
r(t

−), ∀r ∈ R, ∀d ∈ D, are known in t, based on hitherto

scheduling decisions and the workload size of each scheduled

job. μd
r(t), Gd

r(t), and pdr(t) (which decides aj,dr (t)), ∀r ∈
R, ∀d ∈ D, are decision variables our algorithm judiciously

computes in each time slot, not only to maximize the profit,

but also to guarantee that the scheduling delay of each job of

type r is within its deadline l. In particular, if the maximum

queueing delay of each unit of workload in Qd
r can be bounded

by l, then the maximum scheduling delay for each incoming

type-r job is also bounded within l.

Server/VM Provisioning. Let Nd
h(t) denote the number of

active servers in datacenter d configured to provision VMs of

type h in time slot t. These servers can be used to serve jobs

of type-r, where hr = h. We have

Nd
h(t) ≥

∑
r:hr=h

(μd
r(t) + μd

r(t
−))/nd

h.

We are interested in the minimum number of servers

required to meet the VM demands, assuming an efficient

intra-datacenter VM migration algorithm [7]) that helps move

running VMs from one server to another, for reducing the

number of active servers.

C. The Profit Maximization Problem

The cloud provider’s net profit is the difference between

the revenue and the costs. The total revenue by taking in jobs

of different types in t is
∑

d∈D
∑

r∈R
∑

j∈J aj,d
r (t)pdr(t). We

consider power consumption in operating servers as the major

component of operational costs in a datacenter [8]. Let cd(t)
be the unit cost of operating one server in datacenter d in time

slot t, which is naturally time varying and location dependent.

The total cost in the cloud in t is
∑

d∈D cd(t)
∑

h∈H Nd
h(t). A

penalty of ηr is enforced for dropping a job of type-r, with

ηr ≥ pd,max
r , ∀r ∈ R, ∀d ∈ D. Hence, expenditure on penalty

occurs in time slot t if there are dropped jobs, with the total

amount of
∑

d∈D
∑

r∈R ηrG
d
r(t).

The net profit of the cloud provider in time slot t is:

P (t) =
∑
d∈D

∑
r∈R

∑
j∈J

aj,d
r (t)pdr(t)−

∑
d∈D

cd(t)
∑
h∈H

Nd
h(t)

−
∑
d∈D

∑
r∈R

ηrG
d
r(t).

The time-averaged expected profit of the cloud is:

P (t) � lim
T→∞

sup
1

T

T−1∑
t=0

E [P (t)] .

The profit maximization pursued by the cloud is therefore:

max : P (t) (4)

s.t. : 0 ≤ pdr(t) ≤ pd,max
r , ∀r ∈ R, d ∈ D, t ∈ [1, T]; (5)

0 ≤ Gd
r(t) ≤ Gmax

r , ∀r ∈ R, d ∈ D, t ∈ [1, T]; (6)∑
h∈H

Nd
h(t) ≤ Nd, ∀d ∈ D, t ∈ [1, T]; (7)

∑
r:hr=h

(μd
r(t) + μd

r(t
−))/nd

h ≤ Nd
h(t),

∀h ∈ H, ∀d ∈ D, t ∈ [1, T]; (8)

μd
r(t) ≥ 0, ∀r ∈ R, ∀d ∈ D, t ∈ [1, T]; (9)

Nd
h(t) ∈ Z

+ ∪ 0, ∀h ∈ H, ∀d ∈ D, t ∈ [1, T]; (10)

lim
T→∞

1

T

T−1∑
t=0

E{wr

∑
j∈J

aj,d
r [pdr(t)]} <

lim
T→∞

1

T

T−1∑
t=0

E{μd
r(t) + μd

r(t
−) + wrG

d
r(t)},

∀r ∈ R, d ∈ D; (11)

Constraint (2).

This optimization problem is for the cloud provider to

choose an appropriate price for each type of jobs at each

datacenter (pdr(t)), the best number of servers to provision each

type of VMs in each datacenter (Nd
h(t)), the optimal numbers

of jobs of each type to schedule and to drop (μd
r(t) and Gd

r(t)),
in each t at each datacenter, to maximize its time-averaged

profit. Constraint (7) ensures that the total number of active

servers in each datacenter is bounded by the number of on-

premise servers. Constraint (8) specifies that the total number

of newly scheduled and left-over jobs in a datacenter, each

requiring a type-h VM, does not exceed the number of type-h
VMs provisioned. Constraint (11) guarantees the stability of

job queue Qd
r , by ensuring that the average arrival rate is no

higher than the average departure rate [4].

Table I summarizes the notations for ease of reference.

III. THE DYNAMIC PROFIT MAXIMIZATION ALGORITHM

We now design an online algorithm to solve the profit

maximization problem in (4).

A. Addressing SLA Requirements

To guarantee that the worst-case queueing delay in each

workload queue Qd
r , ∀r ∈ R, d ∈ D, is bounded by l, we

associate each workload queue Qd
r with a virtual queue Zd

r (t),
based on the ε-persistent service queue technique for delay

4

bounding [9]. When the queue backlogs of Qd
r and Zd

r , ∀r ∈
R, d ∈ D, are bounded, the jobs’ queueing delays are bounded.

The backlog of the virtual queue is initially Zd
r (0) = 0, and

then updated as follows:

Zd
r (t+ 1) =max[Zd

r (t) + 1Qd
r(t)>0(εr − μd

r(t)− μd
r(t

−))

− wrG
d
r(t)− 1Qd

r(t)=0μ
d,max
r , 0]. (12)

Here the indicator function 1Qd
r(t)>0 is 1 when Qd

r(t) > 0,

and 0 otherwise. Similarly, 1Qd
r(t)=0 is 1 when Qd

r(t) = 0,

and 0 otherwise. εr is a pre-defined constant that is no larger

than wra
max
r and can be gauged to control the queueing delay

bound. μd,max
r is the maximum number of type-r jobs that can

run simultaneously in datacenter d, with μd
r(t) + μd

r(t
−) ≤

μd,max
r .

By designing a dynamic algorithm that guarantees the

lengths of queues Zd
r and Qd

r are bounded over time, we are

able to guarantee the queueing delay of workload queue Qd
r

is bounded by l. The rationale can be intuitively explained

as follows: Let Zd,max
r , Qd,max

r be the bound of queues Zd
r ,

Qd
r , respectively. Consider workloads arriving at any time slot

t. In the subsequent l time slots after t, if Qd
r decreases to

0, the workloads are served within l time slots; otherwise,

Zd
r has a constant arrival rate εr, and the same departure rate

μd
r(t) + μd

r(t
−) +wrG

d
r(t) as that in the workload queue Qd

r .

For the interval of l time slots following t, the total arrivals into

queue Zd
r minus the total departures is smaller than or equal

to the queue length bound Zd,max
r , i.e., εrl−

∑t+l
τ=t+1[μ

d
r(t)+

μd
r(t) + wrG

d
r(t)] ≤ Zd,max

r . At any time slot t, as the

positions of workloads arriving at time slot t in queue Qd
r

would not exceed the bound Qd,max
r , when the total departure

number during the l time slots following t is at least Qd,max
r ,

i.e.,
∑t+l

t+1[μ
d
r(t)+μd

r(t
−)+wrG

d
r(t)] ≥ Qd,max

r , jobs arriving

at t will be served within these l time slots. Hence when

εr · l−Zd,max
r ≥ Qd,max

r (i.e., l = �(Zd,max
r +Qd,max

r)/εr�),

which guarantees
∑t+l

t+1[μ
d
r(t)+μd

r(t
−)+wrG

d
r(t)] ≥ εr · l−

Zd,max
r ≥ Qd,max

r , all jobs are scheduled with delays of at

most l time slots.

B. Dynamic Algorithm Design

In an online algorithm, we compute instantaneous values

of the decision variables, while seeking to solve the opti-

mization in (4) that involves time-averaged variable values.

To satisfy constraint (11), we need to guarantee that each

workload queue Qd
r is stable over time [10]. To maximize

the time-averaged objective function based on decisions in

each time slot, we resort to the drift-plus-penalty framework in

Lyapunov optimization [4], a classic technique for translating

a long-term time-average optimization problem into a series

of similar one-shot optimization problems. In particular, let

Θ(t) = [Q(t),Z(t)] be the vector of all queues in the system,

where Q(t) and Z(t) are the vectors of workload queues Qd
r(t)

and virtual queues Zd
r (t), respectively, ∀r ∈ R, d ∈ D. We

define a Lyapunov function as follows:

L(Θ(t)) =
1

2
[
∑
r∈R

∑
d∈D

(Qd
r(t)

2 + Zd
r (t)

2)].

The one-slot conditional Lyapunov drift is

Δ(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}.

Following the drift-plus-penalty framework in Lyapunov op-

timization [4], we minimize an upper bound for the following

expression in each time slot t, with the observation of the

queue states ([Q(t),Z(t)]), the number of jobs still running

in datacenters (μd
r(t

−), ∀r ∈ R, d ∈ R), and costs of running

servers in the datacenters (cd(t), ∀d ∈ D), such that a lower

bound for P (t) is maximized (see Chapter 5 in [4]):

Δ(Θ(t))− V P (t).

Here, V is a non-negative parameter chosen by the cloud to

control the tradeoff between the profit and the SLA guarantee.

A larger V leads to a higher time-averaged profit but a higher

queueing delay at the same time.

Squaring the queueing laws (3) and (12), we can derive the

following inequality (detailed steps in technical report [11]):

Δ(Θ(t))− V P (t)

≤ B +
∑
d∈D

∑
r∈R

∑
j∈J

aj,d
r (t)[wrQ

d
r(t)− V pdr(t)]

+ V
∑
d∈D

cd(t)
∑
h∈H

Nd
h(t)−

∑
D,R

[μd
r(t) + μd

r(t
−)][Qd

r(t) + Zd
r (t)]

+
∑
d∈D

∑
r∈R

[V ηr − wrQ
d
r(t)− wrZ

d
r (t)]G

d
r(t) (13)

where

B =
1

2

∑
r∈R

∑
d∈D

[(wra
max
r)2 + 2(μd,max

r + wrG
max
r)2 + (εr)

2]

is a constant.

Our algorithm seeks to minimize the RHS of inequality (13),

to minimize the upper bound for Δ(Θ(t))− V P (t), and thus

to maximize the lower bound of P (t). The bound of workload

queues Qd
r’s and virtual queues Zd

r ’s can also be guaranteed in

this process (Sec. IV), such that constraint (11) and the SLA

requirements of each type of jobs are satisfied.

In particular, in each time slot t, the algorithm observes

the queues Qd
r(t) and Zd

r (t), the current unit costs of running

servers in datacenters cd(t), the number of active type-r jobs

at datacenter d μd
r(t

−) , and decides the optimal values of

pdr(t),μ
d
r(t), G

d
r(t) and Nd

h(t), by solving the following one-

shot optimization problem:

min: RHS of (13) (14)

s.t.: Constraints (5)(6)(7)(8)(9)(10).

A difference between this work and previous work using

Lyapunov optimization is that the previous work usually

assume each job can be completed in one time slot, while

we model the more general scenario in which a job may

take more than one time slot to finish (and they can not be

prematurely terminated once scheduled to run on the required

VMs). Previously scheduled jobs may still be running in

datacenters and occupying VMs. This constrains the control

decisions in the current time slot. We present the detailed

control decisions in the following.

5

A careful investigation of the RHS of (13) reveals that

optimization (14) can be equivalently decoupled into three

types of independent optimization (excluding constant terms),

dealing with (a) front-end job pricing, (b) job dropping, and

(c) job scheduling and server/VM provisioning, respectively.

(a) Front-end Pricing: It decides the price charged to a type-

r job in each datacenter. To minimize the RHS of (13), the

part related to prices is as follows:

min
∑
d∈D

∑
r∈R

∑
j∈J

aj,d
r (t)[wrQ

d
r(t)− V pdr(t)]. (15)

Recall that the number of type-r jobs users in a zone j
submit to each datacenter d, aj,dr (t), is decided by the prices

pdr(t)’s in different datacenters, in order to maximize their

surplus, as given in (1). The marginal surplus is derived

as (U j,d
r)′(aj,dr (t)) − pdr(t). As U j,d

r (·) is a differentiable

concave function, (U j,d
r)′(aj,dr (t)) is non-increasing. When

pdr(t) > (U j,d
r)′(0), customers in zone j will not run their type-

r jobs in datacenter d, i.e., aj,dr = 0. When pdr(t) ≤ (U j,d
r)′(0),

the number of type-r jobs that customers in zone j will send

to datacenter d is computed by setting the marginal surplus

to zero, as aj,dr (t) = (U j,d
r)′−1(pdr(t)), where (U j,d

r)′−1(·)
denotes the inverse function of (U j,d

r)′(·).
We replace aj,dr (t) in (15) by max{0, (U j,d

r)′−1(pdr(t))},

and optimization (15) is now on the price variables pdr(t)’s
only.

Let p̂j,dr denote (U j,d
r)′(0), i.e., the price value under

which users in zone j will not request type-r jobs from

datacenter d. In general, the J price values p̂j,dr , 1 ≤ j ≤ J
can be sequenced from the lowest one to the highest one,

p̂j1,dr ≤ p̂j2,dr ≤ . . . ≤ p̂jJ ,dr . For prices among region

[p̂jm,d
r , p̂

jm+1,d
r], 1 ≤ m ≤ J − 1, users in zones from jm+1

to zone jJ will request VMs from datacenter d, and the

corresponding optimization problem is as follows:

min

J∑
i=m+1

(U ji,d
r)′−1(pdr(t))[wrQ

d
r(t)− V pdr(t)]

s.t. p̂jm,d
r ≤ pdr(t) ≤ p̂

jm+1,d
r . (16)

For each region [p̂jm,d
r , p̂

jm+1,d
r], 1 ≤ m ≤ J − 1, there is

an optimization problem. There are in total J − 1 optimiza-

tion problems. Among different price regions, the objective

function changes due to the reason that users in some zones

may not use the service. The optimal pricing strategy in the

resulted J − 1 solutions is the one achieving the minimum

objective function value.

(b) Job Dropping: The number of jobs dropped from queue

Qd
r in t, Gd

r(t), ∀r ∈ R, is derived by solving the following

minimization problem:

min: [V ηr − wrQ
d
r(t)− wrZ

d
r (t)]G

d
r(t) (17)

s.t.: Constraint (6).

The optimal solution to the above LP is:

Gd
r(t) =

{
Gmax

r , if Qd
r(t) + Zd

r (t) >
V ηr
wr

;

0, if Qd
r(t) + Zd

r (t) ≤ V ηr
wr

.
(18)

The above strategy indicates that a type-r job is less likely

to be dropped in t when the penalty of dropping a type-r job,

ηr, is large, and jobs requiring smaller running times, wr, are

less likely to be dropped too.
In Theorem 2 to be proved in Sec. IV, we will show that

our scheduling algorithm guarantees zero job dropping, i.e., all

jobs admitted into the cloud are successfully processed in time,

under two conditions: (1) At any datacenter, the accumulated

workload of any type of jobs since the last time slot when

workload from the respective queue is scheduled, can all be

dispatched to run on servers the next time when the queue is

being scheduled; (2) the drop penalty is high enough to make

the cloud more willing to turn on servers than to drop jobs,

even though the power cost reaches the maximum value.

(c) Job Scheduling and Server/VM Provisioning: Decisions

on μd
r(t) and Nd

h(t) in datacenter d are made by solving the

following minimization problem:

min: V
∑
h∈H

cd(t)Nd
h(t)−

∑
r∈R

[Qd
r(t) + Zd

r (t)]μ
d
r(t) (19)

s.t.: Constraints (7)(8)(9)(10).

(19) is a joint job scheduling and server/VM provisioning

problem. It can be solved by first converting to a pure serv-

er/VM provisioning problem and then deciding job scheduling

based on the server/VM provisioning decisions.
Jobs of different types r scheduled to datacenter d, where

hr = h, compete for type-h VMs provisioned in the datacen-

ter, as given in constraint (8). Suppose the number of servers

configured to provision type-h VMs in datacenter d, Nd
h(t),

is known. To minimize (19), we should maximally schedule

jobs of type r∗h, whose observed value of Qd
r(t)+Zd

r (t) is the

largest among all types of jobs requiring type-h VMs, onto

the provisioned type-h VMs, i.e.,
r∗h = argmaxr:hr=h[Q

d
r(t) + Zd

r (t)], (20)

where ties are broken randomly. The number of type-r∗h jobs

we can schedule in t is decided by constraint (8), at

μd
r∗
h
(t) = nd

hN
d
h(t)−

∑
r:hr=h

μd
r(t

−), ∀h ∈ H. (21)

That is, except VMs occupied by left-over jobs, all other type-

h VMs should be used to serve type-r∗h jobs, and no other

types of jobs are scheduled, i.e.,
μd
r(t) = 0, ∀r �= r∗h, ∀h ∈ H. (22)

Hence, the second part of (19) can be expressed using

variables Nd
h(t)’s:

∑

r∈R
[Qd

r(t) + Zd
r (t)]μ

d
r(t) =

∑

h∈H
[Qd

r∗
h
(t) + Zd

r∗
h
(t)]μd

r∗
h
(t) =

∑

h∈H
[Qd

r∗
h
(t) + Zd

r∗
h
(t)]nd

hN
d
h(t)−

∑

h∈H
[Qd

r∗
h
(t) + Zd

r∗
h
(t)]

∑

r:hr=h

μd
r(t

−).

Removing the constant terms, (19) can be converted into

the following equivalent server/VM provisioning problem:

min: V
∑
h∈H

cd(t)Nd
h(t)−

∑
h∈H

[Qd
r∗
h
(t) + Zd

r∗
h
(t)]nd

hN
d
h(t) (23)

s.t.: Nd
h(t) ≥

∑
r:hr=h

μd
r(t

−)/nd
h, ∀h ∈ H;

Constraints (7), (10).

6

The objective function of (23) is equivalent to∑
h∈H Nd

h(t)
[
V cd(t)− [Qd

r∗
h
(t) + Zd

r∗
h
(t)]nd

h

]
and is linear

in Nd
h(t). For an efficient solution to (23), we can compute

the VM type h∗
d as

h∗
d = argmaxh∈H[Qd

r∗
h
(t) + Zd

r∗
h
(t)]nd

h, (24)

where ties are broken randomly. There are two cases:

(i) If V cd(t) ≥ [Qd
r∗h
(t) + Zd

r∗h
(t)]nd

h|h=h∗
d
, the objective

function is always non-negative, and Nd
h(t)’s should be as

small as possible. Hence, only the minimum number of servers

running left-over jobs are kept on, while the other servers

should be turned down in this datacenter d, i.e.,

Nd
h(t) = �

∑
r:hr=h

μd
r(t

−)/nd
h	, ∀h ∈ H. (25)

(ii) If V cd(t) < [Qd
r∗h
(t) + Zd

r∗h
(t)]nd

h|h=h∗
d
, all servers in

datacenter d should be activated, and except those occupied

by left-over jobs, they should provision type h∗
d VMs, i.e.,

Nd
h(t) = �

∑
r:hr=h

μd
r(t

−)/nd
h	, ∀h ∈ H, h �= h∗

d, (26)

Nd
h∗
d
(t) = Nd −

∑
h �=h∗

d

Nd
h(t). (27)

After Nd
h(t)’s are decided, the job scheduling decisions can

be made based on Eqn. (20)(21)(22). In particular, in case (i),

no new jobs are scheduled onto datacenter d in t; in case (ii),

all newly provisioned type-h∗
d VMs serve jobs of type r∗h∗

d
.

Dealing with Varying Job Workloads. In the standard

Lyapunov optimization framework, minimizing the 1-slot drift-

plus-penalty in each time slot can be proved to optimize

a time-averaged utility over the long run, with the critical

assumption that all jobs have the equal fixed length, equivalent

to one time slot. Decisions made in one time slot do not

influence resources to be allocated in the subsequent slots [4].

Our system model is more general: a type-r job scheduled in

t will occupy a VM for wr time slots, directly affecting job

scheduling and resource provisioning choices in later times.

We novelly make the following design in our non-preemptive

algorithm, with algorithmic optimality proved in Sec. IV.

We group Γ time slots into a time frame, where Γ is larger

than wmax. The above job scheduling and server/VM provi-

sion algorithm varies slightly depending on which time slot it

is running in (front-end pricing and job dropping algorithms

remain intact): in a time slot t ∈ [nΓ, (n+1)Γ−wmax] in the

beginning part of a time frame, the above job scheduling and

server/VM provisioning algorithm remains intact; in a time

slot t ∈ [(n+1)Γ−wmax +1, (n+1)Γ− 1] towards the end

of a time frame, the algorithm differs in that only type-r jobs

with wr ≤ (n + 1)Γ − t (i.e., which can be finished in this

time frame), are considered in the choice of r∗h:

r∗h = argmaxr:hr=h,wr≤(n+1)Γ−t[Q
d
r(t) + Zd

r (t)], (28)

and h∗
d is calculated correspondingly by (24).

The complete dynamic algorithm, carried out in each time

slot by the cloud, is summarized in Algorithm 1.

Algorithm 1 Dynamic algorithm in time slot t

Input: Qd
r(t), Z

d
r (t), μ

d
r(t

−), cd(t), Nd, nd
h, V , εr , pmax

r ,μd,max
r , Gmax

r ,
Γ (∀r ∈ R, ∀d ∈ D, ∀h ∈ H).
Output: pdr(t), Nd

h(t), μd
r(t), Gr(t) (∀r ∈ R, ∀d ∈ D, ∀h ∈ H

)

1: for Each datacenter d ∈ D do
2: Choose the price by solving the J − 1 optimization problems in (16).
3: if (t mod Γ) ∈ [0,Γ− wmax] then
4: for Each VM type h ∈ H do
5: Determine the type of jobs type-h VMs should serve, r∗h, using

equation (20).
6: end for
7: else if (t mod Γ) ∈ [Γ− wmax,Γ− 1] then
8: for Each VM type h ∈ H do
9: Determine the type of jobs type-h VMs should serve, r∗h, using

equation (28).
10: end for
11: end if
12: Determine type of VMs new configured servers should run, h∗

d, using
equation (24)

13: if [Qd
r∗
h
(t) + Zd

r∗
h
(t)]nd

h|h=h∗
d
≤ V cd(t) then

14: Keep servers running leftover jobs on, close all other servers
15: else
16: Keep servers running leftover jobs on, configure all other servers to

run type-h∗
d VMs, use these type-h∗

d VMs to serve type-r∗h|h=h∗
d

jobs.
17: end if
18: Choose the job drop number according to Eqn. (18)
19: Update the queues Qd

r(t), Z
d
r (t) according to queue dynamic equa-

tions (3) (12).
20: end for

IV. PERFORMANCE ANALYSIS

We next analyze the performance of Algorithm 1 in terms of

queueing delay bound, conditions for avoiding job dropping,

and profit optimality. Detailed proofs can be found in the

related technical report [11].

Theorem 1. (Queueing Delay Bound) The length of work-
load queue Qd

r is bounded by Qd,max
r = V pd,max

r /wr +
wra

max
r , and the SLA of jobs can be guaranteed by l =

�Qd,max
r +Zd,max

r

εr
�, where Zd,max

r = V ·ηr/wr+εr is the upper
bound of the length of virtual queue Zd

r .
The queue length bound can be proved through induction.

For Qd
r , once its queue length exceeds V pd,max

r /wr, we have

wrQ
d
r − V pdr(t) > 0; to minimize (16), our algorithm takes

pdr(t) > pd,max
r and no new jobs are admitted in the next time

slot. Qd
r will start to decrease. As the maximum increase in

one time slot is wra
max
r , the queue length can not exceed

V pd,max
r /wr + wra

max
r . Similarly, for Zd

r , once its queue

length exeeds V ηr/wr, unserved jobs are dropped, Zd
r will

start to decrease. As the maximum increase in one time slot

is εr, the queue length can not exceed V ηr/wr + εr.

The following theorem states the conditions under which

Algorithm 1 guarantees zero job dropping.

Theorem 2. (No Job Drop Conditions) If the following two
conditions are satisfied,

Ndnd
hr
wr ≥ (

∑
r′∈R

wr′)(w
maxamax + εmax), ∀r ∈ R, ∀d ∈ D,

(29)

7

V · ηr
wr

≥ V · c
max

nmin
+ (

∑
r′∈R

wr′)(w
maxamax + εmax),

∀r ∈ R, ∀d ∈ D. (30)

there is no job dropping in any datacenter at any time. Here,
cmax is the maximum cost for running a server for one time
slot at any datacenter. nmin is the minimum number of VMs a
server in any datacenter can host. εmax = max{εr, ∀r ∈ R},
amax = max{amax

r , ∀r ∈ R}.
Condition (29) means that the maximum workload reduc-

tion by scheduling type-r jobs once should be no smaller

than the overall workload accumulated in the correspond-

ing queue since last time when workload in the queue

was scheduled. With condition (29), we can prove that the

sum of queue lengths is upper-bounded by V · cmax

nmin +

(
∑

r′∈R wr′)(w
maxamax+εmax), i.e., Qd

r(t)+Zd
r (t) ≤ V · cmax

nmin +

(
∑

r′∈R wr′)(w
maxamax + εmax).

Under the bound of the sum of queue lengths, condition

(30) guarantees Qd
r(t) + Zd

r (t) ≤ V ηr/wr. According to job

dropping decisions in (18), no job dropping would happen.
Hence, to prove the theorem, it is sufficient by showing

that the bound of aggregated queue length Qd
r(t) + Zd

r (t) ≤
V · cmax

nmin +(
∑

r′∈R wr′)(w
maxamax + εmax) under condition

(29). We prove it by contradiction. Assume Qd
r(t) + Zd

r (t) >
V · cmax

nmin +(
∑

r′∈R wr′)(w
maxamax + εmax) under condition

(29). As the maximum increase of the sum of queue length

in one time slot is wmaxamax + εmax, to achieve a queue

length exceeding V · cmax

nmin +(
∑

r′∈R wr′)(w
maxamax+εmax),∑

r′∈R wr′ consecutive time slots are needed when type-r
jobs are not scheduled after the sum just becomes larger than

V · cmax

nmin . During these
∑

r′∈R wr′ time slots, as the condition

[Qd
r∗h
(t) + Zd

r∗h
(t)]nd

h > V cmax > V cd(t), all servers in

datacenter d should be turned on in our algorithm. Hence,

other types of jobs other than type r will be scheduled to run

among the
∑

r′∈R wr′ time slots. We can also prove that a

type of jobs can not be scheduled twice among
∑

r′∈R wr′

time slots, since if the type of jobs is scheduled, its queue

length will not be larger than that of type-r jobs within the

remaining time slots among the
∑

r′∈R wr′ time slots. This

implies that the total number of different types of jobs is at

least R + 1, which contradicts the true total number of job

types, R.
We next prove the performance optimality of our algorithm.

Define λd as the vector of time-averaged workloads of data-

center d for different types of jobs, i.e.,

λd
r = lim

T→∞
1

T

T−1∑
t=0

wr

∑
j∈J

aj,d
r (t)

Definition 1 (Capacity region): Under the workload arrival

rate vector λd, if there exist preemptive or non-preemptive

job scheduling and server/VM provisioning algorithms that

can stabilize all workload queues Qd
r(t), r ∈ R’s without job

dropping or violating the SLA requirements, we say λd is

supportable by datacenter d. The capacity region Cd is the

set of all supportable vectors of workload arrival rates at

datacenter d.

Definition 2 ((1 + δ)-optimal Profit): When the workload

arrival rate vector at datacenter d, λd, satisfies (1+δ)λd ∈ Cd,

the offline optimal time-averaged profit that is achievable

under both preemptive and non-preemptive algorithms without

job dropping or violating the SLAs is the (1+δ)-optimal profit,

denoted by P 1+δ .

The following theorem establishes the supportable workload

arrival rate vector and the profit optimality achieved by our dy-

namic non-preemptive algorithm compared with the capacity

region and (1 + δ)-optimal profit defined above. Note that, 1-

optimal profit is exactly the offline optimum P ∗ for the profit-

maximization problem in Eqn. (4) under the SLA constraint

with no job drops.

Theorem 3. (Performance Optimality) When the algo-
rithm and system parameters satisfy conditions (29)(30) and
the length of a time frame satisfies Γ > wmax, with the
assumption that the dynamic power costs, cd(t), ∀d ∈ D,
are ergodic processes, there exists some δ > 0, such that
the supportable workload arrival rate vector λd by the non-
preemptive Algorithm 1 satisfies (1+δ)Γ

Γ−wmaxλ
d ∈ C, the time-

averaged profit achieved by Algorithm 1 is within a constant
gap from the Γ

Γ−wmax -optimum, i.e.,

lim
π→∞

1

πΓ

π−1∑
n=0

(n+1)Γ−1∑
t=nΓ

E{P (t)} ≥ P
(1+δ)Γ

Γ−wmax (31)

− B

V
− (Γ− wmax)(Γ− wmax − 1)

2ΓV
B1

− Γ− 1

2V

∑
r∈R

[(wra
max
r)2 + (εr)

2]

− (Γ− wmax)(Γ− wmax − 1)

2ΓV

∑
d∈D

Nd · (cd,max − cd,min)

− wmax

Γ

∑
d∈D

Ndcd,max,

with B1 =
∑

d∈D
∑

r∈R[wra
max
r +2μd,max

r +εr]μ
max
r , where

the LHS is the time-averaged profit achieved by Algorithm 1
and the RHS is the (1+δ)Γ

Γ−wmax -optimal profit minus a constant.
c(d,max) and c(d,min) are the maximum and minimum power
consumption costs for operating one server for one time slot
in datacenter d ∈ D.

Remark: If δ scales down infinitely close to 0, our algorithm

achieves a constant gap from the Γ
Γ−wmax -optimum. Moreover,

if V → ∞, Γ → ∞ and Γ
V < ∞, Algorithm 1 has a

constant gap from the 1-optimum, i.e., the offline optimal profit

achieved by the profit-maximization problem in (4).

V. PERFORMANCE EVALUATION

A. Simulation Setup

Geo-distributed Datacenters. We evaluate an IaaS cloud

operating three geo-distributed datacenters located in three

regions of North America: North Virginia, Oregon, Northern
California. The default configuration of the datacenters is as

follows. The number of servers in each datacenter is 1000.

There are 6 types of virtual machines. Each server can host

8

40 type-1 VMs, 30 type-2 VMs, 20 type-3 VMs, 15 type-

4 VMs, 10 type-5 VMs or 5 type-6 VMs, which follow the

numbers of different types of VMs that a server on Linode

[6] can host. The power consumption of each active server

is 1KW/h and the power usage effectiveness (PUE) of each

datacenter is 1.6. We use real-world traces of hourly dynamic

electricity prices [12] in different regions.

Job Types. The cloud provides choices among different types

of VMs lasting for different time lengths. The time length,

i.e., the number of units of workload, is chosen among [1, 4].
There are 6× 4 = 24 types of jobs in total. We emulate users

in three zones. The utility of users in zone j when their aj,dr

type-r jobs are served by datacenter d is represented by a log

function U j,d
r =

pd,max
r

Cj
log(1 + Cj · aj,dr), according to the

marginal utility diminishing law in economics. Cj represents

the diminishing rate of the marginal utility of users in zone

j. The larger Cj is, the fewer VMs are preferred by users in

zone j. We set [C1, C2, C3] = [2× 10−4, 4× 10−4, 6× 10−4].
The maximum acceptable price for a type-r job in datacenter

d is set equal to the maximum power cost for completing the

job.

For comparison purposes, we implement two other strate-

gies: (1) Static pricing with the same job scheduling and

server provisioning strategies as in Algorithm 1, comparison

against which will show the advantage of dynamic pricing

over static pricing (such as the pricing strategy in Amazon

EC2’s on-demand instance market). (2) A heuristic pricing

and job scheduling algorithm, which operates as follows in

each time slot: (a) Pricing. In each datacenter, the workload

of each type of jobs is still maintained in a workload queue

Qd
r . When the overall amount of workloads in Qd

r is smaller

than a threshold Sd
r , the price charged to a type-r job is set

to the smallest user’s willingness-to-pay that will not make

newly accepted workloads exceed the queue threshold Sd
r at

this time slot; when the overall amount of workloads is equal

to Sd
r , the maximum price pd,max

r is set and no new jobs

are accepted. (b) Job and Server Scheduling. The heuristic

calculates the average price for one unit of workload, charged

to jobs in each workload queue, and multiplies the average

price for queue Qd
r by the number of type-hr VMs that one

server can host in each datacenter, to obtain the profit for

configuring one server to run type-hr VMs in each datacenter.

Each datacenter configures servers to run the type of VMs

that achieves the largest profit and schedules the corresponding

type of jobs. The cost for running one server in the current

time slot in each datacenter is also calculated. If the largest

profit for running one server is larger than the cost in one

datacenter, the corresponding type of jobs are scheduled to

servers in the datacenter; otherwise, jobs are not scheduled.

The heuristic pricing and job scheduling is an algorithm

without optimization for profit.

B. Profit and Cost

We run our dynamic algorithm for T = 240 time slots with

parameters V = 5×105, εr = 50∗wr, ηr = 1000·pd,max
r , and

Γ = 100wmax. Fig. 1 presents the profit, revenue, power cost

TABLE II
PROFIT UNDER DIFFERENT STATIC PRICES

Portion 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Profit 1033 362 134 51 5 0 0 0 0

and penalty due to job drops in the cloud in each time slot. The

normalized value is calculated by dividing the original value

in each time slot by the maximum revenue within this period.

We observe that a stable profit is achieved by our dynamic

algorithm. It can be seen that no penalty is incurred, i.e., no

job drop occurs, which verifies our analysis on no job drop

presented in Sec. IV.

Fig. 2 shows the profits achieved by the three algorithms

respectively. The heuristic pricing and scheduling algorithm

sets Sd
r to be equal to the maximum number of type-hr VMs

that datacenter d can provide, divided by the number of job

types requiring type-r VMs. The static pricing fixes the prices

for each type of jobs in each datacenter above the lower bound

of the power cost for completing such a job. Table II gives

the profit achieved by the static pricing algorithm, by setting

the static price to be different proportions of the maximum

power cost. From the table we see that when the static price

is 0.1 of the maximum power cost, the profit is larger than in

other cases. Hence, we use 0.1 of the maximum power cost

as the static price, in the comparisons with other algorithms

in Fig. 2. The normalized profit is calculated by dividing the

profit in each time slot by the maximum profit in one time

slot within this period among the three algorithms. We can

observe that our dynamic pricing algorithm outperforms the

other two algorithms, and achieves stable profit over time.

0 50 100 150 200
0

0.5

1

1.5

Time slot

N
or

m
al

iz
ed

 v
al

ue

Revenue
Profit
Power cost
Penalty

Fig. 1. Revenue, power cost, profit and penalty in each time slot.

0 50 100 150 200
0

0.5

1

1.5

Time slot

N
or

m
al

iz
ed

 p
ro

fit

Dynamic pricing
Heuristic algorithm
Static pricing

Fig. 2. Comparison of profits among different algorithms.

C. Impact of V and Γ

Fig. 3 and 4 further illustrate how the time-averaged profit

achieved by our algorithm varies with different choices of V

9

and Γ, respectively. The time-averaged profit is normalized by

being divided by the time-averaged profit under parameters

V = 5×105, Γ = 100wmax. Fig. 3 shows that as V increases,

the time-averaged profit increases, verifying the role of V
given in Theorem 3. Γ is the number of time slots in a time

frame. Fig. 4 suggests that, when Γ is larger than 10wmax, its

value has no substantial impact on profits, revealing the fact

that our two-time-scale dynamic algorithm is not sensitive to

the exact length of time frames. As V increases to infinity and

Γ is large enough, the time-averaged profit is arbitrarily close

to a constant gap from the offline optimum.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
x 105

0.7

0.8

0.9

1

1.1

V Value

Ti
m

e−
av

er
ag

ed
 p

ro
fit

s

Γ=10×wmax

Γ=50×wmax

Γ=100×wmax

Fig. 3. Time-averaged profits under different values of V.

100 200 300 400 500
0.6

0.7

0.8

0.9

1

1.1

Γ Value

Ti
m

e−
av

er
ag

ed
 p

ro
fit

s

V=1×105

V=3×105

V=5.5 ×105

Fig. 4. Time-averaged profits under different values of Γ.

VI. RELATED WORK

A number of studies apply auctions to price computing

resources in a cloud system [13] [14] [15]. Wang et al. [13]

model VM pricing as a multi-unit combinatorial auction,

which is executed round by round without considering that

users may occupy a VM for more than one decision interval.

Wang et al. [14] model a dynamic auction where bidders

may request to occupy a VM for more than one decision

interval, such that the auction in one round is correlated with

that in another round. Zhang et al. [15] provide a truthful

online auction framework to process users’ instantaneous and

heterogeneous bids for resources. They both assume that

the capacity of the cloud is fixed, without addressing server

provisioning in the system.

Another group of work studies cloud resource scheduling

under given pricing strategies [16] [17]. Wang et al. [16]

study how a cloud should allocate its resources between the

on-demand market and the auction market. Zhang et al. [17]

propose a dynamic scheduling and consolidation mechanism

that allocates VM resources to each spot market to maximize

the cloud provider’s total revenue. Differently, our work jointly

models dynamical resource pricing and scheduling.

Most work that apply the Lyapunov optimization framework

for workload scheduling in cloud systems implicitly assume

workload that would only occupy the sources within the

duration of one decision interval [5] [18]. We are aware of

only one study by Maguluri et al. [19] that investigates the

scheduling of variable-length jobs in cloud systems, using

Lyapunov optimization. Their scheduling aims to stabilize

queues in the system, while we target close-to-offline-optimal

performance in profit maximization.

VII. CONCLUSION

This paper proposes an online algorithm for joint VM

pricing, job scheduling and server provisioning in a cloud

consisting of geo-distributed datacenters. The algorithm takes

into consideration the case that the execution time of each job

may be longer than the interval of online decisions. The lower

bound of the time-averaged profit achieved by the algorithm

is proven to approach the offline optimum minus a constant,

which diminishes when appropriate parameters are chosen. We

also analyze the conditions for the cloud not to drop jobs

due to violating the delay constraints. Empirical studies under

realistic settings validate our theoretical results.

REFERENCES

[1] Windows Azure, http://www.windowsazure.com/en-us/.
[2] AMAZON EC2, http://aws.amazon.com/ec2.
[3] GCE, https://cloud.google.com/products/compute-engine.
[4] M. J. Neely, Stochastic Network Optimization with Application to

Communication and Queueing Systems. Morgan & Claypool, 2010.
[5] Y. Yao, L. B. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data

Centers Power Reduction: A Two Time Scale Approach for Delay
Tolerant Workloads,” in Proc. of INFOCOM, March 2012.

[6] “LINODE,” http://www.linode.com/faq.cfm#how-do-i-get-my-fair-
share-of-cpu.

[7] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live
migration of virtual machines,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 3, p. 14, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1618525.1618528

[8] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost
of a Cloud: Research Problems in Data Center Networks,” in ACM
SIGCOMM C. C. R., vol. 39, no. 1, January 2009, pp. 68–73.

[9] M. Neely, “Opportunistic Scheduling with Worst Case Delay Guarantees
in Single and Multi-Hop Networks,” in Proc. of INFOCOM, Mar. 2012.

[10] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks, 2006, vol. 1, no. 1.

[11] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and
F. Lau, “Dynamic Pricing and Profit Maximization for
Clouds with Geo-distributed Datacenters,” Tech. Rep.,
http://i.cs.hku.hk/~jzhao/CloudFederation.pdf.

[12] Federal Energy Regulatory Commission, http://www.ferc.gov/.
[13] Q. Wang, K. Ren, and X. Meng, “When Cloud Meets ebay: Towards

Effective Pricing for Cloud Computing,” in IEEE INFOCOM, 2012.
[14] W. Wang, B. Liang, and B. Li, “ Revenue Maximization with Dynamic

Auctions in IaaS Cloud Markets,” in Proc. of IWQoS, 2013.
[15] H. Zhang, B. Li, H. B. Jiang, F. M. Liu, A. V. Vasilakos, and J. C. Liu,

“ A Framework for Truthful Online Auctions in Cloud Computing with
Heterogeneous User Demands,” in IEEE INFOCOM, Apr. 2013.

[16] W. Wang, B. Li, and B. Liang, “Towards Optimal Capacity Segmentation
with Hybrid Cloud Pricing,” in Proc. of ICDCS, 2012.

[17] Q. Zhang, E. Grses, R. Boutaba, and J. Xiao, “ Dynamic resource
allocation for spot markets in clouds,” in Proc. of Hot-ICE, 2011.

[18] K. Le, J. Zhang, J. Meng, R. Bianchini, Y. Jaluria, and T. Nguyen,
“Reducing Electricity Cost Through Virtual Machine Placement in High
Performance Computing Clouds,” in Supercomputing, Nov. 2011.

[19] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic Models of Load
Balancing and Scheduling in Cloud Computing Clusters,” in Proc. of
INFOCOM, March 2012.

