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ABSTRACT: In the gossiping problem, each node in a network possesses a token initially; after
gossiping, every node has a copy of every other node’s token. The nodes exchange their tokens
by packets. A solution to the problem is judged by how many rounds of packet sending it
requires. In this paper, we consider the version of the problem in which a packet is of limited
size (a packet can hold up top tokens), the links (edges) of the network are half-duplex (only
one packet can flow through a link at a time), and the nodes are all-port (a node’s incident edges
can all be active at the same time). We study the path and the cycle which are essential building
blocks for more complex structures. We present tight lower bounds and algorithms which match
them. The results also lead to the conclusion thatp = 2 is the optimal packet size.

Keywords: Gossiping, analysis of algorithms, information dissemination, interconnection networks.

1 Introduction

In parallel and distributed computing, communication among the processors is an im-
portant issue. Gossiping, also known as complete exchange and all-to-all communica-
tion, is the communication problem in which each processor has a unique message (or
token) to be transmitted to every other processor. Because of its rich communication
pattern, gossiping is a useful benchmark for evaluating the communication capability
of an interconnection structure. Gossiping is also useful in many real applications,
such as matrix transposition, fast Fourier transform algorithms, global processor syn-
chronization, and load balancing. The problem has been studied extensively during
the last two decades or so; a summary of the major results can be found in [11, 9, 12].

Krummeet al. have suggested that the gossiping problem can be studied under
four different communication models, which have different restrictions on the use of
the links as well as the ability of a node in handling its incident links [14]. The four
models are (1) the full-duplex, all-port model, (2) the full-duplex, one-port model, (3)
the half-duplex, all-port model, and (4) the half-duplex, one-port model, which can
be identified by the labels F*, F1, H*, and H1 respectively. A full-duplex link allows
both ends to send/receive a message at the same time; a half-duplex link allows only
one end to do so at a time. In the one-port mode, only one of the incident links of
a node may be active at a time; all the incident links may be active at the same time
in the all-port mode. The four models therefore form a spectrum, with F* being the
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strongest in communication capability and H1 the weakest. Krummeet al. studied the
problem for a number of well-known topologies under the H1 model [14], and for the
hypercube under both the H* and the H1 model [13].

Bermondet al. have added another dimension to the problem. They suggested that
a packet carrying tokens cannot be of infinite size which a great majority of previous
work had assumed [3]. In reality, indeed, a packet’s delay is somewhat dependent on
its contents, especially in tightly coupled multiprocessors. They studied the gossiping
problem under this hypothesis and under the F1 model, deriving results for the com-
plete graph, hypercube, cycle and path [2]. Bagchiet al. have considered the same,
but under the H1 model [4, 5].

In this paper, we adopt the bounded packet size restriction. We use the parameterp
to denote the size of a packet:p = 1 means that a packet can carry up to one token,
p = 2 two tokens,etc. The gossiping process advances by rounds and synchronously
across all the processors; in each round, a packet can only travel across one edge.
Instead of using time (i.e., number of rounds) as the performance measure, one could
use the number of “calls” where a call is a message transmission between two adjacent
nodes. Bermondet al. studied the minimum number of calls necessary for gossiping
under the F1 model and with the bounded packet size restriction [1]. A call translates
into a unit of communication load that the gossiping algorithm introduces into the
network. Between the two measures—the number of rounds and the number of calls—
the former appears to be more dominant in the evaluation of gossiping schemes [12].
Interestingly, it is impossible to minimize both the time and the communication load.
Czumajet al. studied the time and communication load trade-offs in gossiping under
the F1 model [6].

In this paper, we present optimal results based on the number of rounds. We define
gp(T ) to be the minimum time (number of rounds) required to complete a gossip under
some givenp value for the interconnection networkT .

Among the four communication models, we are interested in the H* model. Both
the F* and the H* model, we believe, are closest to the reality. Most if not all of
the modern designs of routers use separate controllers to manage the links, which
can operate simultaneously and in parallel. There are pros and cons to operating a
link in half- or full-duplex mode (see the discussion in [8]). One notable example
of H* routers is the Network Design Frame [7]. To the best of our knowledge, the
only work that has been done on the gossiping problem under the H* model and
using bounded-size packets is that by Fujita and Yamashita [10]. They solved the
problem for the square mesh forp = 1. Embedded (as Phase 2) in their algorithm
is an algorithm for gossiping in a path. We show in the remainder of this paper that
their path algorithm is non-optimal. In fact, by replacing the Phase 2 algorithm in
the Fujita-Yamashita algorithm by our optimal path algorithm, we have an improved
algorithm for the square mesh.

In this paper, we study the fundamental structures of the path and the cycle (Fig. 1)
which are important building blocks for more complex structures such as the mesh
and the torus. Forp = 1 andN being the number of nodes, we give (1) a tight lower
bound of3(N −1)/2 for the path with oddN , (2) a tight lower bound of3N/2−1 for
the path with evenN , and (3) an optimal algorithm for both the even and oddN cases.
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EvenN OddN
Path (p = 1) 3N/2 − 1 3(N − 1)/2
Cycle (p = 1) N − 1 N − 1
Path (p > 1) N N − 1
Cycle (p > 1) N/2 + 1 (N + 1)/2 + 1

TABLE 1. Lower/upper bound results

Forp > 1, the results we obtain are (1) a tight lower bound ofN − 1 for the path with

(a) (b)

0v v6
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FIG. 1. (a) A path, and (b) a cycle (N = 7)

oddN , (2) a tight lower bound ofN for the path with evenN , (3) a tight lower bound
of N/2+1 for the cycle with evenN , (4) a tight lower bound of(N +1)/2+1 for the
cycle with oddN , and (5) an algorithm forp = 2 that solves the gossip problem for
each of the above cases in optimal time, which implies that increasing the size of the
packet (i.e., p > 2) will not increase the performance of gossiping for both the path
and the cycle—p = 2 is the optimal packet size. Table 1 gives a summary.

2 The case of small packet (p = 1)

We denote theN nodes in a path or cycle byv0, v1, . . . , vN−1. Initially, vi holds a
token,Tokeni.

2.1 Lower bounds

A simple lower bound can be obtained by counting the total number of calls needed
to complete the gossip, and dividing that by the number of edges (since each edge can
accommodate at most one call at a time in the H* model), as is done in [10]. This
strategy assumes that it is possible to fully utilize all the edges at all times during
gossiping. This could be true for networks with a sufficiently high connectivity, but
not for networks with a low connectivity. The path is an example of the latter where
contention over the use of certain edges would occur no matter how one schedules the
calls, and therefore the trivial lower bound is not attainable. On the other hand, with
one additional edge, the cycle can support gossiping in time that matches the trivial
lower bound.

THEOREM 2.1
For a cycleC of N nodes,g1(C) ≥ N − 1.
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PROOF. The total number of calls is equal toN(N − 1). Assuming the best scenario
where all the edges equally share the load, every edge has to accommodateN(N −
1)/N = N − 1 calls.

This bound is tight as there exists a simple algorithm whose complexity matches it:

• Every node sends a packet to its left neighbor and simultaneously receives a packet
from its right neighbor in each round; afterN − 1 rounds, gossiping is complete.

Note that in here and for all subsequent algorithms, each node initially sends its own
message and subsequently forwards the packets that it receives.

For a path, the trivial lower bound using the same argument would beN(N −
1)/(N − 1) = N . A more realistic, tighter bound is given below, which takes into
account contention over the use of edges. We will soon see that this bound is tight as
we can give an algorithm whose complexity matches the bound exactly.

We model the gossip process as a “mesh” where the horizontal axis represents the
edges and the vertical axis the rounds. Fig. 2 shows two examples. The dissemination
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FIG. 2. Optimal gossiping in paths: (a)N = 7, (b) N = 6

of a token from one node to the next and so on is represented by a “wire”. Every node
vi except the two extreme nodes emits two wires, one to the left and one to the right;
we denote them byWl(vi) andWr(vi) respectively. The two extreme nodes emit only
one wire. The intersection of a horizontal line (a round) and a vertical line (an edge),
which we call across-point, represents a certain edge at a certain round. A cross-point
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is identified by(i, vj · vk) wherei is the horizontal line (round) and the vertical line
(edge) is the one between the pair of neighborsv j andvk. A wire passing through a
cross-point from left to right means that a token is being sent across the corresponding
edge from left to right. The following are true of wires.

• A wire spans consecutive vertical lines of the mesh and terminates at either the
rightmost or the leftmost vertical line: a token cannot skip over an edge; the wires
emanating from a node must go to the far ends of the path in order to cover all the
nodes.

• A wire keeps going downward at every round within the mesh: a horizontal wire
segment would mean that the same packet travels over more than one edge within
one round, which is not allowed; a token however can be delayed, leading to
“bending” of a wire (see Fig. 2).

• No two wires may cross at a cross-point: two wires crossing would mean that two
adjacent nodes are sending a packet over the same edge at the same time, which is
not allowed in the H* model.

THEOREM 2.2
For a pathP of N nodes,g1(P ) ≥ 3(N − 1)/2 for oddN , andg1(P ) ≥ 3N/2 − 1
for evenN .

PROOF. For the case of oddN , let m = (N − 1)/2. Hence,vm is the center node.
Consider the edge(vm−1, vm) (the dashed oval in Fig. 2). To gossip, we need

• (N − 1)/2 wires—those ofvm+1, . . . , vN−1—to pass through this vertical line of
the mesh from right to left;

• (N − 1)/2 − 1 wires—those ofv0, . . . , vm−2—to pass through the vertical line
from left to right;

• one wire—that ofvm−1—to begin at a cross-point in this vertical line; and the
same forvm.

Since no two wires may cross at a cross-point, the vertical line needs to have a total
of (N − 1)/2 + (N − 1)/2 − 1 + 2 = N cross-points to accommodate these wires,
corresponding toN rounds of communication. The wire that passes through (or begins
at) the last cross-point of theseN cross-points needs to eventually terminate at the
rightmost or leftmost vertical line; hence, an extra(N−1)/2−1 rounds are necessary.
The minimum number of rounds is therefore3(N − 1)/2.

For the case of evenN , let m = N/2. Hence, the two center nodes arevm−1 and
vm. Consider the edge joining these two nodes. To gossip, we need

• N/2 − 1 wires—those ofvm+1, . . . , vN−1—to pass through the vertical line cor-
responding to the edge in question from right to left;

• N/2−1 wires—those ofv0, . . . , vm−2—to pass through the vertical line from left
to right;

• one wire—that ofvm−1—to begin at a cross-point in the vertical line; and the
same forvm.
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For the wire that passes through (or begins at) the last cross-point, an extraN/2 − 1
rounds are needed. Hence, the minimum number of rounds is equal toN/2 − 1 +
N/2 − 1 + 2 + N/2 − 1 = 3N/2 − 1.

Fig. 2 shows two examples of possible gossiping patterns, forN = 7 andN = 6
respectively. They are optimal as the number of rounds in either case matches the
lower bound. Note that in these examples, there is contention over the use of some
edges:(2, 3) and(3, 4) in both cases. Edge contention results in the bending of a wire.
For example, in Fig. 2(a),Token1, after arriving atv3 in the second round, has to be
delayed until the sixth round before moving on to the next node.

2.2 An optimal algorithm for path

For the following algorithm, we assume that each nodev i (except the two extreme
nodes) is equipped with two sets,Ri andLi, for holding tokens to be transmitted.
The two extreme nodes,v0 and vN−1, have only one set,R0 and LN−1, respec-
tively. Each nodevi usesRi to hold tokens that have come from nodes on its left (i.e.,
v0, . . . , vi−1), if any, but that have not been sent away; andL i to hold tokens that have
come from nodes on the right, if any. Initially,v i puts its own token in bothRi and
Li.

Fujita and Yamashita have proposed an algorithm for solving the gossiping problem
on a path, which is embedded as Phase 2 in their algorithm for solving the problem on
a square mesh [10]. In each step of their algorithm, a nodev i selects a token arbitrarily
from Ri and sends it tovi+1, unlessRi = ∅; at the same time,vi also selects a token
arbitrarily fromLi and sends it tovi−1 if Ri−1 = ∅ andLi �= ∅—that is, when the
left neighbor is not using the link.

Fig. 3 shows an example of the execution of the Fujita-Yamashita algorithm for a
path withN = 5. Instead of using the mesh and the wires, we show the direction
of every call and expose the idle edges. The problem of this algorithm is that all the
nodes are oriented towards sending tokens to the right until theirR i becomes empty,
which means that the edges that are at the right-hand end (e.g., (3, 4)) will be busy
for a longer length of time with moving tokens towards the right than the other edges.
In the example in the figure, the edge(3, 4) is busy during all the first four rounds
with moving tokens to the right. As a result, this edge cannot be used for movingv 4’s
token to the left until the fifth round. The edge(3, 4) has become a bottleneck. The
number of rounds required by the Fujita-Yamashita algorithm is therefore2(N − 1),
whereN − 1 are forToken0 to propagate tovN−1 and anotherN − 1 for TokenN−1

to propagate tov0.
The new algorithm we now propose solves the bottleneck problem by having half

of the nodes send their tokens to the right and the other half send to the left in the
first instance. An example is given in Fig. 4. Note that because of the edge contention
problem as has been discussed and exemplified by Fig. 2, this algorithm is somewhat
“disciplined”—it dictates which packet is allowed to use an edge when there is a ready
packet at both ends of the edge. The following is the description of the algorithm. For
oddN , let m = (N − 1)/2, andvm be thecenter node.
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FIG. 4. The optimal algorithm for paths: (a)N = 5, (b) N = 6

Algorithm SmallPacket-OddPath:

• FORALL 0 < i < N − 1: Ri = Li = {Tokeni};
R0 = {Token0}; LN−1 = {TokenN−1};

• each nodevi on the left of the center node DO:
if Ri �= ∅

selects an arbitrary token fromRi and sends it tovi+1

(the latter then puts it inRi+1);
else

receives an arbitrary token fromvi+1 (Li+1)
and stores it inLi (if i > 0);
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UNTIL done;
‖
• each nodevi on the right of the center node DO:

(* similarly, except all the directions are reversed *)
UNTIL done;

For evenN , the algorithm is the same as the one for oddN , except that we let
m = N/2 andvm be the center node.

THEOREM 2.3
With the above algorithm, for oddN , g1(P ) ≤ 3(N −1)/2, and for evenN , g1(P ) ≤
3N/2− 1.

PROOF. For oddN , it takes(N − 1)/2 rounds to move the tokens of the nodes on
the left of the center node to the center node (and at the same time the tokens of the
nodes on the right to the center node). And then it takes another(N − 1)/2 rounds to
send the tokens that have come from the right to the nodes on the left (and at the same
time tokens that have come from the left to the nodes on the right). Finally, it takes
(N −1)/2 rounds forvm to broadcast its token to all the other nodes. Hence, the total
number of rounds is3(N − 1)/2 which matches the lower bound in Theorem 2.2. For
evenN , the analysis is similar, the total number of rounds is equal toN/2 + (N/2 −
1) + N/2 = 3N/2 − 1 which matches the corresponding lower bound.

3 The case of large packet (p > 1)

Whenp > 1, a packet can carry more than one token, which means that some of the
wires as shown in Fig. 2 may be combined into a single wire. As a result, the number
of wires is reduced. With fewer wires, the edge contention problem may go away. In
any case, however, the gossip time is still bounded from below by the time it takes to
send a token from one end of the path to the other end.

THEOREM 3.1
For a pathP of N nodes,gp(P ) ≥ N − 1, for any value ofp.

This turns out to be a tight bound forp > 1 for paths with oddN nodes. We give below
an algorithm whose complexity matches this bound. The algorithm is forp = 2, N
odd. Since for largerp values, the same lower bound applies, we conclude that the use
of larger packets (three or more tokens per packet) cannot increase the performance of
gossiping in an odd path. That is,p = 2 is the optimal packet size.

The idea of the algorithm can be explained using the mesh and the wires, as shown
in Fig. 5. Note that there is no contention over the use of edges as none of the wires
need bending. Therefore, the algorithm is rather straightforward, as given below.

Algorithm LargePacket-OddPath:

• FORALL 0 < i < N − 1: Ri = Li = {Tokeni};
R0 = {Token0}; LN−1 = {TokenN−1};

• (in the first round)
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FIG. 5. An optimal algorithm for paths (p = 2 and oddN )

every even-numbered node sends its token to its two neighbors
(v0 andvN+1 to one neighbor);

• each nodevi DO:
upon receipt of a packet from the left edge

combines it withRi and sends the result tovi+1 if i < N − 1;
‖
upon receipt of a packet from the right edge

combines it withLi and sends the result tovi−1 if i > 0;
UNTIL done;

It can be easily seen that all the packets received by various nodes during the first
round contain only one token, and these nodes’ ownR andL contain also a single
token at the time. Hence, the packets being sent during the second round contain
two tokens. We use a thicker wire to indicate a heavier packet. The labels along the
second row of the mesh in Fig. 5 show which two tokens are being combined to form
a single packet (thick wire). From this round onward, there is no more combining, and
every subsequent round consists entirely of forwarding of packets until they reach an
extreme node. For the example in Fig. 5, only eight rounds are needed; if using the
algorithm forp = 1 instead, twelve rounds would have been necessary. The following
is obvious.

THEOREM 3.2
The above algorithm forp = 2 and oddN finishes gossiping in optimal time (N − 1
rounds).

For evenN , the lower bound is one more thanN − 1.

THEOREM 3.3
For a pathP of N nodes, whereN is even,gp(P ) ≥ N , for any value ofp.
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PROOF. Refer to Fig. 6(a).
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FIG. 6. (a) Lower bound for even path; (b) optimal gossip (N = 8)

The algorithm for the oddN case can be easily extended to deal with the case of
evenN . The extended algorithm pretends that there is anN + 1st node (vN ) beyond
theN th node (vN−1). The necessary extension is to add the following to the above
algorithm.

• vN−1 delays sending out the contents ofLN−1 until the second round;

Fig. 6(b) shows an example forN = 8. Note thatW l(v7) contains only one token,
Token7, throughout. This modified algorithm, for evenN , has a complexity ofN
(since it pretends there areN + 1 nodes and pretends using the algorithm for oddN )
which is optimal according to Theorem 3.3. As the lower bound is independent of
the value ofp, increasing the value ofp cannot improve the optimal performance of
gossiping which is already achieved by this algorithm usingp = 2.

3.1 Cycle

The algorithms for the path forp = 2 presented in the last subsection can be adopted
to deal with the cycle forp > 1. For the path, the oddN case is better than the even
N case in terms of both lower bound and upper bound. For the cycle, the situation is
reversed. In the following, a wire of lengthl—i.e., it passes throughl cross-points in
the mesh—is referred to as anl-wire. Note that a cycle’s mesh is drawn with an extra
column (vertical line) to indicate the wraparound.
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THEOREM 3.4
For a cycleC of N nodes, whereN is even,gp(C) ≥ N/2+1, for any value ofp and
N > 2.

PROOF. Suppose that the gossip can be completed inN/2 rounds. Every node emits
anN/2-wire and an(N/2− 1)-wire. Considerv0. Suppose without loss of generality
thatWr(v0) is anN/2-wire. Since(1, 0·1) is occupied,Wl(v1) can only be an(N/2−
1)-wire, and henceWr(v1) must be anN/2-wire. Likewise,Wr(v2) · · ·Wr(vN−1)
must also beN/2-wires. Hence, we have a situation where all the cross-points are
taken up byWr ’s. Note that none of theWr ’s can overlap with any other wire because
any overlapping would mean delay in the flow of a token and the resulting time would
be greater thanN/2. Obviously, having just theWr ’s is not a complete gossip. Hence,
N/2 rounds are not enough for completing the gossip; we need at leastN/2+1 round.
For N = 2, a node’s right and left neighbors coincide, and henceN/2 = 1 round is
enough.

We give an example, for the case ofN = 6, as shown in Fig. 7. In Fig. 7(a), every
node emits a2-wire and a3-wire. If Wr(v0) is a3-wire, thenWl(v1) can only be a
2-wire, and henceWr(v1) must be a3-wire. Likewise,Wr(v2) · · ·Wr(v5) must also
be3-wires. The situation is as shown in Fig. 7(b) where all the cross-points are taken
up byWr ’s. Obviously, what is in Fig. 7 is not a complete gossip—all theW l’s are
missing. Hence,N/2 = 3 rounds are not enough for completing the gossip.

0 1 2 3 4 5
1

2

3

2

(a)

3

(b)

FIG. 7. Lower bound for even cycle

The algorithm to achieve the above bound is similar to the one for the path in Fig. 5.
We use a figure, Fig. 8, to explain the algorithm and omit the description which can
be easily derived from the figure. From the figure, we can see that all even-numbered
nodes begin sending their tokens at round1 and use aW l of length3 and aWr of
length2; all odd-numbered nodes begin their actions at round2 and use aW l of
length2 and aWr of length3. Note that all the overlapping parts consist of exactly
two wires—that is,p = 2.

THEOREM 3.5
For a cycleC of N nodes, whereN is odd,gp(C) ≥ (N + 1)/2 + 1, for anyp > 1
andN > 3.

PROOF. Without loss of generality, consider the case ofN = 9. Suppose that the
gossip can be completed in(N + 1)/2 = 5 rounds. For any node to reach all other
nodes, it emits either two4-wires or one3-wire and a5-wire, as shown in Fig. 9(a).
We will first prove that in order to satisfy the(N + 1)/2 bound, there cannot be any
5-wire.
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FIG. 8. Optimal algorithm for even cycle (N = 6)

Let’s begin with a5-wire in Fig. 9(b)—Wr(v2). Then,Wl(v3) can be either a
3-wire or4-wire.

• Wl(v3) a 3-wire: Wr(v3) must be a5-wire, forcingWl(v4) to be a3-wire and
Wr(v4) a5-wire. What is left is two places forWl(v5) which cannot accommodate
even a wire of length3 (the dashed wire in Fig. 9(b)).

• Wl(v3) a 4-wire: As shown in Fig. 9(c), we rotated the mesh horizontally so that
the wire in question appears in one piece. Consider nodesv7 andv8. BothWl(v7)
andWr(v8) cannot be of length5 because they would collide with the two existing
wires if they were5-wires. Hence,Wr(v7) andWl(v8) must be of length4 or 5.
Suppose we placeWl(v8) at (1, 7 · 8), then there is no way we could fitWr(v7)
into the mesh (refer to the two dashed wires in Fig. 9(c)). The same if we place
Wr(v7) at the same cross-point.

Hence, it is not possible to have any5-wire given the(N + 1)/2 bound. All wires
must be4-wires. Forp > 1, we allow wires to overlap. Since all wires are4-wires,
two wires can overlap if they are adjacent, and every overlapping consists of at most
two wires (Fig. 9(d)). The overlapping part is equal to the wire length minus 1—
i.e., 3 in this case. Therefore, two overlapping4-wires would occupy5 cross-points.
There are9 Wr ’s and 9 Wl’s. We can have at most4 pairs of overlappingWr ’s
and at most4 pairs of overlappingWl’s, leaving oneWr and oneWl which cannot
overlap. The total number of cross-points needed to accommodate all these wires,
overlapping and non-overlapping, is4 × 5 + 4 × 5 + 4 + 4 = 48. But the mesh
has only9 × 5 = 45 cross-points. Hence, using only4-wires cannot satisfy the
(N + 1)/2 bound. We need at least(N + 1)/2 + 1 rounds for the gossip. In general,
for a givenN , we have(N − 1)/2 pairs of overlapping wires for each direction, each
covering(N − 1)/2 + 1 cross-points; and two non-overlapping wires, each of lengh
(N − 1)/2. The total number of cross-points taken up by these wires is equal to
2× (N − 1)/2× ((N − 1)/2 + 1) + 2× (N − 1)/2 = (N2 + 2N − 3)/2. The mesh
has(N + 1)/2 × N = (N2 + N)/2 cross-points. The(N + 1)/2 + 1 lower bound
stands if(N 2 + 2N − 3)/2 > (N2 + N)/2 or N > 3.

Fig. 10(b) shows the optimal algorithm and its application to the case ofN = 7. The
same strategy of an imaginary node (v7) is used, and the nodes consider themselves
belonging to an even cycle withN = 8. v0 plays also the role ofv7, and hence
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FIG. 9. Lower bound for odd cycle
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FIG. 10. Optimal algorithm for odd cycle (N = 7)

it delays all tokens to be sent to the left by one round in order to simulatev 7. For
example, as shown in the figure,v1 sends it token tov0 at round2, butv0 would not
pass the token on tov6 until round4. Similarly all tokens going throughv0 from the
left would be delayed by one round. Sincev7 is imaginary, the dashed wires in the
figure are non-action. Like in the previous case (Fig. 8), forN = 8, the nodes here
emit a3-wire and a4-wire. The overlapping is at most two wires, hencep = 2.

Given the above results and theorems, we can now state the following.
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COROLLARY 3.6
The optimal packet size for solving the gossiping problem on a path or cycle isp = 2.
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4 Conclusion

We have studied the gossiping problem under the H* model and with the bounded
packet size restriction. We proved tight lower bounds and proposed optimal algo-
rithms for the path and the cycle. The results are summarized in Table 1. We have
also determined the optimal packet size for solving the problem. The optimal path al-
gorithm can be plugged into the Fujita-Yamashita algorithm [10] to yield an improved
algorithm for the square mesh. Paths and cycles are building blocks not just for the
mesh and the torus, but also for the tree and general graphs.

Having mentioned the Fujita-Yamashita algorithm, we should perhaps also point
out the possibility of further improvement, in addition to that of replacing its Phase
2 by a better algorithm. In Phase 1 of the Fujita-Yamashita algorithm, every other
node in a row (or column) of the mesh broadcasts its token to all the other nodes in
the row (or column). The situation is as depicted in Fig. 11. Note that the time of the
broadcast is optimal if considering Phase 1 in isolation, but there are quite a few idle
slots, especially towards the end. The current algorithm will not start Phase 2 until
Phase 1 is completely finished, but in view of the picture, a possible improvement
may be to start Phase 2 earlier for some nodes. Alternatively, one can try using an
entirely different strategy, instead of dividing into two non-overlapping phases.

0 1 2 3 4 5

t=1
0 2 2 4 4

2
2 0 4 2

3
04 2

4
04

5
0

FIG. 11. Phase 1 of Fujita-Yamashita algorithm
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