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Abstract—Cloud computing, rapidly emerging as a new com-
putation paradigm, provides agile and scalable resource access
in a utility-like fashion, especially for the processing of big data.
An important open issue here is to efficiently move the data,
from different geographical locations over time, into a cloud for
effective processing. The de facto approach of hard drive shipping
is not flexible or secure. This work studies timely, cost-minimizing
upload of massive, dynamically-generated, geo-dispersed data
into the cloud, for processing using a MapReduce-like framework.
Targeting at a cloud encompassing disparate data centers, we
model a cost-minimizing data migration problem, and propose
two online algorithms: an online lazy migration (OLM) algorithm
and a randomized fixed horizon control (RFHC) algorithm , for
optimizing at any given time the choice of the data center for data
aggregation and processing, as well as the routes for transmitting
data there. Careful comparisons among these online and offline
algorithms in realistic settings are conducted through extensive
experiments, which demonstrate close-to-offline-optimum perfor-
mance of the online algorithms.

Index Terms—Cloud Computing, Big Data, Online Algorithms

I. INTRODUCTION

The cloud computing paradigm enables rapid on-demand
provisioning of server resources (CPU, storage, bandwidth)
to users, with minimal management efforts. Recent cloud
platforms, as exemplified by Amazon EC2 and S3, Microsoft
Azure, Google App Engine, Rackspace [1], etc., organize a
shared pool of servers from multiple data centers, and serve
their users using virtualization technologies.

The elastic and on-demand nature of resource provisioning
makes a cloud platform attractive for the execution of var-
ious applications, especially computation-intensive ones [2],
[3]. More and more data-intensive Internet applications, e.g.,
Facebook, Twitter, and big data analytics applications, such
as the Human Genome Project [4], are relying on the clouds
for processing and analyzing their petabyte-scale data sets,
with a computing framework such as MapReduce and Hadoop
[5], [6]. For example, Facebook-like social media sites collect
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their Web server logs, Internet click data, social activity
reports, etc., from various locations over time, and parse
them using Mapreduce/Hadoop to uncover usage patterns and
hidden correlations, in order to facilitate marketing decisions.

While most efforts have been devoted to designing better
computing models for big data analytics, an important issue
has largely been left out in this respect: How does one move
the massive amounts of data into a cloud, in the very first
place? The current practice is to copy the data into large
hard drives for physically transportation to the data center
[7], [8], or even to move entire machines [9]. Such physical
transportation incurs undesirable delay and possible service
downtime, while outputs of the data analysis are often needed
to be presented to users in the most timely fashion [9]. It is also
less secure, given that the hard drives are prone to infection
of malicious programs and damages from road accidents. A
safer and more flexible data migration strategy is in need, to
minimize any potential service downtime.

The challenge escalates when we target at dynamically
and continuously produced data from different geographical
locations, e.g., astronomical data from disparate observato-
ries [10], usage data from different Facebook Web servers.
With dynamic data, an efficient online algorithm is desired,
for timely guiding the transfer of data into the cloud over
time. For geo-dispersed data sets, we wish to select the best
data center to aggregate all data onto, for processing with a
MapReduce-like framework, which is efficient to process data
within one data center but not across data centers, due to the
enormous overhead of inter-data center data moving in the
stage of shuffle and reduce [11]. For example, Amazon Elastic
MapReduce launches all processing nodes of a MapReduce job
in the same EC2 Availability Zone [12].

As the first dedicated effort in the cloud computing lit-
erature, this work studies timely, cost-minimizing migration
of massive amounts of dynamically-generated, geo-dispersed
data into the cloud, for processing using a MapReduce-like
framework. Targeting a typical cloud platform that encom-
passes disparate data centers of different resource charges, we
carefully model the cost-minimizing data migration problem,
and propose efficient offline and online algorithms, which
optimize the routes of data into the cloud and the choice of the
data center for data processing, at any give time. Our detailed
contributions are as follows:

◃ We analyze the detailed cost composition and identify the
performance bottleneck for moving data into the cloud, and
formulate an offline optimal data migration problem. The
optimization computes optimal data routing and aggregation



strategies at any given time, and minimizes the overall system
cost and data transfer delay, over a long run of the system.
◃ We propose a polynomial-time dynamic programming based
algorithm to solve the offline optimal data migration problem,
given complete knowledge of data generation in the temporal
domain. The derived offline optimal strategies serve as a
benchmark for our online algorithms.
◃ Two efficient online algorithms are proposed to practically
guide data migration over time: an online lazy migration
(OLM) algorithm and a randomized fixed horizon control
(RFHC) algorithm. Theoretical analyses show that the OLM
algorithm achieves a worst-case competitive ratio of 2.55,
without the need of any future information and regardless
of the system scale, under the typical settings in real-world
scenarios. The RFHC algorithm achieves a competitive ratio
of 1 + 1

l+1
κ
λ that approaches 1 as the lookahead window l

grows. Here κ and λ are system dependent parameters of
similar magnitudes.
◃ We conduct extensive experiments to evaluate the per-
formance of our online and offline algorithms, using real-
world meteorological data generation traces. The online algo-
rithms can achieve close-to-offline-optimum performance in
most cases examined, revealing that the theoretical worst-case
competitive ratios are pessimistic, and only correspond to rare
scenarios in practice.

In the rest of the paper, we discuss related work in Sec. II,
describe the system and problem models in Sec. III, and
present the offline and online solutions in Sec. IV and Sec. V
respectively. Evaluation results are presented in Sec. VI.
Sec. VII concludes the paper.

II. RELATED WORK

A series of recent work studies application migration to
the cloud. Hajjat et al. [13] develop an optimization model
for migrating enterprise IT applications onto a hybrid cloud.
Cheng et al. [14] and Wu et al. [15] advocate deploying
social media applications into clouds, for leveraging the rich
resources and pay-as-you-go pricing. These projects focus on
workflow migration and application performance optimization,
by carefully deciding the modules to be moved to the cloud
and the data caching/replication strategies in the cloud. The
very first question of how to move large volumes of application
data into the cloud is not explored.

Few existing work discussed such transfer of big data to the
cloud. Cho et al. [16] design Pandora, a cost-aware planning
system for data transfer to the cloud provider, via both the
Internet and courier services. The same authors [17] later
propose a solution to minimize the transfer latency under a
budget constraint. Different from our study, they focus on
static scenarios with a fixed amount of bulk data to transfer,
rather than dynamically generated data; in addition, a single
cloud site is considered, while our study pays attention to
multiple data centers.

A number of online algorithms have been proposed to
address different cloud computing and data center issues.
For online algorithms without future information, Lin et
al. [18] investigate energy-aware dynamic server provisioning,

by proposing a Lazy Capacity Provisioning algorithm with
a 3-competitive ratio. Mathew et al. [19] tackle the energy-
aware load balancing problem in the content delivery networks
(CDNs) by an online Hibernate algorithm, which strikes a
balance between energy consumption and customer service-
level agreements (SLAs). However, no theoretical analysis on
the performance, in terms of competitive ratio, is provided.

For online algorithms assuming lookahead into the future,
Lu and Chen [20] study the dynamic provisioning problem
in data centers, and design future-aware algorithms based on
the classic ski-rental online algorithm, where the competitive
ratios can be significantly improved by exploiting the looka-
head information up to the break-even interval . Lin et al. [21]
investigate load balancing among geographically-distributed
data centers, apply a receding horizon control (RHC) algo-
rithm, and show that the competitive ratio can be reduced
substantially by leveraging predicted future information, via
relaxing the optimization variables. Due to the unique integer
requirement on the decision variables, our problem cannot
be transformed into the ski-rental framework, nor relaxed to
utilize the RHC framework. Our RFHC algorithm handles the
integer restriction via randomization instead.

This work fills gaps in the existing literature on the transfer
of large amounts of data to the cloud in the following three
aspects: 1, we focus on dynamically generated data rather than
static scenarios with a fixed amount of bulk data; 2, our study
pays attention to a cloud with multiple geo-distributed data
centers, while existing work often focuses on a single cloud
site; 3, existing techniques used to handle online problems in
the cloud do not directly apply in our study, due to the unique
structure of our data transfer problem.

III. THE DATA MIGRATION PROBLEM

A. System Model

We consider a cloud consisting of K geo-distributed data
centers in a set of regions K, where K = |K|. A cloud user
(e.g., a global astronomical telescope application) continuously
produces large volumes of data at a set D of multiple ge-
ographic locations (e.g., dispersed telescope sites). The user
connects to the data centers from different data generation
locations via virtual private networks (VPNs), with G VPN
gateways at the user side and K VPN gateways each collocated
with a data center. Let G denote the set of VPN gateways at
the user side, with G = |G|. An illustration of the system is in
Fig. 1. A private (the user’s) network inter-connects the data
generation locations and the VPN gateways at the user side.
Such a model reflects typical connection approaches between
users and public clouds (e.g., AWS Direct Connect [22],
Windows Azure Virtual Network [23]), where dedicated, pri-
vate network connections are established between a user’s
premise and the cloud, for enhanced security and reliability,
and guaranteed inter-connection bandwidth.

Inter-data centre connections within a cloud are usually
dedicated high-bandwidth lines [24]. Within the user’s private
network, the data transmission bandwidth between a data
generation location d ∈ D and a VPN gateway g ∈ G is
large as well. The bandwidth Ugi on a VPN link (g, i) from



Legend

Data Location 1

Data Location 2

DC 1

DC 2

DC 3

DC 4

Gateways at 

the user side

Gateways at the 

data center side Intranet links in cloud

Internet links

Intranet links at the user side

GW2'

GW1'GW1

GW2

GW3

GW4

GW3'

GW4'

Fig. 1. An illustration of the cloud system.

user side gateway g to data center i is limited, and constitutes
the bottleneck in the system.

B. Cost-minimizing Data Migration: Problem Formulation

Assume the system executes in a time-slotted fashion [15],
[18], [19], with slot length τ . Fd(t) bytes of data are produced
at location d in slot t, for upload to the cloud. ldg is the latency
between data location d ∈ D and user side gateway g ∈ G,
pgi is the delay along VPN link (g, i), and ηik is the latency
between data centers i and k. These delays, which can be
obtained by a simple command such as ping, are dictated by
the respective geographic distances.

A cloud user needs to decide (i) via which VPN connec-
tions to upload its data to the cloud, and (ii) to which data
center to aggregate data, for processing by a MapReduce-like
framework, such that the monetary charges incurred, as well
as the latency for the data to reach the aggregation point, are
jointly minimized. The total cost C to be minimized has four
components: bandwidth cost, aggregate storage and computing
cost, migration cost, and routing cost.
Decision variables. Two types of optimization variables are
formulated:
(1) Data routing variable xd,g,i,k(t), ∀d ∈ D,∀g ∈ G, ∀i ∈
K, ∀k ∈ K, denotes the portion of data Fd(t) produced at
location d in t, to be uploaded through VPN connection
(g, i) and then migrated to data center k for processing.
xd,g,i,k(t) > 0 indicates that the data routing path d →
g → i → k is employed, and xd,g,i,k = 0 otherwise. Let
x⃗ = (xd,g,i,k(t))∀d∈D,∀g∈G,∀i∈K,∀k∈K, the set of feasible data
routing variables are:

X =

{
x⃗(t) |

∑
g∈G,i∈K,k∈K

xd,g,i,k(t) = 1 and xd,g,i,k ∈ [0, 1],

∀d ∈ D, ∀g ∈ G,∀i ∈ K, ∀k ∈ K
}
. (1)

Here
∑

g∈G,i∈K,k∈K xd,g,i,k(t) = 1 ensures that all data
produced from location d are uploaded into the cloud in t.
(2) Binary variable yk(t), ∀k ∈ K, indicates whether data
center k is target of data aggregation in time slot t (yk(t) = 1)
or not (yk(t) = 0). Following the practical requirement of
the current MapReduce framework, we require that at any
given time, exactly one data center is chosen. Let y⃗(t) =
(yk(t))∀k∈K, the set of possible data aggregation variables are:

Y =

{
y⃗(t) |

∑
k∈K

yk(t) = 1 and yk(t) ∈ {0, 1}, ∀k ∈ K
}
. (2)

Costs. The costs incurred in time slot t, for uploading the data
into the cloud and for processing the data at the selected data
center, include the following components.
(1) The overall bandwidth cost for uploading data via the
VPN connections, where

∑
d∈D,k∈K

Fd(t)xd,g,i,k(t) is the amount

uploaded via (g, i), and fgi is the charge for uploading one
byte of data via (g, i), derived from bandwidth prices set by
the cloud provider:

CBW (x⃗(t)) ,
∑

g∈G,i∈K

(fgi
∑

d∈D,k∈K

Fd(t)xd,g,i,k(t)). (3)

(2) Storage and computation costs are important factors to con-
sider in choosing the data aggregation point. In a large-scale
online application, processing and analyzing in t may involve
data produced not only in t, but also from the past, in the form
of raw data or intermediate processing results. For example,
data analytics in social networks may re-run the data parsing
flow when new data arrives, together using the new data and
old data (or previous parsing results of the old data) [25].
Without loss of generality, let the amount of current and his-
tory data to process in t be F(t) =

∑t
ν=1(αν

∑
d∈D Fd(ν)),

where
∑

d∈D Fd(ν) is the total amount of data produced
in time slot ν from different data generation locations, and
weight αν ∈ [0, 1] is smaller for older times ν and αt = 1
for the current time t. The value of αν is determined by
specific applications and can be obtained through statistical
data. Assume all the other historical data, except those in
F(t), are removed from the data centers where they were
processed, since all needed information has been stored in
the retained data. Let Ψk(F(t)) be a non-decreasing cost
function for storage and computation in data center k in t
(e.g., Ψk(F(t)) = skF(t) + vkF(t), if sk and vk are the
per-byte per-time-slot costs for storing and processing in data
center k, respectively. The value of sk is determined by the
cloud provider and the value of vk depends on both the cloud
provider and the specific application). The aggregate storage
and computing cost incurred in the cloud in t is:

CDC(y⃗(t)) ,
∑
k∈K

yk(t)Ψk(F(t)). (4)

(3) The best data center for data aggregation can differ in t
than in t − 1, due to temporal and spatial variations in data
generation. Historical data needed for processing together with
new data in t, at the amount of

∑t−1
ν=1(αν

∑
d∈D Fd(ν)), should

be moved from the earlier data center to the current, and a
migration cost is incurred. Let ϕik(z) be the non-decreasing
migration cost to move z bytes of data from data center i to
date center k, satisfying triangle inequality: ϕik(z) + ϕkj(z) ≥
ϕij(z). ϕik(z) corresponds to upload/download bandwidth
charges for moving data out of/into a data center, and/or
the delay between the two data centers based on geographic
distance. The migration cost between t− 1 and t is:

Ct
MG(y⃗(t), y⃗(t− 1)) ,

∑
i∈K

∑
k∈K

([yi(t− 1)− yi(t)]
+

[yk(t)− yk(t− 1)]+ϕik(

t−1∑
ν=1

αν

∑
d∈D

Fd(ν))).

(5)

Here [a − b]+ = max{a − b, 0}. Since only one data center is
selected for data processing in each time slot, there is at most
one non-zero term in the above summation, corresponding to



data centers i for t−1 and k (k ̸= i) for t, [yi(t−1)−yi(t)]
+ =

1 = [yk(t)− yk(t− 1)]+ = 1.
(4) The latency incurred for data upload is an important
performance measure, to be minimized in the data routing and
aggregation process. Targeting both monetary cost minimiza-
tion and delay minimization, we formulate a routing cost for
delays along the selected routing paths, and combine it with
other costs to be the optimization objective. The overall routing
cost in the system in t is:

CRT (x⃗(t)) ,
∑

d,g,i,k

Lxd,g,i,k(t)Fd(t)(ldg + pgi + ηik), (6)

where xd,g,i,k(t)Fd(t)(ldg + pgi + ηik) is the product of data
volume and delay along the routing path d → g → i → k.
The weighted formula suggests that transferring a large volume
of data via a high latency path causes high cost. L is the
routing cost weight converting xd,g,i,k(t)Fd(t)(ldg+pgi+ηik)
into a monetary cost, reflecting how latency-sensitive the user
is. A cloud user specifies L as a constant a priori. Latency
ldg + pgi + ηik is fixed in each slot but can change over time.

In summary, the overall cost incurred in t in the system is:
C(x⃗(t), y⃗(t)) =CBW (x⃗(t)) + CDC(y⃗(t))+

Ct
MG(y⃗(t), y⃗(t− 1)) + CRT (x⃗(t)).

(7)

The offline optimization problem of minimizing the overall
cost of data upload and processing over a time interval [1, T ]
can be formulated as:

minimize
T∑

t=1

C(x⃗(t), y⃗(t)) (8)

subject to: ∀t = 1, . . . , T ,

(8a) x⃗(t) ∈ X ,
(8b)

∑
d∈K,k∈K Fd(t)xd,g,i,k(t)/τ ≤ Ugi, ∀i ∈ K,∀g ∈ G,

(8c) xd,g,i,k(t) ≤ yk(t),∀d ∈ D, ∀g ∈ G, ∀i ∈ K, ∀k ∈ K,
(8d) y⃗(t) ∈ Y,

where C(x⃗(t), y⃗(t)), X , and Y are given in Eqn. (7), (1) and
(2), respectively. Constraint (8b) states that the total amount
of data routed via (g, i) into the cloud in each time slot should
not exceed the upload capacity of (g, i). (8c) ensures that a
routing path d→g→i→k is used (xd,g,i,k(t) > 0), only if data
center k is the point of data aggregation in t (yk(t) = 1).

An Online Algorithm takes input gradually as they become
available, and computes output on the fly. An Offline Algorithm
is given complete information into the future, and generates a
solution once in its entirety [26]. Competitive ratio is widely
accepted to measure the performance of online algorithms. A
deterministic minimizing online algorithm A is α-competitive
iff ∀I , A(I) ≤ α ·O(I), where I is a given sequence of input,
A(I) is the total cost to complete I by A, O(I) denotes the
cost to serve I by the optimal offline algorithm. Similarly, a
randomized minimizing online algorithm A is α-competitive
iff ∀I , E(A(I)) ≤ α ·O(I).

IV. AN OPTIMAL OFFLINE ALGORITHM

We first present an offline algorithm, which derives the
theoretical minimum cost given complete knowledge of data
generation in both temporal and spatial domains. The offline
algorithm solves (8) by computing the optimal data routing and

aggregation decisions, x⃗∗(t) and y⃗∗(t), t = 1, . . . , T , using
dynamic programming. We construct a 2-D table W (t, y⃗(t))
that denotes the minimum cost (Eqn. (7)) incurred to upload
and process the data Fd(1), Fd(2), ..., Fd(t), ∀d ∈ D, into
the cloud, while ending with a specific y⃗(t) ∈ Y as the data
aggregation decision at time t. Consider set Y defined in (2),
which in fact has exactly K elements, corresponding to K
possible data aggregation decisions at any time t. Each data
aggregation decision corresponds to selecting exactly one of
the K data centers for data processing. Let vector y⃗i denote
the decision in which data center i is chosen, with yi(t) = 1
and yj(t) = 0, ∀j ̸= i. Hence Y = {y⃗1, y⃗2, . . . , y⃗K}. The
table W (t, y⃗(t)) has K rows corresponding to K possible data
aggregation decisions in Y , and T columns corresponding to
t = 1, . . . , T , (Fig. 2).

Time (t)

...

...

 

 

  

 

  

Fig. 2. An illustration of the offline dynamic programming algorithm.

The algorithm begins with W (0, y⃗(0))=0, ∀y⃗(0)∈Y , and
computes the entries inductively:

W (t, y⃗(t)) = min
y⃗ ∈ Y,
x⃗(t): (8a)-(8c)

{
W (t− 1, y⃗) + C(x⃗(t), y⃗(t))

}
. (9)

Given y⃗(t) (data aggregation decision in t), W (t, y⃗(t)) com-
putes the minimum cumulative cost from time slot 1 up to t, by
choosing among all possible data aggregation decisions y⃗ ∈ Y
in t− 1, and all feasible data routing decisions x⃗(t) in t. The
term W (t− 1, y⃗) is the minimum cumulative cost in [1, t− 1]
with the specific y⃗ as the data aggregation decision at t−1; the
term C(x⃗(t), y⃗(t)), computed by Eqn. (7), is the cost incurred
in time slot t. Here y⃗ is related to C(x⃗(t), y⃗(t)), since it decides
the potential migration cost CMG(y⃗(t), y⃗) in C(x⃗(t), y⃗(t)). If
we cannot find a feasible solution to the minimization problem
in (9), we set W (t, y⃗(t)) = +∞.

The rationale of the dynamic programming approach (Alg.
1) is as follows. At each time t, fixing the choice of the data
center used for data processing, we trace back and examine
each of the K possible data center choices in time t − 1,
by adding the cost incurred in t to the minimum cumulative
cost up to t − 1; that is, we compute the cumulative costs
up to t in K cases, that the historical data are migrated from
different data center j ∈ K in t − 1 to i in t, supposing
data center i is selected in t. We then decide the minimum
cumulative cost up to time t, via the best data center j in
t − 1. Eventually when the table is completed, the minimum
overall cost of the system in [1, T ], i.e., the optimal objective
function value of the offline optimization problem in (8), is
given by min

y⃗(T )∈Y
W (T, y⃗(T )). The optimal data aggregation

decision in time slot T is y⃗∗(T ) = arg min
y⃗(T )∈Y

W (T, y⃗(T )),

and the optimal data routing decision x⃗∗(T ) is the one leading



Algorithm 1 The Optimal Offline Algorithm
1: t = 1;
2: Initialize: ∀y⃗(0) ∈ Y,W (0, y⃗(0)) = 0;
3: while t ≤ T do
4: for all y⃗(t) ∈ Y do
5: for all y⃗ ∈ Y do
6: Find x⃗(t) ∈ X to minimize:
7: W (t− 1, y⃗) + C(x⃗(t), y⃗(t)) subject to (8a)− (8c);
8: Find the minimum value among the above computation

results, store it as W (t, y⃗(t)) and record the decision path;
9: t = t+ 1;

10: Find min
y⃗(T )∈Y

W (T, y⃗(T )) as the optimal value of (8);

11: y⃗∗(T ) = arg min
y⃗(T )∈Y

W (T, y⃗(T ));

12: Trace back the optimal decision path from W (T, y⃗∗(T )) to
W (0, y⃗(0)), to derive the complete optimal solutions to the
offline optimization problem (8).

to W (T, y⃗∗(T )) by solving (9). The optimal data routing and
aggregation decisions in previous time slots can be derived
accordingly, by tracing the optimal decision path in the table.

Theorem 1. Alg. 1 has a worst-case computation complexity
of O(TγD3G3K8/ ln(DGK2)), where γ is the number of bits
required to represent the following linear program:

min
x⃗(t)

C(x⃗(t), y⃗(t)) = CBW (x⃗(t)) + CRT (x⃗(t)) (10)

subject to: constraints (8a), (8b), (8c).

Proof sketch: To compute each W (t, y⃗(t)) using (9), we
can loop through the K possible values of y⃗ ∈ Y , and when
y⃗ is fixed, the minimization problem reduces to the linear
program in (10). For a linear program, efficient polynomial-
time algorithms exist, with the current best worst-case com-
plexity of O([n3/ lnn]γ) by an interior-point method, where
n is the number of variables and γ is the number of bits
required to represent the linear program [27], related to the
numbers of variables and constraints and the number of bits
it takes to represent a constant in the LP. There are DGK2

variables, xd,g,i,k(t)’s, in this problem, leading to complex-
ity O(γD3G3K6/ ln(DGK2)). Therefore, the complexity to
compute each W (t, y⃗(t)) is O(K ·γD3G3K6/ ln(DGK2)) =
O(γD3G3K7/ ln(DGK2)). There are KT entries in the
table, and hence the overall computation complexity of the op-
timal offline algorithm is O(TγD3G3K8/ ln(DGK2)).

V. TWO ONLINE ALGORITHMS

A. The Online Lazy Migration (OLM) Algorithm

The offline optimization problem in (8) can be divided into
T one-shot optimization problems:

minimize C(x⃗(t), y⃗(t)) subject to: (8a)(8b)(8c)(8d). (11)

A straightforward algorithm solves the above optimization in
each time slot, based on y⃗(t − 1) in the previous time slot.
This can be far from optimal due to premature data migration.
For example, assume data center k was selected at t− 1, and
migrating data from k to j is cost-optimal at t according to the
one-shot optimization (e.g., because more data are generated

in region j in t); the offline optimum may indicate to keep all
data in k at t, if the volume of data generated in k in t + 1
surges. We next explore dependencies among the selection of
the aggregation data center across consecutive time slots, and
design a more judicious online algorithm accordingly.

We divide the overall cost C(x⃗(t), y⃗(t)) incurred in t into
two parts: (i) migration cost Ct

MG(y⃗(t), y⃗(t − 1)) defined in
(5), related to decisions in t − 1; (ii) non-migration cost that
relies only on current information at t:

Ct
−MG(x⃗(t), y⃗(t)) = CBW (x⃗(t))+CDC(y⃗(t))+CRT (x⃗(t)). (12)

We design a lazy migration algorithm (Alg. 2), whose basic
idea is to postpone data center switching even if the one-shot
optimum indicates so, until the cumulative non-migration cost
(in Ct

−MG(x⃗(t), y⃗(t))) has significantly exceeded the potential
data migration cost.

At the beginning (t=1), we solve the one-shot optimization
in (11), and upload data via the derived optimal routes x⃗(1)
to the optimal aggregation data center indicted by y⃗(1). Let
t̂ be the time of the data center switch. In each following
time slot t, we compute the overall non-migration cost in
[t̂, t − 1],

∑t−1
ν=t̂

Cν
−MG(x⃗(ν), y⃗(ν)). The algorithm checks

whether this cost is at least β2 times the migration cost
C t̂

MG(y⃗(t̂), y⃗(t̂−1)). If so, it solves the one-shot optimization
to derive x⃗(t) and y⃗(t) without considering the migration cost,
i.e., by minimizing Ct

−MG(x⃗(t), y⃗(t)) subject to (8a) − (8d)
and an additional constraint, that the potential migration cost,
Ct

MG(y⃗(t), y⃗(t − 1)), is no larger than β1 times the non-
migration cost Ct

−MG(x⃗(t), y⃗(t)) at time t (to make sure
that the migration cost is not too excessive). If a change
of migration data center is indicated (y⃗(t) ̸= y⃗(t − 1)), the
algorithm accepts the new aggregation decision, and migrates
data accordingly. In all other cases, the aggregation data center
remains unchanged from t−1, while optimal data routing paths
are computed given this aggregation decision, for upload of
new data generated in t.

Alg. 2 avoids aggressive switches of the aggregation data
center, to prevent moving a large amount of data back and forth
too often. Excessive “laziness” is also avoided. Parameters
β2 > 0 and β1 > 0 control the “laziness” and “aggressiveness”
of the algorithm: a large β2 prolongs the inter-switch interval,
while a large β1 invites more frequent switches.

Lemma 1. The overall migration cost in [1, t] is at
most max{β1,1/β2} times the overall non-migration cost
in this period, i.e.,

∑t
ν=1 C

ν
MG(y⃗(ν), y⃗(ν − 1)) ≤

max{β1, 1/β2}
∑t

ν=1 C
ν
−MG(x⃗(ν), y⃗(ν)).

Proof sketch: Potential migration cost in t is at most β1

times the non-migration costs. For migration cost incurred in
previous time slots, i.e., C t̂i

MG(x⃗(t̂i), y⃗(t̂i)) where t̂i is the time
of aggregation data center switch, ∀i = 1, 2, · · · , the non-
migration cost in the period from when this migration occurs
to the time before the next migration, i.e., in [t̂i, t̂i+1 − 1], is
at least β2 times the migration cost. Hence we have



Algorithm 2 The Online Lazy Migration (OLM) Algorithm
1: t = 1;
2: t̂ = 1; //Time slot when the last change of aggregation data

center happens
3: Compute data routing decision x⃗(1) and aggregation decision

y⃗(1) by minimizing C(x⃗(1), y⃗(1)) subject to (8a)− (8d);
4: Compute C1

MG(y⃗(1), y⃗(0)) and C1
−MG(x⃗(1), y⃗(1));

5: while t ≤ T do
6: if C t̂

MG(y⃗(t̂), y⃗(t̂−1)) ≤ 1
β2

∑t−1

ν=t̂
Cν

−MG(x⃗(ν), y⃗(ν)) then
7: Derive x⃗(t) and y⃗(t) by minimizing Ct

−MG(x⃗(t), y⃗(t)) in
(12) subject to (8a)−(8d) and constraint Ct

MG(y⃗(t), y⃗(t−1)) ≤
β1C

t
−MG(x⃗(t), y⃗(t));

8: if y⃗(t) ̸= y⃗(t− 1) then
9: Use the new aggregation data center indicated by y⃗(t);

10: t̂ = t;
11: if t̂ < t then //not to use new aggregation data center
12: y⃗(t) = y⃗(t − 1), compute data routing decision x⃗(t) by

solving (10) if not derived;
13: t = t+ 1;

t∑
ν=1

Cν
MG(y⃗(ν), y⃗(ν − 1))

≤ 1/β2

t−1∑
ν=1

Cν
−MG(x⃗(ν), y⃗(ν)) + β1C

t
−MG(x⃗(t), y⃗(t))

≤ max{β1, 1/β2}
t∑

ν=1

Cν
−MG(x⃗(ν), y⃗(ν)).

(13)

Lemma 2. The overall non-migration cost in [1, t] is
at most ϵ times the total offline-optimal cost, i.e.,∑t

ν=1 C
ν
−MG(x⃗(ν), y⃗(ν)) ≤ ϵ

∑t
ν=1 C(x⃗∗(ν), y⃗∗(ν)), where

ϵ = max
ν∈[1,T ]

maxy⃗(ν)∈Y,x⃗(ν):(8a)−(8c) C
ν
−MG(x⃗(ν), y⃗(ν))

miny⃗(ν)∈Y,x⃗(ν):(8a)−(8c) Cν
−MG(x⃗(ν), y⃗(ν))

is the maximum ratio of the largest over the smallest possible
non-migration cost incurred in a time slot, with different data
upload and aggregation decisions.

Proof sketch: By the definition of ϵ, at ν ∈ [1, t], the
non-migration cost of OLM is smaller than ϵ times the non-
migration cost incurred by the optimal offline algorithm, i.e.,
Cν

−MG(x⃗(ν), y⃗(ν)) ≤ ϵCν
−MG(x⃗

∗(ν), y⃗∗(ν)). We have
t∑

ν=1

Cν
−MG(x⃗(ν), y⃗(ν))

≤ ϵ
t∑

ν=1

Cν
−MG(x⃗

∗(ν), y⃗∗(ν))

≤ ϵ

t∑
ν=1

{
Cν

−MG(x⃗
∗(ν), y⃗∗(ν)) + Cν

MG(y⃗
∗(ν), y⃗∗(ν − 1))

}

= ϵ

t∑
ν=1

C(x⃗∗(ν), y⃗∗(ν)).

(14)

Theorem 2. The OLM Algorithm is ϵ(1 + max{β1, 1/β2})-
competitive.

Proof Sketch: The overall cost incurred by the OLM
Algorithm in [1, T ] is

∑T
ν=1[C

ν
MG(y⃗(ν), y⃗(ν − 1)) +

Cν
−MG(x⃗(ν), y⃗(ν))]. By Lemma 1 and Lemma 2:

T∑
ν=1

[Cν
MG(y⃗(ν), y⃗(ν − 1)) + Cν

−MG(x⃗(ν), y⃗(ν))]

≤ (1 + max{β1, 1/β2})
T∑

ν=1

Cν
−MG(x⃗(ν), y⃗(ν))

≤ ϵ(1 + max{β1, 1/β2})
T∑

ν=1

C(x⃗∗(ν), y⃗∗(ν)).

The value of ϵ is mainly determined by data generation
patterns over time, and less involved with the system size,
e.g., the number of data centers. In our experiments with
a typical data generation pattern, ϵ = 1.7. In this case,
setting β1 = 0.5 and β2 = 2 leads to a competitive ratio
of 2.55. The competitive ratio is the worst-case performance
of the algorithm [26], assuming an adversary who knows the
algorithm and chooses the ‘worst’ input over time. Simulations
in Sec. VI reveals much better performance in practice.

Theorem 3. The OLM Algorithm has a computational com-
plexity of O(TγD3G3K7/ ln(DGK2)).

Proof Sketch: The worst case of the OLM algorithm
occurs when data routing and aggregation decisions need
to be derived according to line 7 in Algorithm 2 in
each time slot, which is the most time-consuming step in
the algorithm. The computation in line 7 can be decom-
posed into two steps: 1) to minimize Ct

−MG(x⃗(t), y⃗(t))
in (12) subject to (8a) − (8d); 2) to verify constraint
Ct

MG(y⃗(t), y⃗(t−1)) ≤ β1C
t
−MG(x⃗(t), y⃗(t)). The first step re-

quires solving a linear program, with computation complexity
of O(γD3G3K6/ ln(DGK2)); to complete the second step,
it loops through the K possible data aggregation decisions.
Therefore the OLM algorithm has a worst-case computation
complexity of:

O(T ·γD3G3K6/ ln(DGK2)·K) = O(TγD3G3K7/ ln(DGK2)).
(15)

The complexity in Theorem 3 is regarding the total running
time from t = 1 to t = T . Considering that the OLM
algorithm is an online algorithm producing partial results per
time slot, we are more interested in the amortized per-slot
complexity,which is O(γD3G3K7/ ln(DGK2)).

B. The Randomized Fixed Horizon Control (RFHC) Algorithm

In practical applications, near-term future data generation
patterns can often be estimated from history, e.g., using a
Markov chain model or a time series forecasting model [28].
We next design an algorithm that exploits such predicted future
information. Details in the prediction module is treated as a
blackbox, is free to vary, and is not of primary concern in
this work. We assume that the information in the lookahead
window can be predicted precisely without error.

We divide time into equal-size frames of l + 1 time slots
each (l ≥ 0). In the first time slot t of each frame, assume
information on data generation for the next l time slots, i.e.,
Fd(t), Fd(t + 1), ..., Fd(t + l),∀d ∈ D, are known. We solve
the following cost minimization over time frame [t, t+l], given
the data aggregation decision of y⃗(t−1), to derive data routing
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Fig. 3. An illustration of different FHC algorithms with l = 2.

Algorithm 3 The Randomized Fixed Horizon Control (RFHC)
Algorithm

1: y⃗(0) = 0;
2: p = rand(1, l + 1); //A random integer within [1,l+1]
3: if p ̸= 1 then
4: Derive x⃗(1) · · · x⃗(p − 1) and y⃗(1) · · · y⃗(p − 1) by solving

(16) over the time window [1, p− 1];
5: t = p;
6: while t ≤ T do
7: if (t− p) mod (l + 1) = 0 then
8: Derive x⃗(t), · · · , x⃗(t + l) and y⃗(t), · · · , y⃗(t + l) by

solving (16) over the time frame [t, t+ l];
9: t = t+ 1;

decisions x⃗(ν) and aggregation decisions y⃗(ν), ∀ν = t, . . . , t+
l, using Alg. 1 in Sec. IV:

minimize
t+l∑
ν=t

C(x⃗(ν), y⃗(ν)), (16)

subject to: constraints (8a)—(8d), for ν = t, . . . , t+ l.
The method is essentially a fixed horizon control (FHC)

algorithm, adapted from receding horizon control in the dy-
namic resource allocation literature [21]. Allowing the first
time frame to start from different initial times p ∈ [1, l+1], we
have l+1 versions of the FHC algorithm (Fig. 3). In particular,
for an algorithm FHC(p) starting from a specific time slot p,
the above optimization is solved at times t = p, p + l + 1,
p+ 2(l+ 1), . . ., for routing and aggregation decisions in the
following l+1 time slots. For each specific algorithm FHC(p),
an adversary can choose an input with a surge of data produced
at the beginning of each time frame, leading to a high mi-
gration cost. A randomized algorithm defeats such purposeful
adversaries, by randomizing the starting times of the frames,
achieving lower expected worst-case performance [26].

We design a Randomized Fixed Horizon Control (RFHC)
algorithm (Alg. 3). At the beginning, the algorithm uniformly
randomly chooses p ∈ [1, l + 1] as the start of the first
time frame of l + 1 slots, i.e., it randomly picks one specific
algorithm FHC(p) from the l+1 FHC algorithms: at t = 1, it
solves (16) to decide the optimal data routing and aggregation
strategies in the period of t = 1 to p − 1 (p ̸= 1); then at
t = p, p + l + 1, p + 2(l + 1), . . ., it solves (16) for optimal
strategies in the following l + 1 time slots, respectively. An
adversary, with no information on p, finds it hard to contrive
specific inputs to degrade the performance of RFHC.

Lemma 3. The overall cost incurred by FHC(p) algorithm is
upper-bounded by the offline-optimal cost plus the migration
costs to move data from the aggregation data center computed
by FHC(p) to that decided by Alg. 1, at the end of the time
frames. That is, letting x⃗(p) and y⃗(p) be the solution derived by

the FHC(p) algorithm and Ωp,t = {ω|ω = p+ k(l+ 1), k =
0, 1, . . . , ⌊ t−p

l+1 ⌋}, we have for any t ∈ [1, T ],
t∑

ν=1

C(x⃗p(ν), y⃗p(ν)) ≤
t∑

ν=1

C(x⃗∗(ν), y⃗∗(ν))

+
∑

ω∈Ωp,t

Cω
MG(y⃗

∗(ω − 1), y⃗(p)(ω − 1)).

Proof sketch: FHC(p) solves (16) for locally-optimal rout-
ing and aggregation decisions in the time frame [ω, ω+l]. Total
cost incurred by FHC(p) in [ω, ω + l] is at most that of any
strategy with the same initial aggregation decision y⃗(p)(ω−1).
Hence, the total cost incurred by FHC(p) in [ω, ω+ l] should
be smaller than that of the following strategy: we first migrate
the data from the data center specified by y⃗(p)(ω − 1) to that
specified by y⃗∗(ω − 1), and then operate data routing and
aggregation in [ω, ω+l] following the offline optimum solution
in this time frame. We have

t∑
ν=1

C(x⃗p(ν), y⃗p(ν))

=
∑

ω∈Ωp,t

ω+l∑
ν=ω

{
Cν

−MG(x⃗
(p)(ν), y⃗(p)(ν))

+ Cν
MG(y⃗

(p)(ν), y⃗(p)(ν − 1))

}
≤

∑
ω∈Ωp,t

{
ω+l∑
ν=ω

{
Cν

−MG(x⃗
∗(ν), y⃗∗(ν))

+ Cν
MG(y⃗

∗(ν), y⃗∗(ν − 1))

}
+ Cω

MG(y⃗
∗(ω − 1), y⃗(p)(ω − 1))

}

=

t∑
ν=1

C(x⃗∗(ν), y⃗∗(ν)) +
∑

ω∈Ωp,t

Cω
MG(y⃗

∗(ω − 1), y⃗(p)(ω − 1)).

Theorem 4. The RFHC algorithm is (1+ 1
l+1

κ
λ )-competitive,

where κ = supt∈[1,T ],y⃗1(t),y⃗2(t)∈Y
Ct

MG(y⃗1(t),y⃗2(t))∑t−1
ν=1(αν

∑
d∈D Fd(ν))

is
the maximum migration cost per unit data, and λ =
inft∈[1,T ],x⃗(t),y⃗(t):(8a)−(8d)

C(x⃗(t),y⃗(t))∑t−1
ν=1(αν

∑
d∈D Fd(ν))

is the mini-
mum total cost per unit data per time slot.

Proof sketch: Let CFHC(p) =
∑T

ν=1 C(x⃗p(ν), y⃗p(ν)) be the
overall cost incurred by an FHC(p) algorithm, and COPT =∑T

ν=1 C(x⃗∗(ν), y⃗∗(ν)) be the offline-optimal cost achieved by
Alg. 1. The expected cost of the RFHC algorithm is

E(RFHC) =
1

l + 1

l+1∑
p=1

CFHC(p)

≤ 1

l + 1

l+1∑
p=1

{
COPT +

∑
ω∈Ωp,t

Cω
MG(y⃗

∗(ω − 1), y⃗(p)(ω − 1))

}

= COPT +
1

l + 1

l+1∑
p=1

∑
ω∈Ωp,t

Cω
MG(y⃗

∗(ω − 1), y⃗(p)(ω − 1)).

The ratio of the above second term over COPT is:∑l+1
p=1

∑
ω∈Ωp,t

Cω
MG(y⃗

∗(ω − 1), y⃗(p)(ω − 1))

COPT

=

∑T
ν=1 C

ν
MG(y⃗

∗(ν − 1), y⃗(p)(ν − 1))∑T
ν=1 C(x⃗∗(ν), y⃗∗(ν))

≤ κ

λ
.



Therefore, we conclude that: E(RFHC)
COPT

≤ 1 + 1
l+1

κ
λ .

Theorem 4 reveals that the more future steps predicted (the
larger l is), the closer the RFHC algorithm can approach
the offline optimal algorithm. Values of κ and λ are related
to system input including prices and delays, and are less
involved with the data generation patterns and the number of
data centers. In our experiments, κ

λ ≈ 0.69, and even with
l = 1, the competitive ratio is already as low as 1.34. We also
conducted experiments with imperfect predictions. Results
show that the performance remains good when accuracy is
above 80%. When l = 0, whether the RFHC algorithm or
the lazy migration algorithm performs better depends on the
system input. We will evaluate their performance through
experiments in the next section.

Theorem 5. The RFHC algorithm has a worst-case compu-
tation complexity of{

O(TγD3G3K7/ ln(DGK2)) if l = 0
O(TγD3G3K8/ ln(DGK2)) if l > 0,

Proof sketch:
Case 1: l = 0 (no lookahead). In this case, at time slot t,

the algorithm needs to go through the K possible aggregation
decisions of y⃗ ∈ Y to derive the one-shot optimum. For each
y⃗, the linear program in (10) is solved, with a computation
complexity of O(γD3G3K6/ ln(DGK2)). Hence, the RFHC
algorithm has a worst-case computation complexity of

O(T ·γD3G3K6/ ln(DGK2)·K) = O(TγD3G3K7/ ln(DGK2)).
(17)

Case 2: l > 0. The algorithm computes the optimum of the
data migration problem over the equal-size frames using the
method introduced in Sec. IV. According to Theorem 1, the
worst-case computation complexity of the RFHC algorithm
in the first frame is O((p − 1)γD3G3K8/ ln(DGK2)), and
O((l + 1)γD3G3K8/ ln(DGK2)) for each of the frames (of
l+1 slots) afterwards. Hence, the RFHC algorithm has a worst-
case computation complexity of

O(⌊T − p

l + 1
⌋ · (l + 1)γD3G3K8/ ln(DGK2))

+O((p− 1)γD3G3K8/ ln(DGK2))

= O(TγD3G3K8/ ln(DGK2)).

(18)

Theorem 5 shows the cumulative complexity from t = 1
to t = T . Since RFHC is an online algorithm producing
partial results in each time frame, we are more interested in
the amortized per time frame complexity:{

O(γD3G3K7/ ln(DGK2)) if l = 0
O((l + 1)γD3G3K8/ ln(DGK2)) if l > 0,

(19)

VI. PERFORMANCE EVALUATION

A. Experiment Setup

Astronomical data processing usually involves Terabytes,
Petabytes, or even Exabytes of data per day. Square Kilometre
Array (SKA) is an international project to build the world’s
largest telescope distributed in Australia, New Zealand and
South Africa. It is expected to produce a few Exabytes of
data per day [29]. Such astronomical data from geo-distributed
telescopes is a natural target for our proposed algorithms.

We implement our offline and online algorithms on a cluster
of 22 commodity computers (Intel(R) Pentium(R) D 3.0GHz
with dual cores, 1G RAM). We emulate a cloud of 8 data
centers in 8 regions (London, Bangalore, Hong Kong, Tokyo,
San Francisco, Atlanta, Toronto and São Paulo), and a network
of 8 observatories scattered in 8 time zones (Canary Is-
lands, South Africa, Urumqi, Western Australia, New Zealand,
Hawaii, Arizona, and Middle Chile), producing Gigabytes of
astronomical data per night for upload into the cloud. There
are 8 gateways collocated with the data centers and 6 user-side
gateways in Paris, Beijing, Sydney, Los Angeles, New York
and Rio de Janeiro, respectively. Each PC emulates one of user
locations, user-side gateways and data centers. Networking
instead of computation is our focus of emulation. Each PC
can provide the ability to transfer a large amount of data via
high-speed Ethernet. All 22 PCs are interconnected via a Dell
PowerConnect 5548 Switch. An additional PC is employed to
perform the central controller to control the routing schedule
and the migration scheme within the cluster of 22 commodity
computers. A typical cloud provider in practice usually has
up to 8 data centers (e.g., Amazon EC2 consists of 8 data
centers [30], Linode has 6 data centers [31] and DigitalOcean
is operating 3 data centers [32].

Since detailed astronomical data are not publicly available,
synthetic traces are generated to drive our experiments. We
extract data generation patterns from a set of statistics on atmo-
spheric visibility data collected at the Canarian observatories,
from Feb. 2000 to Aug. 2003 [33]. Based on the strong cor-
relation between the visibility and the quality of astronomical
images [34], we produce astronomical data for each of the 8
observatories following the extracted data generation pattern,
but augment the volume to the Gigabyte scale. Fig. 4 depicts
the data patterns for two observatories, each producing data
between 9:00 p.m. to 5:00 a.m. in its local time.

Each time slot is set to one hour in our experiments.
Link delays are set based on Round Trip Time (RTT) among
the observatories, gateways and data centers, according to
geographic distance: RTT (ms) = 0.02×Distance(km) + 5
[35]. Bandwidths on the VPN connections are randomly drawn
within [68, 100] Mbps. The unit charges of uploading data via
the VPN connections, fgi, are set within [0.10, 0.25] $/GB.
The unit cost for storing and processing one GB of data,
sk and vk in data center k, are set within [0.01, 0.1] $/h
and [0.45, 0.55] $/h respectively, following typical charges in
Amazon EC2 and S3 [30], [36] respectively, with small value
variations. The rationale behind such setting of vk include: (i),
TERAPIX [37], which is designed to handle large amounts of
astronomical data, can process 320 GB data per night, using
a cluster of 10 machines each configured with dual Athlon
XP/MP 2400+ and 2 GB RAM; (ii), the measurement of
EC2 instances [30]. From (i) and (ii) we estimate the unit
cost for processing 1 GB data, and the algorithm will setup
enough number of VMs to execute MapReduce according to
the current data volume. The migration cost function, ϕik(z)
is a linear function on the amount of data moved, z, with a
cost in the range of [0.10, 0.25] $/GB. The default value of L
to convert delay to cost is 0.01.

At time t, data produced in [t−2, t] are used for processing,
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Fig. 4. Astronomical data generating pattern: 9:00 p.m. GMT+12 is the
timeline starting point.
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Fig. 5. Cost difference as compared to offline optimum: constant prices,
P = 0.25, L = 0.01.

TABLE I
CONSTANT PRICES, P = 0.25, L = 0.01

Simple OLM RFHC(0) RFHC(1) Offline
Overall cost ($) 20557 17264 18503 17237 16712
Ratio 1.23 1.03 1.11 1.03 1

TABLE II
CONSTANT PRICES, P = 0.25, L = 0.01, SCALE UP THE UNIT

COMPUTATION COST BY 10

Simple OLM RFHC(0) RFHC(1) Offline
Overall cost ($) 57827 52742 53653 52904 52370
Ratio 1.10 1.01 1.02 1.01 1

i.e., αt = 1, αt−1 = αt−2 = P , and αt−2 = . . . = α1 = 0,
where P is a parameter adjusted to investigate the impact of
the volume of historical data involved.

We compare the costs incurred by the offline and online
algorithms, as well as a simple algorithm that fixes the
aggregation data center to the one in Hong Kong (relatively
central to all observatories with moderate data center prices),
and only computes the data uploading paths in each hour
based on (10), similar to that in Choi and Gupta [16]. Default
parameter values for OLM are β1 = 0.5, β2 = 2. Default
lookahead window size for RFHC is l = 1.

B. Constant Prices

We first evaluate the performance of the algorithms under
the above default, fixed prices for data storage and processing
in the data centers. In Tab. I, RFHC(x) represents a RFHC
algorithm with lookahead window l = x. As compared to the
simple algorithm, all proposed algorithms achieve considerable
cost reduction, and performance of the OLM algorithm and the
RFHC algorithm with l = 1 approach that of the offline opti-
mum rather well. We also compare the performance between
OLM and RFHC(0), which is in fact an algorithm to solve
the one-shot optimization (11) in each time slot. Fig. 5 shows
that RFHC(0) incurs higher costs, due to moving data back
and forth, while OLM can prevent such costs.

We next scale the processing price by a factor of 10 and
1
10 , respectively, with other settings unchanged. Tab.II and
Tab. III show that our online algorithms still outperform the
simple algorithm, and demonstrate close-to-offline-optimum
performance in both cases. This observation demonstrates the
validity and effectiveness of OLM and RFHC.

C. Dynamic VM pricing

We next investigate dynamical VM prices (time-varying
data processing costs) following the Spot Instance prices from

TABLE III
CONSTANT PRICES, P = 0.25, L = 0.01, SCALE DOWN THE UNIT

COMPUTATION COST BY 10

Simple OLM RFHC(0) RFHC(1) Offline
Overall cost ($) 16380 13844 14824 13737 13138
Ratio 1.25 1.05 1.13 1.03 1.05

TABLE IV
PERFORMANCE COMPARISON AMONG THE ALGORITHMS: SPOT INSTANCE

PRICING, P = 0.25, L = 0.01

Simple OLM RFHC(0) RFHC(1) Offline
Overall cost ($) 24709 16870 16676 16327 15944
Ratio 1.55 1.06 1.05 1.02 1

TABLE V
PERFORMANCE OF RFHC ALGORITHMS WITH DIFFERENT LOOKAHEAD

WINDOW SIZES: CONSTANT PRICES, P = 0.25, L = 0.01

RFHC(0) RFHC(1) RFHC(2) RFHC(3) Offline
Overall
cost ($)

18503 17237 17050 16828 16712

Ratio 1.11 1.03 1.02 1.01 1

TABLE VI
PERFORMANCE OF RFHC ALGORITHMS WITH DIFFERENT LOOKAHEAD

WINDOW SIZES: SPOT INSTANCE PRICING, P = 0.25, L = 0.01

RFHC(0) RFHC(1) RFHC(2) RFHC(3) Offline
Overall
cost ($)

16676 16327 16105 16138 15944

Ratio 1.05 1.02 1.01 1.01 1

Amazon EC2 during Apr. 2012 to Jul. 2012. From Tab. IV
and Fig. 6, we see that due to lack of future price information,
the OLM algorithm performs slightly worse than the RFHC
algorithm with lookahead window l = 1.

D. Different Sizes of Lookahead Window

We evaluate the RFHC algorithm with different lookahead
window sizes, both with constant and with dynamic prices.
Tab. V and Tab. VI show that, with the increase of the
lookahead window, the performance is approaching the offline
optimum. Just a 1 − 2 step ‘peek’ into the future drives the
performance very close to the offline optimum.

E. Different Routing Latency Ratios

We further study different routing latency ratios in Eqn. 6.
Intuitively, a larger weight of routing cost make the system
evaluate the upload performance more seriously, while a
smaller weight means monetary cost minimization has higher
priority. We compare the average latency for different weights
of routing cost, and find that the latency decreases when the
weight increases (Tab. VII). Here we set moderate L = 0.01
and lower weight L = 0.001 respectively. Average latency is
reduced with a large L.
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Fig. 6. Cost difference as compared to offline optimum over time: Spot
Instance pricing, P = 0.25, L = 0.01.
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Fig. 7. Cost difference as compared to offline optimum over time: Spot
Instance pricing, P = 0.5, L = 0.01.

TABLE VII
AVERAGE LATENCY OF EACH ALGORITHM: SPOT INSTANCE PRICING,

P = 0.25

Algorithms Simple OLM RFHC(0) RFHC(1) Offline
Average L =

0.01
224.2 165.3 177.0 169.2 166.5

latency (ms) L =
0.001

232.2 202.5 219.6 218.7 216.6

F. Involvement of Historical Data

We next investigate the impact of weights of earlier data,
under dynamic spot instance pricing. As compared to Tab. IV
and Fig. 6, the results in Tab. VIII and Fig. 7 are derived
under the same settings except a larger P , i.e., more historical
data are involved in the computation and migration in each
time slot. We observe that the performance of our algorithms
slightly degrades. This can be explained as follows: when more
historical data are involved, the migration cost is larger, and a
wrong aggregation decision may incur higher increase in the
cost. The outlier at t = 50 in the curve of the OLM algorithm
in Fig. 7 shows the cost of such a wrong decision.

TABLE VIII
PERFORMANCE COMPARISON AMONG THE ALGORITHMS: SPOT INSTANCE

PRICING, P = 0.5, L = 0.01

Simple OLM RFHC(0) RFHC(1) Offline
Overall cost ($) 27822 20884 19706 18889 17917
Ratio 1.55 1.17 1.10 1.05 1

G. Impact of non-perfect prediction

In Sec. V we assumed 100% prediction accuracy. Next we
investigate the impact of prediction errors by considering the
following two configurations: (i), spot instance pricing, P =
0.5, L = 0.01; (ii), spot instance pricing, P = 0.25, L = 0.01.
We generate the predicted input with error through adjusting
the accurate input from the trace by corresponding percentiles.
Considering a wide range of prediction error rates (40%, . . . ,
10%, 0%), we examine the performance of RFHC(1). As
shown in Tab. IX, the RFHC algorithm performs better with
lower prediction error rate. When the error rate is adequately
low, the cost is very close to the one with 100% accurate
prediction, sometimes even better, e.g., 10% in Tab. IX. That is
possible because the aggregation decisions made by RFHC(1)
with 100% accurate prediction are still myopic, maybe far
from offline optimum. Small prediction error sometimes help
the algorithm avoid shortsighted decisions. In addition, we ob-
serve that even with 40% prediction error rate, the performance
is still better than RFHC(0).

TABLE IX
SPOT INSTANCE PRICING, L = 0.01, RFHC(1)

Error rate 40% 30% 20% 10% 0% RFHC(0)
Overall P =

0.5
19455 19423 19147 19111 18889 19706

cost ($) P =
0.25

16516 16396 16328 16304 16327 16676

H. Execution time

Algorithm running times are recorded as follows — OLM:
4.55s per time slot; RFHC(0): 4.49s per time slot; RFHC(1):
9.91s per time frame. All algorithms finish within 10 seconds,
which is small given the time slot length of 1 hour. RFHC(1)
needs more time because the length of its time frame is 2 time
slots. According to Eqn. 19, the running time of RFHC(1) is
proportional to the length of time frame.The running time may
be further reduced substantially through using powerful com-
puting servers, optimized C/C++ implementation and more
efficient linear program solver, e.g., glpk.

VII. CONCLUDING REMARKS

This paper designs efficient algorithms for timely, cost-
minimizing migration of geo-dispersed big data to the
cloud, for processing using a MapReduce-like framework. A
polynomial-time optimal offline algorithm is proposed based
on dynamic programming. Two online algorithms are designed
to practically guild data migration in an online fashion: the
OLM algorithm achieves a worst-case competitive ratio as low
as 2.55 under typical real-world settings; the RFHC algorithm
provides a decreasing competitive ratio with an increasing size
of the lookahead window.
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