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a b s t r a c t

The Load Rebalancing Problem (LRP) that reassigns tasks to processors so as to minimize the
maximum load arises in the context of dynamic load balancing. Many applications such as on
Web based environment, parallel computing on clusters can be stated as LRP. Solving LRP
successfully would allow us to utilize resources better and achieve better performance. How-
ever LRP has been proven to be NP-hard, thus generating the exact solutions in tractable
amount of time becomes infeasible when the problems become large. We present a new nat-
ure-inspired approximation algorithm based on the Waterflow Particle Mechanics (W-PM)
model to compute in parallel approximate efficient solutions for LRPs. Just like other Nat-
ure-inspired Algorithms (NAs) drawing from observations of physical processes that occur
in nature, the W-PM algorithm is inspired by kinematics and dynamics of waterflow. The
W-PM algorithm maps the classical LRP to the flow of water flows in channels by correspond-
ing mathematical model in which all water flows flow according to certain defined rules until
reaching a stable state. By anti-mapping the stable state, the solution to LRP can be obtained.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

With the Internet assuming an ever more central role in
the telecommunications infrastructure, Web servers are
becoming increasingly important. Applications that handle
heavy loads commonly use a cluster-based architecture for
Web servers because it combines low cost with good
performance.

Recently, several Load Rebalancing assignment policies
have been proposed [1–4]. According to two main strate-
gies, these policies attempt to balance the load among
back-end servers:

(1) balancing the amount of workload at back-end serv-
ers, and

(2) balancing the number of jobs being processed by
back-end servers.

The problem studied in this paper focuses on dynami-
cally assigning resources in an ad hoc grid to an application
composed of communicating subtasks. We propose the
Waterflow Particle Mechanics (W-PM) model and algo-
rithm for balancing the amount of workload.

Well-known policies for balancing the amount of work-
load include Dynamic [5] and Size-Range [6–8]. Under Dy-
namic, the dispatcher assigns an incoming job to the back-
end server with the smallest amount of residual workload.

The W-PM algorithm is inspired by physical models of
waterflow and particle dynamics. The W-PM algorithm is
easy to use in spite of its seemingly abstruse theories and
sinuate motivation.

2. Problem model for LRP

The dynamic task scheduling considering the load bal-
ancing issue is an NP-hard problem [9,10]. The grid has n
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processors and m tasks. Task i ðTiÞ has n sub-
tasks, rijðj ¼ 1; . . . ;nÞ. rij represents the subtask of task Ti

that is mapped to processor j. Each subtask rij can be exe-
cuted in processor j.

The Load Balancing Problem (LRP)
Given:

� A network of processors, Aj; a processor has two attri-
butes: its processing capacity xj (in task units per sec-
ond) and its ‘‘remaining workload”, wj (in task units).

� The bandwidth of the communication channel Cjl

between any two processors (Aj and Al), bjl (in bytes/s)
(all pairs are connected).

� A set of tasks, Ti, that are spread across these processors
in a given ‘‘initial mapping”; a task has an attribute: its
‘‘size”, si (in bytes).

Goal:
To remap the tasks to the processors so that the follow-

ing are minimized. (During mapping, some tasks will be
migrated from their current processors to other
processors.)

� The execution time, which is the maximum of the indi-
vidual execution times after the remapping.

� The migration time, which is the maximum of all indi-
vidual migration times.

The main notations in any LRP instance are shown as
follows.
Aj jth processor (j ¼ 1;n)

Ti ith task (i ¼ 1;m)

Clj communication channel between processors Al
and Aj (l ¼ 1;n)

rij subtask of task Ti that is mapped to processor Aj

MrijðtÞ increment of subtask rij at time t

blj bandwidth of the communication channel Clj

xj processing capacities of processor Aj

wj remaining workload of processor Aj;wj ¼
Pm

i¼1rij

si size of task Ti

eij execution time of subtask rij; eij ¼ rij=xj

ej execution time of processor Aj; ej ¼ wj=xj ¼Pm
i¼1eij

qiljðtÞ migration time about task Ti from processor Al to
Aj at time t, qiljðtÞ ¼ MrilðtÞ=blj

qijðtÞ migration time about task Ti from processor A� to
Aj at time t, qijðtÞ ¼max

l
qilj (l ¼ 1;n)

qjðtÞ migration times on processor Aj, qjðtÞ ¼
Pm

i¼1qijðtÞ

We can formalize LRP using a matrix K(see Table 1).
The m� n computing cells of LRP are shown in Table 2.

In Table 2, rij is the main variable in the computing cells. In
our W-PM algorithm, m� n rij will evolve in parallel until
W-PM algorithm converges ðt ¼ endÞ. rij, is the key of
LRP. If an algorithm can compute and update rij in parallel
without any information exchange, the algorithm has a
change to solve LRP in parallel.

3. The parallel computing architecture of W-PM

The parallel computing architecture of the W-PM, as
shown in Fig. 1, is composed of four computing cell arrays,
C;Crow;Ccol; and Cgloble;whose computing cells are denoted
by Cij;Ci�;C�j; and C��;respectively.

The number of computing cells in each array is equal to:
m� n for C;m for Crow;n for Ccol; and 1 for Cgloble; respec-
tively, and hence the total number of computing cells
equals m� nþmþ nþ 1: There is no interconnection
among computing cells in the same array, whereas there
are local interconnections between the following comput-
ing cell pairs: Cij and Ci�; Cij and C�j; Ci� and C��; C�j and C��.
It is obvious that the connection degree of each computing
cell in the array C of m� n computing cells is equal to at
most 2, and the unique computing cell in Cgloble has connec-
tion degree mþ n, with the total number of interconnec-
tions being 2m� nþmþ n:

At time t in a fixed time slot ., the computing cell Cij

sends its dynamical state hrijðtÞi to computing cells Ci�
and C�j; and receives the feedback inputs that are gener-
ated by computing cells Ci� and C�j at time ðt � sÞ. By using
the received hrijðtÞi, the computing cell Ci�(C�j; resp.) ob-
tains its calculation state ri�ðtÞ(r�jðtÞ,resp.) according to
the equation ri�ðtÞ ¼

P
jrijðtÞðr�jðtÞ ¼

P
irijðtÞ, resp.); which

yields its current output to be fed back to the computing
cell Cij. Meanwhile, the computing cell Ci� and C�j receive
the feedback from computing cell C��. The computing cells,
Ci�;C�j, and C��; will change their calculation states respec-
tively. The computing cell Cij will change its dynamical
state according to Eq. (13) (to be given in Section 5).

The implementation of W-PM algorithm can enjoy a high
degree of parallelism and good scalability. All the computa-
tions of cellular dynamics both in the same array and in the
different arrays are concurrently carried out. The computing
cellular structure, computing cellular dynamics and algo-
rithm are all independent of the problem scale. Moreover,
there is no direct interconnection among computing cells
in the same array, so it is relatively easier to implement
the proposed structure in VLSI technology.

4. The motivation and architecture of W-PM model

As described in Section 2, LRP has two main
characteristics.

(1) LRP aims to minimize two variables: the maximal
execution times and the maximal migration
times. The two goals are conflicting. It is very diffi-
cult to realize the two goal in parallel and in real-
time.

(2) The LRP has been proved to be NP-hard [10]. Mean-
while The number of processors and tasks in LRP is
very large. Thus we are unable to deliver an exact
solution to LRP in a reasonable amount of time. For
instance, if we have 5000 tasks and 10 processors
that we could use, we have 105000 configurations to
enumerate and compare for the Load Balancing
Problem (LBP). For LRP, if we restrict the number
of moves to 8, then we would end up with approxi-
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mately 50008 configurations. While solving these
problems is not feasible under such a situation,
approximation and parallel algorithms could possi-
bly be implemented to achieve a reasonable esti-
mate within a fixed error ratio in a reasonable
amount of time.

We will introduce two models: Waterflow model and
Particle Mechanics model. By transforming LRP to the
two models respectively, the two problems mentioned
above will be solved.

4.1. Waterflow model

By analyzing the relation between the two conflict goals
of LRP and observing the flow of water in some vessels
which are connected by channels, we find that they have

much in common. Water in vessels always flows from
higher water level vessels to lower water level vessels
through channels. Similarly, tasks waiting on processors
should remap to the processors whose remaining workload
is less. We transform LRP to Waterflow model (see Fig. 2).

We summarize the analogical relation between LRP and
Waterflow model as follows.

LRP () Waterflow model
Processor () Vessel

Task () Water
Communication channel () Channel

Max–min fairness balancing of LRP () Potential energy of
water

The flow of water among vessels () LRP optimization

The corresponding meanings in Waterflow model of
main notations in LRP are shown as follows.
Aj jth vessel (j ¼ 1;n)
Ti ith waterflow (i ¼ 1;m)
Clj channel between vessels Al and Aj (l ¼ 1;n)
rij subwaterflow of Ti in vessel Aj

MrijðtÞ the increment of water rij at time t
blj width of the channel Clj

xj size of the downspout on the bottom of vessel Aj

wj remaining water in vessel Aj

si amount of waterflow Ti

eij time that subwaterflow rij in vessel
Aj flows down through the downspout

Table 2
The m� n computing cells of LRP.

r11; e11; q11 � � � r1j; e1j; q1j � � � r1n; e1n; q1n

..

. ..
. ..

.

ri1; ei1; qi1 � � � rij; eij; qij � � � rin; ei1; qi1

..

. ..
. ..

.

rm1; em1; qm1 � � � rmj; emj; qmj � � � rmn; emn; qmn

Fig. 1. The parallel computing architecture of W-PM algorithm.

Fig. 2. The transformation of LRP to Waterflow model.

Table 1
The representation matrix K of LRP, with processors (A) and tasks (T).

A1 � � � Aj � � � An si

T1 r11; e11; q11 � � � r1j; e1j; q1j � � � r1n ; e1n; q1n s1 ¼
Pn

j¼1r1j

..

. ..
. ..

. ..
. ..

.

Ti ri1; ei1; qi1 � � � rij; eij ; qij � � � rin; ein; qin si ¼
Pn

j¼1rij

..

. ..
. ..

. ..
. ..

.

Tm rm1; em1; qm1 � � � rmj; emj; qmj � � � rmn; emn; qmn sm ¼
Pn

j¼1rmj

wj w1 ¼
Pm

i¼1ri1 � � � wj ¼
Pm

i¼1rij � � � wn ¼
Pm

i¼1rin
Pn

j¼1wj ¼
Pm

i¼1si
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ej time that all water in vessel Aj flows down through
the downspout

qiljðtÞ time that waterflow Ti flows through the channel
from vessel Al to Aj at time t

qijðtÞ time that waterflow Ti flows through the channel
from vessel A� to Aj at time t

qjðtÞ migration time on vessel Aj

In Waterflow model, all vessels are evenly distributed.
All pairs of vessels are connected by channels, which have
different width. There is a downspout on the bottom of
each vessel. Because the water level in vessels dynamically
changes, the potential energy of water in vessels dynami-
cally changes correspondingly. Water is being exerted
upon simultaneously by potential energy to (1) flow down
through downspouts on the bottom of vessels; (2) flow
through channels between vessels. The time that water
in a vessel flows down through downspout is in inverse
proportion to the size of the downspout. The time that
water flows through the channel between two vessels is
in inverse proportion to the width of the channel. Water
in vessels continuously flows down through downspouts,
at the same time, potential energy makes water flow from
higher water level vessels to lower water level vessels
through channels. Obviously, when the maximum of ej is
equal to the maximum of qj, the time that all water flow
away vessels will be minimum.

Based on Waterflow model, we find a way to optimize
the two conflict goals of LRP. As shown in Fig. 3, the de-
crease of max ej is at the cost of the increase of max qj. At
t ¼ 0;max ej is maximum and max qj ¼ 0. When the two
curves intersect ðmax ej ¼max qjÞ, we can obtain the min-
imum of max ej þmax qj, which is the optimal solution of
LRP.

4.2. PM model

By transforming LRP to Waterflow model, we find the
optimization relation between the maximum of execution
time and the maximum of migration time, which is the cri-
terion of LRP optimization. Here we will introduce the
other model-Particle Mechanics model. By transforming

LRP to PM model, we can deduce a parallel algorithm for
LRP. Therefore, the second problem above can be solved.

Before describing PM model, we introduce two impor-
tant variables Ej and Q j that are related to the execution
time of processor ej and the migration time of processor
qj, respectively.

We can obtain the execution time of every rij at time t as

eijðtÞ ¼
rijðtÞ
xjðtÞ

ð1Þ

and the execution time of processor Aj at time t as

ejðtÞ ¼
Xm

i¼1

rijðtÞ
xjðtÞ

: ð2Þ

We can obtain the migration time about task Ti from pro-
cessor Al to Aj at time t as

qiljðtÞ ¼ MrilðtÞ=blj; ð3Þ

the migration time about task Ti from processor A� to Aj at
time t as

qijðtÞ ¼max
l

qilj ðl ¼ 1;nÞ ð4Þ

and the migration time on processor Aj at time t as

qjðtÞ ¼
Xm

i¼1

qijðtÞ: ð5Þ

Because 1� e�x is a monotone increasing function and be-
tween 0 and 1, we choose the function to standardize the
execution times and the migration time as

EjðtÞ ¼ 1� exp½�ejðtÞ� ¼ 1� exp �
Xm

i¼1

rijðtÞ
xjðtÞ

" #
; ð6Þ

Q jðtÞ ¼ 1� exp½�qjðtÞ� ¼ 1� exp �
Xm

i¼1

ðmax
n

l¼1

MrilðtÞ
blj
Þ

" #
: ð7Þ

By introducing Ej and Q j, the goal of LRP to minimize–max-
imize ej and qj transforms to maximize–minimize Ej and
Qj.

Based on Fig. 3, we can draw Fig. 4. When the two curves
min Ej and min Qj intersect ðmin Ej ¼min QjÞ, we can obtain
the maximum of min Ej þmin Qj, that is the minimum of
max ej þmax qj, which is the optimal solution of LRP.

Fig. 3. The optimization relation between the maximum of execution
time and the maximum of migration time. Fig. 4. When min Ej ¼min Qj , we obtain the optimal solution of LRP.

1770 X. Feng, Francis C.M. Lau / Computer Networks 54 (2010) 1767–1777



Author's personal copy

From Fig. 4, it can be known that

� at the beginning of optimization process, the optimiza-
tion velocity is faster;

� the optimization velocity will slow down, when the
optimization value is close to the optimal solution.

Fig. 4 illustrates the physical PM model. Here we intro-
duce two key concepts (particles and force-field) of our PM
model to describe and model the optimization of LRP. We
treat Ej and Qj as two kinds of particles, which are evenly
distributed at an even radian surrounded by a circumferen-
tial force-field. The values of Ej and Q j represent the coor-
dinates of the two kinds of particles Ej and Q j. The
coordinate of a particle is the radial distance between the
origin and the particle. The force-field can make the Ej par-
ticles’ minimal value increase (which will be proved in
next section). Ej particles and Qj particles move only along
a radial orbit. To minimize the maximum of the individual
execution times, the corresponding Ej particle in force-field
will try to move as close as possible to the circumference
surrounding it. At the same time, the increase of corre-
sponding Ej will cause a decrease of corresponding Qj

based on Fig. 4 (that is, the decrease of corresponding ej

will cause an increase of corresponding qj). Therefore, in
force-field, when the corresponding Ej particle moves away
from the origin, the corresponding Qj particle moves for-
wards the origin. In Fig. 5, the inner loop made of Ej parti-
cles will spread out and the outer loop made of Q j particles
will shrink towards the origin. When the two loops inter-
sect, we obtain the optimal solution of LRP.

5. The mathematical model and corresponding
algorithm of W-PM

We now examine the evolutionary model that can
mathematically describe the W-PM’s physical models for
LRP.

We define the potential energy function of force-field as

PðtÞ ¼ k2 ln
Xn

j¼1

exp
E2

j ðtÞ
2k2

" #
: ð8Þ

Theorem 1. In Eq. (8) , if k is very small, the decrease of the
potential energy P(t) of force-field will cause a decrease of the
processors’ maximal execution times.

Proof. Supposing that HðtÞ ¼max
j

E2
j ðtÞ, we have

½e
HðtÞ
2k2 �2k2

6

Xn

j¼1

e
E2

j
ðtÞ

2k2

" #2k2

6 ne
HðtÞ
2k2

� �2k2

: ð9Þ

Taking the logarithm for both sides of Eq. (9) leads to

HðtÞ 6 2k2 ln
Xn

j¼1

e
E2

j
ðtÞ

2k2

" #
6 HðtÞ þ 2k2 ln n:

Because n is constant and k is very small, we have

HðtÞ ¼ max
j

E2
j ðtÞ � 2k2 ln

Xn

j¼1

e
E2

j
ðtÞ

2k2

" #
¼ 2PðtÞ:

The potential energy function PðtÞ of force-field at time t
turns out to represent the maximal value among
EjðtÞ; j ¼ 1; . . . ;n. So, decreasing PðtÞ amounts to decreasing
the processors’ maximal execution times. h

We define the dynamic equation of subtask rijðtÞ in W-
PM model as

rijðt þ 1Þ ¼ rijðtÞ þ MrijðtÞ: ð10Þ

The dynamic equation is seen as the ‘‘W-PM evolution”,
which manipulate the update and iteration of rij until the
inner loop made of Ej and the outer loop made of Q j inter-
sect (Ej P Q j). By W-PM algorithm, rij can be computed and
updated in parallel without any information exchange,
which is the foundation of W-PM algorithm’s parallelism.

The most important related factor that influences the
update and iteration of rij is the potential energy function
PðtÞ. According to ‘‘differential equation theory”, a vari-
able’s increment to make it minimum is equal to the sum
of negative items from related factors differentiating the
variable. Thus we define the first item of MrijðtÞ as

Mrijðt þ 1Þ ¼ �k1
@PðtÞ
@rijðtÞ

; ð11Þ

where 0 < k1 < 1.

Theorem 2. The update and iteration of rij according to Eq.
(11) will always cause a decrease of the processors’ maximal
execution times.

Proof. Consider the effect of only the potential energy PðtÞ
on rijðt þ 1Þ; namely, let Mrijðt þ 1Þ be �k1

@PðtÞ
@rijðtÞ

(Eq. (11)).
We determine the increment of the potential energy PðtÞ
in the unit time period as follows:

MPðtÞ ¼ @PðtÞ
@rij

drij

dt
� @PðtÞ

@rij
Mrij ¼ �k1k

@PðtÞ
@rij

k2
6 0:

Fig. 5. The transformation of LRP to Particle Mechanics model.
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So, the update and iteration of rijðtÞ according to Eq. (11)
will make the potential energy PðtÞ reduce, with the inten-
sion strength being k1. By Theorem 1, the conclusion thus
is straightforward. h

The other important related factor that influences the
update and iteration of rij is EjðtÞ because EjðtÞ needs to
maximize. We define the second item of Mrijðt þ 1Þ as

Mrijðt þ 1Þ ¼ �k2
@EjðtÞ
@rijðtÞ

: ð12Þ

Theorem 3. The update and iteration of rij according to Eq.
(12) will always cause a decrease of the processors’ execution
times.
Proof. Consider the effect of only the function EjðtÞ on
rijðt þ 1Þ; namely, let Mrijðt þ 1Þ be �k1

@PðtÞ
@rijðtÞ
� k2

@EjðtÞ
@rijðtÞ

(Eqs.
(11), (12)). Then, the changing rate of the personal execu-
tion times of processor Aj is equal to

MEjðtÞ ¼
dEj

dt
¼ @Ej

@rij

drij

dt
� @Ej

@rij
Mrij

¼ @Ej

@rij
½�k1

@PðtÞ
@rij

� k2
@Ej

@rij
�

¼ @Ej

@rij
½�k1

@PðtÞ
@Ej

@Ej

@rij
� k2

@Ej

@rij
�

¼ �½k1
@PðtÞ
@Ej

þ k2�k
@Ej

@rij
k2
;

where

@PðtÞ
@Ej

¼ Ej

exp
E2

j

2k2

� �
Pn

j¼1 exp
E2

j

2k2

� �P 0:

Thus

MEjðtÞ 6 0:

So, the personal execution times of processor Aj will de-
crease. In W-PM physical model, by the theorem, we can
conclude that all Ej particles will try to move as close as
possible to the circumference along their own radial
orbits. h

Combining Eqs. (11) and (12), we have

Mrijðt þ 1Þ ¼ �k1
@PðtÞ
@rijðtÞ

� k2
@EjðtÞ
@rijðtÞ

; ð13Þ

*
dEjðtÞ
drijðtÞ

¼ ujðtÞ
xj

dPðtÞ
drijðtÞ

¼ @PðtÞ
@EjðtÞ

dEjðtÞ
drijðtÞ

¼ EjðtÞ � ujðtÞ
xj

�
exp

E2
j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� � ;

)DrijðtÞ ¼ �k1
@PðtÞ
@rijðtÞ

� k2
@EjðtÞ
@rijðtÞ

ð14Þ

¼ �ujðtÞ
xj
� k1

EjðtÞ exp
E2

j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� �þ k2

2
664

3
775:

In order to satisfy the constraints of LRP, rij will be dealt with
using the following two steps in parallel computing process.

� Nonnegativity: If min
i;j

< 0, then let rij ¼ rij �min
i;j

rij.

� Normalization: Let rij ¼
rijPn

j¼1
rij

, in order to map all tasks

to processors; that is,
Pn

j¼1rij ¼ 1; i ¼ 1; . . . ;m.

After MrijðtÞ is updated in parallel, we can compute and
update QjðtÞ in parallel according to Eq. (7). Meanwhile, we
can compute and update EjðtÞ in parallel according to Eq.
(6). When all Ej P Q j ðj ¼ 1; . . . ;nÞ, the optimal solution
to LRP can be obtained.

Motion equations for particle Ej algorithm are defined
by

dEjðtÞ=dt ¼ W1ðtÞ þW2ðtÞ;
W1ðtÞ ¼ �EjðtÞ þ c1v jðtÞ;

W2ðtÞ ¼ � k1 þ k2
@PðtÞ
@rijðtÞ

h i Pm
j¼1

@EjðtÞ
@rijðtÞ

h i2
( )

;

8>>>><
>>>>:

ð15Þ

where c1 > 1. And v jðtÞ is a piecewise linear function of
v jðtÞ defined by

v jðtÞ ¼
0 if EjðtÞ < 0;
EjðtÞ if 0 6 EjðtÞ 6 1;
1 if EjðtÞ > 1:

8><
>: ð16Þ

The definitions of Eqs. (15) and (16) are for the conver-
gence proofs of W-PM algorithm (see Section 6.3).

The parallel W-PM
algorithm for LRP

0. Input:
si; xj

1. Initialization:
t  0
Mt; k1; k2; rijðtÞ

2. while (EjðtÞ < QjðtÞ) do
t  t þ 1
Compute MrijðtÞ according to
Eq. (13)
rijðtÞ  rijðt � 1Þ þ MrijðtÞ
If min

i;j
ðtÞ < 0, then

rijðtÞ  rijðtÞ �min
i;j

rijðtÞ

rijðtÞ  
rijðtÞPn

j¼1
rijðtÞ

Compute EjðtÞ according to Eq.
(6)
Compute QjðtÞ according to
Eq. (7)

At the end, when Ej P Qjðj ¼ 1; . . . ;nÞ; rij ¼ rij � si is the
solution to LRP.

6. Convergence and parameters analysis

6.1. Convergence analysis

In this section, we construct a Lyapunov function, which
is energy-related positive definite function. We can judge
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the stability of the W-PM model by analyzing if the Lyapu-
nov function monotonically decrease with the elapsing
time.

Lyapunov second theorem on stability. Consider a func-
tion LðXÞ such that

� LðXÞ > 0 (positive definite);
� dLðXðtÞÞ=dt < 0 (negative definite).

ThenLðXðtÞÞ is called a Lyapunov function candidate and X
is asymptotically stable in the sense of Lyapunov.

It is easier to visualize this method of analysis by con-
sidering the energy of W-PM model. If W-PM model loses
energy over time, then eventually W-PM model must grind
to a stop and reach some final resting state. This final state
is called the stable equilibrium state.

Theorem 4. If the condition (Eq. (17) ) remain valid, then W-
PM model will converge to a stable equilibrium state.

Proof. For the physical W-PM model, we define a Lyapu-
nov function LðrijðtÞÞ as

LðrijðtÞÞ,
X

i;j

rijðtÞ þ 2k2

Xn

j¼1

Z t

0

ujðyÞ
xj

dy:

Obviously, LðrijðtÞÞ > 0.

*
dEjðtÞ
drijðtÞ

¼ ujðtÞ
xj

dPðtÞ
drijðtÞ

¼ @PðtÞ
@EjðtÞ

dEjðtÞ
drijðtÞ

¼ Ej � uj

xj
�

exp
E2

j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� � ;

MrijðtÞ ¼ �k1
@PðtÞ
@rijðtÞ

� k2
@EjðtÞ
@rijðtÞ

¼ �ujðtÞ
xj
½k1

EjðtÞ exp
E2

j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� �þ k2�;

)
dLðtÞ

dt
¼ drijðtÞ

dt
þ 2k2

ujðtÞ
xj
¼ MrijðtÞ þ 2k2

ujðtÞ
xj

¼ ujðtÞ
xj
½�k1

EjðtÞ exp
E2

j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� �þ k2�:

Because ujðtÞ
xj
> 0, if the following Eq. (15) remain valid, then

dLðtÞ=dt < 0.

k2 < k1

EjðtÞ exp
E2

j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� � : ð17Þ

Based on Lyapunov second theorem on stability, as long as
we properly select the parameters k1; k2 according to Eq.
(15), the convergence and stability can be guaranteed. That
is, when t !1, then all rijðtÞ ! rij (constants). h

6.2. Parameters analysis

There are only three parameters in W-PM model and
algorithm, k in Eq. (8) and k1; k2 in Eq. (13).

k represents the strength of the gravitational force in
force-field. The larger k is, the faster the particles
would move away from the origin along their radial orbits;
hence, k influences the convergence speed of W-PM algo-
rithm. As required in Theorem 1, k must be small. Usually,
0 < k < 1.

* 0 <
EjðtÞ exp

E2
j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� � 6 exp
E2

j ðtÞ

2k2

� �
Pn

j¼1 exp
E2

j ðtÞ

2k2

� � � 1
n
< 1:

According to Eq. (15), k2 should be much smaller that k1—
that is,

k2 <
k1

n
;

where n is the number of processors in LRP.

6.3. Convergence proofs

Theorem 5 indicates that W-PM algorithm converges to
the stable equilibrium point.

Lemma 1. If 1� c1 < W2ðtÞ < 0, then the dynamic states of
particle Ej will eventually converge to a stable equilibrium
states, v jðtÞ 2 f 0; 1g.

Proof. For c1ðtÞ > 1, the W1ðtÞ of particle Ej is a piecewise
linear function of the stimulus rijðtÞ, as shown by three
segments: Segment I, Segment II, and Segment III in
Fig. 6. By Eq. (15),dEjðtÞ=dt ¼ 0 holds true iff �W2ðtÞ ¼
W1ðtÞ, which means that an intersection point between
�W2ðtÞ and W1ðtÞ as the functions of rijðtÞ in Fig. 6 is an
equilibrium point. We see that, for the case of
1� c1 < W2ðtÞ < 0, there are three intersection points
between �W2ðtÞ and W1ðtÞ; among which only the inter-
section points on the Segment I and Segment III, e.g. p3

and p4, are stable, that correspond to v jðtÞ ¼ 0; EjðtÞ < 0
and v jðtÞ ¼ 1; EjðtÞ > 1; respectively. h

Lemma 2. If c1 > 1; W2ðtÞ > 0, then the dynamic states of
particle Ej will eventually converge to the stable equilibrium
states, v jðtÞ ¼ þ1.

Proof. If c1ðtÞ > 1 and W2ðtÞ > 0, then the intersection
points between �W2ðtÞ and W1ðtÞ of particle Ej are all
located on Segment III, e.g. p6. Therefore Ej has the stable
equilibrium points with v jðtÞ ¼ 1; EjðtÞ > 1. h

Lemma 3. If W2ðtÞ < 1� c1 < 0, then the dynamic states of
particle Ej will eventually converge to the stable equilibrium
states, v jðtÞ ¼ 0.

Proof. If W2ðtÞ < 1� c1 < 0, then �W2ðtÞ and W1ðtÞ of par-
ticle Ej only has the intersection points on Segment I, e.g.
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p1. Therefore Ej has the stable equilibrium points with
v jðtÞ ¼ 0; EjðtÞ < 0. h

Theorem 5. In the W-PM model, the dynamic Eq. (15) has
the stable equilibrium points iff the right side of Eq. (15) is lar-
ger than 0 for EjðtÞ ¼ 1 and v jðtÞ ¼ 1;.

Proof. By Eq. (6), we have EjðtÞ P 0. Thereby, we only
consider the equilibrium points with EjðtÞP 0. The right
side of Eq. (15) is denoted by RHS. Sufficiency. Assume
that, for Eq. (15), RHS > 0 holds for EjðtÞ ¼ 1; v jðtÞ ¼ 1.
It follows that �W2ðtÞ– W1ðtÞ for EjðtÞ ¼ 1; v jðtÞ ¼ 1;
namely, it is impossible that the equilibrium point is
the intersection point s3 between Segment II and Seg-
ment III. Note that the saddle point s3 isn’t stable equi-
librium point. Thus RHS ¼ dEjðtÞ

dt > 0 leads to the stable
equilibrium points of Ej on Segment III. Necessity. Sup-
pose that Eq. (15) has a stable equilibrium point. we
need to prove that RHS > 0 holds for EjðtÞ ¼ 1 and
v jðtÞ ¼ 1. By contrary, if there is RHS 6 0, then the equi-
librium point must be either at the point s3 for the case
of RHS ¼ 0, or on Segment II for the case of RHS < 0.
Since the point s3 and the points on Segment II are all
not stable, a contradiction happens. h

7. Simulations

We give the experimental results in this section. First,
we use a simple example to show our W-PM algorithm’s
effectiveness, parallelism and the higher convergence
speed to an optimal solution. Secondly, we show the actual
times and iterations used to solve LRPs on a cluster, which
can speak for the efficiency and parallelism of our W-PM
algorithm. Finally, we make a general comparison between
W-PM algorithm and other benchmark nature-inspired
algorithms. All the experiments presented in this section
are completed on a cluster. Each of the machines of the
cluster has a Pentium 4 2.0GHz CPU with 512Kbytes of
L2 cache and 512Mbytes of DDR SDRAM, and they are
interconnected via Fast Ethernet.

7.1. Effectiveness

Simulations of LRP verify our W-PM algorithm’s
advantages in terms of the W-PM algorithm’s parallelism
and the higher convergence speed to an optimal solution.
The simulation used these parameters: k ¼ 0:8; k1

¼ 0:9; k2 <
0:9
n .

Because the parallel computing rijðtÞ is the foundation
of W-PM algorithm’s parallelism, the W-PM algorithm is
scalable. When the number of processors (n) in LRP is very
large (e.g., n is more than 10,000), the W-PM algorithm can
deal with well. Here we will give the experimental results
of the LRP ðm ¼ n ¼ 500Þ in Fig. 7.

Fig. 7(a) shows the the trajectories of two kinds of par-
ticles (Ej and Qj) at the initial state. In Fig. 7(a), most of Ej

particles are far from the circumference—that is, most Ej

are large, which represent most execution times ej of pro-
cessors are long. However, all Q j particles are on the cir-
cumference, which represent all migration times qj of
processors are equal to 0.

In Fig. 7(b) and (c), by some iterations, Ej particles move
away from the origin along their radial orbits, which repre-
sent that the execution times of most of processors short-
en. Meanwhile, Q j particles move forwards the origin,
because the decrease of the execution times will cause to
the increase of the migration times.

In Fig. 7(d), at the end of W-PM algorithm, the two
kinds of particles Ej and Q j intersect in force-field, which
represent that all execution times and all migration times
of processors are balanced and shortened.

Fig. 7 (a)(b)(c) (d) show four key time points on the
optimization process of the LRP example. We mark the four
key time points on the two optimization curves of Ej and Q j

in Fig. 8. The minEj curve represents the optimization pro-
cess of Ej particles. The minQ j curve represent the optimi-
zation process of Q j particles.

7.2. Efficiency and parallelism

The W-PM algorithm provides a valuable alternative to
traditional methods because of its inherent parallelism.
The subtasks, rij, can be computed and updated in parallel
without any information exchange, which is the founda-
tion of W-PMA’s efficiency. The experimental results have
verified the outstanding parallel capability of W-PM algo-
rithm (see Table 3 ). We use 1,8,16 computing nodes of
the cluster, respectively.

Table 3 includes the sequential version which comes
from using one computing node of the cluster. The other
parts are for the parallel version, using 4 and 16 computing
nodes of the cluster. ‘‘Iterations” and ‘‘time” are the num-
ber of iterations and the time the W-PM algorithm takes
to converge. As shown in Table 3, for a LRP with 510 tasks
and 510 processors, the convergence time using 8 comput-
ing nodes is about 1/7 the time of the sequential version;
and the convergence time using 16 computing nodes is
about half the time with 8 computing nodes. The conver-
gence time is almost inversely proportional to the number
of computing nodes used by W-PM algorithm.

Fig. 6. When c1 > 1, the reachable equilibrium points of the dynamic
status v jðtÞ of particle Ej . The point where �W2ðtÞ equals W1ðtÞ is an
equilibrium point. �;M and } denote a stable equilibrium point, saddle
point and unstable equilibrium point, respectively.
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7.3. Comparison between W-PM and other benchmark NAs

Popular nature-inspired approaches (NAs) include ge-
netic algorithm (GA), simulated annealing algorithm (SA),
ant colony optimization (ACO), particle swarm optimiza-
tion (PSO), etc. We summarize the relative differences be-
tween our W-PM algorithm and the benchmark NAs in
Table 4.

8. Conclusion

In this paper, we propose W-PM model and algorithm
for LRP. The W-PM algorithm is inspired by physical mod-
els of waterflow and particle dynamics. W-PM algorithm is
easy to use in spite of its seemingly abstruse theories and
sinuate motivation. Without having to know the theories,Fig. 8. The optimization process of the LRP example in Fig. 7.

Fig. 7. The trajectories of Ej particles and Qj particles using W-PM algorithm for LRP (m ¼ n ¼ 500), where the red circles represent the Ej particles and the
blue ones represent the Qj particles.

X. Feng, Francis C.M. Lau / Computer Networks 54 (2010) 1767–1777 1775



Author's personal copy

equations and other W-PM details, W-PM can be applied or
used according to our proposed algorithmic steps (at the
end of Section 5).
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Table 4
Relative differences between W-PM algorithm and other benchmark NAs.

W-PM GA SA ACO PSO

Inspired by Kinematics and dynamics of
waterflow

Natural
evolution

Thermodynamics Behaviors of
real ants

Biological swarm
(e.g., swarm of bees)

Key components Differential dynamic equations Chromosomes Energy function Pheromone
laid

Velocity-coordinate
model

Exploration Both Macro-evolutionary and
Micro-evolutionary processes

Macro-
evolutionary
processes

Micro-
evolutionary
processes

Macro-
evolutionary
processes

Macro-evolutionary
processes

Dynamics Can capture the entire
dynamics inherent in the
problem

Cannot capture Can capture
partly

Cannot capture Cannot capture

High-dimensional, highly nonlinear,
random behaviors and dynamics

Can describe Cannot describe Can describe
partly

Cannot
describe

Cannot
describe

Adaptive to problem changes Fast Middle Fast Low Middle
Exchange overhead Low Middle Low Low Middle

Table 3
Convergence time and speeds of W-PM algorithm with scale.

Scale 16 parallel nodes 8 parallel nodes 1 parallel node

Processors Tasks Time (s) Iterations Time (s) Iterations Time (s) Iterations

110 110 0.85 210 1.65 144 14.58 153
160 160 2.25 522 4.99 303 51.15 342
200 200 4.74 910 10.97 523 147.65 710
225 225 9.39 1530 22.5 846 298.83 1141
250 250 13.8 1937 36.55 1124 494.8 1593
275 275 25.58 2893 55.32 1497 908.65 2471
300 300 33.83 3617 86.12 1979 1366.93 3227
320 320 55.41 4966 113.27 2330 1838.12 3783
340 340 73.71 5918 159.99 2965 2920.07 5077
360 360 103.46 7308 214.81 3584 3718.58 5877
375 375 135.37 8536 292.91 4337 5078.08 7170
390 390 228.43 10908 388.61 5073 7070.19 8663
405 405 266.97 12095 503.36 5952 8460.17 9577
420 420 325.48 13590 608.68 6711 11763.71 11360
435 435 369.57 14939 749.19 7486 13299.61 12451
450 450 517.2 17264 867.04 8285 15746.12 13844
465 465 607.03 19063 1427.58 10331 21770.07 16051
480 480 673.87 20806 1233.41 10020 24305.55 17412
495 495 858.57 23287 1845.78 11946 32329.32 19966
510 510 1158.45 26450 1909.96 12413 33727.35 21143
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