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Interval routing is a space-efficient routing method for point-to-point communication networks. The
method has drawn considerable attention in recent years because of its being incorporated into the
design of a commercially available routing chip. The method is based on proper labeling of edges of the
graph with intervals. An optimal labeling would result in routing of messages through the shortest paths.
Optimal labelings have existed for regular as well as some of the common topologies, but not for arbitrary
graphs. In fact, it has already been shown that it is impossible to find optimal labelings for arbitrary
graphs. In this paper, we prove a 7D /4 0 1 lower bound for interval routing in arbitrary graphs, where
D is the diameter—i.e., the best any interval labeling scheme could do is to produce a longest path
having a length of at least 7D /4 0 1. q 1997 John Wiley & Sons, Inc.

1. INTRODUCTION » i , j… corresponds to the range of node numbers from i
to j ( i and j included); intervals of the form »k … contain

Routing is an important operation in communication net- the single-node number k . The message, originated at
works. Since it is frequently invoked, it is worthwhile to Node 2 and destined for Node 0, first takes the edge to
try to minimize the number of steps taken to route a Node 3 because 0 is contained in the interval »3, 0… and
message from one node to another. Obviously, we can then takes the edge to Node 4 because 0 is contained in
achieve optimal routing by maintaining a table of size »4, 0 … , and so on. It can be seen that at most O(d) space
O(n) at each node, n being the number of nodes in the is needed at a node, where d is the node’s degree. The
network. For large networks, this may not be practical. idea of interval routing was first proposed by Santoro and
Various methods that use much less space have been Khatib [5] who used a spanning tree at every node to
proposed, including interval routing, which has been carry out the assignment of interval labels. As a result,
adopted in the design of a commercially available routing not all the edges are used for routing in their scheme.
chip [3] . The idea of interval routing is to label every Later on, van Leeuwen and Tan extended the method to
node with a number from a linearly and cyclicly ordered make use of all the edges [7] . Their labeling scheme can
set, e.g., {0, . . . , n 0 1}, and every (directed) edge with produce optimal labelings for common topologies such as
an interval (of range of node numbers) , such that the trees, rings, complete graphs, and some grids. An optimal
intervals form a partitioning of the set. To understand labeling is such that the routing of a message from any
how the method works, refer to Figure 1, which shows node to any other node would take the shortest path in
an example of a simple network, complete with node the graph. Their labeling scheme as well as Santoro and
numbers and interval labels, and a path traversed by a Khatib’s, however, is not able to generate optimal label-
message (from Node 2 to Node 0) by following the inter- ings for arbitrary graphs. Ružička proved that it is impos-
val labels. In the figure, an interval label of the form sible to find optimal interval labelings for arbitrary graphs

[4] . Specifically, Ružička found a graph for which he
proved that no interval labeling can result in a longest* Correspondence to: F. C. M. Lau; e-mail: fcmlau@cs.hku.hk
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implement interval routing, each node is labeled with a
unique integer, called a node number, from the set L
Å {0, . . . , n 0 1}. For simplicity, we use a node’s
number to be the node’s name.

Every edge in each direction is labeled with an interval
label (or interval) which is of the form »p , q … , where p ,
q √ L . For u , £ √ V that are directly connected, L(u , £)
denotes the interval label for the edge that goes from u
to £. A node m (or its number) is said to be contained in
»p , q … if (1) p ° m ° q for p ° q , or (2) p ° m ° n
0 1 or 0 ° m ° q otherwise. We use the notation u
≥ £ ≥ w , u , £, w √ L , to denote the cyclic ordering of

Fig. 1. Example of interval routing node numbers. Naturally, 0 ≥ 1 ≥ rrr ≥ n 0 1 ≥ 0.
In the following, subsets of node numbers that are

contained in some interval often occur inside expres-
path shorter than 3D /2 / 1/2 (or 1.5D / 1/2) . In this sions—we use the set notation to denote them. For exam-
paper, we give an improved lower bound of 7D /4 0 1 ple, {u , £, w} refers to three-node numbers, u , £, w , that
(or 1.75D 0 1). We use a graph which bears certain are contained in some interval and whose order is not
resemblance to Ružička’s graph, but is slightly more com- specified. The expression u ≥ {£, w} ≥ xrrrmeans that
plicated.

£ and w are contained in some interval and that they are
Our lower bound result suggests that Santoro and Khat- ordered after u and before x , but that the order of £ and

ib’s labeling algorithm [5], which produces paths that w is not known.
are no longer than 2D for arbitrary networks, is very close Some essential properties for a valid labeling scheme
to the best possible. Their labeling algorithm, however, are in order:
might suffer from bottleneck problems due to the use
of a spanning tree for the routes. Interval labeling was Property 2.1. (Completeness) The set of interval labels
incorporated into a routing chip, the C104, by Inmos [3], for edges directed from a node u is complete, i.e., every
which undoubtedly adds to the need of finding even better node (xu) in V must be contained in some interval at u.
interval labeling algorithms. The graph as presented in
this paper can be used as a test case for measuring the Property 2.2. (No ambiguity) The interval labels for
goodness of such algorithms. edges directed from a node u are disjoint, i.e., every node

In the following, we assume that interval labels are
£ (xu) is contained in exactly one of these intervals.

cyclic.† In addition to interval labels, there could also be
null labels and complement labels [4] . An edge labeled Property 2.3. (No bouncing) For any edge (u, £) √ E,
with a null label is never taken in routing messages. An there exists no node w x u, £ such that w is contained
edge with a complement label is taken when the interval in both L(u, £) and L(£ , u) .
labels of all other edges fail to contain the destination
node number. In the next section, we present a lower For any node u , Property 2.2 implies that L(u , £)
bound for the case of interval labels only. Then, in Section

> L(u , w) Å 0/ , where (u , £) and (u , w) are any two
4, we comment on the case of using also null labels and edges directed from u . Property 2.3 implies that L(u , £)
then the case of using also complement labels. For the

> L(£, u) Å 0/ . It should be noted that these properties
latter, we embed the original graph in a larger graph and do not imply a valid routing scheme.
prove the same lower bound based on the larger graph.

3. LOWER BOUND2. DEFINITIONS, NOTATIONS, AND
PROPERTIES We are going to be more specific about the graph G based

on which we will derive our lower bound. Figure 2 shows
Let G Å (E , V ) be an undirected graph, where E is the the details of G which consists of three identical ‘‘flaps,’’
set of edges, and V, the set the nodes. Every edge in E each of length 2k (edges) , k¢ 3, extending from a middle
is actually made up of two directed edges, one for each axis. The set of nodes V is made up of {ui ,j , £i ,j , wi ,jÉ1
direction (as in Fig. 1) . There are n nodes in V . To ° i ° 8, 1 ° j ° 2k 0 1} < {miÉ1 ° i ° 8} < {u0 ,

£0 , w0}. The number of nodes, n , is therefore equal to 3
1 8 1 (2k 0 1) / 8 / 3 Å 48k 0 13. The diameter of† The scheme is called linear interval routing when noncyclic labels

are used [1, 2] . G , D , is 4k . The lower bound that we are going to prove
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Å 1, . . . , 8. Since all intervals of the same node are
disjoint (Property 2.2) , we have

{u1,1 , u1,k/1} ≥ {u2,1 , u2,k/1} ≥

rrr ≥ {u8,1 , u8,k/1} ≥ {u1,1 , u1,k/1}.

By ignoring some of the node numbers, we have

u1,1 ≥ u2,k/1 ≥ u3,1 ≥ u4,k/1 ≥ u5,1

≥ u6,k/1 ≥ u7,1 ≥ u8,k/1 ≥ u1,1 .

Then, by Lemma 3.1, we have

u1,1 ≥ {u2,k/1 , u2,2k01 , £2,2k01 , w2,2k01} ≥ u3,1

≥ {u4,k/1 , u4,2k01 , £4,2k01 , w4,2k01} ≥ u5,1
Fig. 2. The graph G .

≥ {u6,k/1 , u6,2k01 , £6,2k01 , w6,2k01} ≥ u7,1

≥ {u8,k/1 , u8,2k01 , £8,2k01 , w8,2k01} ≥ u1,1
is 7D /4 0 1—i.e., there exists no labeling scheme such
that the longest path in G following the routing scheme or
is shorter than 7D /4 0 1. Figure 2 includes an example
of a path which is of length 7D /4 0 1 in order to give {u2,2k01 , £2,2k01 , w2,2k01} ≥ {u4,2k01 , £4,2k01 , w4,2k01}
an idea of the extent of this value. We will prove the

≥ {u6,2k01 , £6,2k01 , w6,2k01} ≥ {u8,2k01 , £8,2k01 , w8,2k01}.bound by contradiction.
If there is a labeling scheme such that the longest path j

is shorter than 7D /40 1, then the following three lemmas
hold: We denote these four subsets of intervals by C2 , C4 ,

C6 , and C8 , respectively. Figure 3 shows the axis portion
Lemma 3.1. For every i √ {1 , . . . , 8} , there exists an of G and the locations of these four subsets.
interval label that contains

{ui ,k/1 , ui ,2k01 , £i ,2k01 , wi ,2k01}

but does not contain {u1,1 , u2,1 , . . . , u8,1}.

Proof. Consider ui ,k . L(ui ,k , ui ,k/1) must contain
{ui ,k/1 , ui ,2k01 , £i ,2k01 , wi ,2k01} and L(ui ,k , ui ,k01) must con-
tain {u1,1 , u2,1 , . . . , u8,1} , but by Property 2.2, these two
interval labels are disjoint. j

Lemma 3.2. For every i √ {1 , . . . , 8} , there exist three
disjoint intervals containing {ui,2k01 , ui,k01} , {£i,2k01 ,
£i ,k01} , and {wi,2k01 , wi,k01} , respectively.

Proof. By considering the three edges directed from
mi , i Å 1, . . . , 8. j

Lemma 3.3. There exist four or more disjoint intervals
each of which contains {ui,2k01 , £i,2k01 , wi,2k01} , where i
√ {1 , . . . , 8} .

Proof. Without loss of generality, suppose that u1,1

≥ u2,1 ≥ rrr ≥ u8,1 ≥ u1,1 . Consider u0 . If there is a
labeling scheme such that the longest path is shorter than

Fig. 3. Four interval subsets at the center.7D /4 0 1, then L(u0 , ui ,1 ) contains {ui ,1 , ui ,k/1}, for i
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Theorem 3.1. There exists no labeling scheme such that
the longest path is shorter than 7D /4 0 1 .

Proof. Assume that a longest path of length shorter
than 7D /4 0 1 exists. Consider C4 in Lemma 3.3 and all
the possible orderings of the three node numbers that
were shown:

C2 ≥ u4,2k01 ≥ £4,2k01 ≥ w4,2k01 ≥ C6 ≥ C8

C2 ≥ u4,2k01 ≥ w4,2k01 ≥ £4,2k01 ≥ C6 ≥ C8

C2 ≥ £4,2k01 ≥ u4,2k01 ≥ w4,2k01 ≥ C6 ≥ C8

C2 ≥ £4,2k01 ≥ w4,2k01 ≥ u4,2k01 ≥ C6 ≥ C8

Fig. 4. The graph G *.C2 ≥ w4,2k01 ≥ u4,2k01 ≥ £4,2k01 ≥ C6 ≥ C8

C2 ≥ w4,2k01 ≥ £4,2k01 ≥ u4,2k01 ≥ C6 ≥ C8 .
£i ,2k01 ≥ {ui ,k01 , u1,1 , u2,1 , . . . , u8,1}

≥ wi ,2k01 ≥ £j,2k01 ≥ uj,k01 ≥ wj,2k01 .Note that there are three possible choices for the middle
place (underlined above) among the three places of C4 .

Similarly, L(uj,k , uj,k01) must contain {uj,k01 , u1,1 , u2,1 ,Altogether, there are four middle places for C2 , C4 , C6 ,
. . . , u8,1} and L(uj,k , uj,k/1) must contain {£j,2k01 , wj,2k01}.and C8 , respectively, which are to be occupied by four
But in order for {£j,2k01 , wj,2k01} to be in the same interval,elements from the following three sets:
the interval must include {ui ,k01 , u1,1 , u2,1 , . . . , u8,1} ( in
order to not include uj,k01) according to the above cyclic{u2,2k01 , u4,2k01 , u6,2k01 , u8,2k01}
order. Hence, L(uj,k , uj,k/1) > L(uj,k , uj,k01) Å {u1,1 , u2,1 ,
. . . , u8,1} x 0/ , which violates Property 2.2. j

{£2,2k01 , £4,2k01 , £6,2k01 , £8,2k01}

{w2,2k01 , w4,2k01 , w6,2k01 , w8,2k01}. 4. NULL AND COMPLEMENT LABELS

Hence, one set will contribute at least two elements to Consider the graph G again. If L(mi , ui ,2k01) is a null
the middle places. Without loss of generality, suppose label, then at least 2D 0 1 steps are necessary to route
that the first set above contributes two elements to the a message from mi to ui ,2i01—hence, a lower bound of
middle places of Ci and Cj , i , j √ {2, 4, 6, 8} and i x 2D 0 1 for labeling schemes that allow null labels.
j ; i.e.: For any node, one can assign at most one complement

label to the node. We transform the graph, G , used in the
£i ,2k01 ≥ ui ,2k01

Ci

≥ wi ,2k01 ≥ £j,2k01 ≥ uj,2k01

Cj

≥ wj,2k01. previous section to another graph, G*. Based on G*, we
show that the lower bound for labeling schemes that can
use complement labels is the same as before. This resultBy Lemma 3.2, we have
implies that complement labels can make the routing
scheme more powerful because when complement labels

£i ,2k01 ≥ {ui ,2k01 , ui ,k01} ≥ wi ,2k01
are allowed a much bigger graph, G*, is needed for arriv-

≥ £j,2k01 ≥ {uj,2k01 , uj,k01} ≥ wj,2k01 ing at the same lower bound.
The new graph, G*, as shown in Figure 4, has 36 layers

or and four flaps. The newly added parts are represented by
dashed lines in the figure. The previous graph, G , is a

£i ,2k01 ≥ ui ,k01 ≥ wi ,2k01 ≥ £j,2k01 ≥ uj,k01 ≥ wj,2k01 . proper subgraph of G *.

Theorem 4.1. There exists no labeling scheme (comple-Now consider that ui ,k , L(ui ,k , ui ,k01) must contain {ui ,k01 ,
u1,1 , u2,1 , . . . , u8,1} and L(ui ,k , ui ,k/1) must contain ment labels allowed) such that the longest path is shorter

than 7D /4 0 1 .{£i ,2k01 , wi ,2k01}. Therefore, we have
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Proof. The nodes of G* that can have a complement fact, we could have made it six layers, but then the proof
(of Theorem 3.1) would become more complicated (andlabel are u0 , £0 , w0 , x0 , and mi , i Å 1, . . . , 12. All the

other nodes are of degree two and, therefore, have either less interesting). On the other hand, if we made k ¢ 2
instead of 3, the proof would become more intricate. Wetwo interval labels or one interval label and a null label.

Since each of u0 , £0 , w0 , and x0 can have at most one did not consider the case of linear interval routing (i.e.,
using noncyclic labels) which should be just a simplecomplement label, the distribution of the complement la-

bels of u0 , £0 , w0 , and x0 covers at most four layers (see extension of what we have done; its bound is expected to
be worse (larger) than 7D /4 0 1 because of the reducedthe example in the figure—the bottom four layers) , leav-

ing at least 32 layers that are without complement labels flexibility of the interval labels. One obvious future direc-
tion is to consider multiple labels per edge. Intuitively,at the tips of the four flaps. Then, consider the mi’s; since

each mi can be assigned at most one complement label, the more labels that are assigned to an edge, the better
the chance of finding optimal or near-optimal labelingsand each mi has four edges, we can find at least 32/4

Å 8 mi’s for which three of their four flaps have no for arbitrary graphs. Using a strategy similar to the one
used here, the authors have proved a lower bound ofcomplement labels. Without loss of generality, suppose

that these three flaps are the ones tipped at u0 , £0 , and 5D /4 0 1 (or 1.25D 0 1) for 2-label interval routing in
arbitrary graphs [6] .w0 . As a result, we are left with a subgraph which is free

of complement labels; this subgraph is either G or one
We thank the referees for their very useful comments.that properly contains G . Since every node of subgraph

G must be able to reach every other node of G , we have
an interval routing problem for subgraph G which is ex-
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