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Abstract—Minimizing latency and energy consumption is the prime objective of the design of data aggregation in battery-powered
wireless networks. A tradeoff exists between the aggregation latency and the energy consumption, which has been widely studied
under the protocol interference model. There has been, however, no investigation of the tradeoff under the physical interference model
that is known to capture more accurately the characteristics of wireless interferences. When coupled with the technique of successive
interference cancellation, by which a receiver may recover signals from multiple simultaneous senders, the model can lead to much
reduced latency but increased energy usage. In this paper, we investigate the latency-energy tradeoff for data aggregation in wireless
sensor networks under the physical interference model and using successive interference cancellation. We present theoretical lower
bounds on both latency and energy as well as their tradeoff, and give an efficient approximation algorithm that can achieve the
asymptotical optimum in both aggregation latency and latency-energy tradeoff. We show that our algorithm can significantly reduce the
aggregation latency, for which the energy consumption is kept at its lowest possible level.

Index Terms—Data aggregation, latency-energy tradeoff, wireless sensor network, successive interference cancellation

1 INTRODUCTION

WIRELESS sensor networks have been extensively
exploited for many environment monitoring applica-
tions in recent years. One of the core functions in these
networks is data aggregation, which is to collect data from
the wireless sensor nodes to deliver to a sink node.
Typically, data aggregation is initiated by the sink using
some SQL-like queries, such as “to find the highest
temperature in the region.” Messages generated at indivi-
dual sensors carrying temperature data are first aggregated
and processed at some relay sensors, for example, to derive
the local maximum temperature; the locally processed
results are further aggregated, and so on, until the final
result reaches the sink. Besides the max function, other
functions such as min, sum, count, and average can all be
effectively implemented using data aggregation.

As the sensed data typically have a limited duration of
validity, a fundamental requirement is that the total aggrega-
tion time, measured in time units and also referred to as the
aggregation latency, must be minimized [1], [2], [3]. Addition-
ally, the sensor nodes have to observe the hard constraint
imposed by battery power and must strive for low energy
consumption in each run of the data aggregation. Obviously,
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there exists some kind of tradeoff between aggregation
latency and energy consumption (the latency-energy tradeoff)
in wireless sensor data aggregation [4], [5], [6].

There have been some efforts to derive latency-energy
tradeoff theoretically [7] as well as practical algorithms [4],
[5], [6], which are all based on the protocol interference model
(or equivalently the pairwise interference model). Under the
protocol interference model, the transmission range and
interference range of a node are simplified to two disks with
radii r; and r;(r; > 1), respectively. A transmission is
successful if and only if the receiver lies within the
transmission range of the sender and outside the inter-
ference range of any other concurrent sender. There has
been, however, no prior study that is based on the physical
interference model (or the cumulative interference model)
which has been shown to be able to more accurately
characterize the wireless interferences than the protocol
interference model [8], [9], [10]. Designs based on the
physical interference model can lead to increased network
capacity. Under the physical interference model, the
cumulative interference from all concurrent transmissions,
for example, the ° ., P;/dj; part in (1), is taken into
consideration at each receiver. A transmission along link e;
is successful if the Signal-to-Interference-plus-Noise-Ratio
(SINR) at its receiver is above a certain threshold:
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Here, A; denotes the set of links that transmit simulta-
neously with e;. P, and P; denote the transmission powers
at the transmitter of link e; and that of link e;, respectively.
d;;(dj;) is the distance between the transmitter of link e; (e;)
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Fig. 1. An illustration of distances with two transmission links: ¢; and e;.

and the receiver of link e;. Fig. 1 explains these distances
graphically. « is the path loss ratio which has a typical value
of between 2 and 6. N is the ambient noise power. [ is a
positive constant as the SINR threshold for a successful
transmission [3], [11].

With the physical interference model, a receiver can only
successfully recover one signal from one sender in each
time slot, among possibly several or many simultaneous
transmissions. In recent years, it has been shown that, by
applying Multipacket Reception (MPR) techniques [12], it is
possible to break this one-time slot-one-sender barrier to let
a receiver recover multiple individual signals from the
mixed signal coming from multiple simultaneous senders.
Successive Interference Cancellation (SIC), one subcategory of
MPR, has been demonstrated practical by experimental
study [13] implemented for the IEEE 802.15.4 [14] (ZigBee)
physical layer, (a common physical-layer standard for
sensor networks and other wireless personal area net-
works). The idea of SIC is to repeatedly identify the
strongest signal and then remove (cancel) it from the mixed
one using channel estimation, signal regenerating and
subtraction [15]. To make it work, an interference cancella-
tion sequence needs to be identified, such that for the ith
signal to be canceled, the following criterion is satisfied:
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where T'; is the set of concurrent transmission links
connecting to the same receiver as e;s, and k > ¢ denotes
that link e; is canceled before link e;. Extra energy is needed
to recover the ith signal if it is not the last canceled one, to
compensate for the cumulative interference from those links
that are later canceled. Meanwhile, extra decoding delay,
proportional to the number of canceled signals, is incurred
for the entire signal cancellation process [13].

SIC techniques can potentially reduce the aggregation
latency in wireless sensor networks significantly, because
multiple transmissions can be scheduled in the same time
slot while the saved scheduling latency may more than
compensate for the incurred decoding delay (to be dis-
cussed in Section 3.2). Inevitably, the cost is increased
energy consumption. To the best of our knowledge, there is
no previous study that has tried to characterize the latency-
energy tradeoff under SIC. Such characterization is needed
to accurately gauge the practical benefits of applying SIC in
typical wireless applications.

In this paper, we investigate the aggregation latency-
energy tradeoff in wireless sensor networks under the
physical interference model with successive interference
cancellation. Our contributions are as follows:

> We prove a theoretical lower bound on the aggregation
latency under the physical interference model with SIC:
Q(max{D,logx,, n}), where D is the network diameter in
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terms of the number of hops (the maximum of the
minimum number of hops between any pair of nodes,
when the nodes are transmitting using P); and scheduled
without mutual interference), n is the number of nodes, and
X = |log, +3JI\%’3 + 1] with Py, being the maximum transmis-
sion power of any node.

> We prove a theoretical lower bound, applicable to both
the case with and that without SIC, on energy consumption
under the physical interference model: Ny3 ("’j;j;il‘}[ ) , where
Nmis 1S the size of the maximum independent set with Py,

(see Definition 1 in Section 4) of the given network and dy,

is the maximum transmission range with maximum power
Py and zero interference.

> We prove a theoretical lower bound on the latency-
energy tradeoff under the physical interference model with
SIC that, for any aggregation algorithm, the product of the
energy consumption approximation ratio and the (o — 1)th
power of the aggregation latency approximation ratio is
lower bounded by Q(A%~!), where A is the maximum node
degree (maximum number of nodes within the transmission
range dy; of any node).

> We propose EMA-SIC, an Energy-efficient Minimum-
latency Aggregation algorithm under the physical inter-
ference model with SIC. As compared to existing work [3],
[11] on minimum-latency data aggregation under the
physical interference model, EMA-SIC can significantly
lower the upper bound of the aggregation latency, to
O(D), and at the same time achieve an energy consump-
tion approximation ratio that is the lowest possible with
respect to the latency-energy tradeoff lower bound. In
other words, our proposed algorithm achieves the asymp-
totical optimum in both aggregation latency and latency-
energy tradeoff.

The remainder of the paper is organized as follows: We
discuss related work in Section 2, and present the problem
model in Section 3. We study the theoretical lower bounds
for aggregation latency, energy consumption, and their
tradeoff in Section 4. The EMA-SIC algorithm and its
analysis are presented in Sections 5 and 6, respectively. The
latency-energy efficiency of EMA-SIC is further studied via
extensive simulations, the results of which are summarized
and discussed in Section 7. Finally, we conclude the paper
in Section 8.

2 RELATED WORK
2.1 Minimum-Latency Data Aggregation

There is a large body of literature on data aggregation in
wireless sensor networks [1], [2], [3], [11], [16], [17], [18],
[19]. Most of the work target at minimum aggregation
latency, without much consideration of the energy con-
sumption. The current best upper bound on aggregation
latency is O(A+ R), which is based on the protocol
interference model [1], [2], [16], [17], [18], where R is the
network radius in hops and A is the maximal node degree.

The paper [1] is the first work that achieves the O(A +
R) aggregation latency upper bound. In [2], the minimum-
latency data aggregation problem in a multihop wireless
sensor network with the assumption that each node has a
unit transmission range and an interference range of p > 1
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is studied. Xu et al. [17] propose an aggregation schedule
based on a distributed algorithm, which achieves a
guaranteed maximum aggregation latency of 16R +
A —14; they also prove a lower bound of max{R,log,n}
on the aggregation latency for any interference model,
where n is the network size. Unlike the above work where
connected dominating sets (CDSs) or maximal independent
sets are employed, a novel approach of distributed
aggregation with latency bound O(A + R') is introduced
in [16], which is based on the idea of clustering. Here, R’ is
the inferior network radius satisfying that R¥ < R< D <
2R’ with D as the network diameter in hop-count. The
MLAS problem is extended to the case with multiple sinks
in [19] with latency bound of O(A + kR), where k is the
number of sinks.

To the best of our knowledge, only two papers, [3] and
[11], assume the physical interference model. A distributed
aggregation scheduling algorithm with constant power
assignment is proposed in [3], which achieves a latency
upper bound of O(A + R). Li et al. [11] present a distributed
algorithm with a latency bound of O(K), where K is the
logarithm of the ratio between the length of the longest link
and that of the shortest link, and a centralized solution with
an aggregation latency of O(log®n), which is the current
best result among all proposed aggregation algorithms
under the physical interference model. However, no limit
on the power is assumed in [11].

2.2 Latency-Energy Tradeoffs in Data Aggregation

The existence of a tradeoff between energy consumption
and aggregation latency in wireless sensor networks is
widely recognized. There were some attempts targeting at
efficient data aggregation algorithms with both low aggre-
gation latency and low energy usage [4], [5], [6], [7], [20], but
all are based on the protocol interference model expect [20],
which only considers primary interference without mutual
interference from other concurrent transmissions.

Yu et al. [4] explore the latency-energy tradeoff using
techniques such as modulation scaling; algorithms are
proposed to minimize the total energy consumption subject
to a specified latency constraint. Arumugam and Kulkarni
[5] propose a TDMA-based algorithm to effectively aggre-
gate data in an energy-efficient way. In [6], the source node
can specify its interest in minimizing energy consumption
and/or source-to-sink delay, as input to the aggregation
algorithm. The theoretical analysis in [7] demonstrates that
there exists a latency-energy tradeoff in sensor data
aggregation; an aggregation algorithm is designed, which
achieves the asymptotical optimum for the tradeoff under
the protocol interference model. To address the latency-
energy tradeoff for in-network computation, of which data
aggregation is a special case, an algorithm with order-
optimal energy usage under given latency constraint is
proposed in [20]. However, its order-optimality is derived
over a network of uniformly random node distribution with
simplified interference model as discussed previously,
while not guaranteed over arbitrary network topologies.

To the best of our knowledge, there has been no work
addressing the tradeoff under the physical interference
model, let alone the case with arbitrary network topologies
and/or SIC technique, which we address in this paper.
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2.3 Successive Interference Cancellation

The techniques of successive interference cancellation have
been exploited in recent years. Weber et al. [15] have
analyzed the transmission capacity of wireless ad-hoc
networks using SIC, with both upper bound and lower
bound in closed form. Simeone et al. [21] analyze the
capacity of linear two-hop mesh networks with SIC; a
decode-and-forward relaying mechanism is proposed by
exploiting the possible relevant intercell channel gains and
rate splitting with SIC.

Wang and Garcia-Luna-Aceves [22] presented a poly-
nomial-time heuristic algorithm to approximate the optimal
network throughput in ad hoc networks with joint routing
and scheduling using SIC. Lv et al. [23] proposed
simultaneity graph to characterize the effect of SIC on link
dependence due to interference, and presented an inde-
pendent set-based greedy scheme to construct a maximal
feasible schedule. Jiang et al. [24] advocated the use of joint
SIC and interference avoidance and introduced a cross-
layer optimization framework for the joint scheme. In [25], a
SIC-based scheduling algorithm, with polynomial-time
complexity, is proposed to find short schedules for net-
works with arbitrary distribution of nodes in the euclidean
plane. However, none of the above considers the decoding
delay with SIC. Our paper considers this issue.

3 THE PrRoBLEM MODEL

We consider a multihop wireless sensor network with n
arbitrarily distributed sensor nodes vy, v1, . . ., v,—1 and a sink
node v,. The directed graph G = (V, E) denotes the tree
constructed for data aggregation from the sensor nodes to the
sink, where V = {vg,v1,...,v,} is the set of all nodes, and
E = {ep,e1,...,e,-1} is the set of transmission links in the
tree with e; representing the link from sensor node v; to its
parent. Without loss of generality, we assume that the
minimum euclidean distance between each pair of nodes is 1.
We consider a time-slotted system. The transmission
delay of one packet and the decoding delay to cancel one
additional signal with SIC are normalized to 1 time unit and
7 time unit, respectively. The actual length of any time slot ¢
is (1 + x¢ - 7) time units, with y; being the maximum number
of canceled signals at any scheduled receiver in this slot
depending on whether the SIC technique is applied or not:
x: = 0 if there is no SIC application, and x; > 0 otherwise.

3.1 The Data Aggregation Problem

The data aggregation problem is to use the links in £ to
construct a suitable tree and to design a correct and
collision-free aggregation schedule S ={Sy,S1,...,57r-1},
where T is the total time slots for the schedule and S;
denotes the subset of links in E scheduled to transmit in
time slot ¢, t =0,...,T — 1. A correct aggregation schedule
must satisfy the following conditions. First, any link should
be scheduled exactly once, i.e., |J/) S, = Eand S; N S; =0,
where i # j. Second, primary interference (that due to a
node acting as a transmitter and a receiver in the same time
slot) should be avoided; that is, T(S;) N R(S:) = 0, Vi =
0,...,7 —1, where T(S;) and R(S;) denote the transmitter
set and receiver set for the links in \S;, respectively. Third, a
nonleaf node v; transmits to its parent only after all the links
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TABLE 1
Notation Table

o Path loss ratio, Sec. 1

Network diameter in terms of hop count, Sec. 1

I3 SINR threshold, Sec. 1

Size of maximum independent set, Sec. 1

Ny Ambient noise power, Sec. 1

Max. cancelable signals at one receiver, Sec. 1

Max. transmission power, Sec. 1

Max. canceled signals at each receiver, slot ¢, Sec. 3

Max. transmission range with Pys, Sec. 1

Decoding delay to cancel one more signal, Sec. 3

A Max. node degree, Sec. 1

Side length of hexagons, Sec. 5

n Number of sensor nodes in network, Sec. 1

Size of connected dominating set, Appendix I

in the subtree rooted at v; have been scheduled, i.e., T(S;) N
R(S;) =0 where ¢ < j; in this way, v; can conduct local
process to aggregate all data from its subtree (e.g., local
maximum temperature of its subtree) and transmits the
aggregated data only once to save energy. An aggregation
schedule is collision-free if each scheduled transmission in
time slot ¢, i.e., Ve; € S;, can be correctly received by its
receiver according to the interference model in Section 3.3,
YVt =0,...,T — 1. Our objective is to minimize the aggrega-
tion latency, i.e., the overall time units of all slots, as well as
the latency-energy tradeoff. Note that the aggregation
latency already includes the end-to-end transmission delay,
decoding delay with SIC, and the cumulative queuing
delay, because it is defined as the time span between the
time-point of first transmission and that when the sink
collects all data.

3.2 Decoding Delay with SIC

With the SIC technique for the ZigBee standard in [13], one
packet typically has a length of 128 bytes, which are
modulated into 4,096 physical-layer symbols. Symbols of
each signal are decoded and canceled sequentially, with the
requisite that three consecutive symbols should be buffered
for each canceled symbol. The decoding delay for each
canceled signal is the time span for three symbols, which is
T = ﬁ of the transmission delay. If we have x; signals to
cancel out, the total decoding delay is 435(9’6 time units while
the saved transmission delay is y; time units, i.e., one time
unit for each canceled signal. Thus, SIC has great potential
in reducing the aggregation latency in wireless sensor
networks. The above setting for decoding delay is also
applied in our simulation study as described in Section 7.

3.3 Interference and Energy Models

We adopt the physical interference model with the application
of successive interference cancellation. With SIC, a receiver can
recover multiple signals from simultaneous transmitters
from the mixed signal received, as long as an interference
cancellation sequence of the signals can be determined. The
sequence is such that the ith signal remains strong enough,
as judged by condition (2), after the previous i — 1 signals
have been removed (canceled) from the mixed signal. If SIC
is not applied at a receiver, the receiver can recover at most
one signal (from one sender) in each time slot, subject to
condition (1).

In our study, we use the energy model that the power
attenuation along each transmission link of length r is
proportional to 7%, o > 2, i.e., the received power is P/r® if
the sender uses transmission power P.

Let B denote the transmission power used by node
v, =0,.. —1,and the maximum transmission power at
any sensor node be Py.' We assume no isolated node, i.e.,
each node can transmit to at least one other node in the
network if the power level of Py is used. Let D be the
network diameter, which is in hops instead of the geometric
distance, and is defined as the maximum of the minimum
number of hops between any pair of nodes when the nodes
are transmitting using maximum power Py;; and dys be the
maximum transmission range of a node when using P
with zero interference.

Important notations used in the paper are summarized in
Table 1 with descriptions and places of first appearances.

4 THEORETICAL LOWER BOUNDS

We first investigate the theoretical lower bounds on the
aggregation latency, the energy consumption, and the
latency-energy tradeoff for the data aggregation problem,
respectively.

4.1 Energy Consumption Bound

We prove in Theorem 1 a lower bound, applicable to both
the case with and that without SIC, on the overall energy
consumption for data aggregation under the physical
interference model.

Definition 1 (Maximum Independent Set with P,/). An
independent set with Py in a wireless sensor network G is a
subset of nodes in the network graph, such that no node in the set
can successfully transmit to another node in the set using the
maximum power Py with zero interference, and a maximum
independent set with Py is the largest such independent set in
the graph, i.e., it has the maximum number of nodes.

Theorem 1 (Energy Consumption Lower Bound). Suppose
the size of the maximum independent set with Py containing
the sink in a wireless sensor network is n,,;s + 1. The overall
energy consumption for data aggregation in the network under
the physical znterferencexmodel with or without SIC, is lower-
bounded by NoS ”";;;d][

We prove Theorem 1 by analyzing the energy consump-
tion when links are scheduled in a “TDMA” fashion, i.e.,
only one link is scheduled to transmit in each time slot, and
the data aggregation tree is a minimum spanning tree
(MST) of the network, of which the weight of link e; is df;,
where d;; is the euclidean length of link e;. A Theorem from
[26] is also utilized for the proof with more details in

1. We consider homogeneous networks with identical maximum
transmission power on each node.
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Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2012.314. Appendices B-K can also be found
at this link.

4.2 Aggregation Latency Bound

In their recent work, Xu et al. [17] give a latency lower
bound of Q(D + A) on sensor data aggregation under the
protocol interference model, and a latency lower bound of
Q(max{R,log, n}) under any interference model. We next
prove an aggregation latency lower bound under the
physical interference model with SIC.

Theorem 2 (Aggregation Latency Lower Bound). The
latency of data aggregation in a wireless sensor network under
the physical interference model with SIC, is lower bounded by
Q(max{D,logy,, n}) where X = UogHg% +1].

We first demonstrate that X is the maximum cancelable
signals at one receiver, and then prove Theorem 2 by
showing that the aggregation latency lower bound is
achieved using maximum transmission power with D, n,
and X as dominant factors. Detailed proof is in Appendix B,
available in the online supplemental material.

4.3 Latency-Energy Tradeoff

The lower bounds on aggregation latency and overall
energy consumption, as just derived, may not be achievable
concurrently: the lower bound on energy consumption
given in Theorem 1 is achieved only when the aggregation
tree is a minimum spanning tree of the network and exactly
one transmission along the tree is scheduled in each time
slot. In this case, the aggregation latency is n. On the other
hand, to achieve the lower bound on aggregation latency of
Q(max{D,logy,, n}) as given in Theorem 2, larger powers
up to Py at the transmitters may need to be used.
Consequently, the tradeoff between aggregation latency
and energy consumption needs to be addressed in the
design of any data aggregation algorithm, which is the main
objective of this paper.

Theorem 3 presents a theoretical lower bound on the
combined performance of aggregation latency and energy
consumption. The theorem is not to establish a definition
for the latency-energy tradeoff, which may vary with
different application concerns. However, the result in
Theorem 3 can serve as a metric to examine whether an
algorithm has achieved the best it can do in terms of both
aggregation latency and energy consumption, with a trade-
off in between. A similar metric can be found in [7] under
the protocol interference model.

Theorem 3 (Latency-Energy Tradeoff Lower Bound). Let
pr. and pg denote the approximation ratios of the aggregation
latency and energy consumption with regard to the lower
bounds in Theorems 1 and 2, respectively, with any given data
aggqregation algorithm. The product of the energy consumption
approximation ratio, i.e., pp, and the (a — 1)th power of
the aggregation latency approximation ratio, ie., p§', is
lowered-bounded by QA1) in wireless networks under the
physical interference model with SIC.

To prove the theorem, we show that there exists a sample
network of n + 1 nodes with maximum node degree A such
that p¢ 'pp is lowered bounded by Q(A®™!) under the
physical interference model with SIC. See more details in
Appendix C, available in the online supplemental material.
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We will show in Section 6 that our algorithm, to be
proposed in Section 5, is asymptotically optimal in both
aggregation latency and latency-energy tradeoff, with
respect to the lower bounds in Theorems 1, 2, and 3.

5 EMA-SIC: ENERGY-EFFICIENT MINIMUM-
LATENCY DATA AGGREGATION ALGORITHM WITH
SUCCESSIVE INTERFERENCE CANCELLATION

We now design our EMA-SIC algorithm, which can outper-
form any other existing algorithm by its reduced maximum
aggregation latency and asymptotically optimal latency-
energy tradeoff. It uses the successive interference cancella-
tion technique, and consists of two parts: tree construction
(T) and link scheduling (S).

5.1 Tree Construction with SIC

The aggregation tree construction in EMA-SIC comprises
three steps, executed in a distributed fashion:

T1. Breadth-first search is launched by the sink v, to find
a spanning tree of the network rooted at it, based on
maximum transmission ranges of the nodes. Each node is
assigned a level, indicating its hop-count to the sink. The
sink node is initialized with level 0.

T2. A connected dominating set (CDS) of the network
(see Definition 2) is identified in the breath-first spanning
(BES) tree, by treating the sink as the first dominator and
then finding other dominators using the most widely
adopted algorithm, which is distributed, in [26]. This
algorithm is executed in two phases to find the connected
dominating set. In the first phase, a maximum independent
set is constructed such that the distance between any pair of
its complementary subsets is exactly two hops. Based on the
constructed MIS, the second phase generates a connected
dominating set by strategically selecting nodes to be added
to or removed from the MIS. A tree rooted at the sink and
connecting all other nodes in the connected dominating set
can be built, such that each node in level [ > 1 connects to its
parent node in level I — 1 of the BFS tree.

Definition 2 (Connected Dominating Set with P,/). A
dominating set with Py in a wireless sensor network G is a
subset of nodes in the graph, such that every node outside the
set can successfully transmit to at least one node in the set
using the maximum power Py. The nodes in a dominating set
are referred to as dominators, and those not in the set are
dominatees. A connected dominating set with Py is a
dominating set within which any node can transmit to at
least another node using Pyy.

T3. This step consists of two phases. Consider the
dominators in the connected dominating set derived in the
previous step. In the first phase, i.e.,, step T3.a, each
dominator finds a disk centered at itself with radius equal
to the maximum transmission range d,;, and use equal-sized
hexagons to cover the disk. An example is given in Fig. 2a.
The side length of the hexagons is h = min{d,, d»} with

114 4/3(1 + logy s v/Par/(NoD)

dy = 5

and dy = % ( ]{);23)’%, which are carefully assigned to ensure the

validness of our algorithm, i.e., K; > 0 which is a parameter
to be introduced shortly, proven in Appendix D, available
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% Dominator O Other Dominatee

— Link Constructed

@ Head dominatee

(a) Concurrent transmissions to the
head dominatee.

(b) MST rooted at the dominator.

Fig. 2. The third step of tree construction in EMA-SIC: an example with
one dominator.

in the online supplemental material. In each hexagon, the
dominatee which is closest to the dominator is chosen as the
head dominatee. We prove in Section 6 that, with our
assignment of the hexagon side length, all dominatee nodes
in a hexagon can concurrently transmit to the head
dominatee, which can successfully recover these transmis-
sions using successive interference cancellation.

Note that each dominator only needs the location
information of the dominatees within the disk as in Fig. 2.
Besides, the relative coordinate (x,y) of each dominatee to
its dominator at the origin (0,0) is adequate to decide
which hexagon it resides in and whether it is the head
dominatee, without the use of absolute coordinates in the
global view. So step T3a can be executed in a fully
distributed fashion on each dominator with just the relative
locations of its dominatees.

In the next phase, i.e., step T3.b, for the much sparser
topology consisting of only the head dominatees and the
dominators, a local minimum spanning tree is built to
connect the head dominatees to each dominator, as shown
in Fig. 2b. In constructing the MST, a link with length r has
weight ¥, which reflects the power attenuation along the
link. Using the connected dominating set as the backbone, a
data aggregation tree of the entire network is formed.

In the above procedure, if a dominatee happens to reside
in the overlapping area of hexagons or disks belonging to
different dominators, it chooses to join the tree construction
of the dominator that is geometrically closest to the sink.

Fig. 12 in Appendix E, available in the online supple-
mental material, illustrates the tree construction procedure
with an example.

5.2 Link Scheduling with SIC

The aggregation schedule consists of three steps: (S1)
schedule the transmissions in individual hexagons from
the nonhead dominatees to the head dominatee; (S2)
schedule the transmissions from head dominatees to their
dominators along the local minimum spanning trees; and
(S3) schedule the aggregation transmissions of the dom-
inators along the tree connecting them to the sink.

For step S1, within each hexagon, all the nonhead
dominatees transmit concurrently to the head dominatee.
In order for the head dominatee to recover all the transmis-
sions correctly, the transmission power for the ith link in the
cancellation sequence, which has a link length of d;;, is
assigned to be (Ny + 1)3(1 + 8)* 'd2, where I = % -

Ny is the upper bound of the cumulative interference from
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current transmissions in other hexagons and X’ = 3h* 4 3h
is the maximum number of nonhead dominatees in any
hexagon. The detailed derivation of I, X’, and the power
assignment can be found in the proof of Theorem 4 in
Section 6 to show the correctness of EMA-SIC.

To alleviate interhexagon interferences, a schedule of
hexagons is designed following the rule that the head
dominatees in any two hexagons, of which the transmissions
are scheduled in the same time slot, should be separated by a
distance of greater than K;+1 times the maximum
link length 2h in a hexagon, where

K, = (6X')* (1 + <%) aﬁ)i

No(2h)*\
Py

1
X (5(1 +6)X’—1

To achieve collision-free link scheduling in steps 52 and
S3, we apply the following two rules: 1) any two
concurrent transmitters should be separated by a distance
of at least (K3 + 1)day, with K = (65(1+ (Z)" 15 + 1),
to bound the cumulative interference at each receiver;
2) the transmission power for a link of length r is set to
NoB(2—1/K¢)r*. This idea of separating concurrent
transmitters by a predefined distance was also employed
in [27], which, however, did not consider background noise
in the interference model (we do here).

Note that, similar approaches of covering the network
with hexagons are also utilized in aggregation algorithms of
[3] and [11], but with fundamental differences from ours in
following ways: 1) in [3], the network is covered with equal-
sized grids just for link scheduling across different grids
without contribution to tree construction while our applica-
tion of hexagons both constructs the aggregation tree and
schedules link transmissions within the same hexagon; 2) in
[11], hexagons with differentiated sizes are iteratively used
to construct the tree but with unlimited power assignment
while our paper shows practical concern with maximum
transmission power and applies hexagons with unique sizes
for only part of the tree construction; moreover, absolute
locations of all nodes in the global view are required in [11]
while our paper just needs a weaker condition of relative
position of each dominatee to its dominator.

The EMA-SIC algorithm is summarized in Algorithm 1.

Algorithm 1. EMA-SIC Algorithm.
Input: Node set V' and the sink node wv,,.
Output: Aggregation tree £ and link schedule S.

1: Initialization: E, S « 0.

2: Step T1: Construct a BFS tree on V rooted at vj,.

3: Step T2: Construct a CDS on the BFS tree which
includes v,; build a spanning tree of the dominators
rooted at v,; add tree links to E.

4: Step T3.a: Cover the network with hexagons and
connect each non-head dominatee to its head
dominatee in the hexagon; add links to E.

5: Step T3.b: For each dominator, construct a local MST
of its head dominatees rooted at it; add tree links to E.



2166

6: dy s N0 VIR g1 (B Y,

, o o
h:=min{di,do}; X' := 3h% + 3h; I := Fi’f g> — Ny;

1
X (1 (200 (1 M)
K= 06X+ ()" 25 (5 = M005)

7: Step S1: Schedule transmissions in hexagons from
non-head dominatees to their head dominatees, such
that any two concurrent receivers are separated by
at least 2(K + 1)h, and the transmission power is
(No + I)B(1 + B)X~d% for the i*" link in the receiver’s
cancellation sequence with length d;;; add schedule
to S.

8 Iy := (6501 + (%) 5)+1)""

9: Steps S2 & S3: Schedule the link transmissions in the
aggregation tree containing only head dominatees
and dominators, such that any two concurrent
transmitters are separated by at least (K3 + 1)d); and
transmission power is Ny3(2 — 1/K§)r® for a link of
length r; add the schedule to S.

10: return E and S

6 ANALYSIS OF EMA-SIC

We next prove the correctness, as well as the latency and
energy efficiencies of our algorithm.

6.1 Correctness

Theorem 4 (Correctness of EMA-SIC). EMA-SIC constructs a
data agqregation tree and achieves a correct and collision-free
aggqregation schedule under the physical interference model.

Proof Sketch. It is easy to see an aggregation tree rooted at
the sink is correctly constructed from the tree construction
algorithm in EMA-SIC. We prove that EMA-SIC achieves
a correct and collision-free aggregation schedule (see
Section 3.1) by presenting upper bounds for cumulative
interferences at each receiver in each step of the link
scheduling (a theorem from [31] is applied), and showing
that each received signal in step S1 and in steps S2 and S3
of the link scheduling satisfies the SINR constraint in (2)
and (1) even with its corresponding upper bound of
cumulative interferences, respectively. The detailed
proofs can be found in Appendices F and G, available in
the online supplemental material, respectively. 0

6.2 Energy and Latency Efficiencies

We show that EMA-SIC outperforms any other algorithm as
it can reduce the maximum aggregation latency to O(D),
while maintaining an energy consumption approximation
ratio that is the lowest possible—O(A*1).

Theorem 5 (Latency Efficiency with EMA-SIC). The
aggregation latency with EMA-SIC in any given network
with network diameter D is upper bounded by O(D), and the
aggqregation latency approximation ratio (with respect to the
lower bound in Theorem 2) is upper bounded by O(1).

We prove Theorem 5 by showing that the scheduling
latencies for step S1 and S2 are bounded with constant
values while step S3 has an upper-bounded latency in the
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order of O(D). See detailed proof in Appendix H, available
in the online supplemental material.

Theorem 6 (Energy Efficiency with EMA-SIC). The energy
consumption approximation ratio, that is, the upper bound of
the overall energy consumption with using EMA-SIC to the
lower bound in Theorem 1, is upper bounded by O(A*™1), in
any given network with a maximum node degree of A.

To prove Theorem 6, the upper bounds of energy
consumption for steps S1, S2, and S3 are analyzed and
characterized with n,,;;, respectively. A theorem from [32] is
applied, with detailed proof in Appendix I, available in the
online supplemental material.

The following corollary shows that the energy consump-
tion approximation ratio in Theorem 6 is indeed tight, for
any algorithm achieving the aggregation latency upper
bound in Theorem 5.

Corollary 1 (Asymptotic optimum with EMA-SIC). The
aggqregation latency and the latency-energy tradeoff with
EMA-SIC in any given network are asymptotically optimal,
or equivalently, with O(1) approximation ratios with respect
to the lower bounds in Theorems 1, 2 and 3.

This corollary can be easily proved by checking the
approximation ratios of aggregation latency and energy
consumption of EMA-SIC in Theorems 5 and 6, as well as
the latency-energy tradeoff lower bound in Theorem 3.

Comparing our analytical results in Theorems 5 and 6
with those in [11] and [3], we can see that EMA-SIC reduces
the upper bound of the maximum aggregation latency to
O(D) (which is the current best result in literature), and at
the same time achieves an approximation ratio of energy
consumption that is the lowest possible (Corollary 1).

7 SIMULATION RESULTS

We have presented the asymptotic performance of EMA-
SIC in terms of aggregation latency and energy consump-
tion together with their tradeoff by analyzing the respective
upper bounds and approximation ratios in the worst cases.
In this section, we further investigate the latency-energy
efficiencies of EMA-SIC in average cases by comparison
with two distributed aggregation algorithms under the
physical interference model: Li et al.’s algorithm in [3] and
the Cell-AS algorithm in [11].

We conducted our simulation in the Sinalgo [28]
simulation framework, a packet-level wireless network
simulator for testing and validating network algorithms.

Using a setting similar to that in [11], we consider
wireless sensor networks having 100 to 1,000 nodes that are
randomly distributed with Uniform, Poisson or Cluster
distributions® in a square field with side length from 100
to 200 meters.” Fig. 14 in Appendix J, available in the online
supplemental material, gives an illustration of network
topologies with 100 nodes under different distributions. The
power of the background noise N is set to a constant 10~°
joule/time unit. Since the path loss ratio o has a typical

2. Please refer to [11] for a detailed explanation of each distribution.
3. With a given number of nodes in the network, varying the network
scale will change the node density.
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Fig. 3. Aggregation latency (time units) comparison under selected
network settings in a 200 x 200 m? area.

value between 2 and 6 and the SINR threshold (3 is
generally assumed to be larger than 1 [3], [11], « is assigned
3,4, and 5 in the various settings, while 3 is set to 2, 4, 6 and
10, 15, 20 for the low SINR and high SINR scenarios,
respectively. The maximum transmission powers for Li
et al.’s algorithm and the EMA-SIC algorithm are assigned
values that would result in a transmission range of 40 meters
and can maintain the network connectivity with high
probability.* The maximum transmission power in Cell-
AS algorithm is infinite since no power limitation is
assumed [11]. The decoding delay with SIC is calculated
as in Section 3.2. Each datum is an average of 100 trials.

Li et al.’s algorithm is only effective with uniform node
distribution, network side length of 180 and 200, and («, 5)
being the pairs (4,2), (5,2), (5,4), and (5, 6), consistent with
the report in [11].

We, therefore, compare the latency-energy performance
of the three algorithms under those settings in Figs. 3, 4, 5, 6,
7,8,9, and 10. Complete simulation results with other node
distributions, network side lengths, and («, 3) value pairs can
be found our technical report [29], due to space constraint.

7.1 Aggregation Latency and Energy Consumption
Figs. 3, and 4° show that EMA-SIC outperforms both the
Cell-AS and Li et al.’s algorithms in aggregation latency in
all cases, while consuming similar levels of energy as Li
et al.’s algorithm (their curves largely overlap in Fig. 4; they
will be compared separately in Fig. 5), which are far lower
than those of the Cell-AS algorithm. The high energy
consumption of the Cell-AS algorithm results from its
assumption of unlimited transmission power [11].

Fig. 4 also shows that the energy consumption of Cell-
AS may go down when the number of nodes reaches 700-
1,000, which can be explained by the decrease of link
lengths between nodes (thus decreased transmission
power per link) when the node density in the same
square area increases.

4. Disconnected networks are meaningless in our problem since the sink
cannot receive the data from all sensor nodes.

5. Results with network side length 180 under similar settings as in
Figs. 3, 4, 5, 6, and 7 can be found in Appendix K, available in the online
supplemental material.

2167

x10°

x 10

g ‘[eEmMA-sIC] £ [@EMA-sI(]

2 |eCell-AS L 2 |E|Cell-AS

SS9 Lietal E31%Lictal.

= =

& Z

=] 1 = 2

3 3

el o)

200.5 20y

i) 15

= =

= 0 O © & - y-e 6 M O O O O O o O O
50 200 300400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Number of nodes umber of nodes
(@ a=4,8=2 b)a=5 8=2
15300° Jx 10"

g [eEmMA-sIC] h £ [eEMA-sI(]

2 | =Cell-AS 2 |E|Cell-AS

B JeLictal E314Lictal

= =

£ Z

o = 2

3 3

> 5 o)

20 201

i) 1)

= =

= O O O O O o o o = O O O O O O O O
50 200 300400 500 600 700 800 900 1000 £00 200 380 200 300 600 700 800 900 1000

umber of nodes

(da=5p5=6

Number of nodes

©a=58=41

Fig. 4. Energy consumption (joule) comparison under selected network
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As stated previously, it is hard to tell the differences
between the energy consumption curves of EMA-SIC and Li
et al.’s algorithm in Fig. 4. Thus, we conduct a separate
comparison of energy usage just between EMA-SIC and Li
et al.’s algorithm, and show that EMA-SIC is superior to Li
et al’s algorithm in energy consumption in Fig. 5. The
curves of Li et al.’s algorithm are straight lines in Fig. 5 as a
result of its constant power assignment [3].

Another observation with Figs. 3, 4, and 5 is that: 1) the
aggregation latency of each algorithm is lower in settings
with larger o (which means more path loss of power, and
thus lower interference from other nodes) and smaller g
(corresponding to lower SINR requirement); 2) the energy
consumption of each algorithm increases with the enhanced
value of o (requiring higher transmission power to counter-
act the increased power loss and to meet the SINR
requirement) and § (higher SINR requirement).

7.2 Latency-Energy Tradeoff

Next, we adopt the metric for latency-energy tradeoff of
“the product of energy consumption and the (a—1)th
power of aggregation latency” to examine the performance
of these algorithms in Fig. 6 for selected settings. The metric
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Fig. 5. A separate comparison of energy consumption (joule) between
EMA-SIC and Li et al.’s algorithm under selected network settings in a
200 x 200 m? area.
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proposed in Theorem 3 is equal to this revised metric
divided by “the product of the optimal energy consumption
and the (a—1)th power of the optimal aggregation
latency.” Since the optimums of both aggregation latency
and energy consumption of a given network should be the
same for any aggregation algorithm, while the optimal
aggregation latency of any given network is hard to find

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL. 24, NO. 11, NOVEMBER 2013

10° 10°

©EMA-SIC| ©EMA-SIC|
=Cell-AS = Cell-AS
L.5|4-Lietal. 3€-Lietal.

I

S
n

Energy consumption

Energy consumption

o o o
0 120 140 160 180 200
Network scale

(b) @ =5, B = 2, 3 algorithms

140 160 180 200
Network scale

(a) a« =4, B = 2, 3 algorithms

0 120

4 6

10 X 10
= -
g 2
=% =
52 5
15 o —
ey D 1 QEMA SIC|
50y 20 $Lietal.
g SEMA-SIC] g >
sl OLietal, q r——e———e’—’e—_e—_(

§
200 }]ﬂ() 120 140 160 180 200
Network scale

(d) @ =5, B =2, 2 algorithms

00 120 140 160 180
etwork scale

() a =4, B =2, 2 algorithms
Fig. 9. Impact of network scale on the energy consumption (joule) under
selected network settings with uniform distribution and 1,000 nodes.

10" 10”

o) >

27 [eEMA-sIC 2" [eEma-sIC]

2 J=cell-as 2 |ece-as

» |¥Lietal & ¥ Lietal

o o

L £,
'S 3

oy 21

5! g

&L EF

Hffo 130 190 160 10 200 =10 130 190 160 18 200

Network scale Network scale

(a) a =4, B =2, 3 algorithms (b) a =5, B = 2, 3 algorithms
> 42 10° % x10"

=

S [eEMA-SI] s

S jorLictal. S |@EMA-SIC]

g S0Lictal

R=1) =

T T

5>\. §>\.]

o1 5}

g g

k=1 ] =1

“fo0 120 0 160 180 200 Hfoo 120 140 160 180 200

Network scale

(d) a =5, B =2, 2 algorithms

Network scale

(¢) a =4, B =2, 2 algorithms

Fig. 10. Impact of network scale on the latency-energy tradeoff under
selected network settings with uniform distribution and 1,000 nodes.

under the physical interference model (NP-hard), we adopt
the revised metric here, which is equivalent to the previous
metric multiplied by a constant factor.

It can be observed that the Cell-AS algorithm has a
significantly poorer latency-power tradeoff if compared
with that of the other two algorithms. As the performance
differences for Li et al’s algorithm and the EMA-SIC
algorithm are not distinguishable in Fig. 6, we present a
separate comparison of latency-energy tradeoff between
these two algorithms in Fig. 7. We can see that EMA-SIC
algorithm achieves an evidently better latency-energy
tradeoff, further confirming its superiority to other aggre-
gation algorithms.

7.3 Impact of Network Scale

We also examine the impact of network scale on the latency-
energy efficiency of the three algorithms under various
network settings. Note that because the network topologies
are generated randomly, it is not that straightforward to
adjust the network diameter or node degree for perfor-
mance comparison. Thus, we indirectly change the network
diameter and node degree by varying the network scale.
With the same number of nodes in the network, increasing
the network scale will result in increased average network
diameter and decreased average node degree.
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We present results under selective settings in which Li
et al.’s algorithm would put forth its effectiveness, in Figs. 8,
9, and 10 with uniformly distributed 1,000 nodes. Detailed
comparisons under other settings are included in technical
report [29].

In Fig. 8, we see that: 1) Li et al.’s algorithm becomes
effective when network scale reaches 180 x 180 square
meters (detailed explanation in [11]); 2) the Cell-AS
algorithm has a relatively stable latency performance when
network scale varies, which is due to its assumption of
unlimited transmission power such that the network
diameter and maximum node degree are fixed as 1 and n,
respectively; and 3) the latency with EMA-SIC keeps
decreasing when the size of network scales up (larger
network diameter and smaller node degree), which can be
understood as that larger network scale leads to smaller
node density and, thus, lower mutual interference among
node pairs and more collision-free scheduling opportu-
nities. Network diameter is the dominant factor for worst-
case study to find theoretical bounds for aggregation
latency as in Sections 4 and 6. But, the impact of node
degree overwhelms the network diameter on the average
latency performance in random cases.

Although Cell-AS performs better, in aggregation la-
tency, than EMA-SIC when the network scale is smaller
than 160 x 160 square meters, we argue that the impractical
assumption of unlimited power by the Cell-AS algorithm
will render it unapplicable in power-constraint cases
(wireless sensor networks typically belong to these cases).
In contrast, EMA-SIC fits well in all network settings, with
any given maximum transmission power. Besides, EMA-
SIC strictly outperforms Cell-AS in energy consumption
and latency-energy tradeoff as shown in Figs. 9 and 10.

In Figs. 9 and 10, we present the simulation results for
(o, 8) € {(4,2),(5,2)} while that for («,f) € {(5,4),(5,6)}
are similar and are included in Appendix K, available in the
online supplemental material, due to space constraint. With
Figs. 9a and 9b, we have that the Cell-AS algorithm
consumes much higher energy, proportional to the network
scale, than the others, which is a consequence of its unlimited
power assumption. In Figs. 9c and 9d, we conduct a separate
comparison of energy consumption between EMA-SIC and
Li et al.’s algorithm. We can see that: 1) Li et al.’s algorithm
has the same energy consumption in various network scales
as a result of its constant power assignment; and 2) EMA-SIC
consumes significantly lower energy, also proportional to
the network scale (which is a natural result because of the
increased distances among node pairs in networks with
larger scale). Figs. 10a and 10b present the latency-energy
tradeoff by the three algorithms. Cell-AS algorithm has the
poorest tradeoff performance, which scales up with the
network side length, while Figs. 10c and 10d demonstrate
that the EMA-SIC algorithm also remarkably outperforms Li
et al.’s algorithm in latency-energy tradeoff.

8 CoNCLUDING REMARKS

This paper investigates the latency-energy tradeoff of data
aggregation in wireless sensor networks under the physical
interference model and using the successive interference
cancellation technique. We derive the theoretical lower
bounds on both aggregation latency and energy consump-
tion as well as their tradeoff, and give an energy-efficient
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minimum-latency data aggregation algorithm (EMA-SIC),
which can achieve the asymptotically optimal aggregation
latency and latency-energy tradeoff. We show that the
EMA-SIC algorithm has a constant approximation ratio of
aggregation latency (with respect to the theoretical lower
bound) while consuming the lowest possible amount of
energy. We conduct simulation studies to further validate
the superiority of EMA-SIC in terms of latency-energy
performance over other work under the physical inter-
ference model. As our ongoing work, we plan to evaluate
the latency-energy tradeoff in wireless sensor networks
with dynamics, for example, stochastic node sleep and
wake up events, and heterogeneous node capabilities, for
example, differentiated battery power.
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