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Abstract

We present new results on classifying the morphology of
the nonsingular intersection curve of two quadrics by study-
ing the roots of the characteristic equation, or the discrim-
inant, of the pencil spanned by the two quadrics. The mor-
phology of a nonsingular algebraic curve means the struc-
tural (or topological) information about the curve, such as
the number of disjoint connected components of the curve
in PR

3 (the 3D real projective space), and whether a par-
ticular component is a compact set in any affine realiza-
tion of PR3. For example, we show that two quadrics inter-
sect along a nonsingular space quartic curve in PR

3 with
one connected component if and only if their characteristic
equation has two distinct real roots and a pair of complex
conjugate roots. Since the number of the real roots of the
characteristic equation can be counted robustly with exact
arithmetic, our results can be used to obtain structural in-
formation reliably before computing the parameterization
of the intersection curve; thus errors in the subsequent com-
putation that is most likely done using floating point arith-
metic will not lead to erroneous topological classification of
the intersection curve. The key technique used to prove our
results is to reduce two quadrics into simple forms using
a projective transformation, a technique equivalent to the
simultaneous block diagonalization of two real symmetric
matrices, a topic that has been studied in matrix algebra.

Key words: Intersection Curves; Quadrics; Block Diag-
onalization.

1. Introduction

Computing the intersection curve of two quadric surfaces
is important in CAGD applications and thus remains an ac-
tive research topic. We are concerned with real quadric sur-
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faces in 3D real projective space, PR3, and their real in-
tersection curve. The intersection curve of two quadrics
will be referred to as QSIC. The intersection curve of two
quadrics can be singular or nonsingular. A singular QSIC
can be reducible or irreducible; in the former case the QSIC
consists of some lower degree curves whose degrees sum
to four, and in the latter case the QSIC has exactly one real
singular point. A nonsingular QSIC has zero, one, or two
disjoint connected components in PR3. The goal of this pa-
per is to give some algebraic conditions for telling the num-
ber of components of a nonsingular QSIC, plus some other
structural information about the QSIC.

The literature on the intersection of two quadrics
abounds, including both classic results in algebraic geom-
etry and modern ones in computer aided geometric design.
The classic work usually assumes the setting of complex
projective space in favor of its algebraic closedness [1, 12];
thus the classic results cannot be applied directly, without
refinement or extension, to the setting of real projective
space assumed in most CAD and computer graphics appli-
cations. For example, the real roots and imaginary roots of
the discriminant of a quadric pencil are not distinguished in
the Segre characteristic, and only the multiplicity of a root
is of interest [1]. On the other hand, efficient and accurate
methods have been developed in CAGD for computing the
QSIC in 3D real projective or Euclidean space. An elegant
method for tracing a QSIC is presented by Levin [6]. Ro-
bust parsing of singular QSIC based on the factorization of
a degree four planar curve using exact arithmetic is studied
by Farouki, Neff and O’Connor [3]. Subsequent work at-
tempting to refine or improve Levin’s method can be found
in [10, 14, 4].

When the input quadrics are assumed to be special, such
as spheres, circular right cones or cylinders, called natural
quadrics, there are many existing methods that exploit geo-
metric observations to yield robust methods for computing
the QSIC [7, 8, 11].

A problem with existing methods for computing the
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QSIC is that the topological information about the QSIC,
such as the number of disjoint connected components, is
not computed when the QSIC is nonsingular. Although
it is possible that some of these methods, such as Levin’s
method, could be further analyzed to derive required topo-
logical information from the parameterization of the QSIC,
we take a different approach here. We show that, with mini-
mal computation using exact arithmetic, the number of real
roots of the characteristic equation of any two quadrics can
be counted to determine the morphology of their QSIC, sup-
posing that the QSIC is nonsingular. (Note that singular
QSICs can be detected and precluded by the fact that the
characteristic equation of the two quadrics has a multiple
root [3].) For example, we will show that two quadrics
intersect along a nonsingular space quartic curve in PR

3

with one connected component if and only if the charac-
teristic equation has two distinct real roots and a pair of
complex conjugate roots. The significance of our results
lies in that the morphology of a nonsingular QSIC can be
determined before engaging a lengthy floating-point com-
putational procedure to obtain the parameterization of the
QSIC, thus avoiding the danger that the errors incurred by
the subsequent computation might lead to an incorrect topo-
logical classification of the QSIC.

The main results are summarized as follows. Let two
quadrics be defined by A: XTAX = 0 and B: XTBX =
0, where X = (x; y; z; w)T are the projective coordinates
and A;B are 4 � 4 real symmetric matrices. The char-
acteristic polynomial of A and B is defined to be f(�) =
det(�A � B), and f(�) = 0 is called the characteristic
equation; f(�) = det( �A � B) is also called the discrim-
inant of the pencil formed by A and B. Suppose that the
QSIC of A and B is nonsingular, i.e., all the four roots of
f(�) = 0 are distinct. Then it can be shown that:

1. The QSIC of A and B has either two affinely finite
components or no real points in PR

3 if and only if
f(�) = 0 has four distinct real roots.

2. The QSIC has one affinely finite component in PR
3 if

and only if f(�) = 0 has two distinct real roots and a
pair of complex conjugate roots.

3. The QSIC has two affinely infinite components in PR3

if and only if f(�) = 0 has two distinct pairs of com-
plex conjugate roots.

The notion of the affine finiteness of a component of a
curve in PR

3 will be defined later in section 2. Briefly
speaking, a component is called affinely infinite if it is inter-
sected by every plane in PR3; otherwise, it is called affinely
finite. Clearly, whether a curve component is affinely finite
or not is a projective property. To our knowledge, we are
the first to consider this property of the QSIC and to relate
it to the characteristic equation of the two quadrics.

The key technique used in the proof of the above results
is to use a projective transformation to reduce A and B si-
multaneously into some simple forms which can be ana-
lyzed more easily. This technique is similar to and inspired
by the work of Ocken, Schwartz and Sharir [9] who use it
to compute a parameterization of the QSIC. There are the
following differences in the formulations, purposes, and re-
sults of our work and the work in [9]: (1) In [9] the purpose
is to present procedures for computing a parameterization
of a QSIC, instead of finding a relation between the roots of
the characteristic equation and the morphology of the QSIC,
which is the goal of our work in the present paper; (2) The
procedures presented in [9] for quadratic form reduction are
lengthy and hard to follow, and the output cases of these
procedures are not rigorously analyzed; as a result, some
cases that do not arise are unnecessarily considered. In con-
trast, for quadratic form reduction we invoke from linear
algebra standard results on simultaneous block diagonaliza-
tion of two real symmetric matrices; (3) Some conditions
and different topological configurations of the QSIC are not
distinguished in [9]; for example, the case where the charac-
terization equation has two real roots and the case where the
characterization equation has four real roots are considered
as one case there.

The remainder of this paper is organized as follows. In
Section 2 we will give preliminaries, including the results
on simultaneous block diagonalization of two real symmet-
ric matrices, and some properties of a quadric pencil and
its base curve (i.e., the QSIC). In Section 3, three sufficient
and necessary conditions for three different morphologies
of a QSIC are proved. The paper is concluded in Section 4
with some open problems.

2. Preliminaries

First we cite a result on simultaneous block diagonaliza-
tion of two real symmetric matrices [13], which will be used
heavily later in this paper.

Definition 1: Let A and B be two real symmetric matri-
ces with A being nonsingular. Then A and B are called a
nonsingular pair of r.s. matrices.

Definition 2: A square matrix of the form

M =

0
BB@

� e
: :

: e
�

1
CCA

k�k

is called a Jordan block of type I if � 2 R and e = 1 for
k � 2 or if M = (�) with � 2 R for k = 1; M is called a
Jordan block of type II if

� =

�
a �b
b a

�
a; b 2 R; b 6= 0
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and

e =

�
1 0
0 1

�
;

for k � 4 or if

M =

�
a �b
b a

�

for k = 2, with a; b 2 R, b 6= 0.
Recall that two square matricesPn�n andQn�n are con-

gruent if there exists a nonsingular matrix Vn�n such that
P = V TQV .

Theorem 1 (Canonical pair form theorem) [13]:
Let A and B be a nonsingular pair of r.s. matri-
ces. Suppose that A�1B has real Jordan normal form
diag(J1; :::Jr; Jr+1; :::Jm), where J1; :::Jr are Jordan
blocks of type I corresponding to the real eigenvalues of
A�1B and Jr+1; :::Jm are Jordan blocks of type II cor-
responding to the complex eigenvalues of A�1B. Then
A and B are simultaneously congruent by a real congru-
ence transformation to diag("1E1; :::"rEr; Er+1; :::Em)
and diag("1E1J1; :::"rErJr; Er+1Jr+1; :::EmJm), re-
spectively, where "i = �1 and Ei are of the form

0
BB@

0 1
:

:
1 0

1
CCA

of the same size as Ji for i = 1; 2; ::;m.
Next we state some properties about a quadric pencil.

Let A: XTAX = 0 and B: XTBX = 0 be two distinct
quadrics, whereA and B are 4�4 real symmetric matrices.
We call a quadric A: XTAX = 0 a nonsingular quadric if
the matrix A is nonsingular. Then XT (�A � B)X = 0, is
called the pencil of quadrics formed by A and B. It is easy
to see that the QSIC of two distinct quadricsA and B is the
same as the QSIC of any two distinct quadrics in the pencil
XT (�A � B)X = 0; thus the QSIC of A and B is also
called the base curve of their pencil.

Given two distinct quadrics A: XTAX = 0 and B:
XTBX = 0, another pair of quadrics A0: XTA0X = 0
and B0: XTB0X = 0 are called the projectively equiva-
lent forms of A and B in PR

3, if A0 and B0 are congruent
A and B, respectively, by the same congruence transfor-
mation. Since the topological properties of a QSIC that
will be studied in this paper are invariant under real pro-
jective transformations, the QSIC of two quadrics has the
same topological structure as the QSIC of any of their pro-
jectively equivalent forms in PR3.

Definition 3: Let S be a set of points in PR3. If S\L = ;
for some plane L in PR3, then S is said to be affinely finite;
otherwise, S is said to be affinely infinite.

One may convert PR3 into a 3D real affine space A R 3

by choosing a plane L in PR3 as the plane at infinity; in this
case, A R 3 is called an affine realization of PR3. If a con-
nected component of a QSIC is affinely finite, it is possible
to find an affine realization A R 3 of PR3 such that the com-
ponent is bounded in A R

3. If a connected component of a
QSIC is affinely infinite, then it is unbounded in any affine
realization of PR3. A component of a nonsingular QSIC
may be affinely finite or affinely infinite. Clearly, affine
finiteness is a projective property of a point set in PR3. This
property will be used in classifying the morphology of a
nonsingular QSIC.

3. Conditions for classifications

Since the characteristic equation f(�) = 0 is a quartic
equation with real coefficients, it may have zero, two, or
four real roots. In this section we will first prove three suf-
ficient conditions (Theorems 2 to 4) for three different mor-
phologies of a nonsingular QSIC, and then show that these
conditions are also necessary (Theorem 5).

3.1. f(�) = 0 has four distinct real roots

Theorem 2: Given two quadrics A: XTAX = 0 and
B: XTBX = 0, if their characteristic equation f(�) = 0
has four distinct real roots, then the QSIC of A and B has
either two affinely finite connected components or no real
points in PR3.

Proof: Let �i, i = 1; 2; 3; 4, be the four distinct real roots
of f(�) = 0. Since the QSIC of A and B is nonsingular, all,
except at most four, members of the pencil of A and B are
nonsingular. Thus, without loss of generality, we may sup-
pose that A is nonsingular; for otherwise, if A is singular,
we may always choose another nonsingular quadric in the
pencil to replaceA. Hence, we may suppose A and B form
a nonsingular pair of r.s. matrices.

By Theorem 1, A and B can be simultaneously
diagonalized by the congruence transformation V =
(V1; V2; V3; V4), where the Vi are the four real eigenvectors
corresponding to the �i, i = 1; 2; 3; 4, with Ji = (�i) and
Ei = (1). By a further congruent transformation to both
V TAV and V TBV by the matrix

Q =

0
BBBBB@

1p
j ~A1;1j

1p
j ~A2;2j

1p
j ~A3;3j

1p
j ~A4;4j

1
CCCCCA
;

where the ~Ai;i are the diagonal elements of V TAV , A and
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B are reduced to the following respective congruent forms

A0 =

0
BB@

"1
"2

"3
"4

1
CCA ;

B0 =

0
BB@

"1�1
"2�2

"3�3
"4�4

1
CCA ;

where "i = �1, i = 1; 2; 3; 4.
By setting B0 to B0 � �1A

0, which is another quadric in
the pencil of A0 and B0, we get

B0 =

0
BB@

0
"2(�2 � �1)

"3(�3 � �1)
"4(�4 � �1)

1
CCA :

Since �1; �2; �3; �4 are distinct, without loss of generality,
we may suppose that �1 < �2 < �3 < �4. It follows that
�2� �1 > 0, �3 � �1 > 0 and �4 � �1 > 0. Hence, the di-
agonal elements in matrix A0 have the same signs with their
corresponding elements in matrix B0, except for A01;1 = "1.

If "2, "3 and "4 have the same sign, B0 is an imaginary
quadric, and therefore the intersection of A0 and B0 has no
real points.

If "2, "3 and "4 have different signs, the quadric B0 is
an elliptic cylinder or a hyperbolic cylinder parallel to the
x-axis; in the latter case we may apply a further congruent
transformation to make B0 an elliptic cylinder parallel to the
x-axis (with the same transformation also applied to A0).
For the simplicity of notation, the resulting matrices are still
denoted by A0 and B0. Then B02;2 and B03;3 have the same
sign, and the sign of B04;4 is different from that of B02;2 and
B03;3. Hence, A02;2 and A03;3 have the same sign and the sign
of A04;4 is different from that of A02;2 and A03;3. Then the
quadric A0 : XTA0X = 0 is either a unit sphere (when
A01;1, A02;2 and A03;3 have the same signs) or a one-sheet
hyperboloid with the x-axis as its central axis (when the
sign of A01;1 is different from that of A02;2 and A03;3).

When A0 is a unit sphere, its section with the y-z plane
is a unit circle, while the section of the quadric B0 with the
y-z plane is an ellipse. Clearly, if one of the ellipse’s semi-
axes is smaller than 1, the QSIC of A0 and B0 has two oval
branches; if both of the ellipse’s semi-axes are greater than
1,A0 andB0 have no real intersection points. Note that none
of the semi-axes can be equal to 1, since f(�) = 0 has no
multiple roots.

When A0 is a one-sheet hyperboloid, its section in the
y-z plane is again a unit circle. The section of the quadric
B0 with y-z plane is still an ellipse. The ellipse and the

unit circle cannot be tangential at any point, for otherwise
the characteristic equation would have a multiple root, con-
tradicting to that the QSIC is nonsingular. Then the ellipse
either intersects the unit circle at four points, or contains the
circle, or is contained in the circle. The QSIC has two oval
branches in the former two cases, as shown in Figure 1, and
the QSIC has no real points in the latter case.

Evidently, any component of the above QSIC of A0 and
B0 in PR3, if exists, is affinely finite. Since the QSIC of A0
and B0 is projectively equivalent to the QSIC of A and B,
the proof is completed.

Figure 1. Two of the cases of an elliptic cylin-
der intersecting with a hyperboloid with one
sheet.

3.2. f(�) = 0 has two distinct real roots and one pair
of complex conjugate roots

Theorem 3: Given two quadrics A: XTAX = 0 and
B: XTBX = 0, if f(�) = 0 has two distinct real roots and
one pair of complex conjugate roots, the QSIC comprises
one affinely finite component in PR3.

Proof: Let �1; �2 denote the two distinct real roots and
�3;4 = a� bi the pair of complex conjugate roots of f(�) =
0. As argued at the beginning of the proof of Theorem 2,
we may suppose that A and B form a nonsingular pair of
r.s. matrices.

Setting B to (B�aA)=b, which is a quadric in the pencil
ofA and B, the pair of complex conjugate roots are mapped
to�i. This does not change the topological properties of the
QSIC ofA and B. By Theorem 1, A and B can be simulta-
neously block diagonalized by a congruence transformation
into the following forms:

A0 =

0
@ E1

"1
"2

1
A ;

B0 =

0
@ E1J1

"1�1
"2�2

1
A

(1)
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where "i = �1, i = 1; 2, and

E1 =

�
0 1
1 0

�
; J1 =

�
0 1
�1 0

�
:

In the following we need to consider two subcases: (1)
�1�2 6= 0 and (2) �1�2 = 0.

Subcase (1): By swapping �1 and �2, if necessary, we
may suppose �1

�2
< 1 in this case. By setting A0 to �1A0 �

B0, and then scaling the diagonal elements of B0 into �1
by a further congruent transformation and using the same
symbolsA0 and B0 for the resulting matrices, we get A0 and
B0 in the following forms:

A0 =

0
BB@

1 �1
�1 �1

0

"2(
�1
�2
� 1)

1
CCA ;

B0 =

0
BB@
�1

1
"1

"2

1
CCA :

If "2 = 1, we swap B04;4 and B01;1, as well as A04;4 and A01;1,
simultaneously by a congruence transformation to get

A0 =

0
BB@

(�1
�2
� 1)

�1 �1
0

�1 1

1
CCA ;

B0 =

0
BB@

1
1

"1
�1

1
CCA :

Or, if "2 = �1, we swap B04;4 and B02;2, as well as A04;4 and
A02;2, simultaneously by a congruence transformation to get

A0 =

0
BB@

1 �1
(1� �1

�2
)

0
�1 �1

1
CCA ;

B0 =

0
BB@
�1

�1
"1

1

1
CCA :

Hence, no matter "2 = 1 or "2 = �1, after a proper si-
multaneous congruent transformation,B0 is a unit sphere or
a one-sheet hyperboloid with the z-axis as its central axis.

Because �1
�2

< 1, A01;1 and A02;2 have the same sign. There-
fore A0 is an elliptic cylinder parallel to the z-axis. Due to
the symmetry ofB0 andA0 about the x-y plane, we just need
to analyze the relationship between the two conic sections
that A0 and B0 have with the x-y plane.

The quadric B0 intersects the x-y plane in the unit circle
x2 + y2 = 1, and A0 intersects the x-y in an ellipse whose
equation is

x2

a2
+

(y � c)2

b2
= 1

when "2 = 1, or

(x+ c)2

b2
+
y2

a2
= 1

when "2 = �1, where

a =
q

�2(1+�21)
(�2��1) , b =

p
1 + �21, and c = �1.

In both cases, the center of the ellipse shifts from the ori-
gin (along the x or y direction) by distance j�1j, and the
length of the ellipse’s semi-axis in the shift direction is
b =

p
1 + �21. Then it is straightforward to verify that one

of the ellipse’s extreme points of this axis is inside the unit
circle, while the other is outside the unit circle. See Figure
2. This indicates that the QSIC of A0 and B0 has one com-
ponent in PR

3 (see Figure 3); this component is obviously
affinely finite.

Figure 2. The
cross-sections of
an elliptic cylinder
and a hyperboloid
with one sheet in
x-y plane.

Figure 3. 3D illus-
tration of the in-
tersection between
the two quadrics.

Subcase (2): We suppose that �1 = 0 and �2 6= 0.
Then, according to Eqn. (1), A0 and B0 are reduced to the
following forms:

A0 =

0
BB@

0 1
1 0

"1
"2

1
CCA ;
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B0 =

0
BB@
�1 0
0 1

0
"2�2

1
CCA :

Scaling the diagonal elements ofB0 into�1 (i.e., making
"2�2 into "2) by a congruent transformation (with the same
transformation also applied to A0), and then setting A0 to
A0 � 1

�2
B0, we get A0 and B0 in the following forms:

A0 =

0
BB@

1
�2

1

1 �1
�2

"1
0

1
CCA ;

B0 =

0
BB@
�1 0
0 1

0
"2

1
CCA :

When "2 = 1, we swap B04;4 and B01;1, as well as A04;4
and A01;1, by a simultaneous congruence transformation to
obtain

A0 =

0
BB@

0
�1
�2

1

"1
1 1

�2

1
CCA ;

B0 =

0
BB@

1
1

0
�1

1
CCA :

Or, when "2 = �1, we swap B04;4 and B02;2, as well as
A04;4 and A02;2, by a simultaneously congruence transforma-
tion to obtain

A0 =

0
BB@

1
�2

1

0
"1

1 �1
�2

1
CCA ;

B0 =

0
BB@
�1

�1
0

1

1
CCA :

In both cases, B0 is a circular cylinder with the z-axis
as its central axis, and A0 is either an elliptic cylinder or
a hyperbolic cylinder, depending on the sign of "1 and �2,
andA0 is parallel to the y-axis. The equation of A0 is

(y � c)2

a2
� z2

b2
= 1

when "2 = 1, or

(x + c)2

a2
� z2

b2
= 1

when "2 = �1, where

a =
p

1 + �22, b =
q

1+�22
j�2j , c = �2.

The cylinderA0 shifts by a distance j�2j along the x-axis or
the y-axis (depending on the sign of "2), and the length of
its semi-axis in the shift direction is

p
1 + �22. Then, it is

Figure 4. The intersection of a circular cylin-
der with a hyperbolic cylinder ((a)) or an ellip-
tic cylinder ((b)).

straightforward to verify that the QSIC of the cylinders A0
and B0 comprises one component in PR3, which is affinely
finite. See Figure 4. This completes the proof of Theorem
3.

3.3. f(�) = 0 has two distinct pairs of complex con-
jugate roots

Theorem 4: Given two quadricsA: XTAX = 0 andB:
XTBX = 0, if f(�) = 0 has two distinct pairs of complex
conjugate roots, then the QSIC of A and B comprises two
affinely infinite components in PR3.

Proof: Again, according to the argument in the proof
of Theorem 2, we may assume that A and B form a non-
singular pair of real symmetric matrices. Suppose that the
two distinct pairs of complex conjugate roots are a� bi and
c � di. Setting B to (B � cA)=d, we transform the roots
c� di into �i. By Theorem 1, A and B have the following
simultaneous block diagonalization forms:

A0 =
�

E1

E2

�
; B0 =

�
E1J1

E2J2

�
;

here E1 =

�
0 1
1 0

�
and J1 =

�
0 1
�1 0

�
correspond

to the roots �i, E2 =

�
0 1
1 0

�
and J2 =

�
a b
�b a

�

correspond to the roots a � bi. Expanding A0 and B0, we
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get

A0 =

0
BB@

0 1
1 0

0 1
1 0

1
CCA ; B0 =

0
BB@
�1

1
�b a
a b

1
CCA :

Clearly, a 6= 0 or b 6= �1, since the pair of roots a � bi
are distinct from�i. Also, b 6= 0 since a�bi are imaginary.
Wlog, we may assume b > 0.

In the following we will derive a parameterization of
the QSIC from which the topological information about the
QSIC can be deduced. The quadric A0 above, being a hy-
perbolic paraboloid, can be parameterized by

r(u; v) = g(u) + h(u)v

where

g(u) =

0
BB@
�u
0
0
1

1
CCA ; h(u) =

0
BB@

0
1
u
0

1
CCA :

Substituting r(u; v) into XTB0X = 0, we obtain

g(u)TB0g(u) + 2g(u)TB0h(u)v + h(u)TB0h(u)v2 = 0

or

v =
�g(u)TB0h(u)�ps(u)

h(u)TB0h(u)
; (2)

where

s(u) = [g(u)TB0h(u)]2

� [(g(u)TB0g(u))(h(u)TB0h(u))]
= �bu4 + (a2 + b2 + 1)u2 � b:

Substituting (2) into r(u; v) yields the following parameter-
ization of the QSIC:

p(u) = [h(u)TB0h(u)]g(u)
� [g(u)TB0h(u)�

p
s(u)]h(u):

Denote p(u) = (x(u); y(u); z(u); w(u))T , where

x(u) = bu3 � u;

y(u) = �(au�
p
s(u));

z(u) = �u(au�
p
s(u));

w(u) = 1� bu2:

For later use, define

q0(u) = [h(u)TB0h(u)]g(u)
� [g(u)TB0h(u) +

p
s(u)]h(u);

q1(u) = [h(u)TB0h(u)]g(u)
� [g(u)TB0h(u)�

p
s(u)]h(u):

Below we first show that s(u) = 0 always has four dis-
tinct real roots. The equation s(u) = �bu4 + (a2 + b2 +
1)u2� b = 0 can be regarded as a quadratic equation in u2,
with discriminant

� = (a2 + b2 + 1)2 � 4b2

= a2(a2 + 2b2 + 2) + (b2 � 1)2 > 0;

since a 6= 0 or b 6= �1. Thus there are two real solutions of
u2, given by

u2 =
(a2 + b2 + 1)�p�

2b
: (3)

Since � = (a2 + b2 + 1)2 � 4b2 and b 6= 0, we have
(a2 + b2 + 1) >

p
�. Hence, the numerator in (3) is pos-

itive. Since b > 0 by assumption, the denominator in (3)
is also positive. So we get two pairs of real solutions for u
from (3), denoted by �u+ and �u�, with u+ > u� > 0,
which constitute the four real roots of s(u) = 0. Denote

Figure 5. The graph of s(u) and its roots dis-
tribution.

the two intervals by I1 = (u�; u+), I2 = (�u+;�u�).
Since s(0) = �b < 0, we have s(u) > 0 for u 2 I1

S
I2

and s(u) � 0 for the other values of u. See Figure 5 for
the graph of s(u). This indicates that the QSIC, defined by
p(u), has two components, denoted by P1 and P2, corre-
sponding to the two intervals I1 and I2, respectively: P1 is
defined by p(u) over I1, and P2 is defined by p(u) over I2.

Now we show that the two components of the QSIC are
affinely infinite. Since the two components have the same
parametric expression (but over different intervals), we will
only analyze the component P1. Consider the QSIC, p(u),
in the affine space A R

3 by making the plane w = 0 the
plane at infinity. The w-coordinate component of p(u) is
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w(u) = 1� bu2, which has two zeros u1 = 1=
p
b 2 I1 and

u2 = �1=pb 2 I2. The two points on the component P1

of the QSIC corresponding to u1 are

q0(u1) =

0
BB@

x0(u1)
y0(u1)
z0(u1)
w0(u1)

1
CCA =

0
BB@

bu31 � u1
�(au1 +

p
s(u1))

�u1(au1 +
p
s(u1))

1� bu21

1
CCA ;

and

q1(u1) =

0
BB@

x1(u1)
y1(u1)
z1(u1)
w1(u1)

1
CCA =

0
BB@

bu31 � u1
�(au1 �

p
s(u1))

�u1(au1 �
p
s(u1))

1� bu21

1
CCA :

There are now three subcases to be considered: (i) a =
0; (ii) a > 0; and (iii) a < 0.

First suppose a = 0. In this case,

s(u) = �bu4 + (b2 + 1)u2 � b

= (u2 � b)(1� bu2):

Thus,

q0(u) =
p
j1� bu2j

0
BB@
�upj1� bu2j
�pju2 � bj
�upju2 � bjpj1� bu2j

1
CCA ;

q1(u) =
p
j1� bu2j

0
BB@
�upj1� bu2jpju2 � bj
u
pju2 � bjpj1� bu2j

1
CCA :

When u ! u1, y0(u1); z0(u1) are nonzero but w0(u1)
is zero, and y1(u1); z1(u1) are nonzero but w1(u1) is zero.
So the two points q0(u1) and q1(u1) are both at the infinity
and become the same point. But nearby the infinity point,
the w-components of both q0(u) and q1(u) are positive,
while their y-components and z-components have opposite
signs. This means that q0(u) and q1(u) go to the different
directions at the infinity point, leading to the component P1

of the QSIC not touching the infinity point, but crossing
over it. Hence, the component P1 has exactly one point at
infinity on it in A R 3, which is q0(u1)=q1(u1).

In the second subcase, we suppose a > 0. In this
case,

p
s(u1) = a=

p
b, hence y0(u1) = �2a=pb and

z0(u1) = �2a=b. Since not all of x0(u1), y0(u1) and
z0(u1) are zero but w0(u1) is zero, q0(u1) is a point at in-
finity. Next we consider q1(u1). Denote f(u) =

p
s(u).

The Taylor expansion of f(u) at u = u1 is

f(u) =
ap
b
+ f 0(u1)(u� u1) +

f 00(u1)
2

(u� u1)
2 + :::

+
fn(u1)

n!
(u� u1)

n +Rn+1(u);

where Rn+1(u) =
f (n+1)(�)
(n+1)! (u� u1)

n+1. Then

lim
u!u1

q1(u) =

0
BB@

bu3 � u
�(au� f(u))
�u(au� f(u))

1� bu2

1
CCA

=

0
BBB@

bu(u+ 1p
b
)(u� 1p

b
)

�( ap
b
� ap

b
� f 0(u1)(u� 1p

b
))

�u( ap
b
� ap

b
� f 0(u1)(u� 1p

b
))

�b(u+ 1p
b
)(u� 1p

b
)

1
CCCA

=

0
BBB@

bu(u+ 1p
b
)(u� 1p

b
)

f 0(u1)(u� 1p
b
)

uf 0(u1)(u� 1p
b
)

�b(u+ 1p
b
)(u� 1p

b
)

1
CCCA :

After removing the common factor (u� 1p
b
), we get

lim
u!u1

q1(u) =

0
BB@

bu(u+ 1p
b
)

f 0(u1)
uf 0(u1)

�b(u+ 1p
b
)

1
CCA

=
�

2; f 0(u1);
f 0(u1)p

b
;�2pb

�
:

Hence q1(u1) is a finite point in A R
3. In the third subcase

of a < 0, it can be proved similarly that q1(u1) is a point at
infinity and q0(u1) is a finite point in A R

3. Hence, P1 is a
component of the QSIC that has exactly one point at infinity
on it in A R 3.

Now we show that P1 is affinely infinite. For brevity,
only the case of a > 0 is discussed here; similar arguments
can be used in the other two cases a < 0 and a = 0. Since
x(u1), y(u1), and z(u1) are not all zero and u = u1 is a
simple zero of w(u), q0(u) traverses the plane at infinity
at q0(u1). Thus, given a plane L that does not contain the
point at infinity on P1, there is a Æ > 0 such that q0(u1�Æ),
q0(u1 + Æ) are on different sides of L. Then the continuous
curve segment which comprises three curve segments
C1 : q1(u), u 2 (u�; u+),
C2 : q0(u), u 2 (u�; u1 � Æ),
and C3 : q0(u), u 2 (u1 + Æ; u+),
must intersect the plane L at a finite point. Meanwhile, any
other plane, including the plane at infinity of A R 3 contains
the point at infinity on P1. Thus we conclude that any plane
in PR3 intersects the component P1, i.e., the component P1

of the QSIC is affinely infinite. Similarly, it can be shown
that the other component P2 of the QSIC is also affinely in-
finite. Hence, the QSIC ofA and B has two affinely infinite
components. This completes the proof of Theorem 4. An
example in this case is shown as Figure 6.
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Figure 6. The case of the QSIC has two affinely
infinite components.

Since Theorems 2 to 4 cover three different conditions
based on the exhaustive enumeration of the number of real
roots that a quartic equation with real coefficients can have
and these conditions are sufficient for different morpholo-
gies of the QSIC, we conclude that these conditions are also
necessary. This is summarized below in Theorem 5, which
is the main contribution of the present paper.

Theorem 5: Let f(�) = 0 be the characteristic equation
of two quadricsA : XTAX = 0 and B : XTBX = 0 with
a nonsingular QSIC.

1. The QSIC has either two affinely finite connected
components or no real points in PR

3 if and only if
f(�) = 0 has four distinct real roots.

2. The QSIC has one affinely finite connected compo-
nent in PR

3 if and only if f(�) = 0 has two distinct
real roots and a pair of complex conjugate roots.

3. The QSIC has two affinely infinite connected compo-
nents in PR

3 if and only if f(�) = 0 has two distinct
pairs of complex conjugate roots.

4. Conclusion

We have presented necessary and sufficient conditions
for classifying the morphology of the nonsingular intersec-
tion curve of two quadric surfaces (QSIC) in PR

3 by con-
sidering the number of real roots of the characteristic equa-
tion of the two quadrics. This work is complementary to the
work in [3] which classifies singular (or degenerate) QSICs
based on the factorization of a planar quartic curve. We note
that the classic results on the classification of QSICs in com-
plex projective space using the Segre characteristic over the

complex field cannot be translated to solve the present prob-
lem of classifying real nonsingular QSICs, since all topo-
logically different real nonsingular QSICs give rise to the
same Segre characteristic corresponding to that the charac-
teristic equation has four distinct roots. So only by consid-
ering the number of the real roots of the characteristic equa-
tion of two quadrics in real projective space, we succeeded
in classifying the morphology of a nonsingular QSIC in
PR

3. Thus our work can also be regarded as a specializa-
tion of the work in [1] from the complex space to the real
space for nonsingular QSICs.

The condition given in Theorem 2 for the case where the
characteristic equation has four distinct roots cannot com-
pletely resolve the classification of two important topologi-
cally different cases: the QSIC has two affinely finite con-
nected components in PR

3 or the QSIC has no real points.
The following examples show that these two cases do
arise. Consider the two quadrics defined by matrices A =
diag(1; 1; 1;�1) and B = diag(1:10; 0:56; 0:12;�0:28),
whose intersection curve has two components in PR

3 (see
the right figure in Figure 7). Then consider the two
quadrics defined by matrices A = diag(1; 1; 1;�1) and
B = diag(6:25; 5:44; 3:69;�7:69), which do not intersect
in PR

3 (see the left figure in Figure 7). Clearly, in both
cases, the characteristic equation has four distinct real roots.

Figure 7. Two cases of the characteristic
equation having four distinct roots.

However, with a computational approach, these two
cases above can be distinguished as follows. First solve for
the four real roots �i of the characteristic equation f(�) = 0,
and then compute their associate real eigenvectors Vi by
solving the equations (�iA � B)X = 0, i = 1; 2; 3; 4.
The matrix V = (V1; V2; V3; V4) can be used in a congru-
ent transformation to reduce both A and B into diagonal
forms, representing two quadrics A0 and B0 in canonical
forms. What remains is a simple task of testing whetherA0
and B0 intersect or not in PR

3. Note that A0 and B0 inter-
sect if and only if the original quadricsA and B intersect in
PR

3. In this case, if A and B intersect in PR
3, then their

QSIC has two affinely finite connected components.
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Further research is needed to gain a better understanding
of quadric pencils in real space. It has proven fruitful to
study on the relationship between the roots of the character-
istic equation and the configurations of two quadrics or their
QSIC. One of the open problems is to find a more refined
algebraic condition for distinguishing the two morphologies
of a nonsingular QSIC covered in Theorem 2. Another issue
is computing the simultaneous block diagonalization forms
to obtain a parametric equation of the QSIC, guided by the
topological information obtained using the results of this
paper.
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