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Abstract

The past few years have witnessed a number of interesting online algorithms for deadline
scheduling in the dynamic speed scaling model (in which a processor can vary its speed to
manage its rate of energy usage). These algorithms aim at minimizing the energy usage to
complete all given jobs or to achieve the maximum throughput. Note that throughput is the
primary concern for these algorithms. In this paper we consider a more general objective for
studying the tradeoff between throughput and energy for deadline scheduling. Specifically,
we assume each job is associated with a user-defined value (or importance) and a deadline.
We allow a scheduling algorithm to discard some of the jobs (i.e., not finishing them by their
deadlines), and the objective is to minimize the total energy usage plus the total value of
jobs discarded.

We give new online algorithms under both the unbounded-speed and bounded-speed
models. When the maximum speed is unbounded, we give an O(1)-competitive algorithm.
This algorithm relies on a key notion called the profitable speed, which is the maximum
speed beyond which processing a job costs more energy than the value of the job. When the
processor has a bounded maximum speed T , we show that no O(1)-competitive algorithm
can exist and more precisely, the competitive ratio grows with the penalty ratio of the
input, which is defined as the ratio between the maximum profitable speed of a job to the
maximum speed T . On the positive side, we give an algorithm with a competitive ratio
whose dependency on the penalty ratio almost matches the lower bound.

1 Introduction

Energy efficiency is a major concern not only for mobile devices, but also for large-scale server
farms like those operated by Google [13]. Recently, it has been reported that the average
energy cost for running a server exceeds the purchase cost of the server [9]. To improve energy
efficiency, major chip manufacturers like Intel and AMD now produce processors equipped
with a technology called dynamic voltage scaling. Specifically, it allows operating systems or
application software to dynamically vary the processor speed so as to manage the energy usage.
Running at low speed reduces energy usage drastically, yet we still want to maintain some kind
of quality of service (QoS). These conflicting objectives have imposed new challenges to the
research on scheduling. In this paper, the QoS concerned is the throughput, i.e., total size or
value of jobs completed by their deadlines.

The history. The theoretical study of energy-efficient online scheduling was initiated by
Yao, Demers and Shenker [14]. They considered online deadline scheduling on a processor that
can vary its speed dynamically between [0,∞). When the processor runs at speed s, the rate
of energy usage, denoted by P (s), can be modeled as sα, where α > 1 is a constant commonly
believed to be 2 or 3 (it is determined by the physical property of the hardware technology). Jobs
with different sizes and deadlines arrive over time in an online fashion. Jobs are preemptive and a
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preempted job can be resumed later at the point of preemption. The objective is to minimize the
total energy usage subject to completing all jobs by their deadlines. [14] proposed two online
algorithms AVR and OA, and showed that AVR is (2α−1αα)-competitive on minimizing the
energy (if α = 3, AVR is 108-competitive). After about a decade, Bansal, Kimbrel and Pruhs [7]
showed that OA is indeed better and is αα-competitive; they also gave another algorithm BKP
that is O(eα)-competitive (which is better than OA if α is large). Recently, Bansal et al. [6]
showed that no algorithm can have a competitive ratio better than eα−1/α, and they also gave
an algorithm qOA that is 4α/(2

√
eα)-competitive. When α = 3, the competitive ratio of qOA

can be fine tuned to 6.7.
All the above work assumes that the processor has unbounded maximum speed and can

always complete every job on time. Chan et al. [10] extended the study of energy-efficient
scheduling to a more realistic setting where a processor can only vary its speed between 0 to
some fixed maximum speed T . Since the maximum speed is bounded, it is possible that no
algorithm can complete all the given jobs. It is natural to consider the case where the optimal
algorithm aims at maximizing the throughput (which is the total size of jobs completed by their
deadlines), while minimizing the energy usage subject to this maximum throughput. They
gave an online algorithm that is 14-competitive on throughput and (αα + 4αα2)-competitive on
energy. Later, Bansal et al. [4] gave an improved algorithm that is 4-competitive on throughput,
while the competitive ratio of energy remains the same. This algorithm is optimal in terms of
throughput since any algorithm is at least 4-competitive on throughput even if we ignore the
energy concern [11].

Tradeoff between energy and throughput. To our knowledge, existing work on energy-
efficient deadline scheduling all assumes that throughput is the primary concern. That means,
a scheduling algorithm first aims at maximizing the throughput and then minimizes the energy
usage subject to the maximum throughput. With the growing importance of energy saving,
this assumption may not be valid and some systems may actually prefer to trade throughput
for better energy efficiency. For example, imagine the following scenario. There is a web server
whose users are divided into different levels of importance. During the peak period, it may be
desirable to drop the requests from less important users if the extra energy used for speeding up
the processor to serve these requests costs more than the revenue generated by these requests.
Note that when the server load is low, requests from less important users could be served at
low speed. The energy usage is much smaller and could make these jobs profitable.

Our results. To cater for the above situations, we initiate studying the tradeoff between
throughput and energy. Specifically, we assume that each job is associated with a deadline and
a user-defined value, the latter is about the importance of the job (e.g., the value can be the
job size or simply a fixed constant). A scheduling algorithm may choose to finish only a subset
of the given jobs by their deadlines and discard the rest. The objective is to minimize the total
energy usage plus the total value of jobs discarded. The objective of minimizing the total energy
usage and value discarded has the following interpretation. From an economic point of view, a
user would estimate the cost for one unit of energy and the revenue generated for each job. By
normalizing the cost for one unit of energy to be one and assigning the normalized revenue for
each job as its value, minimizing the total energy usage plus value discarded is equivalent to
maximizing the total profit of the system.

In this paper, we first study the tradeoff in the unbounded speed model. Notice that the
problem of minimizing the total energy usage plus total value discarded is a generalization of the
classical problem of minimizing the total energy usage for completing all jobs, thus inheriting
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any lower bound result from the latter. The argument is as follows. Consider a set of jobs whose
values are set to be sufficiently large, then the optimal offline algorithm and any competitive
online algorithm will not discard any jobs, and the problem of minimizing energy plus value
discarded is reduced to the problem of minimizing the energy usage subject to completing all
jobs. Furthermore, since the value discarded is zero in this case, any c-competitive algorithm
for the new objective gives a c-competitive algorithm for the classical objective. Recall that for
the classical objective, no online algorithm has a competitive ratio better than eα−1/α [6]. This
lower bound is also valid for the new objective of minimizing energy plus value discarded.

On the positive side, when the maximum speed is unbounded, we give an O(1)-competitive
algorithm called PS. Precisely, the competitive ratio of PS is αα + 2eα. The main idea is about
a notion called profitable speed, which is the maximum speed beyond which processing the job
costs more energy than the value of the job. Roughly speaking, the algorithm works as follows.
When a job is released, PS calculates the OA schedule for all admitted jobs together with the
new job. The new job is admitted if the OA schedule processes the new job with a speed at
most c times the profitable speed, where c is a carefully chosen constant; otherwise the new job
is discarded immediately. Though PS might look simple, the analysis is non-trivial. We first
upper bound the value discarded by PS in terms of the energy used by PS plus the energy and
value discarded of the optimal offline algorithm. Then we bound the energy usage of PS using
a potential analysis.

For the bounded speed model, we show that the new objective becomes more difficult by
giving a non-constant lower bound on the competitive ratio of any online algorithm. In partic-
ular, we define the penalty ratio of an input instance as the ratio of the maximum profitable
speed of a job to the maximum processor speed T . We show that the competitive ratio of any
algorithm is Ω(max{eα−1/α, Γα−2+1/α}), where Γ is the penalty ratio. The lower bound holds
even if all jobs have the value equal to the size. On the other hand, we adapt the algorithm
PS to the bounded-speed setting and show that its competitive ratio is αα + 2Γα−1(α + 1)α−1.
Note that the dependency on the penalty ratio almost mathes the lower bound.

Remark on an alternative objective. Another and perhaps a more natural approach to
studying the tradeoff between throughput and energy is to consider the objective of maximizing
the total value of jobs completed by their deadlines minus the total energy usage. However, we
first notice that this objective, unlike the one for minimizing the total energy usage plus value
discarded, is no longer a generalization of the classical model of minimizing total energy subject
to completing all jobs. That is, a c-competitive algorithm for this maximization objective no
longer gives a c-competitive algorithm for the classical model. More importantly, even in the
unbounded-speed setting with the restriction that job value equals job size, this maximization
objective is intractable as we can easily construct an instance where any online algorithm has
total throughput minus energy arbitrarily close to zero or even zero, while an offline algorithm
can obtain at least a finite throughput minus energy. We consider optimizing the total energy
plus value discarded to avoid the singularity issue of getting a zero or close to zero value in the
objective function.

Other related work. Energy efficiency has attracted a lot attention from the scheduling
community in the past few years, see, e.g., [1] for a survey. Besides the related work already
mentioned, there is another well-studied problem with similar flavor as ours, which is about
energy-efficient flow time scheduling. In that problem, jobs with arbitrary sizes, but with no
deadlines, arrive over time. The flow time of a job is the length of the duration from it is released
until it is completed. The objective is to complete all jobs and to minimize the total energy
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usage plus the total flow time of the jobs. The objective defined in this paper is motivated in
part by this energy-plus-flow-time objective. Albers and Fujiwara [2] were the first to study
this energy plus flow time objective. Following a chain of works [5,8,12], Andrew et al. [3] have
finally given an 2-competitive algorithm for minimizing energy plus flow time.

2 Preliminaries

We give the formal problem definition and review the algorithm OA used in our algorithms.

Problem definition. We consider online scheduling of jobs on a single processor. Each
job j has a release time r(j), size p(j), deadline d(j) and a value v(j). We use J and v(J) to
denote a sequence of jobs and their total values. Jobs are preemptive and a preempted job can
be resumed later at the point of preemption. The processor can run at any speed in [0,∞) in
the unbounded speed model and can run at speed in [0, T ] in the bounded speed model, where
T is a fixed constant. In any case, the rate of energy usage of the processor is sα when it is
running at speed s, where α > 1 is also a constant.

Formally speaking, let s(t) be the speed of the processor at time t. Then the total energy
usage of the processor is

∫∞
0 (s(t))αdt. Let s(j, t) denote the speed at which a job j is being

processed at time t. The algorithms in this paper do not use time sharing; yet, if time sharing
is allowed, we require that

∑
j s(j, t) ≤ s(t) at any time t. A job j is said to be completed by

its deadline d(j) if
∫ d(j)
r(j) s(j, t)dt ≥ p(j); and j is said to be discarded otherwise.

The objective is to minimize the total energy usage plus the total value of jobs discarded.
We denote Opt as the optimal offline schedule which minimizes the objective for any input J .
An algorithm is said to be γ-competitive if for any input J , the total energy usage plus the total
value discarded is at most γ times that of Opt.

Algorithm OA. Our algorithms will make use of the algorithm OA [7,14]. Below we review
its definition and some of its properties. At any time t, OA defines a sequence of times t0, t1, . . .
as follows. Let S be the jobs remaining at time t. Let t0 = t. For i = 1, 2, . . . ,, let ti be the
latest time after ti−1 such that w(ti−1,ti)

ti−ti−1
is maximized, where w(ti−1, ti) is the total remaining

size for jobs in S with deadline in (ti−1, ti]. The interval Ii = (ti−1, ti] is called the i-th critical
interval, and the quantity ρi = w(ti−1,ti)

ti−ti−1
is called the density of Ii. OA processes the jobs in the

order of EDF (earliest deadline first) and sets the speed during each critical interval (ti−1, ti] to
be ρi. Note that in the OA schedule as defined, the speed decreases from one critical interval
to another. It has been shown that this OA schedule uses the minimum energy to complete S.
If a new job j arrives after time t, the OA schedule will be recomputed then at time r(j).

Property 1. Consider an OA schedule and assume a job j arrives at time r(j). Let S be the
jobs remaining just before j arrives and let OA(S) be the OA schedule just before j arrives. Let
OA(S ∪ {j}) be the re-calculated OA schedule just after j arrives. Then,

(i) In OA(S∪{j}), j is processed by a constant speed s(j). Furthermore, the speed of OA(S∪
{j}) during the period [r(j), d(j)] is at least s(j).

(ii) Let I be any set of disjoint intervals after time r(j). The total amount of work scheduled
in I by OA(S ∪ {j}) is at least the total amount of work scheduled in I by OA(S), but at
most the total amount of work scheduled in I by OA(S) plus p(j).
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3 Unbounded Speed Model

This section considers the unbounded speed model where the processor can run at any speed
in [0,∞). We present an algorithm PS(c), which stands for Profitable Speed with parameter c,
and show that it is (αα + 2eα)-competitive when setting c = α(α−2)/(α−1).

Before we present our algorithm, we define the notion of profitable speed. For any job j, let
u(j) = v(j)/p(j) be the value density of j.

Definition 1. For any job j, the profitable speed of j, denoted s̃(j), equals (u(j))1/(α−1).

Fact 1. If we complete a job j at a constant speed equal to s̃(j), then the energy usage on
processing j equals the value of j.

Proof. The energy usage equals (s̃(j))α p(j)
s̃(j) = (s̃(j))α−1p(j) = u(j)p(j) = v(j).

Intuitively, the profitable speed s̃(j) is a “boundary speed” suggesting whether we should
complete or discard j. If the speed needed to complete j is larger than s̃(j), the energy usage
on processing j will be larger than its value and discarding it (instead of completing it) is
more beneficial. On the other hand, if the speed needed is smaller than s̃(j), completing j is
“profitable”. Roughly speaking, our algorithm completes j only when it can be completed at
speed at most c · s̃(j), where c > 0 is a constant.

3.1 Algorithm PS(c)

Let c > 0 be any parameter. The algorithm PS(c) maintains a list Q of admitted jobs, which
is empty initially. When a job arrives, it is immediately admitted into Q or discarded. PS(c)
only processes and completes jobs in Q. Details are as follows.

Algorithm PS(c)

• Job execution. At any time t, PS(c) uses OA to schedule the jobs in Q. (Note
that in the literature, the OA schedule is defined and analyzed based on the
entire input rather than a subset.)

• Job admission. When a job j arrives at time r(j), let S be the set of jobs
remaining in Q just before j arrives. PS(c) calculates the OA schedule for S∪{j}.
Let s(j) be the speed of j in this OA schedule. PS(c) admits j into Q if s(j) ≤
c · s̃(j); and j is discarded immediately otherwise.

• Job Completion. When a job j in Q is completed, remove it from Q.

By definition, OA always completes the jobs given to it no later than their respective dead-
lines. Thus, PS(c) also meets the deadline of every job in Q. The main result of this section is
about the competitiveness of PS(c) on minimizing energy plus value discarded.

Theorem 1. For any c > 0, PS(c) is
(
(1 + bα−1

(cb−1)α ) max{αα, α2cα−1}+ max{bα−1, 1}
)
-competitive

on energy plus value discarded, for any b > 1
c

By choosing the parameter c to be α
α−2
α−1 and considering b = α+1

c = α+1
α(α−2)/(α−1) , the com-

petitive ratio becomes αα + 2α(1 + 1
α)α−1. Since (1 + 1

α)α−1 < e, we obtain the following.

Corollary 2. PS(α
α−2
α−1 ) is (αα + 2eα)-competitive for any α > 1.
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To prove Theorem 1, we analyze the energy and the value discarded separately. Consider
any input job sequence J and parameter c > 0. Let Ea and Eo be the total energy usage of
PS(c) and Opt, respectively. Similarly, let Da and Do be the value discarded by PS(c) and Opt,
respectively. We will prove the following two lemmas concerning the value discarded and energy
usage of PS(c), whose proofs are given in the following subsections.

Lemma 3. Da ≤ bα−1

(cb−1)α Ea + bα−1Eo + Do, for any b > 1
c .

Lemma 4. Ea ≤ max{αα, α2cα−1}(Eo + Do).

Lemmas 3 and 4 together imply Theorem 1.

Proof of Theorem 1. For Opt, the total energy usage plus value discarded is Eo + Do. The
theorem follows from the following bound of Ea + Da.

Ea + Da ≤
(
1 + bα−1

(cb−1)α

)
Ea + bα−1Eo + Do

≤
(
1 + bα−1

(cb−1)α

)
max{αα, α2cα−1}

(
Eo + Do

)
+ bα−1Eo + Do

3.2 Value discarded by PS(c)

This section analyzes Da and proves Lemma 3. Let JD ⊆ J be the subset of jobs discarded by
PS(c). We further divide JD into JD1 and JD2, which include the jobs that are completed and
discarded by Opt, respectively. Da = v(JD1) + v(JD2) ≤ v(JD1) + Do. To prove Lemma 3, it is
sufficient to show that v(JD1) ≤ bα−1

(cb−1)α Ea + bα−1Eo.
Let j be an arbitrary job in JD1. Let I(j) be the set of maximal time intervals during which

Opt processes j. Denote |I(j)| as the total length of the intervals in I(j). Denote Ea(I(j)) and
Eo(I(j)) as the energy usage by PS(c) and Opt during I(j), respectively. We will bound v(j)
by Ea(I(j)) and Eo(I(j)). Intuitively, if |I(j)| is small, Opt completes p(j) units of work in
a short period of time and Eo(I(j)) should be relatively large. On the other hand, if |I(j)| is
large, then Ea(I(j)) is relatively large since PS(c) discards j and PS(c) must run at relatively
high speed during I(j). Details are as follows.

Lemma 5. Let j be any job in JD1. Then v(j) ≤ bα−1

(cb−1)α Ea(I(j))+bα−1Eo(I(j)) for any b > 1
c .

Proof. To ease the discussion, let us denote ˜̀(j) as the time to complete j if at speed s̃(j), i.e.,
˜̀(j) = p(j)/s̃(j). Note that p(j) = s̃(j) · ˜̀(j). Let bj = |I(j)|/˜̀(j).

Note that Opt completes exactly p(j) units of work in I(j) and Opt runs at the speed
p(j)/|I(j)| throughout I(j). Therefore,

Eo(I(j)) =
(

p(j)
|I(j)|

)α

|I(j)| =

(
˜̀(j) · s̃(j)
|I(j)|

)α−1

p(j) =
u(j)
bα−1
j

· p(j) =
v(j)
bα−1
j

(1)

where the last equality comes from the definition that u(j) = v(j)/p(j).
Since j is discarded by PS(c), consider the time r(j) when j arrives. Let S be the set of

jobs remaining in Q just before j arrives. Let OA(S) and OA(S ∪ {j}) be the OA schedules
starting from time r(j) for S and S ∪ {j}, respectively, assuming no other jobs arrive. Since
j is discarded, the speed of j in OA(S ∪ {j}) is at least c · s̃(j). Since all intervals in I(j) are
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completely inside [r(j), d(j)], by Property 1 (i), the speed of OA(S ∪ {j}) throughout these
intervals is at least c · s̃(j). Hence, the total work done by OA(S ∪ {j}) during I(j) is at least
c · s̃(j) · |I(j)|. By Property 1 (ii), the work done by OA(S) in the intervals in I(j) is at least
c · s̃(j) · |I(j)| − p(j). Again by Property 1 (ii), if some more jobs arrive after j, the amount of
work scheduled to the intervals in I(j) may only increases. Therefore, we have

Ea(I(j)) ≥
(

c · s̃(j) · |I(j)| − p(j)
|I(j)|

)α

|I(j)|

=

(
c · s̃(j) · bj

˜̀(j)− s̃(j) · ˜̀(j)
bj

˜̀(j)

)α

bj · ˜̀(j)

=
(c · bj − 1)α

bα
j

· (s̃(j))α · bj
˜̀(j) =

(cbj − 1)α

bα−1
j

u(j)s̃(j)˜̀(j) =
(cbj − 1)α

bα−1
j

v(j) (2)

Finally, for any b > 1/c, there are two cases. If b > bj , then by (1), v(j) = bα−1
j Eo(I(j)) <

bα−1Eo(I(j)). Otherwise, b ≤ bj , then by (2), v(j) ≤ bα−1
j

(cbj−1)α Ea(I(j)) ≤ bα−1

(cb−1)α Ea(I(j)), where

the last inequality comes from the fact that function f(x) = xα−1

(cx−1)α is decreasing when x > 1
c .

Hence for all b > 1
c , the lemma holds.

Lemma 3 follows immediately then.

Proof of Lemma 3. Note that for any two jobs j and j′ in JD1, I(j) and I(j′) are disjoint.
Hence, by summing up the inequality in Lemma 5 over all jobs in JD1, we have v(JD1) ≤

bα−1

(cb−1)α Ea + bα−1Eo, and Lemma 3 follows.

3.3 Energy usage of PS(c)

This section analyzes Ea and proves Lemma 4. We will use a potential function, which is similar
to the one used in analyzing OA [7]. However, a major difference in our problem is that both
PS(c) and Opt may discard jobs, so the set of jobs scheduled by the two algorithms can be
different. In particular, when a job j is admitted by PS(c) but discarded by Opt, our analysis
needs to relate the extra energy usage of PS(c) on processing j to the value of j discarded by
Opt. Intuitively, this extra energy can be bounded because PS(c) admits j only if its speed is
at most c times the profitable speed. Details are as follows.

W.L.O.G., we assume that Opt admits a job j at r(j) if Opt will complete j; otherwise, Opt
discards j immediately. Let Ea(t) and Eo(t) be the energy usage of PS(c) and Opt, respectively,
by time t. Let Do(t) be the total value of jobs discarded by Opt by time t. Let sa(t) and so(t)
be the speed of PS(c) and Opt, respectively, at time t. We will define a potential function Φ(t)
satisfying the following conditions.

• Boundary condition: Φ(t) = 0 before any job arrives and after all deadlines are passed.

• Running condition: At any time t without job arrival, d
dtEa(t)+ d

dtΦ(t) ≤ max{αα, α2cα−1}
d
dt(Eo(t) + Do(t)).

• Arrival condition: When a job j arrives at time t, let ∆Φ(t) and ∆Do(t) denote the change
of Φ(t) and Do(t), respectively, due to the arrival of j. Then ∆Φ(t) ≤ max{αα, α2cα−1}∆Do(t).
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Similar to [7, 10], with such a potential function, we can prove by induction on time that

∀t, Ea(t) + Φ(t) ≤ max{αα, α2cα−1}(Eo(t) + Do(t))

which implies Lemma 4 as Φ(t) = 0 after all deadlines are passed.

Definition of the potential function. Consider any time t. For any t′′ ≥ t′ ≥ t, let
wa(t′, t′′) be the total remaining size for jobs in the admitted list Q of PS(c) with deadlines in
(t′, t′′]. Recall that PS(c) processes Q by OA, which defines a sequence of times t0, t1, t2, . . . ,
where t0 = t and for i = 1, 2, . . . , ti is the latest time after ti−1 such that ρi = wa(ti−1,ti)

ti−ti−1
is

maximized. We call Ii = (ti−1, ti] as the i-th critical interval. On the other hand, consider the
schedule of Opt, and let wo(t′, t′′) be the total remaining size for jobs admitted by Opt by time t
with deadlines in (t′, t′′]. The potential function Φ(t) is defined as

Φ(t) = α
∑
i≥1

ρα−1
i (wa(ti−1, ti)− αwo(ti−1, ti)) (3)

It is easy to see that Φ(t) satisfies the boundary condition. We prove that it satisfies the arrival
and running conditions as follows. Unlike the previous potential analysis [7, 10], the arrival
condition is non-trivial as PS(c) and Opt may have different decision on admitting a new job.

Arrival condition. When a job j arrives at time t, there are four cases depending on
whether PS(c) and Opt admit j. We first consider the two easier cases where PS(c) discards
j. Since PS(c) discards j, all critical intervals Ii’s, their densities ρi’s and wa(ti−1, ti)’s do not
change. Furthermore, wo(ti−1, ti) may only increases. Hence, ∆Φ(t) ≤ 0. On the other hand,
∆Do(t) ≥ 0 depending on whether j is discarded by Opt, so the arrival condition holds.

The following discussion considers the case where PS(c) admits j. For simplicity, we first
assume that p(j) is small so that admitting j only affect the density of the critical interval that
contains d(j) while all other critical intervals are unaffected. Let Ik be the only interval affected
and let ρ and ρ′ be the density of Ik just before and after j is admitted, respectively. Let wa(k)
and wo(k) denote the total remaining size for jobs in PS(c) and Opt, respectively, with deadlines
in Ik just before j is admitted. Let |Ik| denote tk − tk−1. Then, ρ = wa(k)

|Ik| , and ρ′ = wa(k)+p(j)
|Ik| .

We first bound ∆Φ(t).

Lemma 6. Let ∆Φ(t) be the change in Φ(t) if j is admitted by PS(c) and discarded by Opt.
Then ∆Φ(t) ≤ α2cα−1v(j).

Proof. Note that wo(k) remains unchanged as Opt discards j. By definition,

∆Φ = α(ρ′)α−1(wa(k) + p(j)− αwo(k))− αρα−1(wa(k)− αwo(k))
≤ α(ρ′)α−1(wa(k) + p(j))− αρα−1wa(k)

=
α

|Ik|α−1
((wa(k) + p(j))α − wa(k)α)

Note that for any convex function f(z) and any real numbers y > x, we have f(y) − f(x) ≤
f ′(y)(y− x), where f ′ denotes the derivative of f . Putting f(z) = zα where α > 1 and consider
y = wa(k) + p(j) and x = wa(k), we have that

α

|Ik|α−1
((wa(k) + p(j))α − wa(k)α) ≤ α

|Ik|α−1
α(wA(k) + p(j))α−1p(j) = α2(ρ′)α−1p(j)

Since j is admitted by PS(c), we have ρ′ ≤ c · s̃(j) by definition. It follows that ∆Φ ≤
α2cα−1(s̃(j))α−1p(j) = α2cα−1u(j)p(j) = α2cα−1v(j)
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Therefore, if Opt discards j, ∆Do = v(j), and hence ∆Φ(t) ≤ max{αα, α2cα−1}∆Do. Fi-
nally, if Opt admit j, ∆Do = 0. The analysis on ∆Φ(t) is similar to that in [7]. Note that both
wa(k) and wo(k) is increased by p(j). Hence,

∆Φ(t) = α(ρ′)α−1
(
wa(k) + p(j)− α(wo(k) + p(j))

)
− αρα−1

(
wa(k)− αwo(k)

)
=

α

|Ik|α−1

[
((wa(k) + p(j))α−1

(
wa(k) + p(j)− α(wo(k) + p(j))

)
−wa(k)α−1

(
wa(k)− αwo(k)

)]
The last term is at most zero by setting q = wa(k), r = wo(k), δ = p(j) to Lemma 7. Hence,
∆Φ(t) ≤ 0 = max{αα, α2cα−1}∆Do.

Lemma 7. ( [7]) Let q, r, δ ≥ 0 and α ≥ 1, then (q + δ)α−1(q + δ−α(r+ δ))− qα−1(q−αr) ≤ 0.

So far, we have assumed that p(j) is small and only one critical interval is affected. To
remove the assumption, we can follow the technique of [7, 10]. If p(j) is large, we can split j
into two jobs j1 and j2 so that their release times, deadlines and value densities are the same
as j, and p(j1) is the smallest size such that some critical intervals merge or a critical interval
splits into multiple ones. p(j2) = p(j)− p(j1). Note that Φ(t) does not change due to merging
or splitting of critical intervals. The above argument can show that the arrival condition holds
after p(j1) is admitted. Furthermore, we can repeat the division recursively on j2 to conclude
that the arrival condition holds.

Running condition. Analysis for the running condition is similar to that in [7]. We
include it here for completeness. Consider any time t without job arrival. Let sa(t) and so(t) be
the speed of PS(c) and Opt, respectively. Then Ea(t) and Eo(t) are increasing at the rates of
(sa(t))α and (so(t))α, respectively, while Do(t) remains constant. Note that to prove the running
condition, it is sufficient to prove that (sa(t))α + d

dtΦ(t)− αα(so(t))α ≤ 0. In the following, we
omit the parameter t for simplicity. E.g., we write sa to mean sa(t).

PS(c) processes jobs by OA, which in turns processes jobs by EDF. Hence, at time t, PS(c) is
processing a job with deadline in I1. Furthermore, sa = ρ1 and wa(t0, t1) is decreasing at a rate
of sa. Suppose Opt is processing a job with deadline in Ik, where k ≥ 1. Then wo(tk−1, tk) is
decreasing at a rate of so. Therefore d

dtΦ = αρα−1
1 (−sa)+α2ρα−1

k so ≤ αρα−1
1 (−sa)+α2ρα−1

1 so =
−αsα

a + α2sα−1
a so, where the inequality comes from ρk ≤ ρ1. Finally, sα

a + d
dtΦ − ααsα

o ≤
(1−α)sα

a + α2sα−1
a so −ααsα

o . By considering the last expression as a function of sa where so is
a constant, the last expression can be shown to be non-positive by simple differentiation.

4 Bounded Speed Model

This section considers the bounded speed model where the processor speed can be any value
in [0, T ]. T is called the maximum speed of the processor. We first define a quantity called
the penalty ratio of a job sequence. As we will see, the difficulty of scheduling a job sequence
depends on its penalty ratio.

Definition 2. Consider scheduling in the bounded speed model with maximum speed T . The
penalty ratio of a job, denoted Γ(j), equals s̃(j)/T . The penalty ratio of a sequence J of jobs,
denoted Γ(J) or simply Γ if J is clear in context, equals the maximum penalty ratio of all jobs
in J , i.e., Γ = maxj∈J Γ(j).

9



4.1 Lower Bound

We first give a non-constant lower bound for the bounded speed model.

Theorem 8. For the bounded speed model, the competitive ratio of any algorithm is at least
min{Γα−2+1/α, 1

2Γα−1}, where Γ is the penalty ratio of the input job sequence.

Proof. Let Alg be any algorithm. The theorem is obviously true if Γ ≤ 1. In the following, let
Γ > 1 be the targeted penalty ratio. Let x > 1 be a variable to be set later. At time 0, release a
job j1 with d(j1) = x, p(j1) = T and v(j1) = TαΓα−1. Note that s̃(j1) = (v(j1)/p(j1))1/(α−1) =
TΓ and Γ(j1) = s̃(j1)/T = Γ. At time 1, one of the following two cases occurs.

• If Alg has completed j1 by time 1, then Alg must run at speed T during [0, 1], hence the
total energy usage is Tα. Yet Opt can run at speed T

x during [0, x] to finish j1, with total
energy usage (T

x )αx. Hence the competitive ratio is T α

(T/x)α(x) = xα−1

• If Alg has not completed j1 at time 1, then another job j2 is released at time 1 with
d(j2) = x, p(j2) = T (x − 1), and v(j2) = TαΓα−1(x − 1). Note that s̃(j2) = TΓ and
Γ(j2) = Γ. Opt can complete both j1 and j2 by running at speed T throughout [0, x],
with total energy usage Tαx. On the other hand, Alg cannot complete both j1 and j2 by
their deadlines. If Alg discards j1, the competitive ratio is at least v(J1)

T αx = Γα−1

x ; if Alg
discards j2, the competitive ratio is at least v(j2)

T αx = Γα−1 − Γα−1

x .

Note that Γ(j1) = Γ(j2) = Γ, so the penalty ratio of the input sequence is Γ. The competitive
ratio is at least k = min{xα−1, Γα−1

x ,Γα−1 − Γα−1

x }. If Γ ≥ 2
α

α−1 , we set x = Γ
α−1

α , then x ≥ 2,
Γα−1 = xα ≥ 2xα−1 and k ≥ xα−1 = Γα−2+1/α. If Γ < 2

α
α−1 , we set x = 2 and k ≥ 1

2Γα−1.

Note that 1
2Γα−1 = Ω(Γα−2+1/α). When T is large, the eα−1/α lower bound from the

unbounded speed model carries to the bounded speed model. Hence, we have the following.

Corollary 9. For bounded speed model, any algorithm is Ω(max{eα−1/α, Γα−2+1/α}) -competitive.

4.2 The Algorithm BPS

We propose an algorithm BPS(c), which stands for Bounded Profitable Speed with parameter
c and is a natural extension to the PS algorithm. We will show that it is O(αα + 2Γα−1(α +
1)α−1)-competitive. BPS(c) maintains a list Q of admitted jobs, which is empty initially and is
maintained as follows.

Algorithm BPS(c)

• Job execution. At any time t, BPS(c) uses OA to schedule the jobs in Q.

• Job admission. When a job j arrives at r(j), let S be the set of jobs remaining
in Q just before j arrives. BPS(c) calculates the OA schedule for S ∪ {j}.
Let s(j) be the speed of j in this OA schedule. BPS(c) admits j into Q if
s(j) ≤ min{c · s̃(j), T}; and j is discarded immediately otherwise.

• Job completion. When a job j in Q is completed, remove it from Q.

In our analysis, c = 1 gives the best competitive ratio for BPS(c). To ease our discussion,
we will fix c = 1 and call the resulting algorithm BPS. We first observe that BPS is a valid
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algorithm, i.e., it uses a speed at most T at any time, as follows. Note that the speed of BPS
may increase only when a job j is admitted. Let S be the set of jobs remaining in Q just before
j arrives. We can obtain the OA schedule for S ∪{j} from that for S by imagining the size of j
to be increasing from zero to p(j). Note that the density of the critical interval containing d(j)
will be increasing, and it may split into multiple ones, or merge with other intervals. Since j is
admitted eventually, its final density is at most min{s̃(j), T} ≤ T . All other critical intervals
with larger densities are not affected. Hence, the maximum speed of the OA schedule for S∪{j}
remains at most T .

Note that if Γ ≤ 1, then min{s̃(j), T} = min{s̃(j), s̃(j)/Γ(j)} = s̃(j). Hence BPS and PS(1)
will admit the same set of jobs and consequently have the identical schedule. Note that by
putting c = 1 and b = α + 1 into Theorem 1, PS(1) is O(αα)-competitive in the unbounded
speed model, which implies that BPS is O(αα)-competitive in the bounded speed model. In the
following, we assume Γ > 1. Our main result in this subsection is the following theorem.

Theorem 10. Let Γ > 1 be the penalty ratio. BPS is
(
(1 + Γα−1 bα−1

(b−1)α ) max{αα, α2}+ Γα−1bα−1
)
-

competitive in the bounded speed model, for any b > 1.

Putting b = α+1 for α ≥ 2, and b = α2/α +1 for 1 < α < 2, we have the following corollary.

Corollary 11. Let Γ > 1 be the penalty ratio. For 1 < α < 2, BPS is
(
α2 + 2Γα−1(α2/α + 1)α−1

)
-

competitive; for α ≥ 2, BPS is
(
αα + 2Γα−1(α + 1)α−1

)
-competitive.

The rest of this subsection proves Theorem 10. Consider any job sequence J ′ with penalty
ratio Γ > 1. Let Opt′ be the optimal offline algorithm in the bounded speed model. Let E′

a and
E′

o be the energy usage of BPS and Opt′, respectively. Let D′
a and D′

o be the value discarded
by BPS and Opt′, respectively. We first analyze D′

a. The proof is similar to that of Lemma 3.

Lemma 12. D′
a ≤ Γα−1

(
bα−1

(b−1)α E′
a + bα−1E′

o

)
+ D′

o, for any b > 1.

Proof. Let J ′D1 be the set of jobs discarded by BPS yet completed by Opt′. It suffices to show

that v(J ′D1) ≤ Γα−1
(

bα−1

(b−1)α E′
a + bα−1E′

o

)
. Let j be an arbitrary job in J ′D1. Let I ′(j) be the

set of maximal time intervals during which Opt′ processes j. Denote |I ′(j)| as the total length
of the intervals in I ′(j). Denote E′

a(I
′(j)) and E′

o(I
′(j)) as the total energy usage by BPS and

Opt′ during I ′(j), respectively. We first bound v(j) by E′
a(I

′(j)) and E′
o(I

′(j)).
If Γ(j) < 1, we can check that by repeating the argument of Lemma 3, we have v(j) ≤

bα−1

(b−1)α E′
a(I

′(j)) + bα−1E′
o(I

′(j)) ≤ Γα−1
(

bα−1

(b−1)α Ea(I ′(j)) + bα−1Eo(I ′(j))
)

for any b > 1.

Otherwise, Γ(j) ≥ 1, so s̃(j) ≥ T . We define ˜̀(j) = p(j)/s̃(j), b′j = |I ′(j)|/˜̀(j) and let
b′′j = b′j/Γ(j). Since Opt′ completes p(j) units of work in I ′(j), similar to Lemma 3, E′

o(I
′(j)) =

( p(j)
|I′(j)|)

α|I ′(j)| = v(j)
(b′j)

α−1 = 1
(Γ(j))α−1

1
(b′′j )α−1 v(j). Since BPS discards j, we can show that work

done by BPS during I ′(j) is at least T |I ′(j)| − p(j). Then, E′
a(I

′(j)) ≥ (T |I′(j)|−p(j)
|I′(j)| )α|I ′(j)| =

((b′j)/Γ(j)−1)α

(b′j)
α−1 v(j) = 1

(Γ(j))α−1

(b′′j−1)α

(b′′j )α−1 v(j). Note that b′j = |I′(j)|
˜̀(j)

≥ p(j)

T ˜̀(j)
= s̃(j)

T = Γ(j) and hence

b′′j ≥ 1. Furthermore,
(b′′j−1)α

(b′′j )α−1 is increasing for b′′j ≥ 1. Hence, similar to Lemma 3, for any b > 1

we can consider the cases of b > b′′j and b ≤ b′′j to obtain

v(j) ≤ (Γ(j))α−1
(

bα−1

(b−1)α Ea(I ′(j)) + bα−1Eo(I ′(j))
)
≤ Γα−1

(
bα−1

(b−1)α Ea(I ′(j)) + bα−1Eo(I ′(j))
)

Summing up the bound on v(j) over all j ∈ J ′D1 and note that I ′(j) are disjointed, the
lemma follows.
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We show an upper bound for E′
a as follows.

Lemma 13. E′
a ≤ max{αα, α2}(E′

o + D′
o).

Proof. To ease the discussion, denote E(Alg, J ′) as the total energy usage of algorithm Alg on
an input sequence J ′. and cost(Alg, J ′) as the total energy usage plus value discarded of Alg
on input J ′. Recall that Opt and Opt′ are the optimal offline algorithms in the unbounded and
bounded speed models, respectively. Note that E′

a = E(BPS, J ′) and E′
o + D′

o = cost(Opt′, J ′).
For any input sequence J ′, let J ′a be the set of jobs completed by BPS. Note that the

schedule of BPS on input J ′ is identical to the schedule of BPS on input J ′a. Therefore, we
have E(BPS, J ′) = E(BPS, J ′a) = E(PS(1), J ′a) ≤ max{αα, α2}cost(Opt, J ′a), where the second
equality comes from the definitions of BPS and PS(1), and the inequality follows from Lemma 4.
Note that cost(Opt, J ′a) ≤ cost(Opt′, J ′a) ≤ cost(Opt′, J ′), where the first inequality holds be-
cause the optimal algorithm in the unbounded speed model is no worse than that in the bounded
speed model, and the second inequality holds because the optimal cost will not increase with
more jobs. The lemma follows.

Finally, Theorem 10 follows directly from Lemmas 12 and 13.
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