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Abstract. We ask the question – how can websites and data aggregators contin-
ually release updated statistics, and meanwhile preserve each individual user’s
privacy? Given a stream of 0’s and 1’s, we propose a differentially private con-
tinual counter that outputs at every time step the approximate number of 1’s seen
thus far. Our counter construction has error that is only poly-log in the number
of time steps. We can extend the basic counter construction to allow websites to
continually give top-k and hot items suggestions while preserving users’ privacy.

1 Introduction

Websites such as online retailers, search engines and social networks commonly publish
aggregate statistics about their users to realize valuable social and economic utilities.
Moreover, the published statistics are continually updated over time as new data arrive.
Such practices are ubiquitous and we name a few examples below. Sites such as Ama-
zon, IMDB, Delicious and Flickr recommend popular items to users to enhance their
browsing experience and engage their interests. Search engines such as Google and
Yahoo help a user to auto-complete her search query by suggesting the most frequent
search terms matching the prefix specified by the user. During political campaigns,
websites survey the population and continually update the support rates for candidates.

Releasing aggregate information about users may seem harmless at first glance.
However, previous work has shown that such statistical disclosures can expose sensitive
information about an individual user [3, 11]. In particular, sites that continually update
the published statistics over time can give even more leverage to the adversary and result
in more severe privacy leakage [1].

In this paper, we ask the question – how can we guarantee the users’ privacy when
a website must continually publish new statistics as new data arrive? Independent from
our work, Dwork et.al. also consider essentially the same problem, and they phrase the
problem as “differential privacy under continual observation” [6, 9, 10].

The setting we consider is different from the traditional setting in which differential
privacy was studied. The traditional setting assumes a static database, and a curator who
must answer k interactive queries or publish some sanitized statistics of the database
non-interactively. In our setting, the database is dynamic and evolves over time, and
a mechanism must update the published statistics as new data items arrive. Therefore,
traditional differentially private mechanisms either fail to apply directly to our setting,
or result in an unsatisfactory loss in terms of utility or privacy if applied naively.



1.1 Contributions

Differentially private continual counter with poly-log error. We consider the continual
counting problem. Assume that the input stream � ∈ {0, 1}ℕ is a sequence of bits. The
bit �(t) at time t ∈ ℕ may denote whether an event of interest occurred at time t, e.g.,
whether a user purchased an item at time t. At every time step t ∈ ℕ, the mechanism
must output an approximate count of the number of 1’s seen thus far.

We design an �-differentially private continual counter with small error. Specifically,
for each t ∈ ℕ, with probability at least 1 − �, we guarantee O( 1� ⋅ (log t)

1.5 ⋅ log 1
� )

error4. In an independent work by Dwork et.al. [9], they also show a similar upper
bound of O( 1� ⋅ (log t)

1.5) (omitting the � term). The above upper bound is almost tight,
since Dwork et.al. [9] show that any �-differentially private mechanism will for some
stream, with probability at least �, make an error of at least 
( 1� (log T + log 1

� )) at
some time before T .

Our mechanism achieves time unboundedness, i.e., the mechanism does not require
a priori knowledge of an upper bound on the time for which it will run, and provides
guarantees even when it is run indefinitely. This represents an improvement over the
work by Dwork et.al. [6] – their mechanism requires a priori knowledge of an upper
bound on the number of time steps.

Pan privacy. Dwork et.al. first introduced the notion of pan privacy [6, 10]. A mecha-
nism is pan privacy if it can preserve differential privacy even when an adversary can
observe snapshots of the mechanism’s internal states, e.g., in subpoenas. We show how
to modify our mechanism to achieve pan privacy, without incurring any loss in the
asymptotic guarantees (Section 5).

Applications. Our continual counter construction has immediate practical applications.
As mentioned earlier, it is a common practice for websites to suggest to users the most
popular movies, news items or photos. We show how websites can continually make
such top-k or hot items suggestions in a differentially private manner. Due to limited
space, we describe applications in the full version of the paper [18].

The counter is also an important primitive in numerous data streaming algorithms [2,
14, 16]. Our differentially private continual counter is an initial step towards designing
a broad class of streaming algorithms that continually report outputs over time.

1.2 Related Work

Most closely related work. Independent from our work, Dwork et.al. show a similar
result in a recent paper [9]. They also construct a differentially private continual counter
with error O( 1� ⋅ (log t)

1.5) where t is the number of timesteps. Moreover, they show
a lower bound of 
(O( 1� ⋅ (log t)), indicating that the upper bound is almost tight. A
preliminary version of the result was revealed at the SODA’10 conference [6] in an

4 For large values of t, we can actually get a better bound O( 1
�
⋅ (log t)1.5 ⋅

√
log 1

�
). To get

a high probability statement, we can set � := 1
poly(t)

and the corresponding error becomes
O((log t)2/�).



invited talk by Dwork. The preliminary result contains a slightly looser upper bound
– a differentially private continual counter with error square root in the number of 1’s
seen thus far.

Dwork, Naor, Pitassi and Rothblum [10] recently propose the notion of pan privacy,
i.e., how to achieve differential privacy even in the presence of intrusions, in which the
adversary is allowed access to the mechanism’s internal states. Dwork et.al. used the no-
tion of pan privacy in the continual counter mechanism [6, 9], and showed how to make
their counter mechanism resilient against a single unannounced intrusion. Inspired by
their techniques, we also convert our mechanism to a pan private version that is immune
to a single unannounced intrusion or multiple afterwards announced intrusions.

Differential privacy in the traditional setting. In the traditional setting, a trusted curator
who holds a large data set must respond to queries interactively or publish sanitized
statistics about the data non-interactively. The notion of differential privacy was first
proposed and studied by Dwork et.al. [4, 8]. An extensive literature has since emerged,
studying the different tradeoffs between utility and privacy. To better understand the
motivation and state-of-the-art of this line of research, we recommend the readers to
these excellent survey papers by Dwork [5, 7].

Researchers have also applied theoretical results in differential privacy to real-world
applications. For example, McSherry and Mironov show how to build privacy into the
Netflix database published for the Netflix contest [15]. Korolova et.al. show how to
release search logs and click logs privately [13].

Attacks against privacy. A complementary line of research is attacks against privacy.
Narayanan et.al. show how to de-anonymize the Netflix data set [17]. Jones et.al. show
how to break the privacy of query log bundles [12]. More relevant to this work, Calan-
drino et.al. [1] recently demonstrate that by observing continual updates from websites
such as Amazon over a period of time, an adversary can learn individual user behavior
at a fine level of granularity. Our work is partly inspired by the problem they expose.

2 Preliminaries

2.1 Definitions

We consider streams of 0’s and 1’s. Formally, a stream � ∈ {0, 1}ℕ is a bit-string of
countable length, where ℕ := {1, 2, 3, . . .} is the set of positive integers. Specifically,
�(t) ∈ {0, 1} denotes the bit at time t ∈ ℕ. We write [T ] := {1, 2, 3, . . . , T} and
�T ∈ {0, 1}T is the length T prefix of the stream �. We will use the term item to refer
to a bit in the stream.

At every time t, we wish to output the number of 1’s that have arrived up to time t.

Definition 1 (Continual Counting Query). Given a stream � ∈ {0, 1}ℕ, the count for
the stream is a mapping c� : ℕ→ ℤ such that for each t ∈ ℕ, c�(t) :=

∑t
i=1 �(i). We

write c instead of c� when there is no risk of ambiguity on the stream � in question.

We now formally define the notion of a continual counting mechanism which con-
tinually outputs the number of 1’s seen thus far.



Definition 2 (Counting Mechanism). A counting mechanismℳ takes a stream � ∈
{0, 1}ℕ and produces a (possibly randomized) mappingℳ(�) : ℕ→ ℝ. Moreover, for
all t ∈ ℕ,ℳ(�)(t) is independent of all �(i)’s for i > t. We can also viewℳ(�) as
a point in ℝℕ. When there is no risk of ambiguity on the stream � in question, we drop
the dependence on � and useℳ(t) to meanℳ(�)(t).

Definition 3 (Time-bounded Mechanism). A counting mechanismℳ is unbounded,
if it accepts streams of indefinite lengths, i.e., given any stream �,ℳ(�) ∈ ℝℕ. Given
T ∈ ℕ, a mechanismℳ is T -bounded if it only accepts streams of lengths at most T
and returnsℳ(�) ∈ ℝT . In other words, the mechanism needs to know the value T in
advance and only looks at the length T prefix of any given stream.

We would like the mechanism to be useful, that is, its output should well approxi-
mate the true count at any point of time. We formally define the notion of utility below.

Definition 4 (Utility). A counting mechanism ℳ is (�, �)-useful at time t, if for any
stream �, with probability at least 1− �, we have ∣c�(t)−ℳ(�)(t)∣ ≤ �. Note that �
may be a function of � and t.

Intuitively, a mechanism is differentially private if it cannot be used to distinguish
two streams that are almost the same. In other words, an adversary is unable to de-
termine whether an event of interest took place or not by observing the output of the
mechanism over time. For example, the adversary is unable to determine whether a user
purchased an item at some time t.

Definition 5 (Differential Privacy). Two streams � and �′ are adjacent if they dif-
fer at exactly one time t. A counting mechanismℳ is �-differentially private (or pre-
serves �-differential privacy) if for any adjacent streams � and �′, and any measur-
able subset S ⊆ ℝℕ (or S ⊆ ℝT for T -bounded mechanisms), Pr[ℳ(�) ∈ S] ≤
exp(�) ⋅ Pr[ℳ(�′) ∈ S].

2.2 Tools

In the design of differentially private mechanisms, the Laplace distribution is often used
to introduce random noise [4, 8]. We use Lap(b) to denote the Laplace distribution with
mean 0 and variance 2b2. Its probability density function is x 7→ 1

2b exp(−
∣x∣
b ).

Dwork et.al. showed that if we mask the true answer of a query with Laplacian
noise proportional to the sensitivity of the query function, such a mechanism preserves
differential privacy for static databases [4, 8]. This is stated formally in the Fact 1.

Fact 1 (Laplace Distribution Maintains Differential Privacy.) Let a, b ∈ ℝ and ∣a−
b∣ ≤ �. Let  ∼ Lap(�� ) be a random variable having Laplace distribution. Then, for
any measurable subset S ⊆ ℝ, Pr[a+  ∈ S] ≤ exp(�) ⋅ Pr[b+  ∈ S].

In the constructions that we propose, the noise may not come from a single Laplace
distribution, but rather is the sum of multiple independent Laplace distributions. We
now derive a property of the sum of independent Laplace distributions.



Lemma 1 (Sum of Independent Laplace Distributions). Suppose i’s are indepen-
dent random variables, where each i has Laplace distribution Lap(bi). Suppose Y :=∑
i i, and bM := maxi bi. Let � ≥

√∑
i b

2
i and 0 < � < 2�2

bM
. Then, Pr[Y > �] ≤

exp(− �2

8�2 ).

The proof to Lemma 1 is a Chernoff-like argument using moment generating functions.
We provide the detailed proof in the full version [18].

Corollary 1 (Measure Concentration). Let Y , �, {bi}i and bM be defined as in Lemma 1.

Suppose 0 < � < 1 and � > max{
√∑

i b
2
i , bM

√
2 ln 2

� }. Then, Pr[∣Y ∣ > �
√
8 ln 2

� ] ≤
�.

To simplify our presentation and improve readability, we choose � :=
√∑

i b
2
i ⋅√

2 ln 2
� and use the following slightly weaker result: with probability at least 1−�, the

quantity ∣Y ∣ is at most O(
√∑

i b
2
i log

1
� ).

3 Time-Bounded Counting Mechanisms

In this section, we describe mechanisms that require a priori knowledge of an upper
bound on time. In Section 4, we show how to remove this requirement, and achieve
unbounded counting mechanisms.

3.1 Simple Counting Mechanisms

To aid the understanding of our contributions and techniques, we first explain two sim-
ple constructions.

Simple Counting Mechanism I. The mechanism is given a stream � ∈ {0, 1}ℕ, a differ-
ential privacy parameter � > 0, and an upper bound T on time. At each time step t, the
mechanism samples a fresh independent random variable t ∼ Lap( 1� ), and releases
�t = c(t) + t, where c(t) is the true count at time step t. It is not hard to see that
the above mechanism is O(T�)-differentially private, and at each time step, the error is
O( 1� ) with high probability. Alternatively, one can substitute �′ = �/T , and add much
bigger noise ∼ Lap( 1

�′ ) at every time step. In this way, we get � differential privacy;
however, now the error at each time step is O(T� ).

Simple mechanism I is a straightforward extension of the Laplace mechanism pro-
posed by Dwork et.al. [4, 8]. Basically, at every time step, the mechanism answers a
new query, and randomizes the answer with fresh independent noise. The down side
of this approach is that the privacy loss grows linearly with respect to the number of
queries, which is t in our setting.

Simple Counting Mechanism II. In essence, Simple Counting Mechanism II produces
a “sanitized” stream by adding independent Laplacian noise to each item in the stream.
Suppose the mechanism is given a stream � ∈ {0, 1}ℕ and a differential privacy param-
eter � > 0. For each time step t ∈ ℕ, the mechanism samples an independent random



variable t with Laplace distribution Lap( 1� ). Define �t := �(t) + t. Then, the mech-
anism ℳ gives the output ℳ(�)(t) :=

∑
i≤t �i at time t. A similar idea has been

proposed as a survey technique by Warner [19].
It is not hard to see that Simple Mechanism II can be implemented withO(1) words

of memory and is unbounded and �-differentially private. We use Corollary 1 to analyze
the utility of the mechanism. Fix some time T . Observe that ℳ(�)(T ) − c�(T ) =∑
t≤T t =: Y . In this case, all t ∼ Lap( 1� ). Hence, all bt := 1

� .

Theorem 1. Let 0 < � < 1, � > 0. the Simple Counting Mechanism II is �-differentially
private, and is (O(

√
t
� ⋅ log

1
� ), �)-useful at any time t ∈ ℕ.

3.2 Intuition

We will describe the Two-Level Counting Mechanism and the Binary Counting Mecha-
nism. Informally, the Two-Level Mechanism achieves �-differential privacy and O(t

1
4 )

error. The Binary Mechanism is a further improvement, and achieves O((log t)1.5) er-
ror while maintaining �-differential privacy. We now explain the intuitions for the Two-
Level Mechanism and the Binary Mechanism.

A framework for describing mechanisms. We will describe our counting mechanisms
using a common framework. Recall that the job of the mechanism is to output an ap-
proximate count at every time. However, from now on, we will think of our mechanisms
as releasing noisy “p-sums” instead of counts. One can think of p-sums as intermedi-
ate results from which an observer can estimate the count at every time step herself.

Definition 6 (p-sum). A p-sum is a partial sum of consecutive items. Let 1 ≤ i ≤ j.
We use the notation �[i, j] :=

∑j
k=i �(k) to denote a partial sum involving items i

through j.

Furthermore, once we add noise to a p-sum, we obtain a noisy p-sum denoted as �̂.
The mechanisms we consider will release noisy versions of these p-sums as new

items arrive. When an observer sees the sequence of p-sums, she can compute an esti-
mate for the count at each time step, in particular, by summing up an appropriate selec-
tion of p-sums. For example, if an observer sees a noisy p-sum �̂[1, k] = �[1, k] +

noise released at time step k, and another noisy p-sum �̂[k+1, t] = �[k+1, t]+noise
released at time step t, then she can estimate the count at time t by summing up these
two noisy p-sums, i.e., �̂[1, k] + �̂[k+1, t]. Notice that the observer needs to be able
to do this not only for a specific time t, but also for every time step in ℕ.

Now we rethink Simple Mechanism I using this framework. The noisy p-sums
released are noisy versions of the true count for each time step, that is, {�̂[1, t] =
�[1, t] + noise}1≤t≤T , where �[1, t] = c(t) is the true count at time t. In this case, the
�̂[1, t] itself is the estimated count at time t; and therefore can be regarded as a sum of
noisy p-sums (with only one summand). Notice that each item �(t) appears in O(T )
of these p-sums. This means that when you flip an item in the incoming stream, O(T )
of these p-sums will be affected – this is the reason why the privacy loss is linear in T .

Now consider Simple Mechanism II. The noisy p-sums released are noisy versions
of each item �̂t = �[t, t] + noise, where �[t, t] = �(t) is the t-th item itself. In this



Mechanism Each item Each count is Asymptotic error (while
appears in ? p-sums the sum of ? p-sums maintaining � diff. priv.)

Simple I O(T ) O(1) O(T )

Simple II O(1) O(T ) O(
√
T )

Two-Level O(1) O(
√
T ) O(T

1
4 )

Binary O(log T ) O(log T ) O((log T )1.5)
Table 1. Informal intuition for the Two-Level Mechanism and the Binary Mechanism. For sim-
plicity, we omit the parameters � and � from the bounds.

case, each item appears in only one p-sum, however, each count is the sum of O(T )
p-sums. More specifically, to estimate the count at time t, the observer sums up t noisy
p-sums �̂1, . . . �̂t. As each noisy p-sum contains some fresh independent noise, the
noises add up. In fact, over t time steps, the error would beO(

√
t) with high probability.

Observation 1 (Informal.) Suppose a mechanism ℳ adds Lap( 1� ) noise to every p-
sum before releasing it. Inℳ, each item in the stream appears in at most x p-sums,
and each estimated count is the sum of at most y p-sums. Then, the mechanism ℳ
achieves x ⋅ � differential privacy. Moreover, from Corollary 1, the error is O(

√
y

� ) with
high probability. Alternatively, to achieve �-differential privacy, one can scale appro-
priately by having �′ = �

x . Now if the mechanism instead adds Lap( 1
�′ ) noise to each

p-sum, we achieve �-differential privacy, and O(
x
√
y

� ) error with high probability.

Goal. From the above analysis, it appears that an inherent tension exists between utility
(i.e., small error) and privacy, and our challenge is how to strike a balance between the
two conflicting goals. We would like to achieve the following goals.

– Each item appears in a small number of p-sums . Intuitively, this limits the influ-
ence of any item and guarantees small privacy loss. More specifically, when one
flips an item in the incoming stream, not too many p-sums will be affected.

– Each count is a sum of a small number of p-sums . Each noisy p-sum contains
some noise, and the noises add up as one sums up several noisy p-sums. If each
output count is the sum of a small number of noisy p-sums, the accumulation of
noises is bounded. In this way, we can achieve small error.

3.3 Two-level Counting Mechanism

We can use the p-sum idea to construct a Two-level Mechanism. As this is not our main
construction, we give an overview of the Two-level mechanism below and leave details
of the construction to the full version [18]. The basic idea is to release two types of
noisy p-sums: 1) a noisy p-sum for every item, that is, �̂[1, 1], �̂[2, 2], . . ., �̂[T, T ]
where T is an upper bound on the number of time steps; and 2) a noisy p-sum for each
contiguous block ofB = �(

√
T ) items, namely, �̂[kB+1, (k+1)B] for k ≥ 0. It is not

hard to see that each item appears in only 2 p-sums, and each count can be expressed
as the sum of O(

√
T ) p-sums. According to Observation 1, such a mechanism is 2�-

differentially private, and achieves O(T
1
4 /�) error with high probability.



3.4 Binary Counting Mechanism

We could extend the idea of the Two-Level Counting Mechanism to a Multi-level
Counting Mechanism, and compute the optimal number of levels given an upper bound
on time. However, we take a better approach called the Binary Mechanism. The idea is
that at any time t, the counting mechanism internally groups the items that have arrived
to form p-sums of different sizes. The precise grouping of the items depends on the
binary representation of the number t – hence the name Binary Mechanism

Given any number t ∈ N , let Bini(t) ∈ {0, 1} be the ith digit in the binary repre-
sentation of t, where Bin0(t) is the least significant digit. Hence, t =

∑
i Bini(t) ⋅ 2i.

Informally, if Bini(t) = 1, then there is a p-sum involving 2i items. We formally de-
scribe the Binary Mechanism in Figure 1.

Input: A time upper bound T , a privacy parameter �, and a stream � ∈ {0, 1}T .
Output: At each time step t, output estimate ℬ(t).
Initialization: Each �i and �̂i are (implicitly) initialized to 0.
�′ ← �/ log T
for t← 1 to T do

Express t in binary form: t =
∑
j Binj(t) ⋅ 2j .

Let i := min{j : Binj(t) ∕= 0}.

�i ←
∑
j<i

�j + �(t) (1)

// previous value (if any) of �i is overwritten

// �i = �[t− 2i + 1, t] is a p-sum of involving 2i items

for j ← 0 to i− 1 do
�j ← 0, �̂j ← 0

end

�̂i ← �i + Lap(
1

�′
) (2)

// �̂i is the noisy p-sum �̂[t− 2i + 1, t]

Output the estimate at time t:

ℬ(t)←
∑

j:Binj(t)=1

�̂j (3)

end
Figure 1: Binary Mechanism ℬ

Binary mechanism: the p-sum view. The best way to understand the Binary Mechanism
is to think in terms of the p-sum framework described earlier. Basically, instead of
outputting the estimated counts, the mechanism could equivalently release a sequence
of noisy p-sums which provide sufficient information for an observer to estimate the
count at each time step t. In particular, at any time t, the Binary Mechanism “releases” a



new noisy p-sum �̂[t− 2i+1, t] of length 2i and ending at position t, where i denotes
the position of the least significant non-zero bit in the binary representation of t. This
p-sum and its noisy version are (temporarily) saved in the variables �i and �̂i.

It remains to specify how to estimate the count at each time step from previously
“released” noisy p-sums. Let i1 < i2 < . . . < im denote the positions of non-zero
bits in the binary representation of t. It is not hard to see that the count at time t is the
sum of m p-sums of size 2i1 , 2i2 , . . . , 2im respectively. They correspond to the values
of variables �i1 , . . . , �im maintained by the mechanism at time t. Specifically, the p-
sums are 1) �i1 , of the most recent 2i1 items; 2) �i2 , of the preceding 2i2 items; 3) �i3 ,
of the further preceding 2i3 items and so on.

In the full version [18], we show that the Binary Mechanism can be implemented
with small memory, as the mechanism can reuse the variables �’s and �̂’s.

Differential Privacy. Consider an item arriving at t ∈ [T ]. We analyze which of the
p-sums would be affected if �(t) is flipped. It is not hard to see that the item �(t)
can be in at most log T p-sums. In particular, it can be in at most 1 p-sum of size 2j ,
where j ≤ log T . Observe that each noisy p-sum maintains �

log T -differential privacy
by Fact 1. Hence, we can conclude the �-differential privacy of the Binary Mechanism.

Theorem 2 (Differential Privacy). For T ∈ ℕ, the Binary Mechanism preserves T -
bounded �-differential privacy.

Utility. We next consider the usefulness of the Binary Mechanism. Each estimated
count ℬ(t) is the sum of at most log T noisy p-sums, and each noisy p-sum con-
tains fresh, independent Laplace noise Lap( log T� ). Therefore, the error at time t is the
summation of at mostO(log t) i.i.d. Laplace distributions Lap( log T� ). We use the Corol-
lary 1 to conclude the mechanism’s usefulness.

Theorem 3 (Utility). For each t ∈ [T ], the T -bounded Binary Mechanism is (O( 1� ) ⋅
(log T ) ⋅

√
log t ⋅ log 1

� , �)-useful at time t ∈ [T ].

4 Unbounded Counting Mechanisms

Previously, we mainly considered time-bounded mechanisms, i.e., the mechanism re-
quires a priori knowledge of an upper bound on the time. We now describe how to
remove this assumption and derive unbounded counting mechanisms.

We describe the Hybrid Mechanism which gives a generic way to convert any time-
bounded mechanismℳ into an unbounded one by running two mechanisms in parallel:
(1) an unbounded mechanism that only outputs counts at time steps t being powers of 2;
(2) a time-bounded mechanismℳ to take care of items arriving at time steps between
successive powers of 2.

Logarithmic Counting Mechanism. First, consider an unbounded mechanism which
only reports the estimated counts at sparse intervals, in particular, when t is a power of
2. We would expect such a mechanism to have better guarantees than one that has to
report at every time step.



So what do we do when t is not a power of 2? We know the approximate count ĉ1 for
the time period [1, T ] where T = 2k for some non-negative integer k. Suppose we also
know the approximate count ĉ2 for the time period [T + 1, t] where T + 1 ≤ t ≤ 2T .
Then we can estimate the count at time t as ĉ1 + ĉ2. Therefore, it remains for us to
count the 1’s between [T, t] for any t ∈ [T +1, 2T ], We can simply apply a T -bounded
mechanism (e.g., the Binary Mechanism) for this task.

We now design an unbounded mechanism called the Logarithmic Mechanism which
reports the count only when the time t is a power of 2.

Input: Differential privacy parameter �, and a stream � ∈ {0, 1}ℕ.
Output: ∀k ∈ ℤ, at time t = 2k, output estimate ℒ(t).
Initialization: � ← 0.
foreach t ∈ ℕ do

� ← � + �(t)
if t = 2k for some k ∈ ℤ then

� ← � + Lap( 1� )
Output ℒ(t)← �

end
end

Figure 2: Logarithmic Mechanism ℒ
The idea for the Logarithmic Mechanism is quite simple. The mechanism internally

keeps a value � which is initialized to 0. � is used to keep track of the approximate
count at any point of time. As an item comes in, its value is added to �. At t equal to a
power of 2, the mechanism adds fresh randomness to the value � (on top of randomness
previously added), and outputs �.

If t is a power of 2, it is clear that the accumulated error at time t is a sum of
O(log t) independent Laplace distributions Lap( 1� ). Hence, we have the following guar-
antee from Corollary 1.

Theorem 4. The Logarithmic Counting Mechanism is unbounded, preserves �-differential
privacy and is (O( 1� ) ⋅

√
log t ⋅ log 1

� , �)-useful at time t = 2k for some k ≥ 0.

Logarithmic Mechanism: the p-sum view. The Logarithmic Mechanism also has a p-
sum interpretation. Equivalently, one can think of it as releasing the noisy p-sums
�̂0 = �̂[1, 1], as well as �̂k = �̂[2k−1 + 1, 2k] for every k ≥ 1, Now an observer can
estimate the count at time t = 2k as

∑k
i=0 �̂i.

Hybrid Mechanism. We combine the Logarithmic Mechanism and a time-bounded
counting mechanism to process a given stream �. We run one copy of �

2 -differentially
private Logarithmic Mechanism, which reports an approximate count when t is a power
of 2. Suppose the Logarithmic Mechanism has reported count ℒ(T ) at T = 2k for
some non-negative integer k. For time t in the range T + 1 ≤ t ≤ 2T , we run an
�
2 -differentially private T -bounded counting mechanism denoted as ℳ to count the
number of 1’s in the range [T + 1, t]. We write � = t − T . At time t, letℳ(�) be the
number of 1’s in [T + 1, T + � ] reported by the T -bounded counting mechanismℳ.
Then, the hybrid mechanism reports ℒ(T ) +ℳ(�) at time t.



Input: Differential privacy parameter �, a stream � ∈ {0, 1}ℕ, Logarithmic
Mechanism ℒ, and a time-bounded mechanismℳ.

Output: For each t ∈ ℕ, output estimateℋ(t).
Initialization: T ← 1.
Initiate the mechanism ℒ with privacy parameter �

2 on stream �.
foreach t ∈ ℕ do

Feed �(t) to mechanism ℒ.
if t = 2k for some k ∈ ℤ then

Outputℋ(t)← ℒ(t)
T ← t
Initiate an instance of the T -bounded mechanismℳT with time upper
bound T , privacy parameter �

2 and stream �(T ) ∈ {0, 1}T , where
�(T )(�) := �(� + T ) for � ∈ [1, T ].

else
� ← t− T
Feed �(T )(�) := �(t) to mechanismℳT .
Outputℋ(t)← ℒ(T ) +ℳT (�)

end
end
// At time t, T is the largest power of 2 no bigger than t.

// �(T ) is the sub-stream of � for the duration [T + 1, 2T ].
// ℳT is a time-bounded mechanism that runs for [T + 1, 2T ].

Figure 3: Hybrid Mechanismℋ (with Mechanismℳ).

Theorem 5. Assume that given any � > 0 and 0 < � < 1, Logarithmic Mechanism
ℒ is �-differentially private and is (f(�, t, �), �)-useful at time t. Similarly, assume
that given any � > 0, the T -bounded mechanism ℳ is �-differentially private and is
(g(�, T, �, �), �2 )-useful at time � ∈ [T ], where g is monotonically increasing with T and
� . Then, the Hybrid Mechanism described above is unbounded, preserves �-differential
privacy, and is (f( �2 , t,

�
2 ) + g( �2 , t, t,

�
2 ), �)-useful at time t.

The proof of Theorem 5 can be found in the full version [18].

Corollary 2. If we instantiate the Hybrid Mechanism using the Binary Mechanism as
the T -bounded mechanism, the resulting Hybrid Mechanism is unbounded, preserves
�-differential privacy, and is (O( 1� ) ⋅ (log t)

1.5 ⋅ log 1
� , �)-useful at time t.

For simplicity, in the remainder of the paper, when we refer to the Hybrid Mecha-
nism, we mean the Hybrid Mechanism instantiated with the Binary Mechanism.

Hybrid Mechanism: the p-sum view. One can also interpret the Hybrid Mechanism nat-
urally using the p-sum framework. Basically, one can equivalently think of the Hybrid
Mechanism as releasing the union of the noisy p-sums of the Logarithmic Mechanism
and the Binary Mechanism. From this set of noisy p-sums, an observer can compute
the approximate count at every time step t ∈ ℕ.



5 Pan Privacy

Dwork et.al. formalized the notion of pan privacy [6, 10] to deal with intruders who can
observe snapshots of the mechanism’s internal states, e.g., in a subpoena. For mecha-
nisms in the p-sum framework, we can apply techniques similar to those proposed in
the work [6] to make them pan private against a single unannounced intrusion, with only
a constant-factor loss in the error term. Furthermore, we extend the idea to construct pan
private counting mechanisms resilient against multiple announced (afterwards) intru-
sions. The error scales with a square root factor on the number of intrusions made. We
provide detailed definitions of pan privacy and constructions in the full version [18].
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