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1 Introduction
This note gives a self-contained complete proof on the following result, which appears as Theorem 5.1 in the
paper [CGMZ05].

Theorem 1.1 Given a metric (V, d) with doubling dimension k, there exists a (1 + ε)-spanner such that the
degree of every vertex is at most (2 + 1

ε
)O(k).

We focus on obtaining sparse representations of metrics: these are called spanners, and they have been stud-
ied extensively both for general and Euclidean metrics. Formally, a t-spanner for a metric M = (V, d) is an
undirected graph G = (V,E) such that the distances according to dG (the shortest-path metric of G) are close
to the distances in d: i.e., d(u, v) ≤ dG(u, v) ≤ t d(u, v). Clearly, one can take a complete graph and ob-
tain t = 1, and hence the quality of the spanner is typically measured by how few edges can G contain whilst
maintaining a stretch of at most t. The notion of spanners has been widely studied for general metrics (see,
e.g. [PS89, ADD+93, CDNS95]), and for geometric distances (see, e.g., [CK95, Sal91, Vai91, ADM+95]). Here,
we are particularly interested in the case when the input metric has bounded doubling dimension and the spanner
we want to construct has small stretch, i.e. t = 1 + ε, for small ε > 0. We show that for fixed ε and metrics
with bounded doubling dimension, it is possible to construct linear sized (1 + ε)-spanners. Observe that any
1.5-spanner for a uniform metric on n points must be the complete graph. Hence, without any restriction on the
input metric, it is not possible to construct an (1 + ε)-spanner with linear number of edges.

1.1 Notation and Preliminaries

We consider a finite metric M = (V, d) where |V | = n. A metric has doubling dimension [GKL03] at most k if
for every R > 0, every ball of radius R can be covered by 2k balls of radius R/2.

Definition 1.2 ((1 + ε)-spanner) Let (V, d) be a finite metric. Suppose G = (V,E) is an undirected graph such
that each edge {u, v} ∈ E has weight d(u, v), and dG(u, v) is the length of the shortest path between vertices u
and v in G. The graph G, or equivalently, the set E of edges, is a (1+ ε)-spanner for (V, d) if for all pairs u and
v, dG(u, v)/d(u, v) ≤ 1 + ε.

Definition 1.3 (Net) Let S be a set of points in a metric (V, d), and r > 0. A subset N of S is an r-net for S if
the following conditions hold.

1. For all x ∈ S, there exists some y ∈ N such that d(x, y) ≤ r.
2. For all y 6= z ∈ N , d(y, z) > r.

The following fact states that for a doubling metric, you cannot pack too many points in some fixed ball such that
the points are far away from one another.
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Fact 1.4 Suppose S is a set of points in a metric space with doubling dimension at most k. If S is contained in
some ball of radius R and for all y 6= z ∈ S, d(y, z) > r, then |S| ≤ (4R/r)k.

2 Construction of linear-sized (1 + ε)-spanners
In this section, we show the existence of sparse spanners by giving an explicit construction. In particular, we
have the following result.

Theorem 2.1 Given a metric (V, d) with doubling dimension k, there exists a (1 + ε)-spanner Ê that has (2 +
1
ε
)O(k)n edges.

The basic idea is to first construct a net-tree representing a sequence of nested nets of the metric space: this is
fairly standard, and has been used earlier, e.g., in [Tal04, KL04, CGMZ05]. A nearly-linear-time construction of
net-trees is given by Har-Peled and Mendel [HPM05].

Net trees are formally defined in the following.

Definition 2.2 (Hierarchical Tree) A hierarchical tree for a set V is a pair (T, ϕ), where T is a rooted tree, and
ϕ is a labeling function ϕ : T → V that labels each node of T with an element in V , such that the following
conditions hold.

1. Every leaf is at the same depth from the root.
2. The function ϕ restricted to the leaves of T is a bijection into V .
3. If u is an internal node of T , then there exists a child v of u such that ϕ(v) = ϕ(u). This implies that
the nodes mapped by ϕ to any x ∈ V form a connected subtree of T .

Definition 2.3 (Net-Tree) A net tree for a metric (V, d) is a hierarchical tree (T, ϕ) for the set V such that the
following conditions hold.

1. Let Ni be the set of nodes of T that have height i. (The leaves have height 0.) Suppose δ is the minimum
pairwise distance in (V, d). Let 0 < r0 < δ/2, and ri+1 = 2ri, for i ≥ 0. (Hence, ri = 2ir0.) Then, for
i ≥ 0, ϕ(Ni+1) is an ri+1-net for ϕ(Ni).

2. Let node u ∈ Ni, and its parent node be pu. Then, d(ϕ(u), ϕ(pu)) ≤ ri+1.

In order to construct the spanner, we include an edge if the end points are from the same net in some scale and
“reasonably close” to each other with respect to that scale. Using this idea, one can obtain the following theorem.

Theorem 2.4 Given a finite metric M = (V, d) with doubling dimension bounded by dim. Let ε > 0 and (T, ϕ)
be any net tree for M . For each i ≥ 0, let

Ei := {{u, v} | u, v ∈ ϕ(Ni), d(u, v) ≤ (4 + 32
ε
) · ri} \ Ei−1,

where E−1 is the empty set. (Here the parameters Ni, ri are as in Definition 2.3.) Then Ê := ∪iEi forms a
(1 + ε)-spanner for (V, d), with the number of edges being |Ê| ≤ (2 + 1

ε
)O(dim)|V |.

We prove Theorem 2.4 through Lemmas 2.5 and 2.8.

Lemma 2.5 The graph (V, Ê) is a (1 + ε)-spanner for (V, d).

Proof: Let d̂ be the distance function induced by (V, Ê). Let γ := 4 + 32
ε

. We first show that each point in V is
close to some point in ϕ(Ni) under the metric d̂.
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Claim 2.6 For all x ∈ V , for all i, there exists y ∈ ϕ(Ni) such that d̂(x, y) ≤ 2ri.

Proof: We shall prove this by induction on i. For i = 0, ϕ(N0) = V . Hence, the result holds trivially.

Suppose i ≥ 1. By the induction hypothesis, there exists y ′ ∈ ϕ(Ni−1) such that d̂(x, y′) ≤ 2ri−1. Since Yi

is a ri-net of Yi−1, there exists y ∈ ϕ(Ni) ⊆ ϕ(Ni−1) such that d(y′, y) ≤ ri = 2ri−1 ≤ γ · ri−1. Hence,,
(y′, y) ∈ Ei ⊆ Ê and d̂(y′, y) = d(y′, y), which is at most ri.

Finally, by the triangle inequality, d̂(x, y) ≤ d̂(x, y′) + d̂(y′, y) ≤ 2ri−1 + ri = 2ri.

We next show that for any pair of vertices x, y ∈ V , d̂(x, y) ≤ (1 + ε)d(x, y). Suppose ri ≤ d(x, y) < ri+1.

Suppose q is the integer such that 8
2q ≤ ε < 16

2q , i.e. q := dlog2
8
ε
e.

We first consider the simple case when i ≤ q − 1. Then, d(x, y) < 2i+1r0 ≤ 2qr0 ≤
16
ε
· r0 ≤ γ · r0. Since

x, y ∈ ϕ(N0), it follows that (x, y) ∈ Ê and d̂(x, y) = d(x, y).

Next we consider the case when i ≥ q. Let j := i− q ≥ 0.

By Claim 2.6, there exist vertices x′, y′ ∈ ϕ(Nj) such that d̂(x, x′) ≤ 2rj+1 and d̂(y, y′) ≤ 2rj+1.

We next show that (x′, y′) ∈ Ê. It suffices to show that d(x′, y′) ≤ γ · rj .

d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) (Triangle inequality)
≤ 2rj + ri+1 + 2rj (Choice of x′, y′ and i)
= rj(4 + 2 · 2q) (i = j + q)
≤ rj(4 +

32
ε
) (2q < 16

ε
)

= γ · rj

Hence, we have d̂(x′, y′) = d(x′, y′). Note that by the triangle inequality,

d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤ 4 · rj + d(x, y). (2.1)

Finally, we obtain the desired upper bound for d̂(x, y).

d̂(x, y) ≤ d̂(x, x′) + d̂(x′, y′) + d̂(y′, y) (Triangle inequality)
≤ 8 · rj + d(x, y) (Choice of x′, y′ and (2.1))
= 8

2q · ri + d(x, y) (j = i− q)
≤ (1 + 8

2q )d(x, y) (ri ≤ d(x, y))
≤ (1 + ε)d(x, y) ( 8

2q ≤ ε)

We next proceed to show that the spanner (V, Ê) is sparse. We first show that for each vertex u, for each i, the
number of edges in Ei incident on u is small.

Claim 2.7 Define Γi(u) := {v ∈ V : {u, v} ∈ Ei}. Then, |Γi(u)| ≤ (4γ)k.

Proof: Observe that Γi(u) is contained in a ball of radius at most γ ·ri centered at u. Moreover, since S ⊆ ϕ(Ni),
any two points in S must be more than ri apart. Hence, from Fact 1.4, it follow that |Γi(u)| ≤ (4γ)k.

Lemma 2.8 The number of edges in Ê is at most (2 + 1
ε
)O(k)n.
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Proof: It suffice to show that the edges of Ê can be directed such that each vertex has out-degree bounded by
(2 + 1

ε
)O(k).

For each v ∈ V , define i∗(v) := max{i | v ∈ ϕ(Ni)}. For each edge (u, v) ∈ Ê, we direct the edge from u to
v if i∗(u) < i∗(v). If i∗(u) = i∗(v), the edge can be directed arbitrarily. By arc (u,v), we mean an edge that is
directed from vertex u to vertex v.

We now bound the out-degree of vertex u. Suppose there exists an arc (u, v) ∈ Ei.

By definition of Ei, d(u, v) ≤ γ · ri. Recall p = dlog2 γe. Hence, it is not possible for both u and v to be
contained in Yi+p. Since i∗(u) ≤ i∗(v), it follows that i∗(u) ≤ i+p. On the other hand, u ∈ Yi and so i∗(u) ≥ i.
So, i∗(u)− p ≤ i ≤ i∗(u).

There are at most p + 1 = O(log γ) values of i such that Ei contains an edge directed out of u. By Claim 2.7,
for each i, the number of edges in Ei incident on u is at most (4γ)k.

Hence, the total number of edges in Ê directed out of u is (4γ)k ·O(log γ) = (2 + 1
ε
)O(k).

3 Construction of bounded-degree (1 + ε)-spanners

We have shown that the edges in Ê can be directed such that the out-degree of every vertex is bounded. We next
describe how to modify Ê to get another set of edges Ẽ that has size at most that of Ê, but the resulting undirected
graph (V, Ẽ) has bounded degree (Lemma 3.1). Moreover, we show in Lemma 3.2 that the modification preserves
distances between vertices.

We form the new graph (V, Ẽ) by modifying the directed graph (V, Ê) in the following way.

Modification Procedure. Let l be the smallest positive integer such that 1
2l−1 ≤ ε. Then, l =

O(log 1
ε
).

For each i and point u, define Mi(u) to be the set of vertices w such that w ∈ Γi(u) and (w, u) is
directed into u in Ê.

Let Iu := {i | ∃v ∈Mi(u)}. Suppose the elements of Iu are listed in increasing order i1 < i2 < · · · .
To avoid double subscripts, we write Mu

j := Mij (u).

We next modify arcs going into each vertex u in the following manner. For 1 ≤ j ≤ l, we keep the
arcs directed from Mu

j to u. For j > l, we pick an arbitrary vertex w ∈ Mu
j−l and for each point

v ∈Mu
j , replace the arc (v, u) by the arc (v, w).

Observe that since Mu
j is defined with respect to the directed graph (V, Ê), the ordering of the u’s

for which the modification is carried out is not important.

Let (V, Ẽ) be the resulting undirected graph. Since every edge in Ê is either kept or replaced by another edge
(which might be already in Ê), |Ẽ| ≤ |Ê|.

Lemma 3.1 Every vertex in (V, Ẽ) has degree bounded by (2 + 1
ε
)O(k).

Proof: Let α be an upper bound for the out-degree of the graph (V, Ê). From Lemma 2.8, we have α =
(2 + 1

ε
)O(k). Let β be an upper bound for |Mi(u)|. We have β ≤ |Γi(u)| = (2 + 1

ε
)O(k).

We next bound the maximum degree of a vertex in (V, Ẽ). Consider a vertex u ∈ V . The edges incident on u
can be grouped as follows.
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1. There are at most α edges directed out of u in Ê.

2. Out of the edges in Ê directed into u, at most βl remain in Ẽ.

3. New edges can be attached to u in (V, Ẽ). For each arc (u, v) directed out of u in Ê, there can be at most
β new edges attaching to u in Ẽ. The reason is (u, v) can be in exactly one Ei and so there exists unique j
such that u ∈M v

j . Hence, there could be potentially only at most |M v
j+l| new arcs directed into u because

of the arc (u, v) in Ê.

Hence, the number of edges incident on u in (V, Ẽ) is bounded by α+ βl + αβ = (2 + 1
ε
)O(k).

We next show that the modification from (V, Ê) to (V, Ẽ) does not increase the distance between any pair of
vertices too much.

Lemma 3.2 Suppose d̃ is the metric induced by (V, Ẽ). Then, d̃ ≤ (1 + 4ε)d̂.

Proof: It suffices to show that for each edge (v, u) ∈ Ê removed, d̃(v, u) ≤ (1 + 4ε)d(v, u).

Suppose (v, u) in Ê is directed into u . Then, by construction, v ∈Mu
j for some j > l.

Let v0 = v. Then, from our construction, for 0 ≤ s ≤ sj :=
⌊

j−1
l

⌋
, there exists vs ∈ Mu

j−sl such that for

0 ≤ s < sj , (vs, vs+1) ∈ Ẽ, and (vsj
, u) ∈ Ẽ. Then, there is a path in (V, Ẽ) going from v to u traversing

vertices in the following order: v = v0, v1, . . . , vsj
, u. By the triangle inequality, the quantity d̃(v, u) is at most

the length of this path, which we show is comparable to d(v, u).

Claim 3.3 For 0 ≤ s < sj , d(u, vs+1) ≤ εd(u, vs).

Proof: Note that vs+1 ∈Mi(u) and vs ∈Mj(u) for some i and j. From step 3 of our construction, j − i ≥ l.

Since d(vs, u) ≥ γ · rj−1 and d(vs+1, u) ≤ γ · ri, it follows that d(vs+1, u) ≤
2
2l d(vs, u) ≤ εd(vs, u).

Claim 3.4 For 0 ≤ s ≤ sj , d(vs, u) ≤ εsd(v0, u).

Proof: The claim can be proved by induction on s and using Claim 3.3.

From the triangle inequality and Claims 3.3 and 3.4, we have

d(vs, vs+1) ≤ d(vs, u) + d(u, vs+1) ≤ (1 + ε)d(vs, u) ≤ (1 + ε)εsd(v0, u) (3.2)

Finally, we have

d̃(v, u) ≤
∑sj−1

r=0 d(vs, vs+1) + d(vsj
, u) (Triangle inequality)

≤
∑sj−1

s=0 (1 + ε)εsd(v0, u) + εsjd(v0, u) ((3.2) and Claim 3.4)
≤ 1+ε

1−ε
d(v0, u)

≤ (1 + 4ε)d(v, u)

The last inequality follows from the fact that for 0 < ε < 1
2 , 1+ε

1−ε
≤ 1 + 4ε.

Finally, we show that (V, Ẽ) is the desired spanner.
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Theorem 3.5 Given a metric (V, d) with doubling dimension k, there exists a (1 + ε)-spanner such that the
degree of every vertex is at most (2 + 1

ε
)O(k).

Proof: We show that Ẽ gives the desired spanner. Lemma 3.1 gives the bound on its degree. From Lem-
mas 2.5 and 3.2, we have d̃ ≤ (1 + 4ε)d̂ ≤ (1 + 4ε)(1 + ε)d ≤ (1 + 7ε)d, for 0 < ε ≤ 1

2 . Substituting ε := ε′

7
gives the required result.
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