Rules: Discussion of the problems is permitted, but writing the assignment together is not (i.e. you are not allowed to see the actual pages of another student).

Due Date: 16 Sept 2009

Please justify your arguments carefully. Unless otherwise stated, you may assume that there is an underlying probability space $(\Omega, \mathcal{F}, Pr)$, and all random variables take discrete values.

- 1. (5 points) Prove the union bound: $Pr(\cup_i A_i) \leq \sum_i Pr(A_i)$. (Hint: Use induction and the fact $Pr(A) + Pr(B) = Pr(A \cup B) + Pr(A \cap B)$.)
- 2. (5 points) Prove the linearity of expectation: $E[\sum_i a_i X_i] = \sum_i a_i E[X_i]$.
- 3. (10 points) Suppose $X, Y : \Omega \to \mathbb{Z}$ are independent random variables taking integer values. In this question, we shall prove the basic result E[XY] = E[X]E[Y].

Prove from first principle (without using any results not proved in class) that

$$\sum_{\omega \in \Omega} X(\omega) Y(\omega) Pr(\omega) = \sum_{\omega_1 \in \Omega} X(\omega_1) Pr(\omega_1) \sum_{\omega_2 \in \Omega} Y(\omega_2) Pr(\omega_2).$$

- 4. (30 points) **Max Cut.** Let G = (V, E) be a graph. Recall the randomized algorithm mentioned in class for finding a cut $C \subset V$ for the graph G, namely, a point $v \in V$ is included in C independently with probability $\frac{1}{2}$. Let $E(C) := \{\{u, v\} \in E : u \in C, v \in V \setminus C\}$ be the edges in the cut. It is shown that $E[|E(C)|] = \frac{|E|}{2}$. The point of this question is to show that the algorithm finds a large cut with at least a constant probability.
 - (a) Define the random variable Y := |E| |E(C)|. Compute E[Y].
 - (b) Find a suitable upper bound for $Pr[Y > \frac{3|E|}{4}]$, and conclude that the randomized algorithm finds a cut of size at least $\frac{|E|}{4}$ with probability at least $\frac{1}{3}$.
- 5. (50 points) Max 3-SAT. Let ϕ be a 3-CNF formula with m clauses and n variables. Recall the basic randomized procedure mentioned in class for maximizing the number of satisfied clauses in the formula ϕ . In that procedure, each variable takes the value TRUE independently with probability $\frac{1}{2}$. Assume that generating a random TRUE/FALSE value takes 1 random bit. Hence, the basic random procedure needs n independent random bits. We showed in class that the expected number of satisfied clauses is $\frac{7m}{8}$.

The goal of this question is to design another randomized algorithm with better guarantees. Let $0 < \epsilon < 1$ and $0 < \delta < 1$. We shall design a randomized algorithm that, with failure probability at most δ , returns an assignment such that the number of satisfied clauses is at least $\frac{7-\epsilon}{8}m$.

(a) Give an upper bound on the failure probability that the basic randomized procedure returns an assignment that satisfies less than $\frac{7-\epsilon}{8}m$ clauses.

(b) Show that by repeating the basic randomized procedure, it is possible to obtain a better randomized algorithm with failure probability at most δ . Compute the number of independent random bits used by your algorithm.

(Hint: You might find the following inequality useful: for $0 < \epsilon < 1, 1 + \epsilon \ge e^{\frac{\epsilon}{2}}$.)