CSIS8601: Probabilistic Method & Randomized Algorithms
Homework 2 Due Date: 7 Oct 2009

Rules: Discussion of the problems is permitted, but writing the assignment together is not (i.e. you
are not allowed to see the actual pages of another student).

1. (20 pt) Graphs with No Short-Cycles. In this question, we show the following result.
For each | > 3, and n > 271, there exists a graph, with n vertices and no cycles of length I

or less, that has Q(nHl—%) edges.

S

(a) Consider the random graph G, ,, where p > For 3 <i <, let Y; be the number of

length-i cycles in Gy, ,. Compute E[Y;].
(b) Let Y := 34, Yi. Show that E[Y] < (np)".

(¢) By choosing an appropriate value of p, prove that there exists an n-vertex graph, with

no cycles of length [or less, that has Q(nHﬁ) edges.

erandomize the above procedure, i.e., give a deterministic algorithm that returns a
d) D domize the ab d i i deterministic algorithm that ret
graph with the desired properties. Analyze the running time of your algorithm.

2. (10 pt) The Other Half of Chernoff. Suppose Xy, X1,...,X,_1 are independent {0,1}-
random variables, each having expectation p. Let Y :=) . X; and p := E[Y]. Using the
method of moment generating function, prove the following.

For all € > 0, PrlY —pu > eu] < <ﬁ)u

3. (20 pt) n Balls into n Bins (Revisited). Using the Chernoff Bound from the previous
question, we can obtain a better bound for the balls and bins problem. Suppose n balls are
thrown independently and uniformly at random into n bins. Let Y7 be the number of balls
in the first bin.

(a) Find a number N in terms of n such that Pr[Y; > N] < # Please give the exact form
and do not use big O notation for this part of the question.

(Hint: if you need to find a number W such that W InW > Inn, try setting W := An

T Inlnn>’
for some constant A > 0. You can also assume that n is large enough, say n > 100.)

(b) Show that with probability at least 1 — 1, no bin contains more than @(bﬁ%) balls.

4. (25 pt) Integration by Sampling. Suppose we are given an integrable function f : [0,1] —
[0, M], and we wish to estimate the integral I(f) := fol f(z)dz. We only have black box access
to the function f: this means that we are given a box such that when we provide it with a
real number z, the box returns the value f(z). Moreover, we assume the real computation
model. In particular, we assume that storing a real number takes constant space, and basic
arithmetic and comparison operator (<) take constant time. Suppose we are also given a
random number generator Rand[0,1] that returns a number uniformly at random from [0,1],
and subsequent runs of Rand[0,1] are independent. The goal is to design an algorithm that

given black box access to a function f : [0,1] — [0, M] and parameters 0 < €, < 1, return
an estimate of I(f) with additive error at most e and failure probability at most 4.

(a) Show that this is not achievable by a deterministic algorithm. In particular, show that
for any deterministic algorithm A, there is some function f such that the algorithm A
returns an answer with additive error %

(Hint: Any deterministic algorithm A should run for a finite number of steps. What
happens when the algorithm A is run on the zero function f = 07)

(b) Using the random generator Rand[0,1], design a randomized algorithm to achieve the
desired goal. Give the number of black box accesses to the function f and the number
of accesses to Rand[0,1] used by your algorithm.

(Hint: Given a random pair (z,y) € [0,1]x[0, M], what is the probability that y < f(x)?)

5. (25 pt) Estimating the (Unknown) Fraction of Red Balls. Suppose a bag contains an
unknown number of red balls (assume there is at least one red ball) and you are only allowed
to sample (with replacement) uniformly at random from the bag. Design an algorithm that,
given 0 < €, < 1, with failure probability at most §, returns an estimate of the fraction of
red balls with multiplicative error at most €, i.e., if the real fraction is p, the algorithm
returns a number p such that |p— p| < ep. Give the number of random samples used by your
algorithm.

