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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Probabilistic Method

1.1 Possible Events

The first principle of probabilistic method captures the trivial observation that if an event happens
with positive probability, then it is possible for it to happen.

Fact 1.1 Suppose A ⊂ Ω is an event such that Pr(A) > 0. Then, A ∕= ∅. In particular, there
exists ! ∈ Ω such that ! ∈ A.

This principle is often used to prove existence of structures having certain properties.

1.1.1 Mono-chromatic Sets

Consider a finite set U and subsets S1, S2, . . . , Sm of U such that each Si has size ∣Si∣ = l. Is it
possible to color each element of U red or blue such that no set Si contains elements with only one
color?

Proposition 1.2 Suppose m < 2l−1. Then, it is possible to color each element of U red or blue
such that for all i, the set Si contains elements from 2 colors.

Proof: We run the following experiment. For each element, we color it red with probability 1
2

and blue with probability 1
2 . This is performed independently over all points. The sample space Ω

is the set of all possible colorings.

For each i, let Ai be the event that the set Si contains elements of only one color. We wish to show
that Pr(∩iAi) > 0. Hence, it suffices to show that Pr(∪iAi) = 1− Pr(∩iAi) < 1.

Observe that the event Ai happens means that all elements in Si are all red or all blue. Hence,
Pr(Ai) = 1

2l
+ 1

2l
= 1

2l−1 .

By the union bound, Pr(∪iAi) ≤
∑

i Pr(Ai) = m ⋅ 1
2l−1 < 1.

1.2 Random Variables and Expectation

The next principle states that if it is possible for a random variable to take values at least as large
as its mean.

Fact 1.3 Suppose E[X] = x. Then, Pr[X ≥ x] > 0.

This principle is used for showing that there exists solution having objective value at least some
certain number.
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1.2.1 Max Cut

Suppose G = (V,E) is a graph. A cut C ⊂ V is a subset of V . An edge e = {u, v} ∈ E is in cut
C if e ∩ C = 1. The edges in a cut is E(C) := {e ∈ E : e ∩ C = 1}. The problem of Max Cut is to
find a cut C such that the number ∣E(C)∣ of cut edges is maximized.

Here is a very simple randomized algorithm. We form a random subset C in the following manner.
Independently for each vertex v in V , we assign it a number 0 or 1, each with probability 1

2 . Then,
the cut C consists of the vertices with number 1.

Proposition 1.4 E[∣E(C)∣] = ∣E∣
2

Proof:

For each edge e ∈ E, let Ye be the random variable that takes value 1 if e ∈ E(C) and 0 otherwise.
Then, ∣E(C)∣ =

∑
e∈E Ye.

Consider an edge e = {u, v}. Note that Ye = 1 iff exactly 1 of {u, v} is in C, i.e. either (1) u ∈ C
and v ∕∈ C or (2) u ∕∈ C and v ∈ C.

Hence, it follows that Pr(Ye = 1) = 1
2 . Therefore, E[Ye] = 1

2 . By the linearity of expectation,

E[∣E(C)∣] =
∑

e∈E E[Ye] = ∣E∣
2 .

1.2.2 Max 3-SAT

Suppose x0, x1, . . . , xn−1 are n Boolean variables. Consider a 3-CNF formula (Conjunctive Normal
Form) with m clauses: C1∧C2∧⋅ ⋅ ⋅∧Cm, where each Cj is a disjunction of 3 literals from 3 different
variables. A literal is either a variable (e.g. x1) or its negation (e.g. ¬x1). A clause is satisfied if
at least one of its 3 literals evaluates to TRUE.

Given a 3-CNF formula, the goal is to find an assignment of the variables so that as many clauses
as possible are satisfied. Here is a randomized procedure for finding an assignment. Independently
for each variable xi, assign its value to be TRUE or FALSE, each with probability 1

2 .

Proposition 1.5 The expected number of satisfied clauses is 7m
8 .

Proof: Let Yj be a random variable that takes value 1 if the clause Cj is satisfied and 0 otherwise.
Then, the number of satisfied clauses is

∑m
j=1 Yj . Observe that exactly 3 variables are included in the

clause Cj , and out of the 23 = 8 possible configurations for those 3 variables, exactly 1 configuration
causes all 3 literals to be FALSE. Hence, E[Yj ] = 7

8 , and so E[
∑m

j=1 Yj ] =
∑m

j=1E[Yj ] = 7m
8 .

2 Markov’s Inequality and Chebyshev’s Inequality

Theorem 2.1 (Markov’s Inequality) Suppose X is a random variable taking non-negative val-
ues.

For all � > 0, Pr(X ≥ �) ≤ E[X]
� .

Proof: E[X] = Pr(X ≥ �) ⋅ E[X∣X ≥ �] + Pr(X < �) ⋅ E[X∣X < �].

Observe that E[X∣X ≥ �] ≥ �, Pr(X < �) ≥ 0 and E[X∣X < �] ≥ 0.
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Hence, E[X] ≥ Pr(X ≥ �) ⋅ �. Rearranging gives the result.

Theorem 2.2 (Chebyshev’s Inequality) Suppose X is a random variable with expectation E[X] =

�. Then, for all � > 0, Pr[∣X − �∣ ≥ �] ≤ var[X]
�2 , where var[X] = E[(X − �)2].

Proof: Observe that Pr[∣X − �∣ ≥ �] = Pr[(X − �)2 ≥ �2]. Hence, by Markov’s Inequality,

Pr[(X − �)2 ≥ �2] ≤ E[(X−�)2]
�2 = var[X]

�2 .

2.1 Comparing Markov and Chebyshev

We show that we can often obtain a better result using Chebyshev’s inequality, if we have a good
bound on the variance of the random variable involved.

Consider the example of flipping a fair coin 1000 times. We want to find an upper bound for the
event that there are at least 600 heads. Let X be the number of heads. Then, � = E[X] = 500
and var[X] = 250.

Using Markov’s Inequality, we have Pr[X ≥ 600] ≤ 500
600 = 5

6 .

Observe that X ≥ 600 implies that ∣X − �∣ ≥ 100. Hence, using Chebyshev’s Inequality, we have
Pr[X ≥ 600] ≤ Pr[∣X − �∣ ≥ 100] ≤ 250

1002
= 0.025.
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